Merge tag 'platform-drivers-x86-v6.11-4' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / arch / arm64 / kernel / smp.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
08e875c1
CM
2/*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
08e875c1
CM
7 */
8
0f078336 9#include <linux/acpi.h>
f5df2696 10#include <linux/arm_sdei.h>
08e875c1
CM
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/spinlock.h>
68e21be2 14#include <linux/sched/mm.h>
ef8bd77f 15#include <linux/sched/hotplug.h>
68db0cf1 16#include <linux/sched/task_stack.h>
08e875c1
CM
17#include <linux/interrupt.h>
18#include <linux/cache.h>
19#include <linux/profile.h>
20#include <linux/errno.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/cpu.h>
24#include <linux/smp.h>
25#include <linux/seq_file.h>
26#include <linux/irq.h>
e7932188 27#include <linux/irqchip/arm-gic-v3.h>
08e875c1
CM
28#include <linux/percpu.h>
29#include <linux/clockchips.h>
30#include <linux/completion.h>
31#include <linux/of.h>
eb631bb5 32#include <linux/irq_work.h>
a2638815 33#include <linux/kernel_stat.h>
78fd584c 34#include <linux/kexec.h>
2f5cd0c7 35#include <linux/kgdb.h>
0492747c 36#include <linux/kvm_host.h>
331a1b3a 37#include <linux/nmi.h>
08e875c1 38
e039ee4e 39#include <asm/alternative.h>
08e875c1
CM
40#include <asm/atomic.h>
41#include <asm/cacheflush.h>
df857416 42#include <asm/cpu.h>
08e875c1 43#include <asm/cputype.h>
cd1aebf5 44#include <asm/cpu_ops.h>
0fbeb318 45#include <asm/daifflags.h>
0492747c 46#include <asm/kvm_mmu.h>
08e875c1 47#include <asm/mmu_context.h>
1a2db300 48#include <asm/numa.h>
08e875c1 49#include <asm/processor.h>
4c7aa002 50#include <asm/smp_plat.h>
08e875c1
CM
51#include <asm/sections.h>
52#include <asm/tlbflush.h>
53#include <asm/ptrace.h>
377bcff9 54#include <asm/virt.h>
08e875c1 55
45ed695a
NP
56#include <trace/events/ipi.h>
57
08e875c1
CM
58/*
59 * as from 2.5, kernels no longer have an init_tasks structure
60 * so we need some other way of telling a new secondary core
61 * where to place its SVC stack
62 */
63struct secondary_data secondary_data;
bb905274 64/* Number of CPUs which aren't online, but looping in kernel text. */
2eaf63ba 65static int cpus_stuck_in_kernel;
08e875c1
CM
66
67enum ipi_msg_type {
68 IPI_RESCHEDULE,
69 IPI_CALL_FUNC,
08e875c1 70 IPI_CPU_STOP,
78fd584c 71 IPI_CPU_CRASH_STOP,
1f85008e 72 IPI_TIMER,
eb631bb5 73 IPI_IRQ_WORK,
331a1b3a
DA
74 NR_IPI,
75 /*
76 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
77 * with trace_ipi_*
78 */
79 IPI_CPU_BACKTRACE = NR_IPI,
2f5cd0c7 80 IPI_KGDB_ROUNDUP,
331a1b3a 81 MAX_IPI
08e875c1
CM
82};
83
62817d5b
DA
84static int ipi_irq_base __ro_after_init;
85static int nr_ipi __ro_after_init = NR_IPI;
86static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
d3afc7f1
MZ
87
88static void ipi_setup(int cpu);
d3afc7f1 89
bb905274 90#ifdef CONFIG_HOTPLUG_CPU
9d9edb96 91static void ipi_teardown(int cpu);
bb905274
SP
92static int op_cpu_kill(unsigned int cpu);
93#else
94static inline int op_cpu_kill(unsigned int cpu)
95{
96 return -ENOSYS;
97}
98#endif
99
100
08e875c1
CM
101/*
102 * Boot a secondary CPU, and assign it the specified idle task.
103 * This also gives us the initial stack to use for this CPU.
104 */
b8c6453a 105static int boot_secondary(unsigned int cpu, struct task_struct *idle)
08e875c1 106{
de58ed5e
GS
107 const struct cpu_operations *ops = get_cpu_ops(cpu);
108
109 if (ops->cpu_boot)
110 return ops->cpu_boot(cpu);
08e875c1 111
652af899 112 return -EOPNOTSUPP;
08e875c1
CM
113}
114
115static DECLARE_COMPLETION(cpu_running);
116
b8c6453a 117int __cpu_up(unsigned int cpu, struct task_struct *idle)
08e875c1
CM
118{
119 int ret;
bb905274 120 long status;
08e875c1
CM
121
122 /*
123 * We need to tell the secondary core where to find its stack and the
124 * page tables.
125 */
c02433dd 126 secondary_data.task = idle;
bb905274 127 update_cpu_boot_status(CPU_MMU_OFF);
08e875c1 128
d22b115c 129 /* Now bring the CPU into our world */
08e875c1 130 ret = boot_secondary(cpu, idle);
d22b115c 131 if (ret) {
643e12da
JPB
132 if (ret != -EPERM)
133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
f357b3a7 134 return ret;
08e875c1
CM
135 }
136
d22b115c
GS
137 /*
138 * CPU was successfully started, wait for it to come online or
139 * time out.
