Merge tag 'kvm-x86-misc-6.9' of https://github.com/kvm-x86/linux into HEAD
[linux-2.6-block.git] / arch / arm64 / kvm / hyp / pgtable.c
CommitLineData
b1e57de6
WD
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
5 *
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
9
10#include <linux/bitfield.h>
11#include <asm/kvm_pgtable.h>
bcb25a2b 12#include <asm/stage2_pgtable.h>
b1e57de6 13
b1e57de6
WD
14
15#define KVM_PTE_TYPE BIT(1)
16#define KVM_PTE_TYPE_BLOCK 0
17#define KVM_PTE_TYPE_PAGE 1
18#define KVM_PTE_TYPE_TABLE 1
19
b1e57de6
WD
20#define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
21
bb0e92cb
WD
22#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
23#define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
6537565f
MZ
24#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \
25 ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
26#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \
27 ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
bb0e92cb
WD
28#define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
29#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
30#define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
31
6d9d2115
WD
32#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
33#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
34#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
35#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
36#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
37#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
38
b53d4a27 39#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50)
b1e57de6 40
178cac08
QP
41#define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
42
bb0e92cb
WD
43#define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
44
6d9d2115
WD
45#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
46
b53d4a27
MS
47#define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50)
48
694d071f
YW
49#define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
50 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
51 KVM_PTE_LEAF_ATTR_HI_S2_XN)
52
8a0282c6 53#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
807923e0
QP
54#define KVM_MAX_OWNER_ID 1
55
0ab12f35
OU
56/*
57 * Used to indicate a pte for which a 'break-before-make' sequence is in
58 * progress.
59 */
60#define KVM_INVALID_PTE_LOCKED BIT(10)
61
b1e57de6 62struct kvm_pgtable_walk_data {
b1e57de6
WD
63 struct kvm_pgtable_walker *walker;
64
1ea24415 65 const u64 start;
b1e57de6 66 u64 addr;
1ea24415 67 const u64 end;
b1e57de6
WD
68};
69
02f10845
RK
70static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
71{
72 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
73}
74
75static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
76{
77 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
78}
79
807923e0
QP
80static bool kvm_phys_is_valid(u64 phys)
81{
bd412e2a
RR
82 u64 parange_max = kvm_get_parange_max();
83 u8 shift = id_aa64mmfr0_parange_to_phys_shift(parange_max);
84
85 return phys < BIT(shift);
807923e0
QP
86}
87
dfc7a776 88static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
2fcb3a59 89{
dfc7a776 90 u64 granule = kvm_granule_size(ctx->level);
2fcb3a59 91
dfc7a776 92 if (!kvm_level_supports_block_mapping(ctx->level))
b1e57de6
WD
93 return false;
94
dfc7a776 95 if (granule > (ctx->end - ctx->addr))
b1e57de6
WD
96 return false;
97
807923e0
QP
98 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
99 return false;
100
dfc7a776 101 return IS_ALIGNED(ctx->addr, granule);
b1e57de6
WD
102}
103
419edf48 104static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, s8 level)
b1e57de6
WD
105{
106 u64 shift = kvm_granule_shift(level);
107 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
108
109 return (data->addr >> shift) & mask;
110}
111
fa002e8e 112static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
b1e57de6
WD
113{
114 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
115 u64 mask = BIT(pgt->ia_bits) - 1;
116
117 return (addr & mask) >> shift;
118}
119
419edf48 120static u32 kvm_pgd_pages(u32 ia_bits, s8 start_level)
b1e57de6
WD
121{
122 struct kvm_pgtable pgt = {
123 .ia_bits = ia_bits,
124 .start_level = start_level,
125 };
126
fa002e8e 127 return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
b1e57de6
WD
128}
129
419edf48 130static bool kvm_pte_table(kvm_pte_t pte, s8 level)
b1e57de6 131{
419edf48 132 if (level == KVM_PGTABLE_LAST_LEVEL)
b1e57de6
WD
133 return false;
134
135 if (!kvm_pte_valid(pte))
136 return false;
137
138 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
139}
140
7aef0cbc 141static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
b1e57de6 142{
7aef0cbc 143 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
b1e57de6
WD
144}
145
f60ca2f9 146static void kvm_clear_pte(kvm_pte_t *ptep)
b1e57de6 147{
f60ca2f9 148 WRITE_ONCE(*ptep, 0);
b1e57de6
WD
149}
150
331aa3a0 151static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
b1e57de6 152{
331aa3a0 153 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
b1e57de6
WD
154
155 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
156 pte |= KVM_PTE_VALID;
331aa3a0 157 return pte;
b1e57de6
WD
158}
159
419edf48 160static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, s8 level)
b1e57de6 161{
8ed80051 162 kvm_pte_t pte = kvm_phys_to_pte(pa);
419edf48
RR
163 u64 type = (level == KVM_PGTABLE_LAST_LEVEL) ? KVM_PTE_TYPE_PAGE :
164 KVM_PTE_TYPE_BLOCK;
b1e57de6
WD
165
166 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
167 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
168 pte |= KVM_PTE_VALID;
169
8ed80051 170 return pte;
b1e57de6
WD
171}
172
807923e0
QP
173static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
174{
175 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
176}
177
dfc7a776
OU
178static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
179 const struct kvm_pgtable_visit_ctx *ctx,
180 enum kvm_pgtable_walk_flags visit)
b1e57de6
WD
181{
182 struct kvm_pgtable_walker *walker = data->walker;
c3119ae4
OU
183
184 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
185 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
dfc7a776 186 return walker->cb(ctx, visit);
b1e57de6
WD
187}
188
ddcadb29
OU
189static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
190 int r)
191{
192 /*
193 * Visitor callbacks return EAGAIN when the conditions that led to a
194 * fault are no longer reflected in the page tables due to a race to
195 * update a PTE. In the context of a fault handler this is interpreted
196 * as a signal to retry guest execution.
197 *
198 * Ignore the return code altogether for walkers outside a fault handler
199 * (e.g. write protecting a range of memory) and chug along with the
200 * page table walk.
