arm64/fpsimd: Fix typo in comment
[linux-block.git] / arch / arm64 / kernel / fpsimd.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
53631b54
CM
2/*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
53631b54
CM
7 */
8
7582e220 9#include <linux/bitmap.h>
d06b76be 10#include <linux/bitops.h>
cb84d11e 11#include <linux/bottom_half.h>
bc0ee476 12#include <linux/bug.h>
7582e220 13#include <linux/cache.h>
bc0ee476 14#include <linux/compat.h>
1e570f51 15#include <linux/compiler.h>
32365e64 16#include <linux/cpu.h>
fb1ab1ab 17#include <linux/cpu_pm.h>
97bcbee4 18#include <linux/ctype.h>
53631b54 19#include <linux/kernel.h>
94ef7ecb 20#include <linux/linkage.h>
bc0ee476 21#include <linux/irqflags.h>
53631b54 22#include <linux/init.h>
cb84d11e 23#include <linux/percpu.h>
2d2123bc 24#include <linux/prctl.h>
4328825d 25#include <linux/preempt.h>
bc0ee476 26#include <linux/ptrace.h>
3f07c014 27#include <linux/sched/signal.h>
bc0ee476 28#include <linux/sched/task_stack.h>
53631b54 29#include <linux/signal.h>
bc0ee476 30#include <linux/slab.h>
31dc52b3 31#include <linux/stddef.h>
4ffa09a9 32#include <linux/sysctl.h>
41040cf7 33#include <linux/swab.h>
53631b54 34
af4a81b9 35#include <asm/esr.h>
c6b90d5c 36#include <asm/exception.h>
53631b54 37#include <asm/fpsimd.h>
c0cda3b8 38#include <asm/cpufeature.h>
53631b54 39#include <asm/cputype.h>
c6b90d5c 40#include <asm/neon.h>
2cf97d46 41#include <asm/processor.h>
4328825d 42#include <asm/simd.h>
bc0ee476
DM
43#include <asm/sigcontext.h>
44#include <asm/sysreg.h>
45#include <asm/traps.h>
d06b76be 46#include <asm/virt.h>
53631b54
CM
47
48#define FPEXC_IOF (1 << 0)
49#define FPEXC_DZF (1 << 1)
50#define FPEXC_OFF (1 << 2)
51#define FPEXC_UFF (1 << 3)
52#define FPEXC_IXF (1 << 4)
53#define FPEXC_IDF (1 << 7)
54
005f78cd 55/*
bc0ee476
DM
56 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
57 *
005f78cd
AB
58 * In order to reduce the number of times the FPSIMD state is needlessly saved
59 * and restored, we need to keep track of two things:
60 * (a) for each task, we need to remember which CPU was the last one to have
61 * the task's FPSIMD state loaded into its FPSIMD registers;
62 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
63 * been loaded into its FPSIMD registers most recently, or whether it has
64 * been used to perform kernel mode NEON in the meantime.
65 *
20b85472 66 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
ef769e32 67 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
005f78cd
AB
68 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
69 * address of the userland FPSIMD state of the task that was loaded onto the CPU
70 * the most recently, or NULL if kernel mode NEON has been performed after that.
71 *
72 * With this in place, we no longer have to restore the next FPSIMD state right
73 * when switching between tasks. Instead, we can defer this check to userland
74 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
20b85472 75 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
005f78cd
AB
76 * can omit the FPSIMD restore.
77 *
78 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
79 * indicate whether or not the userland FPSIMD state of the current task is
80 * present in the registers. The flag is set unless the FPSIMD registers of this
81 * CPU currently contain the most recent userland FPSIMD state of the current
31aa126d
MZ
82 * task. If the task is behaving as a VMM, then this is will be managed by
83 * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
84 * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
85 * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
86 * flag the register state as invalid.
005f78cd 87 *
cb84d11e
DM
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89 * save the task's FPSIMD context back to task_struct from softirq context.
90 * To prevent this from racing with the manipulation of the task's FPSIMD state
91 * from task context and thereby corrupting the state, it is necessary to
92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
6dcdefcd
JG
93 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
94 * run but prevent them to use FPSIMD.
cb84d11e 95 *
005f78cd 96 * For a certain task, the sequence may look something like this:
20b85472 97 * - the task gets scheduled in; if both the task's fpsimd_cpu field
005f78cd
AB
98 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
99 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
100 * cleared, otherwise it is set;
101 *
102 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
103 * userland FPSIMD state is copied from memory to the registers, the task's
20b85472 104 * fpsimd_cpu field is set to the id of the current CPU, the current
005f78cd
AB
105 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
106 * TIF_FOREIGN_FPSTATE flag is cleared;
107 *
108 * - the task executes an ordinary syscall; upon return to userland, the
109 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
110 * restored;
111 *
112 * - the task executes a syscall which executes some NEON instructions; this is
113 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
114 * register contents to memory, clears the fpsimd_last_state per-cpu variable
115 * and sets the TIF_FOREIGN_FPSTATE flag;
116 *
117 * - the task gets preempted after kernel_neon_end() is called; as we have not
118 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
119 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
120 */
cb968afc 121struct fpsimd_last_state_struct {
20b85472 122 struct user_fpsimd_state *st;
04950674 123 void *sve_state;
0033cd93 124 void *za_state;
b40c559b 125 u64 *svcr;
04950674 126 unsigned int sve_vl;
af7167d6 127 unsigned int sme_vl;
cb968afc
DM
128};
129
130static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
005f78cd 131
b5bc00ff
MB
132__ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
133#ifdef CONFIG_ARM64_SVE
134 [ARM64_VEC_SVE] = {
135 .type = ARM64_VEC_SVE,
136 .name = "SVE",
137 .min_vl = SVE_VL_MIN,
138 .max_vl = SVE_VL_MIN,
139 .max_virtualisable_vl = SVE_VL_MIN,
140 },
141#endif
b42990d3
MB
142#ifdef CONFIG_ARM64_SME