140 */
141 wait_for_completion_timeout(&cpu_running,
142 msecs_to_jiffies(5000));
143 if (cpu_online(cpu))
144 return 0;
145
146 pr_crit("CPU%u: failed to come online\n", cpu);
c02433dd 147 secondary_data.task = NULL;
bb905274 148 status = READ_ONCE(secondary_data.status);
d22b115c
GS
149 if (status == CPU_MMU_OFF)
150 status = READ_ONCE(__early_cpu_boot_status);
bb905274 151
d22b115c
GS
152 switch (status & CPU_BOOT_STATUS_MASK) {
153 default:
154 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
155 cpu, status);
156 cpus_stuck_in_kernel++;
157 break;
158 case CPU_KILL_ME:
159 if (!op_cpu_kill(cpu)) {
160 pr_crit("CPU%u: died during early boot\n", cpu);
bb905274 161 break;
bb905274 162 }
d22b115c 163 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
df561f66 164 fallthrough;
d22b115c
GS
165 case CPU_STUCK_IN_KERNEL:
166 pr_crit("CPU%u: is stuck in kernel\n", cpu);
167 if (status & CPU_STUCK_REASON_52_BIT_VA)
168 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
169 if (status & CPU_STUCK_REASON_NO_GRAN) {
170 pr_crit("CPU%u: does not support %luK granule\n",
171 cpu, PAGE_SIZE / SZ_1K);
172 }
173 cpus_stuck_in_kernel++;
174 break;
175 case CPU_PANIC_KERNEL:
176 panic("CPU%u detected unsupported configuration\n", cpu);
bb905274 177 }
08e875c1 178
ba051f09 179 return -EIO;
08e875c1
CM
180}
181
e7932188
JT
182static void init_gic_priority_masking(void)
183{
184 u32 cpuflags;
185
186 if (WARN_ON(!gic_enable_sre()))
187 return;
188
189 cpuflags = read_sysreg(daif);
190
191 WARN_ON(!(cpuflags & PSR_I_BIT));
f0098155 192 WARN_ON(!(cpuflags & PSR_F_BIT));
e7932188 193
e1d22385 194 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
e7932188
JT
195}
196
08e875c1
CM
197/*
198 * This is the secondary CPU boot entry. We're using this CPUs
199 * idle thread stack, but a set of temporary page tables.
200 */
b154886f 201asmlinkage notrace void secondary_start_kernel(void)
08e875c1 202{
ccaac162 203 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
08e875c1 204 struct mm_struct *mm = &init_mm;
de58ed5e 205 const struct cpu_operations *ops;
3d8c1a01 206 unsigned int cpu = smp_processor_id();
08e875c1 207
08e875c1
CM
208 /*
209 * All kernel threads share the same mm context; grab a
210 * reference and switch to it.
211 */
f1f10076 212 mmgrab(mm);
08e875c1 213 current->active_mm = mm;
08e875c1
CM
214
215 /*
216 * TTBR0 is only used for the identity mapping at this stage. Make it
217 * point to zero page to avoid speculatively fetching new entries.
218 */
9e8e865b 219 cpu_uninstall_idmap();
08e875c1 220
e7932188
JT
221 if (system_uses_irq_prio_masking())
222 init_gic_priority_masking();
223
448e9f34 224 rcutree_report_cpu_starting(cpu);
08e875c1
CM
225 trace_hardirqs_off();
226
dbb4e152
SP
227 /*
228 * If the system has established the capabilities, make sure
229 * this CPU ticks all of those. If it doesn't, the CPU will
230 * fail to come online.
231 */
c47a1900 232 check_local_cpu_capabilities();
dbb4e152 233
de58ed5e
GS
234 ops = get_cpu_ops(cpu);
235 if (ops->cpu_postboot)
236 ops->cpu_postboot();
08e875c1 237
df857416
MR
238 /*
239 * Log the CPU info before it is marked online and might get read.
240 */
241 cpuinfo_store_cpu();
5524cbb1 242 store_cpu_topology(cpu);
df857416 243
7ade67b5
MZ
244 /*
245 * Enable GIC and timers.
246 */
247 notify_cpu_starting(cpu);
248
d3afc7f1
MZ
249 ipi_setup(cpu);
250
97fd6016 251 numa_add_cpu(cpu);
f6e763b9 252
08e875c1
CM
253 /*
254 * OK, now it's safe to let the boot CPU continue. Wait for
255 * the CPU migration code to notice that the CPU is online
256 * before we continue.
257 */
ccaac162
MR
258 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
259 cpu, (unsigned long)mpidr,
260 read_cpuid_id());
bb905274 261 update_cpu_boot_status(CPU_BOOT_SUCCESS);
08e875c1 262 set_cpu_online(cpu, true);
b3770b32 263 complete(&cpu_running);
08e875c1 264
080297be
MR
265 /*
266 * Secondary CPUs enter the kernel with all DAIF exceptions masked.
267 *
268 * As with setup_arch() we must unmask Debug and SError exceptions, and
269 * as the root irqchip has already been detected and initialized we can
270 * unmask IRQ and FIQ at the same time.
271 */
41bd5b5d 272 local_daif_restore(DAIF_PROCCTX);
53ae3acd 273
08e875c1
CM
274 /*
275 * OK, it's off to the idle thread for us
276 */
fc6d73d6 277 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
08e875c1
CM
278}
279
9327e2c6
MR
280#ifdef CONFIG_HOTPLUG_CPU
281static int op_cpu_disable(unsigned int cpu)
282{
de58ed5e
GS
283 const struct cpu_operations *ops = get_cpu_ops(cpu);
284
9327e2c6
MR
285 /*
286 * If we don't have a cpu_die method, abort before we reach the point
287 * of no return. CPU0 may not have an cpu_ops, so test for it.