201 */
202 if (r == -EAGAIN)
203 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
204
205 return !r;
206}
207
b1e57de6 208static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
419edf48 209 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level);
b1e57de6
WD
210
211static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
2a611c7f 212 struct kvm_pgtable_mm_ops *mm_ops,
419edf48 213 kvm_pteref_t pteref, s8 level)
b1e57de6 214{
dfc7a776 215 enum kvm_pgtable_walk_flags flags = data->walker->flags;
3a5154c7 216 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
dfc7a776
OU
217 struct kvm_pgtable_visit_ctx ctx = {
218 .ptep = ptep,
83844a23 219 .old = READ_ONCE(*ptep),
dfc7a776 220 .arg = data->walker->arg,
2a611c7f 221 .mm_ops = mm_ops,
1f0f4a2e 222 .start = data->start,
dfc7a776
OU
223 .addr = data->addr,
224 .end = data->end,
225 .level = level,
226 .flags = flags,
227 };
b1e57de6 228 int ret = 0;
a9f0e3d5 229 bool reload = false;
6b91b8f9 230 kvm_pteref_t childp;
83844a23 231 bool table = kvm_pte_table(ctx.old, level);
b1e57de6 232
a9f0e3d5 233 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
dfc7a776 234 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
a9f0e3d5
FT
235 reload = true;
236 }
b1e57de6 237
dfc7a776
OU
238 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
239 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
a9f0e3d5
FT
240 reload = true;
241 }
242
243 /*
244 * Reload the page table after invoking the walker callback for leaf
245 * entries or after pre-order traversal, to allow the walker to descend
246 * into a newly installed or replaced table.
247 */
248 if (reload) {
83844a23
OU
249 ctx.old = READ_ONCE(*ptep);
250 table = kvm_pte_table(ctx.old, level);
b1e57de6
WD
251 }
252
ddcadb29 253 if (!kvm_pgtable_walk_continue(data->walker, ret))
b1e57de6
WD
254 goto out;
255
256 if (!table) {
357ad203 257 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
b1e57de6
WD
258 data->addr += kvm_granule_size(level);
259 goto out;
260 }
261
6b91b8f9 262 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
2a611c7f 263 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
ddcadb29 264 if (!kvm_pgtable_walk_continue(data->walker, ret))
b1e57de6
WD
265 goto out;
266
dfc7a776
OU
267 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
268 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
b1e57de6
WD
269
270out:
ddcadb29
OU
271 if (kvm_pgtable_walk_continue(data->walker, ret))
272 return 0;
273
b1e57de6
WD
274 return ret;
275}
276
277static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
419edf48 278 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, s8 level)
b1e57de6
WD
279{
280 u32 idx;
281 int ret = 0;
282
419edf48
RR
283 if (WARN_ON_ONCE(level < KVM_PGTABLE_FIRST_LEVEL ||
284 level > KVM_PGTABLE_LAST_LEVEL))
b1e57de6
WD
285 return -EINVAL;
286
287 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
6b91b8f9 288 kvm_pteref_t pteref = &pgtable[idx];
b1e57de6
WD
289
290 if (data->addr >= data->end)
291 break;
292
6b91b8f9 293 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
b1e57de6
WD
294 if (ret)
295 break;
296 }
297
298 return ret;
299}
300
fa002e8e 301static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
b1e57de6
WD
302{
303 u32 idx;
304 int ret = 0;
b1e57de6
WD
305 u64 limit = BIT(pgt->ia_bits);
306
307 if (data->addr > limit || data->end > limit)
308 return -ERANGE;
309
310 if (!pgt->pgd)
311 return -EINVAL;
312
fa002e8e 313 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
6b91b8f9 314 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
b1e57de6 315
6b91b8f9 316 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
b1e57de6
WD
317 if (ret)
318 break;
319 }
320
321 return ret;
322}
323
324int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
325 struct kvm_pgtable_walker *walker)
326{
327 struct kvm_pgtable_walk_data walk_data = {
1f0f4a2e 328 .start = ALIGN_DOWN(addr, PAGE_SIZE),
b1e57de6
WD
329 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
330 .end = PAGE_ALIGN(walk_data.addr + size),
331 .walker = walker,
332 };
c3119ae4
OU
333 int r;
334
5e806c58
OU
335 r = kvm_pgtable_walk_begin(walker);
336 if (r)
337 return r;
338
c3119ae4 339 r = _kvm_pgtable_walk(pgt, &walk_data);
b7833bf2 340 kvm_pgtable_walk_end(walker);
b1e57de6 341
c3119ae4 342 return r;
b1e57de6 343}
bb0e92cb 344
63db506e
MZ
345struct leaf_walk_data {
346 kvm_pte_t pte;
419edf48 347 s8 level;
63db506e
MZ
348};
349
dfc7a776
OU
350static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
351 enum kvm_pgtable_walk_flags visit)
63db506e 352{
dfc7a776 353 struct leaf_walk_data *data = ctx->arg;
63db506e 354
83844a23 355 data->pte = ctx->old;
dfc7a776 356 data->level = ctx->level;
63db506e
MZ
357
358 return 0;
359}
360
361int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
419edf48 362 kvm_pte_t *ptep, s8 *level)
63db506e
MZ
363{
364 struct leaf_walk_data data;
365 struct kvm_pgtable_walker walker = {
366 .cb = leaf_walker,
367 .flags = KVM_PGTABLE_WALK_LEAF,
368 .arg = &data,
369 };
370 int ret;
371
372 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
373 PAGE_SIZE, &walker);
374 if (!ret) {
375 if (ptep)
376 *ptep = data.pte;
377 if (level)
378 *level = data.level;
379 }
380
381 return ret;
382}
383
bb0e92cb 384struct hyp_map_data {
1ea24415 385 const u64 phys;
7aef0cbc 386 kvm_pte_t attr;
bb0e92cb
WD
387};
388
3fab8234 389static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
bb0e92cb
WD
390{
391 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
392 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
393 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
394 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
395 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
396 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
397
398 if (!(prot & KVM_PGTABLE_PROT_R))
399 return -EINVAL;
400
401 if (prot & KVM_PGTABLE_PROT_X) {
402 if (prot & KVM_PGTABLE_PROT_W)
403 return -EINVAL;
404
405 if (device)
406 return -EINVAL;
b53d4a27 407
bbbb6577 408 if (system_supports_bti_kernel())
b53d4a27 409 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
bb0e92cb
WD
410 } else {
411 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
412 }
413
414 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
bd412e2a
RR
415 if (!kvm_lpa2_is_enabled())
416 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
bb0e92cb 417 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
4505e9b6 418 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
3fab8234
QP
419 *ptep = attr;
420
bb0e92cb
WD
421 return 0;