143 [ARM64_VEC_SME] = {
144 .type = ARM64_VEC_SME,
145 .name = "SME",
146 },
147#endif
b5bc00ff
MB
148};
149
5838a155
MB
150static unsigned int vec_vl_inherit_flag(enum vec_type type)
151{
152 switch (type) {
153 case ARM64_VEC_SVE:
154 return TIF_SVE_VL_INHERIT;
9e4ab6c8
MB
155 case ARM64_VEC_SME:
156 return TIF_SME_VL_INHERIT;
5838a155
MB
157 default:
158 WARN_ON_ONCE(1);
159 return 0;
160 }
161}
162
b5bc00ff
MB
163struct vl_config {
164 int __default_vl; /* Default VL for tasks */
165};
166
167static struct vl_config vl_config[ARM64_VEC_MAX];
168
04ee53a5 169static inline int get_default_vl(enum vec_type type)
b5bc00ff
MB
170{
171 return READ_ONCE(vl_config[type].__default_vl);
172}
1e570f51 173
04ee53a5
MB
174#ifdef CONFIG_ARM64_SVE
175
176static inline int get_sve_default_vl(void)
1e570f51 177{
b5bc00ff 178 return get_default_vl(ARM64_VEC_SVE);
1e570f51 179}
79ab047c 180
04ee53a5 181static inline void set_default_vl(enum vec_type type, int val)
1e570f51 182{
b5bc00ff 183 WRITE_ONCE(vl_config[type].__default_vl, val);
1e570f51
DM
184}
185
04ee53a5 186static inline void set_sve_default_vl(int val)
b5bc00ff
MB
187{
188 set_default_vl(ARM64_VEC_SVE, val);
189}
624835ab 190
fdfa976c 191static void __percpu *efi_sve_state;
7582e220
DM
192
193#else /* ! CONFIG_ARM64_SVE */
194
195/* Dummy declaration for code that will be optimised out: */
fdfa976c 196extern void __percpu *efi_sve_state;
7582e220
DM
197
198#endif /* ! CONFIG_ARM64_SVE */
199
b42990d3
MB
200#ifdef CONFIG_ARM64_SME
201
202static int get_sme_default_vl(void)
203{
204 return get_default_vl(ARM64_VEC_SME);
205}
206
207static void set_sme_default_vl(int val)
208{
209 set_default_vl(ARM64_VEC_SME, val);
210}
211
8bd7f91c
MB
212static void sme_free(struct task_struct *);
213
214#else
215
216static inline void sme_free(struct task_struct *t) { }
217
b42990d3
MB
218#endif
219
6dcdefcd
JG
220DEFINE_PER_CPU(bool, fpsimd_context_busy);
221EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
222
b24b5205
MB
223static void fpsimd_bind_task_to_cpu(void);
224
6dcdefcd
JG
225static void __get_cpu_fpsimd_context(void)
226{
227 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
228
229 WARN_ON(busy);
230}
231
232/*
233 * Claim ownership of the CPU FPSIMD context for use by the calling context.
234 *
235 * The caller may freely manipulate the FPSIMD context metadata until
236 * put_cpu_fpsimd_context() is called.
237 *
238 * The double-underscore version must only be called if you know the task
239 * can't be preempted.
696207d4
SAS
240 *
241 * On RT kernels local_bh_disable() is not sufficient because it only
242 * serializes soft interrupt related sections via a local lock, but stays
243 * preemptible. Disabling preemption is the right choice here as bottom
244 * half processing is always in thread context on RT kernels so it
245 * implicitly prevents bottom half processing as well.
6dcdefcd
JG
246 */
247static void get_cpu_fpsimd_context(void)
248{
696207d4
SAS
249 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 local_bh_disable();
251 else
252 preempt_disable();
6dcdefcd
JG
253 __get_cpu_fpsimd_context();
254}
255
256static void __put_cpu_fpsimd_context(void)
257{
258 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
259
260 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
261}
262
263/*
264 * Release the CPU FPSIMD context.
265 *
266 * Must be called from a context in which get_cpu_fpsimd_context() was
267 * previously called, with no call to put_cpu_fpsimd_context() in the
268 * meantime.
269 */
270static void put_cpu_fpsimd_context(void)
271{
272 __put_cpu_fpsimd_context();
696207d4
SAS
273 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
274 local_bh_enable();
275 else
276 preempt_enable();
6dcdefcd
JG
277}
278
279static bool have_cpu_fpsimd_context(void)
280{
281 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
282}
283
5838a155 284unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
0423eedc 285{
5838a155 286 return task->thread.vl[type];
0423eedc
MB
287}
288
5838a155
MB
289void task_set_vl(struct task_struct *task, enum vec_type type,
290 unsigned long vl)
0423eedc 291{
5838a155 292 task->thread.vl[type] = vl;
0423eedc
MB
293}
294
5838a155
MB
295unsigned int task_get_vl_onexec(const struct task_struct *task,
296 enum vec_type type)
0423eedc 297{
5838a155 298 return task->thread.vl_onexec[type];
0423eedc
MB
299}
300
5838a155
MB
301void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
302 unsigned long vl)
0423eedc 303{
5838a155 304 task->thread.vl_onexec[type] = vl;
0423eedc
MB
305}
306
af7167d6
MB
307/*
308 * TIF_SME controls whether a task can use SME without trapping while
309 * in userspace, when TIF_SME is set then we must have storage
310 * alocated in sve_state and za_state to store the contents of both ZA
311 * and the SVE registers for both streaming and non-streaming modes.
312 *
313 * If both SVCR.ZA and SVCR.SM are disabled then at any point we
314 * may disable TIF_SME and reenable traps.
315 */
316
317
bc0ee476
DM
318/*
319 * TIF_SVE controls whether a task can use SVE without trapping while
af7167d6
MB
320 * in userspace, and also (together with TIF_SME) the way a task's
321 * FPSIMD/SVE state is stored in thread_struct.
bc0ee476
DM
322 *
323 * The kernel uses this flag to track whether a user task is actively
324 * using SVE, and therefore whether full SVE register state needs to
325 * be tracked. If not, the cheaper FPSIMD context handling code can
326 * be used instead of the more costly SVE equivalents.
327 *
af7167d6 328 * * TIF_SVE or SVCR.SM set:
bc0ee476
DM
329 *
330 * The task can execute SVE instructions while in userspace without
331 * trapping to the kernel.
332 *
333 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
bb314511 334 * corresponding Zn), P0-P15 and FFR are encoded in
bc0ee476 335 * task->thread.sve_state, formatted appropriately for vector
af7167d6
MB
336 * length task->thread.sve_vl or, if SVCR.SM is set,
337 * task->thread.sme_vl.
bc0ee476
DM
338 *
339 * task->thread.sve_state must point to a valid buffer at least
340 * sve_state_size(task) bytes in size.