288 */
de58ed5e 289 if (!ops || !ops->cpu_die)
9327e2c6
MR
290 return -EOPNOTSUPP;
291
292 /*
293 * We may need to abort a hot unplug for some other mechanism-specific
294 * reason.
295 */
de58ed5e
GS
296 if (ops->cpu_disable)
297 return ops->cpu_disable(cpu);
9327e2c6
MR
298
299 return 0;
300}
301
302/*
303 * __cpu_disable runs on the processor to be shutdown.
304 */
305int __cpu_disable(void)
306{
307 unsigned int cpu = smp_processor_id();
308 int ret;
309
310 ret = op_cpu_disable(cpu);
311 if (ret)
312 return ret;
313
7f9545aa
SH
314 remove_cpu_topology(cpu);
315 numa_remove_cpu(cpu);
316
9327e2c6
MR
317 /*
318 * Take this CPU offline. Once we clear this, we can't return,
319 * and we must not schedule until we're ready to give up the cpu.
320 */
321 set_cpu_online(cpu, false);
d3afc7f1 322 ipi_teardown(cpu);
9327e2c6
MR
323
324 /*
325 * OK - migrate IRQs away from this CPU
326 */
217d453d
YY
327 irq_migrate_all_off_this_cpu();
328
9327e2c6
MR
329 return 0;
330}
331
c814ca02
AC
332static int op_cpu_kill(unsigned int cpu)
333{
de58ed5e
GS
334 const struct cpu_operations *ops = get_cpu_ops(cpu);
335
c814ca02
AC
336 /*
337 * If we have no means of synchronising with the dying CPU, then assume
338 * that it is really dead. We can only wait for an arbitrary length of
339 * time and hope that it's dead, so let's skip the wait and just hope.
340 */
de58ed5e 341 if (!ops->cpu_kill)
6b99c68c 342 return 0;
c814ca02 343
de58ed5e 344 return ops->cpu_kill(cpu);
c814ca02
AC
345}
346
9327e2c6 347/*
b3091f17
TG
348 * Called on the thread which is asking for a CPU to be shutdown after the
349 * shutdown completed.
9327e2c6 350 */
b3091f17 351void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
9327e2c6 352{
6b99c68c
MR
353 int err;
354
cf814bcf 355 pr_debug("CPU%u: shutdown\n", cpu);
c814ca02
AC
356
357 /*
358 * Now that the dying CPU is beyond the point of no return w.r.t.
359 * in-kernel synchronisation, try to get the firwmare to help us to
360 * verify that it has really left the kernel before we consider
361 * clobbering anything it might still be using.
362 */
6b99c68c
MR
363 err = op_cpu_kill(cpu);
364 if (err)
a74ec64a 365 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
9327e2c6
MR
366}
367
368/*
369 * Called from the idle thread for the CPU which has been shutdown.
370 *
9327e2c6 371 */
9bdc61ef 372void __noreturn cpu_die(void)
9327e2c6
MR
373{
374 unsigned int cpu = smp_processor_id();
de58ed5e 375 const struct cpu_operations *ops = get_cpu_ops(cpu);
9327e2c6
MR
376
377 idle_task_exit();
378
0fbeb318 379 local_daif_mask();
9327e2c6 380
b3091f17
TG
381 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
382 cpuhp_ap_report_dead();
9327e2c6
MR
383
384 /*
385 * Actually shutdown the CPU. This must never fail. The specific hotplug
386 * mechanism must perform all required cache maintenance to ensure that
387 * no dirty lines are lost in the process of shutting down the CPU.
388 */
de58ed5e 389 ops->cpu_die(cpu);
9327e2c6
MR
390
391 BUG();
392}
393#endif
394
de58ed5e
GS
395static void __cpu_try_die(int cpu)
396{
397#ifdef CONFIG_HOTPLUG_CPU
398 const struct cpu_operations *ops = get_cpu_ops(cpu);
399
400 if (ops && ops->cpu_die)
401 ops->cpu_die(cpu);
402#endif
403}
404
fce6361f
SP
405/*
406 * Kill the calling secondary CPU, early in bringup before it is turned
407 * online.
408 */
5ab6876c 409void __noreturn cpu_die_early(void)
fce6361f
SP
410{
411 int cpu = smp_processor_id();
412
413 pr_crit("CPU%d: will not boot\n", cpu);
414
415 /* Mark this CPU absent */
416 set_cpu_present(cpu, 0);
448e9f34 417 rcutree_report_cpu_dead();
fce6361f 418
de58ed5e
GS
419 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
420 update_cpu_boot_status(CPU_KILL_ME);
421 __cpu_try_die(cpu);
422 }
423
bb905274 424 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
fce6361f
SP
425
426 cpu_park_loop();
427}
428
377bcff9
JR
429static void __init hyp_mode_check(void)
430{
431 if (is_hyp_mode_available())
432 pr_info("CPU: All CPU(s) started at EL2\n");
433 else if (is_hyp_mode_mismatched())
434 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
435 "CPU: CPUs started in inconsistent modes");
436 else
437 pr_info("CPU: All CPU(s) started at EL1\n");
6ec6259d 438 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
0492747c 439 kvm_compute_layout();
6ec6259d
DB
440 kvm_apply_hyp_relocations();
441 }
377bcff9
JR
442}
443
08e875c1
CM
444void __init smp_cpus_done(unsigned int max_cpus)
445{
326b16db 446 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
377bcff9 447 hyp_mode_check();
63a2d92e 448 setup_system_features();
075f48c9 449 setup_user_features();
5ea5306c 450 mark_linear_text_alias_ro();
08e875c1
CM
451}
452
453void __init smp_prepare_boot_cpu(void)
454{
3d8c1a01
MR
455 /*
456 * The runtime per-cpu areas have been allocated by
457 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
458 * freed shortly, so we must move over to the runtime per-cpu area.