422}
423
9024b3d0
QP
424enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
425{
426 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
427 u32 ap;
428
429 if (!kvm_pte_valid(pte))
430 return prot;
431
432 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
433 prot |= KVM_PGTABLE_PROT_X;
434
435 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
436 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
437 prot |= KVM_PGTABLE_PROT_R;
438 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
439 prot |= KVM_PGTABLE_PROT_RW;
440
441 return prot;
442}
443
dfc7a776
OU
444static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
445 struct hyp_map_data *data)
bb0e92cb 446{
39bc95be 447 u64 phys = data->phys + (ctx->addr - ctx->start);
83844a23 448 kvm_pte_t new;
bb0e92cb 449
dfc7a776 450 if (!kvm_block_mapping_supported(ctx, phys))
bb0e92cb
WD
451 return false;
452
dfc7a776 453 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
83844a23 454 if (ctx->old == new)
2ea2ff91 455 return true;
83844a23 456 if (!kvm_pte_valid(ctx->old))
2a611c7f 457 ctx->mm_ops->get_page(ctx->ptep);
83844a23 458 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
2ea2ff91 459 return false;
8ed80051 460
dfc7a776 461 smp_store_release(ctx->ptep, new);
bb0e92cb
WD
462 return true;
463}
464
dfc7a776
OU
465static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
466 enum kvm_pgtable_walk_flags visit)
bb0e92cb 467{
331aa3a0 468 kvm_pte_t *childp, new;
dfc7a776 469 struct hyp_map_data *data = ctx->arg;
2a611c7f 470 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
bb0e92cb 471
dfc7a776 472 if (hyp_map_walker_try_leaf(ctx, data))
bb0e92cb
WD
473 return 0;
474
419edf48 475 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
bb0e92cb
WD
476 return -EINVAL;
477
7aef0cbc 478 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
bb0e92cb
WD
479 if (!childp)
480 return -ENOMEM;
481
331aa3a0 482 new = kvm_init_table_pte(childp, mm_ops);
dfc7a776 483 mm_ops->get_page(ctx->ptep);
331aa3a0
OU
484 smp_store_release(ctx->ptep, new);
485
bb0e92cb
WD
486 return 0;
487}
488
489int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
490 enum kvm_pgtable_prot prot)
491{
492 int ret;
493 struct hyp_map_data map_data = {
494 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
495 };
496 struct kvm_pgtable_walker walker = {
497 .cb = hyp_map_walker,
498 .flags = KVM_PGTABLE_WALK_LEAF,
499 .arg = &map_data,
500 };
501
3fab8234 502 ret = hyp_set_prot_attr(prot, &map_data.attr);
bb0e92cb
WD
503 if (ret)
504 return ret;
505
506 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
507 dsb(ishst);
508 isb();
509 return ret;
510}
511
dfc7a776
OU
512static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
513 enum kvm_pgtable_walk_flags visit)
82bb0244 514{
83844a23 515 kvm_pte_t *childp = NULL;
dfc7a776 516 u64 granule = kvm_granule_size(ctx->level);
2a611c7f
OU
517 u64 *unmapped = ctx->arg;
518 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
82bb0244 519
83844a23 520 if (!kvm_pte_valid(ctx->old))
82bb0244
WD
521 return -EINVAL;
522
83844a23
OU
523 if (kvm_pte_table(ctx->old, ctx->level)) {
524 childp = kvm_pte_follow(ctx->old, mm_ops);
82bb0244
WD
525
526 if (mm_ops->page_count(childp) != 1)
527 return 0;
528
dfc7a776 529 kvm_clear_pte(ctx->ptep);
82bb0244 530 dsb(ishst);
dfc7a776 531 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
82bb0244 532 } else {
dfc7a776 533 if (ctx->end - ctx->addr < granule)
82bb0244
WD
534 return -EINVAL;
535
dfc7a776 536 kvm_clear_pte(ctx->ptep);
82bb0244 537 dsb(ishst);
dfc7a776 538 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
2a611c7f 539 *unmapped += granule;
82bb0244
WD
540 }
541
542 dsb(ish);
543 isb();
dfc7a776 544 mm_ops->put_page(ctx->ptep);
82bb0244
WD
545
546 if (childp)
547 mm_ops->put_page(childp);
548
549 return 0;
550}
551
552u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
553{
2a611c7f 554 u64 unmapped = 0;
82bb0244
WD
555 struct kvm_pgtable_walker walker = {
556 .cb = hyp_unmap_walker,
2a611c7f 557 .arg = &unmapped,
82bb0244
WD
558 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
559 };
560
561 if (!pgt->mm_ops->page_count)
562 return 0;
563
564 kvm_pgtable_walk(pgt, addr, size, &walker);
2a611c7f 565 return unmapped;
82bb0244
WD
566}
567
7aef0cbc
QP
568int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
569 struct kvm_pgtable_mm_ops *mm_ops)
bb0e92cb 570{
419edf48
RR
571 s8 start_level = KVM_PGTABLE_LAST_LEVEL + 1 -
572 ARM64_HW_PGTABLE_LEVELS(va_bits);
573
574 if (start_level < KVM_PGTABLE_FIRST_LEVEL ||
575 start_level > KVM_PGTABLE_LAST_LEVEL)
576 return -EINVAL;
bb0e92cb 577
6b91b8f9 578 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
bb0e92cb
WD
579 if (!pgt->pgd)
580 return -ENOMEM;
581
582 pgt->ia_bits = va_bits;
419edf48 583 pgt->start_level = start_level;
7aef0cbc 584 pgt->mm_ops = mm_ops;
bb0e92cb 585 pgt->mmu = NULL;
56513119
QP
586 pgt->force_pte_cb = NULL;
587
bb0e92cb
WD
588 return 0;
589}
590
dfc7a776
OU
591static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
592 enum kvm_pgtable_walk_flags visit)
bb0e92cb 593{
2a611c7f 594 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
2ea2ff91 595
83844a23 596 if (!kvm_pte_valid(ctx->old))
2ea2ff91
QP
597 return 0;
598
dfc7a776 599 mm_ops->put_page(ctx->ptep);
2ea2ff91 600
83844a23
OU
601 if (kvm_pte_table(ctx->old, ctx->level))
602 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
7aef0cbc 603
bb0e92cb
WD
604 return 0;
605}
606
607void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
608{
609 struct kvm_pgtable_walker walker = {
610 .cb = hyp_free_walker,
2ea2ff91 611 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
bb0e92cb
WD
612 };
613
614 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
3a5154c7 615 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
bb0e92cb
WD
616 pgt->pgd = NULL;
617}
71233d05 618
6d9d2115 619struct stage2_map_data {
1ea24415 620 const u64 phys;
6d9d2115 621 kvm_pte_t attr;
807923e0 622 u8 owner_id;
6d9d2115
WD
623
624 kvm_pte_t *anchor;
f60ca2f9 625 kvm_pte_t *childp;
6d9d2115
WD
626
627 struct kvm_s2_mmu *mmu;
e37f37a0 628 void *memcache;
7aef0cbc 629
56513119
QP
630 /* Force mappings to page granularity */
631 bool force_pte;
6d9d2115
WD
632};
633
bcb25a2b
QP
634u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
635{
636 u64 vtcr = VTCR_EL2_FLAGS;
419edf48 637 s8 lvls;
bcb25a2b
QP
638
639 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
640 vtcr |= VTCR_EL2_T0SZ(phys_shift);
641 /*
642 * Use a minimum 2 level page table to prevent splitting
643 * host PMD huge pages at stage2.