341 *
342 * During any syscall, the kernel may optionally clear TIF_SVE and
343 * discard the vector state except for the FPSIMD subset.
344 *
345 * * TIF_SVE clear:
346 *
347 * An attempt by the user task to execute an SVE instruction causes
348 * do_sve_acc() to be called, which does some preparation and then
349 * sets TIF_SVE.
350 *
351 * When stored, FPSIMD registers V0-V31 are encoded in
65896545 352 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
bc0ee476
DM
353 * logically zero but not stored anywhere; P0-P15 and FFR are not
354 * stored and have unspecified values from userspace's point of
355 * view. For hygiene purposes, the kernel zeroes them on next use,
356 * but userspace is discouraged from relying on this.
357 *
358 * task->thread.sve_state does not need to be non-NULL, valid or any
359 * particular size: it must not be dereferenced.
360 *
65896545
DM
361 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
362 * irrespective of whether TIF_SVE is clear or set, since these are
363 * not vector length dependent.
bc0ee476
DM
364 */
365
366/*
367 * Update current's FPSIMD/SVE registers from thread_struct.
368 *
369 * This function should be called only when the FPSIMD/SVE state in
370 * thread_struct is known to be up to date, when preparing to enter
371 * userspace.
bc0ee476
DM
372 */
373static void task_fpsimd_load(void)
374{
af7167d6
MB
375 bool restore_sve_regs = false;
376 bool restore_ffr;
377
52f73c38 378 WARN_ON(!system_supports_fpsimd());
6dcdefcd 379 WARN_ON(!have_cpu_fpsimd_context());
bc0ee476 380
af7167d6 381 /* Check if we should restore SVE first */
ddc806b5
MB
382 if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
383 sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
af7167d6
MB
384 restore_sve_regs = true;
385 restore_ffr = true;
386 }
387
388 /* Restore SME, override SVE register configuration if needed */
389 if (system_supports_sme()) {
390 unsigned long sme_vl = task_get_sme_vl(current);
391
0033cd93 392 /* Ensure VL is set up for restoring data */
af7167d6
MB
393 if (test_thread_flag(TIF_SME))
394 sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
395
ec0067a6 396 write_sysreg_s(current->thread.svcr, SYS_SVCR);
af7167d6 397
0033cd93
MB
398 if (thread_za_enabled(&current->thread))
399 za_load_state(current->thread.za_state);
400
af7167d6
MB
401 if (thread_sm_enabled(&current->thread)) {
402 restore_sve_regs = true;
403 restore_ffr = system_supports_fa64();
404 }
405 }
406
407 if (restore_sve_regs)
2cf97d46 408 sve_load_state(sve_pffr(&current->thread),
af7167d6
MB
409 &current->thread.uw.fpsimd_state.fpsr,
410 restore_ffr);
411 else
65896545 412 fpsimd_load_state(&current->thread.uw.fpsimd_state);
bc0ee476
DM
413}
414
415/*
d1797615 416 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
432110cd
MB
417 * date with respect to the CPU registers. Note carefully that the
418 * current context is the context last bound to the CPU stored in
419 * last, if KVM is involved this may be the guest VM context rather
420 * than the host thread for the VM pointed to by current. This means
421 * that we must always reference the state storage via last rather
422 * than via current, other than the TIF_ flags which KVM will
423 * carefully maintain for us.
bc0ee476 424 */
54b8c7cb 425static void fpsimd_save(void)
bc0ee476 426{
04950674
DM
427 struct fpsimd_last_state_struct const *last =
428 this_cpu_ptr(&fpsimd_last_state);
e6b673b7 429 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
af7167d6
MB
430 bool save_sve_regs = false;
431 bool save_ffr;
432 unsigned int vl;
d1797615 433
52f73c38 434 WARN_ON(!system_supports_fpsimd());
6dcdefcd 435 WARN_ON(!have_cpu_fpsimd_context());
bc0ee476 436
2d481bd3
MB
437 if (test_thread_flag(TIF_FOREIGN_FPSTATE))
438 return;
439
af7167d6
MB
440 if (test_thread_flag(TIF_SVE)) {
441 save_sve_regs = true;
442 save_ffr = true;
443 vl = last->sve_vl;
444 }
445
446 if (system_supports_sme()) {
b40c559b 447 u64 *svcr = last->svcr;
ec0067a6 448 *svcr = read_sysreg_s(SYS_SVCR);
af7167d6 449
ec0067a6 450 *svcr = read_sysreg_s(SYS_SVCR);
0033cd93 451
ec0067a6 452 if (*svcr & SVCR_ZA_MASK)
0033cd93 453 za_save_state(last->za_state);
af7167d6
MB
454
455 /* If we are in streaming mode override regular SVE. */
ec0067a6 456 if (*svcr & SVCR_SM_MASK) {
af7167d6
MB
457 save_sve_regs = true;
458 save_ffr = system_supports_fa64();
459 vl = last->sme_vl;
460 }
b40c559b
MB
461 }
462
af7167d6
MB
463 if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
464 /* Get the configured VL from RDVL, will account for SM */
465 if (WARN_ON(sve_get_vl() != vl)) {
2d481bd3
MB
466 /*
467 * Can't save the user regs, so current would
468 * re-enter user with corrupt state.
469 * There's no way to recover, so kill it:
470 */
471 force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
472 return;
473 }
474
475 sve_save_state((char *)last->sve_state +
af7167d6
MB
476 sve_ffr_offset(vl),
477 &last->st->fpsr, save_ffr);
2d481bd3
MB
478 } else {
479 fpsimd_save_state(last->st);
bc0ee476
DM
480 }
481}
482
7582e220
DM
483/*
484 * All vector length selection from userspace comes through here.
485 * We're on a slow path, so some sanity-checks are included.
486 * If things go wrong there's a bug somewhere, but try to fall back to a
487 * safe choice.