459 */
9113c2aa 460 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
0ceb0d56 461
eb15d707
MR
462 cpuinfo_store_boot_cpu();
463 setup_boot_cpu_features();
e7932188
JT
464
465 /* Conditionally switch to GIC PMR for interrupt masking */
466 if (system_uses_irq_prio_masking())
467 init_gic_priority_masking();
2e903b91
AK
468
469 kasan_init_hw_tags();
f75c2355
SH
470 /* Init percpu seeds for random tags after cpus are set up. */
471 kasan_init_sw_tags();
08e875c1
CM
472}
473
0f078336
LP
474/*
475 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
476 * entries and check for duplicates. If any is found just ignore the
477 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
478 * matching valid MPIDR values.
479 */
480static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
481{
482 unsigned int i;
483
484 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
485 if (cpu_logical_map(i) == hwid)
486 return true;
487 return false;
488}
489
819a8826
LP
490/*
491 * Initialize cpu operations for a logical cpu and
492 * set it in the possible mask on success
493 */
494static int __init smp_cpu_setup(int cpu)
495{
de58ed5e
GS
496 const struct cpu_operations *ops;
497
6885fb12 498 if (init_cpu_ops(cpu))
819a8826
LP
499 return -ENODEV;
500
de58ed5e
GS
501 ops = get_cpu_ops(cpu);
502 if (ops->cpu_init(cpu))
819a8826
LP
503 return -ENODEV;
504
505 set_cpu_possible(cpu, true);
506
507 return 0;
508}
509
0f078336
LP
510static bool bootcpu_valid __initdata;
511static unsigned int cpu_count = 1;
512
eba46750
JC
513int arch_register_cpu(int cpu)
514{
515 acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
516 struct cpu *c = &per_cpu(cpu_devices, cpu);
517
518 if (!acpi_disabled && !acpi_handle &&
519 IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU))
520 return -EPROBE_DEFER;
521
522#ifdef CONFIG_ACPI_HOTPLUG_CPU
523 /* For now block anything that looks like physical CPU Hotplug */
524 if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) {
525 pr_err_once("Changing CPU present bit is not supported\n");
526 return -ENODEV;
527 }
528#endif
529
530 /*
531 * Availability of the acpi handle is sufficient to establish
532 * that _STA has aleady been checked. No need to recheck here.
533 */
534 c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
535
536 return register_cpu(c, cpu);
537}
538
539#ifdef CONFIG_ACPI_HOTPLUG_CPU
540void arch_unregister_cpu(int cpu)
541{
542 acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
543 struct cpu *c = &per_cpu(cpu_devices, cpu);
544 acpi_status status;
545 unsigned long long sta;
546
547 if (!acpi_handle) {
548 pr_err_once("Removing a CPU without associated ACPI handle\n");
549 return;
550 }
551
552 status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta);
553 if (ACPI_FAILURE(status))
554 return;
555
556 /* For now do not allow anything that looks like physical CPU HP */
557 if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) {
558 pr_err_once("Changing CPU present bit is not supported\n");
559 return;
560 }
561
562 unregister_cpu(c);
563}
564#endif /* CONFIG_ACPI_HOTPLUG_CPU */
565
0f078336 566#ifdef CONFIG_ACPI
e0013aed
MR
567static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
568
569struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
570{
571 return &cpu_madt_gicc[cpu];
572}
d3c3db41 573EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
e0013aed 574
0f078336
LP
575/*
576 * acpi_map_gic_cpu_interface - parse processor MADT entry
577 *
578 * Carry out sanity checks on MADT processor entry and initialize
579 * cpu_logical_map on success
580 */
581static void __init
582acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
583{
584 u64 hwid = processor->arm_mpidr;
585
d633da5d
JM
586 if (!(processor->flags &
587 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) {
f9058929 588 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
0f078336
LP
589 return;
590 }
591
f9058929
HG
592 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
593 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
0f078336
LP
594 return;
595 }
596
597 if (is_mpidr_duplicate(cpu_count, hwid)) {
598 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
599 return;
600 }
601
602 /* Check if GICC structure of boot CPU is available in the MADT */
603 if (cpu_logical_map(0) == hwid) {
604 if (bootcpu_valid) {
605 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
606 hwid);
607 return;
608 }
609 bootcpu_valid = true;
e0013aed 610 cpu_madt_gicc[0] = *processor;
0f078336
LP
611 return;
612 }
613
614 if (cpu_count >= NR_CPUS)
615 return;
616
617 /* map the logical cpu id to cpu MPIDR */
eaecca9e 618 set_cpu_logical_map(cpu_count, hwid);
0f078336 619
e0013aed
MR
620 cpu_madt_gicc[cpu_count] = *processor;
621
5e89c55e
LP
622 /*
623 * Set-up the ACPI parking protocol cpu entries
624 * while initializing the cpu_logical_map to
625 * avoid parsing MADT entries multiple times for
626 * nothing (ie a valid cpu_logical_map entry should
627 * contain a valid parking protocol data set to
628 * initialize the cpu if the parking protocol is
629 * the only available enable method).