644 */
645 lvls = stage2_pgtable_levels(phys_shift);
646 if (lvls < 2)
647 lvls = 2;
0abc1b11
RR
648
649 /*
650 * When LPA2 is enabled, the HW supports an extra level of translation
651 * (for 5 in total) when using 4K pages. It also introduces VTCR_EL2.SL2
652 * to as an addition to SL0 to enable encoding this extra start level.
653 * However, since we always use concatenated pages for the first level
654 * lookup, we will never need this extra level and therefore do not need
655 * to touch SL2.
656 */
bcb25a2b
QP
657 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
658
1dfc3e90 659#ifdef CONFIG_ARM64_HW_AFDBM
bcb25a2b
QP
660 /*
661 * Enable the Hardware Access Flag management, unconditionally
6df696cd
OU
662 * on all CPUs. In systems that have asymmetric support for the feature
663 * this allows KVM to leverage hardware support on the subset of cores
664 * that implement the feature.
665 *
666 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
667 * hardware) on implementations that do not advertise support for the
668 * feature. As such, setting HA unconditionally is safe, unless you
669 * happen to be running on a design that has unadvertised support for
670 * HAFDBS. Here be dragons.
bcb25a2b 671 */
6df696cd
OU
672 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
673 vtcr |= VTCR_EL2_HA;
1dfc3e90 674#endif /* CONFIG_ARM64_HW_AFDBM */
bcb25a2b 675
bd412e2a
RR
676 if (kvm_lpa2_is_enabled())
677 vtcr |= VTCR_EL2_DS;
678
bcb25a2b
QP
679 /* Set the vmid bits */
680 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
681 VTCR_EL2_VS_16BIT :
682 VTCR_EL2_VS_8BIT;
683
684 return vtcr;
685}
686
bc224df1
QP
687static bool stage2_has_fwb(struct kvm_pgtable *pgt)
688{
d8569fba 689 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
bc224df1
QP
690 return false;
691
692 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
693}
694
117940aa
RRA
695void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
696 phys_addr_t addr, size_t size)
697{
698 unsigned long pages, inval_pages;
699
700 if (!system_supports_tlb_range()) {
701 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
702 return;
703 }
704
705 pages = size >> PAGE_SHIFT;
706 while (pages > 0) {
707 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
708 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
709
710 addr += inval_pages << PAGE_SHIFT;
711 pages -= inval_pages;
712 }
713}
714
bc224df1
QP
715#define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
716
717static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
718 kvm_pte_t *ptep)
6d9d2115 719{
c034ec84 720 kvm_pte_t attr;
6d9d2115
WD
721 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
722
c034ec84
AA
723 switch (prot & (KVM_PGTABLE_PROT_DEVICE |
724 KVM_PGTABLE_PROT_NORMAL_NC)) {
725 case KVM_PGTABLE_PROT_DEVICE | KVM_PGTABLE_PROT_NORMAL_NC:
726 return -EINVAL;
727 case KVM_PGTABLE_PROT_DEVICE:
728 if (prot & KVM_PGTABLE_PROT_X)
729 return -EINVAL;
730 attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
731 break;
732 case KVM_PGTABLE_PROT_NORMAL_NC:
733 if (prot & KVM_PGTABLE_PROT_X)
734 return -EINVAL;
735 attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
736 break;
737 default:
738 attr = KVM_S2_MEMATTR(pgt, NORMAL);
739 }
740
6d9d2115
WD
741 if (!(prot & KVM_PGTABLE_PROT_X))
742 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
6d9d2115
WD
743
744 if (prot & KVM_PGTABLE_PROT_R)
745 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
746
747 if (prot & KVM_PGTABLE_PROT_W)
748 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
749
bd412e2a
RR
750 if (!kvm_lpa2_is_enabled())
751 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
752
6d9d2115 753 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
4505e9b6 754 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
3fab8234
QP
755 *ptep = attr;
756
6d9d2115
WD
757 return 0;
758}
759
9024b3d0
QP
760enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
761{
762 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
763
764 if (!kvm_pte_valid(pte))
765 return prot;
766
767 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
768 prot |= KVM_PGTABLE_PROT_R;
769 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
770 prot |= KVM_PGTABLE_PROT_W;
771 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
772 prot |= KVM_PGTABLE_PROT_X;
773
774 return prot;
775}
776
807923e0
QP
777static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
778{
779 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
780 return true;
781
782 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
783}
784
785static bool stage2_pte_is_counted(kvm_pte_t pte)
786{
787 /*
788 * The refcount tracks valid entries as well as invalid entries if they
789 * encode ownership of a page to another entity than the page-table
790 * owner, whose id is 0.
791 */
792 return !!pte;
793}
794
0ab12f35
OU
795static bool stage2_pte_is_locked(kvm_pte_t pte)
796{
797 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
798}
799
ca5de244
OU
800static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
801{
802 if (!kvm_pgtable_walk_shared(ctx)) {
803 WRITE_ONCE(*ctx->ptep, new);
804 return true;
805 }
806
807 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
808}
809
0ab12f35
OU
810/**
811 * stage2_try_break_pte() - Invalidates a pte according to the
812 * 'break-before-make' requirements of the
813 * architecture.
814 *
815 * @ctx: context of the visited pte.
816 * @mmu: stage-2 mmu
817 *
818 * Returns: true if the pte was successfully broken.
819 *
820 * If the removed pte was valid, performs the necessary serialization and TLB
821 * invalidation for the old value. For counted ptes, drops the reference count
822 * on the containing table page.
823 */
824static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
825 struct kvm_s2_mmu *mmu)
826{
827 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
828
829 if (stage2_pte_is_locked(ctx->old)) {
830 /*
831 * Should never occur if this walker has exclusive access to the
832 * page tables.
833 */
834 WARN_ON(!kvm_pgtable_walk_shared(ctx));
835 return false;
836 }
837
838 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
839 return false;
840
02f10845
RK
841 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
842 /*
843 * Perform the appropriate TLB invalidation based on the
844 * evicted pte value (if any).
845 */
846 if (kvm_pte_table(ctx->old, ctx->level))
defc8cc7
RRA
847 kvm_tlb_flush_vmid_range(mmu, ctx->addr,
848 kvm_granule_size(ctx->level));
02f10845
RK
849 else if (kvm_pte_valid(ctx->old))
850 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
851 ctx->addr, ctx->level);
852 }
0ab12f35
OU
853
854 if (stage2_pte_is_counted(ctx->old))
855 mm_ops->put_page(ctx->ptep);
856
857 return true;
858}
859
860static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
861{
862 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
863
864 WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
865
866 if (stage2_pte_is_counted(new))
867 mm_ops->get_page(ctx->ptep);
868
869 smp_store_release(ctx->ptep, new);
870}
871
7657ea92 872static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
807923e0
QP
873{
874 /*
7657ea92
RRA
875 * If FEAT_TLBIRANGE is implemented, defer the individual
876 * TLB invalidations until the entire walk is finished, and
877 * then use the range-based TLBI instructions to do the
878 * invalidations. Condition deferred TLB invalidation on the
879 * system supporting FWB as the optimization is entirely
880 * pointless when the unmap walker needs to perform CMOs.