488 */
b5bc00ff
MB
489static unsigned int find_supported_vector_length(enum vec_type type,
490 unsigned int vl)
7582e220 491{
b5bc00ff 492 struct vl_info *info = &vl_info[type];
7582e220 493 int bit;
b5bc00ff 494 int max_vl = info->max_vl;
7582e220
DM
495
496 if (WARN_ON(!sve_vl_valid(vl)))
b5bc00ff 497 vl = info->min_vl;
7582e220
DM
498
499 if (WARN_ON(!sve_vl_valid(max_vl)))
b5bc00ff 500 max_vl = info->min_vl;
7582e220
DM
501
502 if (vl > max_vl)
503 vl = max_vl;
b42990d3
MB
504 if (vl < info->min_vl)
505 vl = info->min_vl;
7582e220 506
b5bc00ff 507 bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
ead9e430
DM
508 __vq_to_bit(sve_vq_from_vl(vl)));
509 return sve_vl_from_vq(__bit_to_vq(bit));
7582e220
DM
510}
511
e575fb9e 512#if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
4ffa09a9 513
97bcbee4 514static int vec_proc_do_default_vl(struct ctl_table *table, int write,
32927393 515 void *buffer, size_t *lenp, loff_t *ppos)
4ffa09a9 516{
97bcbee4
MB
517 struct vl_info *info = table->extra1;
518 enum vec_type type = info->type;
4ffa09a9 519 int ret;
97bcbee4 520 int vl = get_default_vl(type);
4ffa09a9
DM
521 struct ctl_table tmp_table = {
522 .data = &vl,
523 .maxlen = sizeof(vl),
524 };
525
526 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
527 if (ret || !write)
528 return ret;
529
530 /* Writing -1 has the special meaning "set to max": */
87c021a8 531 if (vl == -1)
b5bc00ff 532 vl = info->max_vl;
4ffa09a9
DM
533
534 if (!sve_vl_valid(vl))
535 return -EINVAL;
536
97bcbee4 537 set_default_vl(type, find_supported_vector_length(type, vl));
4ffa09a9
DM
538 return 0;
539}
540
541static struct ctl_table sve_default_vl_table[] = {
542 {
543 .procname = "sve_default_vector_length",
544 .mode = 0644,
97bcbee4
MB
545 .proc_handler = vec_proc_do_default_vl,
546 .extra1 = &vl_info[ARM64_VEC_SVE],
4ffa09a9
DM
547 },
548 { }
549};
550
551static int __init sve_sysctl_init(void)
552{
553 if (system_supports_sve())
554 if (!register_sysctl("abi", sve_default_vl_table))
555 return -EINVAL;
556
557 return 0;
558}
559
e575fb9e 560#else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
4ffa09a9 561static int __init sve_sysctl_init(void) { return 0; }
e575fb9e 562#endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
4ffa09a9 563
12f1bacf
MB
564#if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
565static struct ctl_table sme_default_vl_table[] = {
566 {
567 .procname = "sme_default_vector_length",
568 .mode = 0644,
569 .proc_handler = vec_proc_do_default_vl,
570 .extra1 = &vl_info[ARM64_VEC_SME],
571 },
572 { }
573};
574
575static int __init sme_sysctl_init(void)
576{
577 if (system_supports_sme())
578 if (!register_sysctl("abi", sme_default_vl_table))
579 return -EINVAL;
580
581 return 0;
582}
583
584#else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
585static int __init sme_sysctl_init(void) { return 0; }
586#endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
587
bc0ee476
DM
588#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
589 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
590
41040cf7
DM
591#ifdef CONFIG_CPU_BIG_ENDIAN
592static __uint128_t arm64_cpu_to_le128(__uint128_t x)
593{
594 u64 a = swab64(x);
595 u64 b = swab64(x >> 64);
596
597 return ((__uint128_t)a << 64) | b;
598}
599#else
600static __uint128_t arm64_cpu_to_le128(__uint128_t x)
601{
602 return x;
603}
604#endif
605
606#define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
607
d16af870
DM
608static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
609 unsigned int vq)
610{
611 unsigned int i;
612 __uint128_t *p;
613
ed2f3e9f 614 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
d16af870
DM
615 p = (__uint128_t *)ZREG(sst, vq, i);
616 *p = arm64_cpu_to_le128(fst->vregs[i]);
617 }
618}
619
bc0ee476 620/*
65896545 621 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
bc0ee476
DM
622 * task->thread.sve_state.
623 *
624 * Task can be a non-runnable task, or current. In the latter case,
6dcdefcd
JG
625 * the caller must have ownership of the cpu FPSIMD context before calling
626 * this function.
bc0ee476
DM
627 * task->thread.sve_state must point to at least sve_state_size(task)
628 * bytes of allocated kernel memory.
65896545
DM
629 * task->thread.uw.fpsimd_state must be up to date before calling this
630 * function.
bc0ee476
DM
631 */
632static void fpsimd_to_sve(struct task_struct *task)
633{
634 unsigned int vq;
635 void *sst = task->thread.sve_state;
65896545 636 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
bc0ee476
DM
637
638 if (!system_supports_sve())
639 return;
640
e12310a0 641 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
d16af870 642 __fpsimd_to_sve(sst, fst, vq);
bc0ee476
DM
643}
644
8cd969d2
DM
645/*
646 * Transfer the SVE state in task->thread.sve_state to
65896545 647 * task->thread.uw.fpsimd_state.
8cd969d2
DM
648 *
649 * Task can be a non-runnable task, or current. In the latter case,
6dcdefcd
JG
650 * the caller must have ownership of the cpu FPSIMD context before calling
651 * this function.
8cd969d2
DM
652 * task->thread.sve_state must point to at least sve_state_size(task)
653 * bytes of allocated kernel memory.
654 * task->thread.sve_state must be up to date before calling this function.
655 */
656static void sve_to_fpsimd(struct task_struct *task)
657{
e12310a0 658 unsigned int vq, vl;
8cd969d2 659 void const *sst = task->thread.sve_state;
65896545 660 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
8cd969d2 661 unsigned int i;
41040cf7 662 __uint128_t const *p;
8cd969d2
DM
663
664 if (!system_supports_sve())
665 return;
666
e12310a0
MB
667 vl = thread_get_cur_vl(&task->thread);
668 vq = sve_vq_from_vl(vl);
ed2f3e9f 669 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
41040cf7
DM
670 p = (__uint128_t const *)ZREG(sst, vq, i);
671 fst->vregs[i] = arm64_le128_to_cpu(*p);
672 }
8cd969d2
DM
673}
674
bc0ee476 675#ifdef CONFIG_ARM64_SVE
8e1f78a9
GU
676/*
677 * Call __sve_free() directly only if you know task can't be scheduled
678 * or preempted.