630 */
631 acpi_set_mailbox_entry(cpu_count, processor);
632
0f078336
LP
633 cpu_count++;
634}
635
636static int __init
60574d1e 637acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
0f078336
LP
638 const unsigned long end)
639{
640 struct acpi_madt_generic_interrupt *processor;
641
642 processor = (struct acpi_madt_generic_interrupt *)header;
99e3e3ae 643 if (BAD_MADT_GICC_ENTRY(processor, end))
0f078336
LP
644 return -EINVAL;
645
60574d1e 646 acpi_table_print_madt_entry(&header->common);
0f078336
LP
647
648 acpi_map_gic_cpu_interface(processor);
649
650 return 0;
651}
e1896249
LP
652
653static void __init acpi_parse_and_init_cpus(void)
654{
655 int i;
656
657 /*
658 * do a walk of MADT to determine how many CPUs
659 * we have including disabled CPUs, and get information
660 * we need for SMP init.
661 */
662 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
663 acpi_parse_gic_cpu_interface, 0);
664
665 /*
666 * In ACPI, SMP and CPU NUMA information is provided in separate
667 * static tables, namely the MADT and the SRAT.
668 *
669 * Thus, it is simpler to first create the cpu logical map through
670 * an MADT walk and then map the logical cpus to their node ids
671 * as separate steps.
672 */
673 acpi_map_cpus_to_nodes();
674
675 for (i = 0; i < nr_cpu_ids; i++)
676 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
677}
0f078336 678#else
e1896249 679#define acpi_parse_and_init_cpus(...) do { } while (0)
0f078336
LP
680#endif
681
08e875c1 682/*
4c7aa002
JM
683 * Enumerate the possible CPU set from the device tree and build the
684 * cpu logical map array containing MPIDR values related to logical
685 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
08e875c1 686 */
29b8302b 687static void __init of_parse_and_init_cpus(void)
08e875c1 688{
3d29a9a0 689 struct device_node *dn;
08e875c1 690
de76e70a 691 for_each_of_cpu_node(dn) {
4d97b929 692 u64 hwid = of_get_cpu_hwid(dn, 0);
4c7aa002 693
4d97b929 694 if (hwid & ~MPIDR_HWID_BITMASK)
4c7aa002 695 goto next;
4c7aa002 696
0f078336 697 if (is_mpidr_duplicate(cpu_count, hwid)) {
a270f327
RH
698 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
699 dn);
4c7aa002
JM
700 goto next;
701 }
702
4c7aa002
JM
703 /*
704 * The numbering scheme requires that the boot CPU
705 * must be assigned logical id 0. Record it so that
706 * the logical map built from DT is validated and can
707 * be used.
708 */
709 if (hwid == cpu_logical_map(0)) {
710 if (bootcpu_valid) {
a270f327
RH
711 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
712 dn);
4c7aa002
JM
713 goto next;
714 }
715
716 bootcpu_valid = true;
7ba5f605 717 early_map_cpu_to_node(0, of_node_to_nid(dn));
4c7aa002
JM
718
719 /*
720 * cpu_logical_map has already been
721 * initialized and the boot cpu doesn't need
722 * the enable-method so continue without
723 * incrementing cpu.
724 */
725 continue;
726 }
727
0f078336 728 if (cpu_count >= NR_CPUS)
08e875c1
CM
729 goto next;
730
4c7aa002 731 pr_debug("cpu logical map 0x%llx\n", hwid);
eaecca9e 732 set_cpu_logical_map(cpu_count, hwid);
1a2db300
GK
733
734 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
08e875c1 735next:
0f078336 736 cpu_count++;
08e875c1 737 }
0f078336
LP
738}
739
740/*
741 * Enumerate the possible CPU set from the device tree or ACPI and build the
742 * cpu logical map array containing MPIDR values related to logical
743 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
744 */
745void __init smp_init_cpus(void)
746{
747 int i;
748
749 if (acpi_disabled)
750 of_parse_and_init_cpus();
751 else
e1896249 752 acpi_parse_and_init_cpus();
08e875c1 753
50ee91bd 754 if (cpu_count > nr_cpu_ids)
9b130ad5 755 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
50ee91bd 756 cpu_count, nr_cpu_ids);
4c7aa002
JM
757
758 if (!bootcpu_valid) {
0f078336 759 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
4c7aa002
JM
760 return;
761 }
762
763 /*
819a8826
LP
764 * We need to set the cpu_logical_map entries before enabling
765 * the cpus so that cpu processor description entries (DT cpu nodes
766 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
767 * with entries in cpu_logical_map while initializing the cpus.