881 */
882 return system_supports_tlb_range() && stage2_has_fwb(pgt);
883}
884
885static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
886 struct kvm_s2_mmu *mmu,
887 struct kvm_pgtable_mm_ops *mm_ops)
888{
889 struct kvm_pgtable *pgt = ctx->arg;
890
891 /*
892 * Clear the existing PTE, and perform break-before-make if it was
893 * valid. Depending on the system support, defer the TLB maintenance
894 * for the same until the entire unmap walk is completed.
807923e0 895 */
83844a23 896 if (kvm_pte_valid(ctx->old)) {
dfc7a776 897 kvm_clear_pte(ctx->ptep);
7657ea92
RRA
898
899 if (!stage2_unmap_defer_tlb_flush(pgt))
900 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
901 ctx->addr, ctx->level);
807923e0
QP
902 }
903
dfc7a776 904 mm_ops->put_page(ctx->ptep);
807923e0
QP
905}
906
25aa2869
YW
907static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
908{
909 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
910 return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
911}
912
913static bool stage2_pte_executable(kvm_pte_t pte)
914{
915 return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
916}
917
1f0f4a2e
OU
918static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
919 const struct stage2_map_data *data)
920{
921 u64 phys = data->phys;
922
923 /*
924 * Stage-2 walks to update ownership data are communicated to the map
925 * walker using an invalid PA. Avoid offsetting an already invalid PA,
926 * which could overflow and make the address valid again.
927 */
928 if (!kvm_phys_is_valid(phys))
929 return phys;
930
931 /*
932 * Otherwise, work out the correct PA based on how far the walk has
933 * gotten.
934 */
935 return phys + (ctx->addr - ctx->start);
936}
937
dfc7a776 938static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
56513119
QP
939 struct stage2_map_data *data)
940{
1f0f4a2e
OU
941 u64 phys = stage2_map_walker_phys_addr(ctx, data);
942
419edf48 943 if (data->force_pte && ctx->level < KVM_PGTABLE_LAST_LEVEL)
56513119
QP
944 return false;
945
1f0f4a2e 946 return kvm_block_mapping_supported(ctx, phys);
56513119
QP
947}
948
dfc7a776 949static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
694d071f 950 struct stage2_map_data *data)
6d9d2115 951{
83844a23 952 kvm_pte_t new;
1f0f4a2e
OU
953 u64 phys = stage2_map_walker_phys_addr(ctx, data);
954 u64 granule = kvm_granule_size(ctx->level);
25aa2869 955 struct kvm_pgtable *pgt = data->mmu->pgt;
2a611c7f 956 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
6d9d2115 957
dfc7a776 958 if (!stage2_leaf_mapping_allowed(ctx, data))
694d071f 959 return -E2BIG;
6d9d2115 960
807923e0 961 if (kvm_phys_is_valid(phys))
dfc7a776 962 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
807923e0
QP
963 else
964 new = kvm_init_invalid_leaf_owner(data->owner_id);
965
946fbfdf
OU
966 /*
967 * Skip updating the PTE if we are trying to recreate the exact
968 * same mapping or only change the access permissions. Instead,
969 * the vCPU will exit one more time from guest if still needed
970 * and then go through the path of relaxing permissions.
971 */
972 if (!stage2_pte_needs_update(ctx->old, new))
973 return -EAGAIN;
5c646b7e 974
946fbfdf
OU
975 if (!stage2_try_break_pte(ctx, data->mmu))
976 return -EAGAIN;
6d9d2115 977
25aa2869 978 /* Perform CMOs before installation of the guest stage-2 PTE */
02f10845
RK
979 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
980 stage2_pte_cacheable(pgt, new))
25aa2869 981 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
02f10845 982 granule);
25aa2869 983
02f10845
RK
984 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
985 stage2_pte_executable(new))
25aa2869
YW
986 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
987
946fbfdf
OU
988 stage2_make_pte(ctx, new);
989
694d071f 990 return 0;
6d9d2115
WD
991}
992
dfc7a776 993static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
6d9d2115
WD
994 struct stage2_map_data *data)
995{
5c359cca
OU
996 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
997 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
998 int ret;
6d9d2115 999
dfc7a776 1000 if (!stage2_leaf_mapping_allowed(ctx, data))
6d9d2115
WD
1001 return 0;
1002
5c359cca 1003 ret = stage2_map_walker_try_leaf(ctx, data);
af87fc03
OU
1004 if (ret)
1005 return ret;
5c359cca 1006
c14d08c5 1007 mm_ops->free_unlinked_table(childp, ctx->level);
af87fc03 1008 return 0;
6d9d2115
WD
1009}
1010
dfc7a776 1011static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
6d9d2115
WD
1012 struct stage2_map_data *data)
1013{
2a611c7f 1014 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
331aa3a0 1015 kvm_pte_t *childp, new;
7aef0cbc 1016 int ret;
6d9d2115 1017
dfc7a776 1018 ret = stage2_map_walker_try_leaf(ctx, data);
694d071f
YW
1019 if (ret != -E2BIG)
1020 return ret;
6d9d2115 1021
419edf48 1022 if (WARN_ON(ctx->level == KVM_PGTABLE_LAST_LEVEL))
6d9d2115
WD
1023 return -EINVAL;
1024
1025 if (!data->memcache)
1026 return -ENOMEM;
1027
7aef0cbc 1028 childp = mm_ops->zalloc_page(data->memcache);
6d9d2115
WD
1029 if (!childp)
1030 return -ENOMEM;
1031
0ab12f35
OU
1032 if (!stage2_try_break_pte(ctx, data->mmu)) {
1033 mm_ops->put_page(childp);
1034 return -EAGAIN;
1035 }
1036
6d9d2115
WD
1037 /*
1038 * If we've run into an existing block mapping then replace it with
1039 * a table. Accesses beyond 'end' that fall within the new table
1040 * will be mapped lazily.
1041 */
331aa3a0 1042 new = kvm_init_table_pte(childp, mm_ops);
0ab12f35 1043 stage2_make_pte(ctx, new);
8ed80051 1044
6d9d2115
WD
1045 return 0;
1046}
1047
6d9d2115 1048/*
5c359cca
OU
1049 * The TABLE_PRE callback runs for table entries on the way down, looking
1050 * for table entries which we could conceivably replace with a block entry
1051 * for this mapping. If it finds one it replaces the entry and calls
c14d08c5 1052 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
6d9d2115 1053 *
5c359cca
OU
1054 * Otherwise, the LEAF callback performs the mapping at the existing leaves
1055 * instead.