679 */
680static void __sve_free(struct task_struct *task)
681{
682 kfree(task->thread.sve_state);
683 task->thread.sve_state = NULL;
684}
685
686static void sve_free(struct task_struct *task)
687{
688 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
689
690 __sve_free(task);
691}
bc0ee476
DM
692
693/*
694 * Return how many bytes of memory are required to store the full SVE
695 * state for task, given task's currently configured vector length.
696 */
8bd7f91c 697size_t sve_state_size(struct task_struct const *task)
bc0ee476 698{
af7167d6
MB
699 unsigned int vl = 0;
700
701 if (system_supports_sve())
702 vl = task_get_sve_vl(task);
703 if (system_supports_sme())
704 vl = max(vl, task_get_sme_vl(task));
705
706 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
bc0ee476
DM
707}
708
709/*
710 * Ensure that task->thread.sve_state is allocated and sufficiently large.
711 *
712 * This function should be used only in preparation for replacing
713 * task->thread.sve_state with new data. The memory is always zeroed
714 * here to prevent stale data from showing through: this is done in
715 * the interest of testability and predictability: except in the
716 * do_sve_acc() case, there is no ABI requirement to hide stale data
717 * written previously be task.
718 */
719void sve_alloc(struct task_struct *task)
720{
721 if (task->thread.sve_state) {
e35ac9d0 722 memset(task->thread.sve_state, 0, sve_state_size(task));
bc0ee476
DM
723 return;
724 }
725
726 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
727 task->thread.sve_state =
728 kzalloc(sve_state_size(task), GFP_KERNEL);
bc0ee476
DM
729}
730
43d4da2c 731
e12310a0
MB
732/*
733 * Force the FPSIMD state shared with SVE to be updated in the SVE state
734 * even if the SVE state is the current active state.
735 *
736 * This should only be called by ptrace. task must be non-runnable.
737 * task->thread.sve_state must point to at least sve_state_size(task)
738 * bytes of allocated kernel memory.
739 */
740void fpsimd_force_sync_to_sve(struct task_struct *task)
741{
742 fpsimd_to_sve(task);
743}
744
43d4da2c
DM
745/*
746 * Ensure that task->thread.sve_state is up to date with respect to
747 * the user task, irrespective of when SVE is in use or not.
748 *
749 * This should only be called by ptrace. task must be non-runnable.
750 * task->thread.sve_state must point to at least sve_state_size(task)
751 * bytes of allocated kernel memory.
752 */
753void fpsimd_sync_to_sve(struct task_struct *task)
754{
e12310a0
MB
755 if (!test_tsk_thread_flag(task, TIF_SVE) &&
756 !thread_sm_enabled(&task->thread))
43d4da2c
DM
757 fpsimd_to_sve(task);
758}
759
760/*
65896545 761 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
43d4da2c
DM
762 * the user task, irrespective of whether SVE is in use or not.
763 *
764 * This should only be called by ptrace. task must be non-runnable.
765 * task->thread.sve_state must point to at least sve_state_size(task)
766 * bytes of allocated kernel memory.
767 */
768void sve_sync_to_fpsimd(struct task_struct *task)
769{
e12310a0
MB
770 if (test_tsk_thread_flag(task, TIF_SVE) ||
771 thread_sm_enabled(&task->thread))
43d4da2c
DM
772 sve_to_fpsimd(task);
773}
774
775/*
776 * Ensure that task->thread.sve_state is up to date with respect to
65896545 777 * the task->thread.uw.fpsimd_state.
43d4da2c
DM
778 *
779 * This should only be called by ptrace to merge new FPSIMD register
780 * values into a task for which SVE is currently active.
781 * task must be non-runnable.
782 * task->thread.sve_state must point to at least sve_state_size(task)
783 * bytes of allocated kernel memory.
65896545 784 * task->thread.uw.fpsimd_state must already have been initialised with
43d4da2c
DM
785 * the new FPSIMD register values to be merged in.
786 */
787void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
788{
789 unsigned int vq;
790 void *sst = task->thread.sve_state;
65896545 791 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
43d4da2c
DM
792
793 if (!test_tsk_thread_flag(task, TIF_SVE))
794 return;
795
e12310a0 796 vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
43d4da2c
DM
797
798 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
d16af870 799 __fpsimd_to_sve(sst, fst, vq);
43d4da2c
DM
800}
801
30c43e73 802int vec_set_vector_length(struct task_struct *task, enum vec_type type,
7582e220
DM
803 unsigned long vl, unsigned long flags)
804{
805 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
806 PR_SVE_SET_VL_ONEXEC))
807 return -EINVAL;
808
809 if (!sve_vl_valid(vl))
810 return -EINVAL;
811
812 /*
30c43e73
MB
813 * Clamp to the maximum vector length that VL-agnostic code
814 * can work with. A flag may be assigned in the future to
815 * allow setting of larger vector lengths without confusing
816 * older software.
7582e220 817 */
30c43e73
MB
818 if (vl > VL_ARCH_MAX)
819 vl = VL_ARCH_MAX;
7582e220 820
30c43e73 821 vl = find_supported_vector_length(type, vl);
7582e220
DM
822
823 if (flags & (PR_SVE_VL_INHERIT |
824 PR_SVE_SET_VL_ONEXEC))
30c43e73 825 task_set_vl_onexec(task, type, vl);
7582e220
DM
826 else
827 /* Reset VL to system default on next exec: */
30c43e73 828 task_set_vl_onexec(task, type, 0);
7582e220
DM
829
830 /* Only actually set the VL if not deferred: */
831 if (flags & PR_SVE_SET_VL_ONEXEC)
832 goto out;
833
30c43e73 834 if (vl == task_get_vl(task, type))
7582e220
DM
835 goto out;
836
837 /*
838 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
839 * write any live register state back to task_struct, and convert to a
e12310a0 840 * regular FPSIMD thread.
