efi: vars: Move efivar caching layer into efivarfs
[linux-2.6-block.git] / arch / arm64 / kernel / kaslr.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
f80fb3a3
AB
2/*
3 * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
f80fb3a3
AB
4 */
5
5a9e3e15 6#include <linux/cache.h>
f80fb3a3
AB
7#include <linux/crc32.h>
8#include <linux/init.h>
9#include <linux/libfdt.h>
10#include <linux/mm_types.h>
11#include <linux/sched.h>
12#include <linux/types.h>
65fddcfc 13#include <linux/pgtable.h>
58552408 14#include <linux/random.h>
f80fb3a3 15
1598ecda 16#include <asm/cacheflush.h>
f80fb3a3
AB
17#include <asm/fixmap.h>
18#include <asm/kernel-pgtable.h>
19#include <asm/memory.h>
20#include <asm/mmu.h>
f80fb3a3 21#include <asm/sections.h>
f6f0c436 22#include <asm/setup.h>
f80fb3a3 23
294a9ddd
MB
24enum kaslr_status {
25 KASLR_ENABLED,
26 KASLR_DISABLED_CMDLINE,
27 KASLR_DISABLED_NO_SEED,
28 KASLR_DISABLED_FDT_REMAP,
29};
30
2203e1ad 31static enum kaslr_status __initdata kaslr_status;
5a9e3e15 32u64 __ro_after_init module_alloc_base;
c031a421 33u16 __initdata memstart_offset_seed;
f80fb3a3
AB
34
35static __init u64 get_kaslr_seed(void *fdt)
36{
37 int node, len;
67831edf 38 fdt64_t *prop;
f80fb3a3
AB
39 u64 ret;
40
41 node = fdt_path_offset(fdt, "/chosen");
42 if (node < 0)
43 return 0;
44
45 prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
46 if (!prop || len != sizeof(u64))
47 return 0;
48
49 ret = fdt64_to_cpu(*prop);
50 *prop = 0;
51 return ret;
52}
53
a762f4ff 54struct arm64_ftr_override kaslr_feature_override __initdata;
f80fb3a3 55
f80fb3a3
AB
56/*
57 * This routine will be executed with the kernel mapped at its default virtual
58 * address, and if it returns successfully, the kernel will be remapped, and
59 * start_kernel() will be executed from a randomized virtual offset. The
60 * relocation will result in all absolute references (e.g., static variables
61 * containing function pointers) to be reinitialized, and zero-initialized
62 * .bss variables will be reset to 0.
63 */
f6f0c436 64u64 __init kaslr_early_init(void)
f80fb3a3
AB
65{
66 void *fdt;
67 u64 seed, offset, mask, module_range;
9bceb80b 68 unsigned long raw;
f80fb3a3
AB
69
70 /*
71 * Set a reasonable default for module_alloc_base in case
72 * we end up running with module randomization disabled.
73 */
74 module_alloc_base = (u64)_etext - MODULES_VSIZE;
fade9c2c 75 dcache_clean_inval_poc((unsigned long)&module_alloc_base,
814b1860
FT
76 (unsigned long)&module_alloc_base +
77 sizeof(module_alloc_base));
f80fb3a3
AB
78
79 /*
80 * Try to map the FDT early. If this fails, we simply bail,
81 * and proceed with KASLR disabled. We will make another
82 * attempt at mapping the FDT in setup_machine()
83 */
f6f0c436 84 fdt = get_early_fdt_ptr();
294a9ddd
MB
85 if (!fdt) {
86 kaslr_status = KASLR_DISABLED_FDT_REMAP;
f80fb3a3 87 return 0;
294a9ddd 88 }
f80fb3a3
AB
89
90 /*
91 * Retrieve (and wipe) the seed from the FDT
92 */
93 seed = get_kaslr_seed(fdt);
f80fb3a3
AB
94
95 /*
96 * Check if 'nokaslr' appears on the command line, and
97 * return 0 if that is the case.
98 */
a762f4ff 99 if (kaslr_feature_override.val & kaslr_feature_override.mask & 0xf) {
294a9ddd 100 kaslr_status = KASLR_DISABLED_CMDLINE;
f80fb3a3 101 return 0;
294a9ddd 102 }
f80fb3a3 103
2e8e1ea8 104 /*
9bceb80b
GR
105 * Mix in any entropy obtainable architecturally if enabled
106 * and supported.