768 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
4c7aa002 769 */
50ee91bd 770 for (i = 1; i < nr_cpu_ids; i++) {
819a8826
LP
771 if (cpu_logical_map(i) != INVALID_HWID) {
772 if (smp_cpu_setup(i))
eaecca9e 773 set_cpu_logical_map(i, INVALID_HWID);
819a8826
LP
774 }
775 }
08e875c1
CM
776}
777
778void __init smp_prepare_cpus(unsigned int max_cpus)
779{
de58ed5e 780 const struct cpu_operations *ops;
cd1aebf5 781 int err;
44dbcc93 782 unsigned int cpu;
c18df0ad 783 unsigned int this_cpu;
08e875c1 784
f6e763b9
MB
785 init_cpu_topology();
786
c18df0ad
DD
787 this_cpu = smp_processor_id();
788 store_cpu_topology(this_cpu);
789 numa_store_cpu_info(this_cpu);
97fd6016 790 numa_add_cpu(this_cpu);
f6e763b9 791
e75118a7
SP
792 /*
793 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
794 * secondary CPUs present.
795 */
796 if (max_cpus == 0)
797 return;
798
08e875c1
CM
799 /*
800 * Initialise the present map (which describes the set of CPUs
801 * actually populated at the present time) and release the
802 * secondaries from the bootloader.
803 */
804 for_each_possible_cpu(cpu) {
08e875c1 805
d329de3f
MZ
806 if (cpu == smp_processor_id())
807 continue;
808
de58ed5e
GS
809 ops = get_cpu_ops(cpu);
810 if (!ops)
08e875c1
CM
811 continue;
812
de58ed5e 813 err = ops->cpu_prepare(cpu);
d329de3f
MZ
814 if (err)
815 continue;
08e875c1
CM
816
817 set_cpu_present(cpu, true);
c18df0ad 818 numa_store_cpu_info(cpu);
08e875c1 819 }
08e875c1
CM
820}
821
916b93f4 822static const char *ipi_types[MAX_IPI] __tracepoint_string = {
0edaee42
AK
823 [IPI_RESCHEDULE] = "Rescheduling interrupts",
824 [IPI_CALL_FUNC] = "Function call interrupts",
825 [IPI_CPU_STOP] = "CPU stop interrupts",
826 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts",
827 [IPI_TIMER] = "Timer broadcast interrupts",
828 [IPI_IRQ_WORK] = "IRQ work interrupts",
916b93f4
JR
829 [IPI_CPU_BACKTRACE] = "CPU backtrace interrupts",
830 [IPI_KGDB_ROUNDUP] = "KGDB roundup interrupts",
08e875c1
CM
831};
832
5cebfd2d 833static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
45ed695a 834
a2638815
MZ
835unsigned long irq_err_count;
836
837int arch_show_interrupts(struct seq_file *p, int prec)
08e875c1
CM
838{
839 unsigned int cpu, i;
840
916b93f4 841 for (i = 0; i < MAX_IPI; i++) {
45ed695a 842 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
08e875c1 843 prec >= 4 ? " " : "");
67317c26 844 for_each_online_cpu(cpu)
5089bc51 845 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
08e875c1
CM
846 seq_printf(p, " %s\n", ipi_types[i]);
847 }
08e875c1 848
a2638815
MZ
849 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
850 return 0;
08e875c1
CM
851}
852
45ed695a
NP
853void arch_send_call_function_ipi_mask(const struct cpumask *mask)
854{
855 smp_cross_call(mask, IPI_CALL_FUNC);
856}
857
858void arch_send_call_function_single_ipi(int cpu)
859{
0aaf0dae 860 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
45ed695a
NP
861}
862
863#ifdef CONFIG_IRQ_WORK
864void arch_irq_work_raise(void)
865{
5cebfd2d 866 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
45ed695a
NP
867}
868#endif
869
5ab6876c 870static void __noreturn local_cpu_stop(void)
08e875c1 871{
d914d4d4 872 set_cpu_online(smp_processor_id(), false);
08e875c1 873
0fbeb318 874 local_daif_mask();
f5df2696 875 sdei_mask_local_cpu();
dccc9da2 876 cpu_park_loop();
08e875c1 877}
08e875c1 878
d914d4d4
AK
879/*
880 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
881 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
882 * CPUs that have already stopped themselves.
883 */
7412a60d 884void __noreturn panic_smp_self_stop(void)
d914d4d4
AK
885{
886 local_cpu_stop();
08e875c1
CM
887}
888
78fd584c
AT
889#ifdef CONFIG_KEXEC_CORE
890static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
891#endif
892
5ab6876c 893static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
78fd584c
AT
894{
895#ifdef CONFIG_KEXEC_CORE
896 crash_save_cpu(regs, cpu);
897
898 atomic_dec(&waiting_for_crash_ipi);
899
900 local_irq_disable();
f5df2696 901 sdei_mask_local_cpu();
78fd584c 902
de58ed5e
GS
903 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
904 __cpu_try_die(cpu);
78fd584c
AT
905
906 /* just in case */
907 cpu_park_loop();
5ab6876c
JP
908#else
909 BUG();
78fd584c
AT
910#endif
911}
912
331a1b3a
DA
913static void arm64_backtrace_ipi(cpumask_t *mask)
914{
915 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
916}
917
918void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
919{
920 /*
921 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
922 * nothing about it truly needs to be implemented using an NMI, it's
923 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
924 * returned false our backtrace attempt will just use a regular IPI.