7582e220
DM
841 */
842 if (task == current) {
6dcdefcd 843 get_cpu_fpsimd_context();
7582e220 844
d1797615 845 fpsimd_save();
7582e220
DM
846 }
847
848 fpsimd_flush_task_state(task);
af7167d6
MB
849 if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
850 thread_sm_enabled(&task->thread))
7582e220
DM
851 sve_to_fpsimd(task);
852
8bd7f91c 853 if (system_supports_sme() && type == ARM64_VEC_SME) {
ec0067a6
MB
854 task->thread.svcr &= ~(SVCR_SM_MASK |
855 SVCR_ZA_MASK);
8bd7f91c
MB
856 clear_thread_flag(TIF_SME);
857 }
b40c559b 858
7582e220 859 if (task == current)
6dcdefcd 860 put_cpu_fpsimd_context();
7582e220
DM
861
862 /*
8bd7f91c
MB
863 * Force reallocation of task SVE and SME state to the correct
864 * size on next use:
7582e220
DM
865 */
866 sve_free(task);
8bd7f91c
MB
867 if (system_supports_sme() && type == ARM64_VEC_SME)
868 sme_free(task);
7582e220 869
30c43e73 870 task_set_vl(task, type, vl);
7582e220
DM
871
872out:
30c43e73 873 update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
09d1223a 874 flags & PR_SVE_VL_INHERIT);
7582e220
DM
875
876 return 0;
877}
878
2d2123bc
DM
879/*
880 * Encode the current vector length and flags for return.
30c43e73
MB
881 * This is only required for prctl(): ptrace has separate fields.
882 * SVE and SME use the same bits for _ONEXEC and _INHERIT.
2d2123bc 883 *
30c43e73 884 * flags are as for vec_set_vector_length().
2d2123bc 885 */
30c43e73 886static int vec_prctl_status(enum vec_type type, unsigned long flags)
2d2123bc
DM
887{
888 int ret;
889
890 if (flags & PR_SVE_SET_VL_ONEXEC)
30c43e73 891 ret = task_get_vl_onexec(current, type);
2d2123bc 892 else
30c43e73 893 ret = task_get_vl(current, type);
2d2123bc 894
30c43e73 895 if (test_thread_flag(vec_vl_inherit_flag(type)))
2d2123bc
DM
896 ret |= PR_SVE_VL_INHERIT;
897
898 return ret;
899}
900
901/* PR_SVE_SET_VL */
902int sve_set_current_vl(unsigned long arg)
903{
904 unsigned long vl, flags;
905 int ret;
906
907 vl = arg & PR_SVE_VL_LEN_MASK;
908 flags = arg & ~vl;
909
4b7a6ce7 910 if (!system_supports_sve() || is_compat_task())
2d2123bc
DM
911 return -EINVAL;
912
30c43e73 913 ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
2d2123bc
DM
914 if (ret)
915 return ret;
916
30c43e73 917 return vec_prctl_status(ARM64_VEC_SVE, flags);
2d2123bc
DM
918}
919
920/* PR_SVE_GET_VL */
921int sve_get_current_vl(void)
922{
4b7a6ce7 923 if (!system_supports_sve() || is_compat_task())
2d2123bc
DM
924 return -EINVAL;
925
30c43e73 926 return vec_prctl_status(ARM64_VEC_SVE, 0);
2d2123bc
DM
927}
928
9e4ab6c8
MB
929#ifdef CONFIG_ARM64_SME
930/* PR_SME_SET_VL */
931int sme_set_current_vl(unsigned long arg)
932{
933 unsigned long vl, flags;
934 int ret;
935
936 vl = arg & PR_SME_VL_LEN_MASK;
937 flags = arg & ~vl;
938
939 if (!system_supports_sme() || is_compat_task())
940 return -EINVAL;
941
942 ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
943 if (ret)
944 return ret;
945
946 return vec_prctl_status(ARM64_VEC_SME, flags);
947}
948
949/* PR_SME_GET_VL */
950int sme_get_current_vl(void)
951{
952 if (!system_supports_sme() || is_compat_task())
953 return -EINVAL;
954
955 return vec_prctl_status(ARM64_VEC_SME, 0);
956}
957#endif /* CONFIG_ARM64_SME */
958
b5bc00ff
MB
959static void vec_probe_vqs(struct vl_info *info,
960 DECLARE_BITMAP(map, SVE_VQ_MAX))
2e0f2478
DM
961{
962 unsigned int vq, vl;
2e0f2478
DM
963
964 bitmap_zero(map, SVE_VQ_MAX);
965
2e0f2478 966 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
b5bc00ff 967 write_vl(info->type, vq - 1); /* self-syncing */
b42990d3
MB
968
969 switch (info->type) {
970 case ARM64_VEC_SVE:
971 vl = sve_get_vl();
972 break;
973 case ARM64_VEC_SME:
974 vl = sme_get_vl();
975 break;
976 default:
977 vl = 0;
978 break;
979 }
980
981 /* Minimum VL identified? */
982 if (sve_vq_from_vl(vl) > vq)
983 break;
984
2e0f2478 985 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
ead9e430 986 set_bit(__vq_to_bit(vq), map);
2e0f2478
DM
987 }
988}
989
8b08e840
DM
990/*
991 * Initialise the set of known supported VQs for the boot CPU.
992 * This is called during kernel boot, before secondary CPUs are brought up.
993 */
b5bc00ff 994void __init vec_init_vq_map(enum vec_type type)
2e0f2478 995{
b5bc00ff
MB
996 struct vl_info *info = &vl_info[type];
997 vec_probe_vqs(info, info->vq_map);
998 bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
2e0f2478
DM
999}
1000
1001/*
1002 * If we haven't committed to the set of supported VQs yet, filter out
1003 * those not supported by the current CPU.
8b08e840 1004 * This function is called during the bring-up of early secondary CPUs only.
2e0f2478 1005 */
b5bc00ff 1006void vec_update_vq_map(enum vec_type type)
2e0f2478 1007{
b5bc00ff 1008 struct vl_info *info = &vl_info[type];
d06b76be
DM
1009 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1010
b5bc00ff
MB
1011 vec_probe_vqs(info, tmp_map);
1012 bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
1013 bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
1014 SVE_VQ_MAX);
2e0f2478
DM
1015}
1016
8b08e840
DM
1017/*
1018 * Check whether the current CPU supports all VQs in the committed set.
1019 * This function is called during the bring-up of late secondary CPUs only.