6d9d2115 1056 */
dfc7a776
OU
1057static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1058 enum kvm_pgtable_walk_flags visit)
6d9d2115 1059{
dfc7a776 1060 struct stage2_map_data *data = ctx->arg;
6d9d2115 1061
dfc7a776 1062 switch (visit) {
6d9d2115 1063 case KVM_PGTABLE_WALK_TABLE_PRE:
dfc7a776 1064 return stage2_map_walk_table_pre(ctx, data);
6d9d2115 1065 case KVM_PGTABLE_WALK_LEAF:
dfc7a776 1066 return stage2_map_walk_leaf(ctx, data);
5c359cca
OU
1067 default:
1068 return -EINVAL;
6d9d2115 1069 }
6d9d2115
WD
1070}
1071
1072int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1073 u64 phys, enum kvm_pgtable_prot prot,
1577cb58 1074 void *mc, enum kvm_pgtable_walk_flags flags)
6d9d2115
WD
1075{
1076 int ret;
1077 struct stage2_map_data map_data = {
1078 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
1079 .mmu = pgt->mmu,
1080 .memcache = mc,
56513119 1081 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
6d9d2115
WD
1082 };
1083 struct kvm_pgtable_walker walker = {
1084 .cb = stage2_map_walker,
1577cb58
OU
1085 .flags = flags |
1086 KVM_PGTABLE_WALK_TABLE_PRE |
5c359cca 1087 KVM_PGTABLE_WALK_LEAF,
6d9d2115
WD
1088 .arg = &map_data,
1089 };
1090
8942a237
QP
1091 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1092 return -EINVAL;
1093
bc224df1 1094 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
6d9d2115
WD
1095 if (ret)
1096 return ret;
1097
1098 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1099 dsb(ishst);
1100 return ret;
1101}
1102
807923e0
QP
1103int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1104 void *mc, u8 owner_id)
1105{
1106 int ret;
1107 struct stage2_map_data map_data = {
1108 .phys = KVM_PHYS_INVALID,
1109 .mmu = pgt->mmu,
1110 .memcache = mc,
807923e0 1111 .owner_id = owner_id,
56513119 1112 .force_pte = true,
807923e0
QP
1113 };
1114 struct kvm_pgtable_walker walker = {
1115 .cb = stage2_map_walker,
1116 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
5c359cca 1117 KVM_PGTABLE_WALK_LEAF,
807923e0
QP
1118 .arg = &map_data,
1119 };
1120
1121 if (owner_id > KVM_MAX_OWNER_ID)
1122 return -EINVAL;
1123
1124 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1125 return ret;
1126}
1127
dfc7a776
OU
1128static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1129 enum kvm_pgtable_walk_flags visit)
6d9d2115 1130{
dfc7a776 1131 struct kvm_pgtable *pgt = ctx->arg;
7aef0cbc 1132 struct kvm_s2_mmu *mmu = pgt->mmu;
2a611c7f 1133 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
83844a23 1134 kvm_pte_t *childp = NULL;
6d9d2115
WD
1135 bool need_flush = false;
1136
83844a23
OU
1137 if (!kvm_pte_valid(ctx->old)) {
1138 if (stage2_pte_is_counted(ctx->old)) {
dfc7a776
OU
1139 kvm_clear_pte(ctx->ptep);
1140 mm_ops->put_page(ctx->ptep);
807923e0 1141 }
6d9d2115 1142 return 0;
807923e0 1143 }
6d9d2115 1144
83844a23
OU
1145 if (kvm_pte_table(ctx->old, ctx->level)) {
1146 childp = kvm_pte_follow(ctx->old, mm_ops);
6d9d2115 1147
7aef0cbc 1148 if (mm_ops->page_count(childp) != 1)
6d9d2115 1149 return 0;
83844a23 1150 } else if (stage2_pte_cacheable(pgt, ctx->old)) {
bc224df1 1151 need_flush = !stage2_has_fwb(pgt);
6d9d2115
WD
1152 }
1153
1154 /*
1155 * This is similar to the map() path in that we unmap the entire
1156 * block entry and rely on the remaining portions being faulted
1157 * back lazily.
1158 */
7657ea92 1159 stage2_unmap_put_pte(ctx, mmu, mm_ops);
6d9d2115 1160
094d00f8 1161 if (need_flush && mm_ops->dcache_clean_inval_poc)
83844a23 1162 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
dfc7a776 1163 kvm_granule_size(ctx->level));
6d9d2115
WD
1164
1165 if (childp)
7aef0cbc 1166 mm_ops->put_page(childp);
6d9d2115
WD
1167
1168 return 0;
1169}
1170
1171int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1172{
7657ea92 1173 int ret;
6d9d2115
WD
1174 struct kvm_pgtable_walker walker = {
1175 .cb = stage2_unmap_walker,
7aef0cbc 1176 .arg = pgt,
6d9d2115
WD
1177 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1178 };
1179
7657ea92
RRA
1180 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1181 if (stage2_unmap_defer_tlb_flush(pgt))
1182 /* Perform the deferred TLB invalidations */
1183 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1184
1185 return ret;
6d9d2115
WD
1186}
1187
e0e5a07f 1188struct stage2_attr_data {
a4d5ca5c
YW
1189 kvm_pte_t attr_set;
1190 kvm_pte_t attr_clr;
1191 kvm_pte_t pte;
419edf48 1192 s8 level;
e0e5a07f
WD
1193};
1194
dfc7a776
OU
1195static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1196 enum kvm_pgtable_walk_flags visit)
e0e5a07f 1197{
83844a23 1198 kvm_pte_t pte = ctx->old;
dfc7a776 1199 struct stage2_attr_data *data = ctx->arg;
2a611c7f 1200 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
e0e5a07f 1201
83844a23 1202 if (!kvm_pte_valid(ctx->old))
76259cca 1203 return -EAGAIN;
e0e5a07f 1204
dfc7a776 1205 data->level = ctx->level;
e0e5a07f
WD
1206 data->pte = pte;
1207 pte &= ~data->attr_clr;
1208 pte |= data->attr_set;
1209
1210 /*
1211 * We may race with the CPU trying to set the access flag here,
1212 * but worst-case the access flag update gets lost and will be
1213 * set on the next access instead.
1214 */
25aa2869
YW
1215 if (data->pte != pte) {
1216 /*
1217 * Invalidate instruction cache before updating the guest
1218 * stage-2 PTE if we are going to add executable permission.