925 */
926 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
927}
928
2f5cd0c7
DA
929#ifdef CONFIG_KGDB
930void kgdb_roundup_cpus(void)
931{
932 int this_cpu = raw_smp_processor_id();
933 int cpu;
934
935 for_each_online_cpu(cpu) {
936 /* No need to roundup ourselves */
937 if (cpu == this_cpu)
938 continue;
939
940 __ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
941 }
942}
943#endif
944
08e875c1
CM
945/*
946 * Main handler for inter-processor interrupts
947 */
d3afc7f1 948static void do_handle_IPI(int ipinr)
08e875c1
CM
949{
950 unsigned int cpu = smp_processor_id();
08e875c1 951
a2638815 952 if ((unsigned)ipinr < NR_IPI)
4a3182e6 953 trace_ipi_entry(ipi_types[ipinr]);
08e875c1
CM
954
955 switch (ipinr) {
956 case IPI_RESCHEDULE:
957 scheduler_ipi();
958 break;
959
960 case IPI_CALL_FUNC:
08e875c1 961 generic_smp_call_function_interrupt();
08e875c1
CM
962 break;
963
08e875c1 964 case IPI_CPU_STOP:
d914d4d4 965 local_cpu_stop();
08e875c1
CM
966 break;
967
78fd584c
AT
968 case IPI_CPU_CRASH_STOP:
969 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
d3afc7f1 970 ipi_cpu_crash_stop(cpu, get_irq_regs());
78fd584c
AT
971
972 unreachable();
973 }
974 break;
975
1f85008e
LP
976#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
977 case IPI_TIMER:
1f85008e 978 tick_receive_broadcast();
1f85008e
LP
979 break;
980#endif
981
eb631bb5
LB
982#ifdef CONFIG_IRQ_WORK
983 case IPI_IRQ_WORK:
eb631bb5 984 irq_work_run();
eb631bb5
LB
985 break;
986#endif
987
331a1b3a
DA
988 case IPI_CPU_BACKTRACE:
989 /*
990 * NOTE: in some cases this _won't_ be NMI context. See the
991 * comment in arch_trigger_cpumask_backtrace().
992 */
993 nmi_cpu_backtrace(get_irq_regs());
994 break;
995
2f5cd0c7
DA
996 case IPI_KGDB_ROUNDUP:
997 kgdb_nmicallback(cpu, get_irq_regs());
5e89c55e 998 break;
5e89c55e 999
08e875c1
CM
1000 default:
1001 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
1002 break;
1003 }
45ed695a
NP
1004
1005 if ((unsigned)ipinr < NR_IPI)
4a3182e6 1006 trace_ipi_exit(ipi_types[ipinr]);
d3afc7f1
MZ
1007}
1008
d3afc7f1
MZ
1009static irqreturn_t ipi_handler(int irq, void *data)
1010{
1011 do_handle_IPI(irq - ipi_irq_base);
1012 return IRQ_HANDLED;
1013}
1014
5cebfd2d 1015static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
d3afc7f1 1016{
5cebfd2d
MZ
1017 trace_ipi_raise(target, ipi_types[ipinr]);
1018 __ipi_send_mask(ipi_desc[ipinr], target);
d3afc7f1
MZ
1019}
1020
331a1b3a
DA
1021static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
1022{
4bb49009 1023 if (!system_uses_irq_prio_masking())
331a1b3a
DA
1024 return false;
1025
1026 switch (ipi) {
d7402513
DA
1027 case IPI_CPU_STOP:
1028 case IPI_CPU_CRASH_STOP:
331a1b3a 1029 case IPI_CPU_BACKTRACE:
2f5cd0c7 1030 case IPI_KGDB_ROUNDUP:
331a1b3a
DA
1031 return true;
1032 default:
1033 return false;
1034 }
1035}
1036
d3afc7f1
MZ
1037static void ipi_setup(int cpu)
1038{
1039 int i;
1040
5cebfd2d 1041 if (WARN_ON_ONCE(!ipi_irq_base))
d3afc7f1
MZ
1042 return;
1043
331a1b3a
DA
1044 for (i = 0; i < nr_ipi; i++) {
1045 if (ipi_should_be_nmi(i)) {
1046 prepare_percpu_nmi(ipi_irq_base + i);
1047 enable_percpu_nmi(ipi_irq_base + i, 0);
1048 } else {
1049 enable_percpu_irq(ipi_irq_base + i, 0);
1050 }
1051 }
d3afc7f1
MZ
1052}
1053
9d9edb96 1054#ifdef CONFIG_HOTPLUG_CPU
d3afc7f1
MZ
1055static void ipi_teardown(int cpu)
1056{
1057 int i;
1058
5cebfd2d 1059 if (WARN_ON_ONCE(!ipi_irq_base))
d3afc7f1
MZ
1060 return;
1061
331a1b3a
DA
1062 for (i = 0; i < nr_ipi; i++) {
1063 if (ipi_should_be_nmi(i)) {
1064 disable_percpu_nmi(ipi_irq_base + i);
1065 teardown_percpu_nmi(ipi_irq_base + i);
1066 } else {
1067 disable_percpu_irq(ipi_irq_base + i);
1068 }
1069 }
d3afc7f1 1070}
9d9edb96 1071#endif
d3afc7f1
MZ
1072
1073void __init set_smp_ipi_range(int ipi_base, int n)
1074{
1075 int i;
1076
331a1b3a
DA
1077 WARN_ON(n < MAX_IPI);
1078 nr_ipi = min(n, MAX_IPI);
d3afc7f1
MZ
1079
1080 for (i = 0; i < nr_ipi; i++) {
1081 int err;
1082
331a1b3a
DA
1083 if (ipi_should_be_nmi(i)) {
1084 err = request_percpu_nmi(ipi_base + i, ipi_handler,
bf0baa5b 1085 "IPI", &irq_stat);
331a1b3a
DA
1086 WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1087 i, err);
1088 } else {
1089 err = request_percpu_irq(ipi_base + i, ipi_handler,
bf0baa5b 1090 "IPI", &irq_stat);
331a1b3a
DA
1091 WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1092 i, err);
1093 }
d3afc7f1
MZ
1094
1095 ipi_desc[i] = irq_to_desc(ipi_base + i);
1096 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1097 }
1098
1099 ipi_irq_base = ipi_base;
d3afc7f1
MZ
1100
1101 /* Setup the boot CPU immediately */
1102 ipi_setup(smp_processor_id());
1103}
1104
4c8c3c7f 1105void arch_smp_send_reschedule(int cpu)
08e875c1
CM
1106{
1107 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1108}
1109
2b2d0a7a
MR
1110#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
1111void arch_send_wakeup_ipi(unsigned int cpu)
1112{
1113 /*
1114 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1115 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1116 */
ef31b8ce 1117 smp_send_reschedule(cpu);
2b2d0a7a
MR
1118}
1119#endif
1120
1f85008e
LP
1121#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
1122void tick_broadcast(const struct cpumask *mask)
1123{
1124 smp_cross_call(mask, IPI_TIMER);
1125}
1126#endif
1127
d0bab0c3
CM
1128/*
1129 * The number of CPUs online, not counting this CPU (which may not be
1130 * fully online and so not counted in num_online_cpus()).