1020 */
b5bc00ff 1021int vec_verify_vq_map(enum vec_type type)
2e0f2478 1022{
b5bc00ff 1023 struct vl_info *info = &vl_info[type];
d06b76be
DM
1024 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1025 unsigned long b;
2e0f2478 1026
b5bc00ff 1027 vec_probe_vqs(info, tmp_map);
d06b76be
DM
1028
1029 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
b5bc00ff
MB
1030 if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
1031 pr_warn("%s: cpu%d: Required vector length(s) missing\n",
1032 info->name, smp_processor_id());
d06b76be 1033 return -EINVAL;
2e0f2478
DM
1034 }
1035
d06b76be
DM
1036 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
1037 return 0;
1038
1039 /*
1040 * For KVM, it is necessary to ensure that this CPU doesn't
1041 * support any vector length that guests may have probed as
1042 * unsupported.
1043 */
1044
1045 /* Recover the set of supported VQs: */
1046 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
1047 /* Find VQs supported that are not globally supported: */
b5bc00ff 1048 bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
d06b76be
DM
1049
1050 /* Find the lowest such VQ, if any: */
1051 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1052 if (b >= SVE_VQ_MAX)
1053 return 0; /* no mismatches */
1054
1055 /*
1056 * Mismatches above sve_max_virtualisable_vl are fine, since
1057 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
1058 */
b5bc00ff
MB
1059 if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
1060 pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
1061 info->name, smp_processor_id());
d06b76be
DM
1062 return -EINVAL;
1063 }
1064
1065 return 0;
2e0f2478
DM
1066}
1067
fdfa976c
DM
1068static void __init sve_efi_setup(void)
1069{
e0838f63
MB
1070 int max_vl = 0;
1071 int i;
b5bc00ff 1072
fdfa976c
DM
1073 if (!IS_ENABLED(CONFIG_EFI))
1074 return;
1075
e0838f63
MB
1076 for (i = 0; i < ARRAY_SIZE(vl_info); i++)
1077 max_vl = max(vl_info[i].max_vl, max_vl);
1078
fdfa976c
DM
1079 /*
1080 * alloc_percpu() warns and prints a backtrace if this goes wrong.
1081 * This is evidence of a crippled system and we are returning void,
1082 * so no attempt is made to handle this situation here.
1083 */
e0838f63 1084 if (!sve_vl_valid(max_vl))
fdfa976c
DM
1085 goto fail;
1086
1087 efi_sve_state = __alloc_percpu(
e0838f63 1088 SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
fdfa976c
DM
1089 if (!efi_sve_state)
1090 goto fail;
1091
1092 return;
1093
1094fail:
1095 panic("Cannot allocate percpu memory for EFI SVE save/restore");
1096}
1097
2e0f2478
DM
1098/*
1099 * Enable SVE for EL1.
1100 * Intended for use by the cpufeatures code during CPU boot.
1101 */
c0cda3b8 1102void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
2e0f2478
DM
1103{
1104 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
1105 isb();
2e0f2478
DM
1106}
1107
31dc52b3
DM
1108/*
1109 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
1110 * vector length.
1111 *
1112 * Use only if SVE is present.
1113 * This function clobbers the SVE vector length.
1114 */
1115u64 read_zcr_features(void)
1116{
1117 u64 zcr;
1118 unsigned int vq_max;
1119
1120 /*
1121 * Set the maximum possible VL, and write zeroes to all other
1122 * bits to see if they stick.
1123 */
1124 sve_kernel_enable(NULL);
1125 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
1126
1127 zcr = read_sysreg_s(SYS_ZCR_EL1);
1128 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
1129 vq_max = sve_vq_from_vl(sve_get_vl());
1130 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
1131
1132 return zcr;
1133}
1134
2e0f2478
DM
1135void __init sve_setup(void)
1136{
b5bc00ff 1137 struct vl_info *info = &vl_info[ARM64_VEC_SVE];
2e0f2478 1138 u64 zcr;
d06b76be
DM
1139 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
1140 unsigned long b;
2e0f2478
DM
1141
1142 if (!system_supports_sve())
1143 return;
1144
1145 /*
1146 * The SVE architecture mandates support for 128-bit vectors,
1147 * so sve_vq_map must have at least SVE_VQ_MIN set.
1148 * If something went wrong, at least try to patch it up:
1149 */
b5bc00ff
MB
1150 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
1151 set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
2e0f2478
DM
1152
1153 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
b5bc00ff 1154 info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
2e0f2478
DM
1155
1156 /*
1157 * Sanity-check that the max VL we determined through CPU features
1158 * corresponds properly to sve_vq_map. If not, do our best:
1159 */
b5bc00ff
MB
1160 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
1161 info->max_vl)))
1162 info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
1163 info->max_vl);
2e0f2478
DM
1164
1165 /*
1166 * For the default VL, pick the maximum supported value <= 64.
1167 * VL == 64 is guaranteed not to grow the signal frame.
1168 */
b5bc00ff 1169 set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
2e0f2478 1170
b5bc00ff 1171 bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
d06b76be
DM
1172 SVE_VQ_MAX);
1173
1174 b = find_last_bit(tmp_map, SVE_VQ_MAX);
1175 if (b >= SVE_VQ_MAX)
1176 /* No non-virtualisable VLs found */
b5bc00ff 1177 info->max_virtualisable_vl = SVE_VQ_MAX;
d06b76be
DM
1178 else if (WARN_ON(b == SVE_VQ_MAX - 1))
1179 /* No virtualisable VLs? This is architecturally forbidden. */
b5bc00ff 1180 info->max_virtualisable_vl = SVE_VQ_MIN;
d06b76be 1181 else /* b + 1 < SVE_VQ_MAX */
b5bc00ff 1182 info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
d06b76be 1183
b5bc00ff
MB
1184 if (info->max_virtualisable_vl > info->max_vl)
1185 info->max_virtualisable_vl = info->max_vl;
d06b76be 1186
b5bc00ff
MB
1187 pr_info("%s: maximum available vector length %u bytes per vector\n",
1188 info->name, info->max_vl);
1189 pr_info("%s: default vector length %u bytes per vector\n",
1190 info->name, get_sve_default_vl());
fdfa976c 1191
d06b76be 1192 /* KVM decides whether to support mismatched systems. Just warn here: */
b5bc00ff
MB
1193 if (sve_max_virtualisable_vl() < sve_max_vl())
1194 pr_warn("%s: unvirtualisable vector lengths present\n",
1195 info->name);
d06b76be 1196
fdfa976c 1197 sve_efi_setup();
2e0f2478
DM
1198}
1199
bc0ee476
DM
1200/*
1201 * Called from the put_task_struct() path, which cannot get here
1202 * unless dead_task is really dead and not schedulable.