1219 */
1220 if (mm_ops->icache_inval_pou &&
83844a23 1221 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
25aa2869 1222 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
dfc7a776 1223 kvm_granule_size(ctx->level));
ca5de244
OU
1224
1225 if (!stage2_try_set_pte(ctx, pte))
1226 return -EAGAIN;
25aa2869 1227 }
e0e5a07f
WD
1228
1229 return 0;
1230}
1231
1232static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1233 u64 size, kvm_pte_t attr_set,
b259d137 1234 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
419edf48 1235 s8 *level, enum kvm_pgtable_walk_flags flags)
e0e5a07f
WD
1236{
1237 int ret;
1238 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1239 struct stage2_attr_data data = {
1240 .attr_set = attr_set & attr_mask,
1241 .attr_clr = attr_clr & attr_mask,
1242 };
1243 struct kvm_pgtable_walker walker = {
1244 .cb = stage2_attr_walker,
1245 .arg = &data,
ca5de244 1246 .flags = flags | KVM_PGTABLE_WALK_LEAF,
e0e5a07f
WD
1247 };
1248
1249 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1250 if (ret)
1251 return ret;
1252
1253 if (orig_pte)
1254 *orig_pte = data.pte;
b259d137
WD
1255
1256 if (level)
1257 *level = data.level;
e0e5a07f
WD
1258 return 0;
1259}
1260
73d49df2
QP
1261int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1262{
1263 return stage2_update_leaf_attrs(pgt, addr, size, 0,
b259d137 1264 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
ca5de244 1265 NULL, NULL, 0);
73d49df2
QP
1266}
1267
e0e5a07f
WD
1268kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1269{
1270 kvm_pte_t pte = 0;
7d29a240
OU
1271 int ret;
1272
1273 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1274 &pte, NULL,
fc61f554
OU
1275 KVM_PGTABLE_WALK_HANDLE_FAULT |
1276 KVM_PGTABLE_WALK_SHARED);
7d29a240
OU
1277 if (!ret)
1278 dsb(ishst);
1279
e0e5a07f
WD
1280 return pte;
1281}
1282
df6556ad
OU
1283struct stage2_age_data {
1284 bool mkold;
1285 bool young;
1286};
1287
1288static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1289 enum kvm_pgtable_walk_flags visit)
e0e5a07f 1290{
df6556ad
OU
1291 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1292 struct stage2_age_data *data = ctx->arg;
1293
1294 if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1295 return 0;
1296
1297 data->young = true;
1298
1299 /*
1300 * stage2_age_walker() is always called while holding the MMU lock for
1301 * write, so this will always succeed. Nonetheless, this deliberately
1302 * follows the race detection pattern of the other stage-2 walkers in
1303 * case the locking mechanics of the MMU notifiers is ever changed.
1304 */
1305 if (data->mkold && !stage2_try_set_pte(ctx, new))
1306 return -EAGAIN;
1307
e0e5a07f
WD
1308 /*
1309 * "But where's the TLBI?!", you scream.
1310 * "Over in the core code", I sigh.
1311 *
1312 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1313 */
df6556ad 1314 return 0;
e0e5a07f
WD
1315}
1316
df6556ad
OU
1317bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1318 u64 size, bool mkold)
e0e5a07f 1319{
df6556ad
OU
1320 struct stage2_age_data data = {
1321 .mkold = mkold,
1322 };
1323 struct kvm_pgtable_walker walker = {
1324 .cb = stage2_age_walker,
1325 .arg = &data,
1326 .flags = KVM_PGTABLE_WALK_LEAF,
1327 };
1328
1329 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1330 return data.young;
e0e5a07f
WD
1331}
1332
adcd4e23
WD
1333int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1334 enum kvm_pgtable_prot prot)
1335{
1336 int ret;
419edf48 1337 s8 level;
adcd4e23
WD
1338 kvm_pte_t set = 0, clr = 0;
1339
4505e9b6
QP
1340 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1341 return -EINVAL;
1342
adcd4e23
WD
1343 if (prot & KVM_PGTABLE_PROT_R)
1344 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1345
1346 if (prot & KVM_PGTABLE_PROT_W)
1347 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1348
1349 if (prot & KVM_PGTABLE_PROT_X)
1350 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1351
ca5de244 1352 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
ddcadb29 1353 KVM_PGTABLE_WALK_HANDLE_FAULT |
ca5de244 1354 KVM_PGTABLE_WALK_SHARED);
be097997 1355 if (!ret || ret == -EAGAIN)
a12ab137 1356 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
adcd4e23
WD
1357 return ret;
1358}
1359
dfc7a776
OU
1360static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1361 enum kvm_pgtable_walk_flags visit)
93c66b40 1362{
dfc7a776 1363 struct kvm_pgtable *pgt = ctx->arg;
bc224df1 1364 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
93c66b40 1365
83844a23 1366 if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
93c66b40
QP
1367 return 0;
1368
094d00f8 1369 if (mm_ops->dcache_clean_inval_poc)
83844a23 1370 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
dfc7a776 1371 kvm_granule_size(ctx->level));
93c66b40
QP
1372 return 0;
1373}
1374
1375int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1376{
1377 struct kvm_pgtable_walker walker = {
1378 .cb = stage2_flush_walker,
1379 .flags = KVM_PGTABLE_WALK_LEAF,
bc224df1 1380 .arg = pgt,
93c66b40
QP
1381 };
1382
bc224df1 1383 if (stage2_has_fwb(pgt))
93c66b40
QP
1384 return 0;
1385
1386 return kvm_pgtable_walk(pgt, addr, size, &walker);
1387}
1388
e7c05540 1389kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
419edf48 1390 u64 phys, s8 level,
e7c05540
RK
1391 enum kvm_pgtable_prot prot,
1392 void *mc, bool force_pte)
1393{
1394 struct stage2_map_data map_data = {
1395 .phys = phys,
1396 .mmu = pgt->mmu,
1397 .memcache = mc,
1398 .force_pte = force_pte,
1399 };
1400 struct kvm_pgtable_walker walker = {
1401 .cb = stage2_map_walker,
1402 .flags = KVM_PGTABLE_WALK_LEAF |
1403 KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1404 KVM_PGTABLE_WALK_SKIP_CMO,
1405 .arg = &map_data,
1406 };
1407 /*
1408 * The input address (.addr) is irrelevant for walking an
1409 * unlinked table. Construct an ambiguous IA range to map
1410 * kvm_granule_size(level) worth of memory.
1411 */
1412 struct kvm_pgtable_walk_data data = {
1413 .walker = &walker,
1414 .addr = 0,
1415 .end = kvm_granule_size(level),
1416 };
1417 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1418 kvm_pte_t *pgtable;
1419 int ret;
1420
1421 if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1422 return ERR_PTR(-EINVAL);
1423
1424 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1425 if (ret)
1426 return ERR_PTR(ret);
1427
1428 pgtable = mm_ops->zalloc_page(mc);
1429 if (!pgtable)
1430 return ERR_PTR(-ENOMEM);
1431
1432 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1433 level + 1);
1434 if (ret) {
1435 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
e7c05540
RK
1436 return ERR_PTR(ret);
1437 }
1438
1439 return pgtable;
1440}
56513119 1441
8f5a3eb7
RK
1442/*
1443 * Get the number of page-tables needed to replace a block with a
1444 * fully populated tree up to the PTE entries. Note that @level is
1445 * interpreted as in "level @level entry".