2e8e1ea8 107 */
2e8e1ea8 108
9bceb80b
GR
109 if (arch_get_random_seed_long_early(&raw))
110 seed ^= raw;
2e8e1ea8 111
2203e1ad
MB
112 if (!seed) {
113 kaslr_status = KASLR_DISABLED_NO_SEED;
114 return 0;
115 }
116
f80fb3a3
AB
117 /*
118 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
119 * kernel image offset from the seed. Let's place the kernel in the
90ec95cd 120 * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
f2b9ba87
AB
121 * the lower and upper quarters to avoid colliding with other
122 * allocations.
f80fb3a3
AB
123 * Even if we could randomize at page granularity for 16k and 64k pages,
124 * let's always round to 2 MB so we don't interfere with the ability to
125 * map using contiguous PTEs
126 */
90ec95cd
SC
127 mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
128 offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
f80fb3a3 129
c031a421
AB
130 /* use the top 16 bits to randomize the linear region */
131 memstart_offset_seed = seed >> 48;
132
31d02e7a
LC
133 if (!IS_ENABLED(CONFIG_KASAN_VMALLOC) &&
134 (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
135 IS_ENABLED(CONFIG_KASAN_SW_TAGS)))
f80fb3a3 136 /*
31d02e7a
LC
137 * KASAN without KASAN_VMALLOC does not expect the module region
138 * to intersect the vmalloc region, since shadow memory is
139 * allocated for each module at load time, whereas the vmalloc
140 * region is shadowed by KASAN zero pages. So keep modules
141 * out of the vmalloc region if KASAN is enabled without
142 * KASAN_VMALLOC, and put the kernel well within 4 GB of the
143 * module region.
f80fb3a3 144 */
f2b9ba87 145 return offset % SZ_2G;
f80fb3a3
AB
146
147 if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
148 /*
b2eed9b5 149 * Randomize the module region over a 2 GB window covering the
f2b9ba87 150 * kernel. This reduces the risk of modules leaking information
f80fb3a3
AB
151 * about the address of the kernel itself, but results in
152 * branches between modules and the core kernel that are
153 * resolved via PLTs. (Branches between modules will be
154 * resolved normally.)
155 */
b2eed9b5
AB
156 module_range = SZ_2G - (u64)(_end - _stext);
157 module_alloc_base = max((u64)_end + offset - SZ_2G,
f2b9ba87 158 (u64)MODULES_VADDR);
f80fb3a3
AB
159 } else {
160 /*
161 * Randomize the module region by setting module_alloc_base to
162 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
163 * _stext) . This guarantees that the resulting region still
164 * covers [_stext, _etext], and that all relative branches can
f9c4ff2a
BS
165 * be resolved without veneers unless this region is exhausted
166 * and we fall back to a larger 2GB window in module_alloc()
167 * when ARM64_MODULE_PLTS is enabled.
f80fb3a3
AB
168 */
169 module_range = MODULES_VSIZE - (u64)(_etext - _stext);
170 module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
171 }
172
173 /* use the lower 21 bits to randomize the base of the module region */
174 module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
175 module_alloc_base &= PAGE_MASK;
176
fade9c2c 177 dcache_clean_inval_poc((unsigned long)&module_alloc_base,
814b1860
FT
178 (unsigned long)&module_alloc_base +
179 sizeof(module_alloc_base));
fade9c2c 180 dcache_clean_inval_poc((unsigned long)&memstart_offset_seed,
814b1860
FT
181 (unsigned long)&memstart_offset_seed +
182 sizeof(memstart_offset_seed));
1598ecda 183
f80fb3a3
AB
184 return offset;
185}
294a9ddd
MB
186
187static int __init kaslr_init(void)
188{
189 switch (kaslr_status) {
190 case KASLR_ENABLED:
191 pr_info("KASLR enabled\n");
192 break;
193 case KASLR_DISABLED_CMDLINE:
194 pr_info("KASLR disabled on command line\n");
195 break;
196 case KASLR_DISABLED_NO_SEED:
197 pr_warn("KASLR disabled due to lack of seed\n");
198 break;
199 case KASLR_DISABLED_FDT_REMAP:
200 pr_warn("KASLR disabled due to FDT remapping failure\n");
201 break;
202 }
203
204 return 0;
205}
206core_initcall(kaslr_init)