1131 */
1132static inline unsigned int num_other_online_cpus(void)
1133{
1134 unsigned int this_cpu_online = cpu_online(smp_processor_id());
1135
1136 return num_online_cpus() - this_cpu_online;
1137}
1138
08e875c1
CM
1139void smp_send_stop(void)
1140{
1141 unsigned long timeout;
1142
d0bab0c3 1143 if (num_other_online_cpus()) {
08e875c1
CM
1144 cpumask_t mask;
1145
1146 cpumask_copy(&mask, cpu_online_mask);
434ed7f4 1147 cpumask_clear_cpu(smp_processor_id(), &mask);
08e875c1 1148
ef284f5c 1149 if (system_state <= SYSTEM_RUNNING)
82611c14 1150 pr_crit("SMP: stopping secondary CPUs\n");
08e875c1
CM
1151 smp_cross_call(&mask, IPI_CPU_STOP);
1152 }
1153
1154 /* Wait up to one second for other CPUs to stop */
1155 timeout = USEC_PER_SEC;
d0bab0c3 1156 while (num_other_online_cpus() && timeout--)
08e875c1
CM
1157 udelay(1);
1158
d0bab0c3 1159 if (num_other_online_cpus())
a74ec64a
KW
1160 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1161 cpumask_pr_args(cpu_online_mask));
f5df2696
JM
1162
1163 sdei_mask_local_cpu();
08e875c1
CM
1164}
1165
78fd584c 1166#ifdef CONFIG_KEXEC_CORE
a88ce63b 1167void crash_smp_send_stop(void)
78fd584c 1168{
a88ce63b 1169 static int cpus_stopped;
78fd584c
AT
1170 cpumask_t mask;
1171 unsigned long timeout;
1172
a88ce63b
HR
1173 /*
1174 * This function can be called twice in panic path, but obviously
1175 * we execute this only once.
1176 */
1177 if (cpus_stopped)
1178 return;
1179
1180 cpus_stopped = 1;
1181
f50b7dac
CM
1182 /*
1183 * If this cpu is the only one alive at this point in time, online or
1184 * not, there are no stop messages to be sent around, so just back out.
1185 */
5cd474e5
SP
1186 if (num_other_online_cpus() == 0)
1187 goto skip_ipi;
78fd584c
AT
1188
1189 cpumask_copy(&mask, cpu_online_mask);
1190 cpumask_clear_cpu(smp_processor_id(), &mask);
1191
f50b7dac 1192 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
78fd584c
AT
1193
1194 pr_crit("SMP: stopping secondary CPUs\n");
1195 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1196
1197 /* Wait up to one second for other CPUs to stop */
1198 timeout = USEC_PER_SEC;
1199 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1200 udelay(1);
1201
1202 if (atomic_read(&waiting_for_crash_ipi) > 0)
a74ec64a
KW
1203 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1204 cpumask_pr_args(&mask));
f5df2696 1205
5cd474e5 1206skip_ipi:
f5df2696 1207 sdei_mask_local_cpu();
5cd474e5 1208 sdei_handler_abort();
78fd584c
AT
1209}
1210
1211bool smp_crash_stop_failed(void)
1212{
1213 return (atomic_read(&waiting_for_crash_ipi) > 0);
1214}
1215#endif
1216
5c492c3f
JM
1217static bool have_cpu_die(void)
1218{
1219#ifdef CONFIG_HOTPLUG_CPU
1220 int any_cpu = raw_smp_processor_id();
de58ed5e 1221 const struct cpu_operations *ops = get_cpu_ops(any_cpu);
5c492c3f 1222
de58ed5e 1223 if (ops && ops->cpu_die)
5c492c3f
JM
1224 return true;
1225#endif
1226 return false;
1227}
1228
1229bool cpus_are_stuck_in_kernel(void)
1230{
1231 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1232
8f4566f1
WD
1233 return !!cpus_stuck_in_kernel || smp_spin_tables ||
1234 is_protected_kvm_enabled();
5c492c3f 1235}