1446 */
419edf48 1447static int stage2_block_get_nr_page_tables(s8 level)
8f5a3eb7
RK
1448{
1449 switch (level) {
1450 case 1:
1451 return PTRS_PER_PTE + 1;
1452 case 2:
1453 return 1;
1454 case 3:
1455 return 0;
1456 default:
1457 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
419edf48 1458 level > KVM_PGTABLE_LAST_LEVEL);
8f5a3eb7
RK
1459 return -EINVAL;
1460 };
1461}
1462
1463static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1464 enum kvm_pgtable_walk_flags visit)
1465{
1466 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1467 struct kvm_mmu_memory_cache *mc = ctx->arg;
1468 struct kvm_s2_mmu *mmu;
1469 kvm_pte_t pte = ctx->old, new, *childp;
1470 enum kvm_pgtable_prot prot;
419edf48 1471 s8 level = ctx->level;
8f5a3eb7
RK
1472 bool force_pte;
1473 int nr_pages;
1474 u64 phys;
1475
1476 /* No huge-pages exist at the last level */
419edf48 1477 if (level == KVM_PGTABLE_LAST_LEVEL)
8f5a3eb7
RK
1478 return 0;
1479
1480 /* We only split valid block mappings */
1481 if (!kvm_pte_valid(pte))
1482 return 0;
1483
1484 nr_pages = stage2_block_get_nr_page_tables(level);
1485 if (nr_pages < 0)
1486 return nr_pages;
1487
1488 if (mc->nobjs >= nr_pages) {
1489 /* Build a tree mapped down to the PTE granularity. */
1490 force_pte = true;
1491 } else {
1492 /*
1493 * Don't force PTEs, so create_unlinked() below does
1494 * not populate the tree up to the PTE level. The
1495 * consequence is that the call will require a single
1496 * page of level 2 entries at level 1, or a single
1497 * page of PTEs at level 2. If we are at level 1, the
1498 * PTEs will be created recursively.
1499 */
1500 force_pte = false;
1501 nr_pages = 1;
1502 }
1503
1504 if (mc->nobjs < nr_pages)
1505 return -ENOMEM;
1506
1507 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1508 phys = kvm_pte_to_phys(pte);
1509 prot = kvm_pgtable_stage2_pte_prot(pte);
1510
1511 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1512 level, prot, mc, force_pte);
1513 if (IS_ERR(childp))
1514 return PTR_ERR(childp);
1515
1516 if (!stage2_try_break_pte(ctx, mmu)) {
1517 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
8f5a3eb7
RK
1518 return -EAGAIN;
1519 }
1520
1521 /*
1522 * Note, the contents of the page table are guaranteed to be made
1523 * visible before the new PTE is assigned because stage2_make_pte()
1524 * writes the PTE using smp_store_release().
1525 */
1526 new = kvm_init_table_pte(childp, mm_ops);
1527 stage2_make_pte(ctx, new);
1528 dsb(ishst);
1529 return 0;
1530}
1531
1532int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1533 struct kvm_mmu_memory_cache *mc)
1534{
1535 struct kvm_pgtable_walker walker = {
1536 .cb = stage2_split_walker,
1537 .flags = KVM_PGTABLE_WALK_LEAF,
1538 .arg = mc,
1539 };
1540
1541 return kvm_pgtable_walk(pgt, addr, size, &walker);
1542}
56513119 1543
9d8604b2 1544int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
56513119
QP
1545 struct kvm_pgtable_mm_ops *mm_ops,
1546 enum kvm_pgtable_stage2_flags flags,
1547 kvm_pgtable_force_pte_cb_t force_pte_cb)
71233d05
WD
1548{
1549 size_t pgd_sz;
fe49fd94 1550 u64 vtcr = mmu->vtcr;
71233d05
WD
1551 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1552 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
419edf48 1553 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
71233d05
WD
1554
1555 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
6b91b8f9 1556 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
71233d05
WD
1557 if (!pgt->pgd)
1558 return -ENOMEM;
1559
1560 pgt->ia_bits = ia_bits;
1561 pgt->start_level = start_level;
7aef0cbc 1562 pgt->mm_ops = mm_ops;
9d8604b2 1563 pgt->mmu = mmu;
bc224df1 1564 pgt->flags = flags;
56513119 1565 pgt->force_pte_cb = force_pte_cb;
71233d05
WD
1566
1567 /* Ensure zeroed PGD pages are visible to the hardware walker */
1568 dsb(ishst);
1569 return 0;
1570}
1571
a1ec5c70
FT
1572size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1573{
1574 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1575 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
419edf48 1576 s8 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
a1ec5c70
FT
1577
1578 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1579}
1580
dfc7a776
OU
1581static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1582 enum kvm_pgtable_walk_flags visit)
71233d05 1583{
2a611c7f 1584 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
71233d05 1585
83844a23 1586 if (!stage2_pte_is_counted(ctx->old))
71233d05
WD
1587 return 0;
1588
dfc7a776 1589 mm_ops->put_page(ctx->ptep);
71233d05 1590
83844a23
OU
1591 if (kvm_pte_table(ctx->old, ctx->level))
1592 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
71233d05
WD
1593
1594 return 0;
1595}
1596
1597void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1598{
1599 size_t pgd_sz;
1600 struct kvm_pgtable_walker walker = {
1601 .cb = stage2_free_walker,
1602 .flags = KVM_PGTABLE_WALK_LEAF |
1603 KVM_PGTABLE_WALK_TABLE_POST,
1604 };
1605
1606 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1607 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
3a5154c7 1608 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
71233d05
WD
1609 pgt->pgd = NULL;
1610}
8e94e125 1611
419edf48 1612void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, s8 level)
8e94e125 1613{
5c359cca 1614 kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
8e94e125
OU
1615 struct kvm_pgtable_walker walker = {
1616 .cb = stage2_free_walker,
1617 .flags = KVM_PGTABLE_WALK_LEAF |
1618 KVM_PGTABLE_WALK_TABLE_POST,
1619 };
1620 struct kvm_pgtable_walk_data data = {
1621 .walker = &walker,
1622
1623 /*
1624 * At this point the IPA really doesn't matter, as the page
1625 * table being traversed has already been removed from the stage
1626 * 2. Set an appropriate range to cover the entire page table.
1627 */
1628 .addr = 0,
1629 .end = kvm_granule_size(level),
1630 };
1631
5c359cca 1632 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
f6a27d6d
OU
1633
1634 WARN_ON(mm_ops->page_count(pgtable) != 1);
1635 mm_ops->put_page(pgtable);
8e94e125 1636}