1203 */
1204void fpsimd_release_task(struct task_struct *dead_task)
1205{
1206 __sve_free(dead_task);
8bd7f91c 1207 sme_free(dead_task);
bc0ee476
DM
1208}
1209
1210#endif /* CONFIG_ARM64_SVE */
1211
5e64b862
MB
1212#ifdef CONFIG_ARM64_SME
1213
8bd7f91c
MB
1214/*
1215 * Ensure that task->thread.za_state is allocated and sufficiently large.
1216 *
1217 * This function should be used only in preparation for replacing
1218 * task->thread.za_state with new data. The memory is always zeroed
1219 * here to prevent stale data from showing through: this is done in
1220 * the interest of testability and predictability, the architecture
1221 * guarantees that when ZA is enabled it will be zeroed.
1222 */
1223void sme_alloc(struct task_struct *task)
1224{
1225 if (task->thread.za_state) {
1226 memset(task->thread.za_state, 0, za_state_size(task));
1227 return;
1228 }
1229
1230 /* This could potentially be up to 64K. */
1231 task->thread.za_state =
1232 kzalloc(za_state_size(task), GFP_KERNEL);
1233}
1234
1235static void sme_free(struct task_struct *task)
1236{
1237 kfree(task->thread.za_state);
1238 task->thread.za_state = NULL;
1239}
1240
5e64b862
MB
1241void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1242{
1243 /* Set priority for all PEs to architecturally defined minimum */
1244 write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
1245 SYS_SMPRI_EL1);
1246
1247 /* Allow SME in kernel */
1248 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
1249 isb();
a9d69158
MB
1250
1251 /* Allow EL0 to access TPIDR2 */
1252 write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
1253 isb();
5e64b862
MB
1254}
1255
1256/*
1257 * This must be called after sme_kernel_enable(), we rely on the
1258 * feature table being sorted to ensure this.
1259 */
1260void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
1261{
1262 /* Allow use of FA64 */
1263 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
1264 SYS_SMCR_EL1);
1265}
1266
b42990d3
MB
1267/*
1268 * Read the pseudo-SMCR used by cpufeatures to identify the supported
1269 * vector length.
1270 *
1271 * Use only if SME is present.
1272 * This function clobbers the SME vector length.
1273 */
1274u64 read_smcr_features(void)
1275{
1276 u64 smcr;
1277 unsigned int vq_max;
1278
1279 sme_kernel_enable(NULL);
1280 sme_smstart_sm();
1281
1282 /*
1283 * Set the maximum possible VL.
1284 */
1285 write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
1286 SYS_SMCR_EL1);
1287
1288 smcr = read_sysreg_s(SYS_SMCR_EL1);
1289 smcr &= ~(u64)SMCR_ELx_LEN_MASK; /* Only the LEN field */
1290 vq_max = sve_vq_from_vl(sve_get_vl());
1291 smcr |= vq_max - 1; /* set LEN field to maximum effective value */
1292
1293 sme_smstop_sm();
1294
1295 return smcr;
1296}
1297
1298void __init sme_setup(void)
1299{
1300 struct vl_info *info = &vl_info[ARM64_VEC_SME];
1301 u64 smcr;
1302 int min_bit;
1303
1304 if (!system_supports_sme())
1305 return;
1306
1307 /*
1308 * SME doesn't require any particular vector length be
1309 * supported but it does require at least one. We should have
1310 * disabled the feature entirely while bringing up CPUs but
1311 * let's double check here.
1312 */
1313 WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
1314
1315 min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
1316 info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
1317
1318 smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
1319 info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
1320
1321 /*
1322 * Sanity-check that the max VL we determined through CPU features
1323 * corresponds properly to sme_vq_map. If not, do our best:
1324 */
1325 if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
1326 info->max_vl)))
1327 info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
1328 info->max_vl);
1329
1330 WARN_ON(info->min_vl > info->max_vl);
1331
1332 /*
1333 * For the default VL, pick the maximum supported value <= 32
1334 * (256 bits) if there is one since this is guaranteed not to
1335 * grow the signal frame when in streaming mode, otherwise the
1336 * minimum available VL will be used.
1337 */
1338 set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
1339
1340 pr_info("SME: minimum available vector length %u bytes per vector\n",
1341 info->min_vl);
1342 pr_info("SME: maximum available vector length %u bytes per vector\n",
1343 info->max_vl);
1344 pr_info("SME: default vector length %u bytes per vector\n",
1345 get_sme_default_vl());
1346}
1347
1348#endif /* CONFIG_ARM64_SME */
5e64b862 1349
8bd7f91c
MB
1350static void sve_init_regs(void)
1351{
1352 /*
1353 * Convert the FPSIMD state to SVE, zeroing all the state that
1354 * is not shared with FPSIMD. If (as is likely) the current
1355 * state is live in the registers then do this there and
1356 * update our metadata for the current task including
1357 * disabling the trap, otherwise update our in-memory copy.
1358 * We are guaranteed to not be in streaming mode, we can only
1359 * take a SVE trap when not in streaming mode and we can't be
1360 * in streaming mode when taking a SME trap.
1361 */
1362 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
1363 unsigned long vq_minus_one =
1364 sve_vq_from_vl(task_get_sve_vl(current)) - 1;
1365 sve_set_vq(vq_minus_one);
1366 sve_flush_live(true, vq_minus_one);
1367 fpsimd_bind_task_to_cpu();
1368 } else {
1369 fpsimd_to_sve(current);
1370 }
1371}
1372
bc0ee476
DM
1373/*
1374 * Trapped SVE access
1375 *
1376 * Storage is allocated for the full SVE state, the current FPSIMD
cccb78ce
MB
1377 * register contents are migrated across, and the access trap is
1378 * disabled.
bc0ee476 1379 *
f186a84d 1380 * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
bc0ee476
DM
1381 * would have disabled the SVE access trap for userspace during
1382 * ret_to_user, making an SVE access trap impossible in that case.
1383 */
8d56e5c5 1384void do_sve_acc(unsigned long esr, struct pt_regs *regs)
bc0ee476
DM
1385{
1386 /* Even if we chose not to use SVE, the hardware could still trap: */
1387 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
4ef333b2 1388 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
bc0ee476
DM
1389 return;
1390 }
1391
1392 sve_alloc(current);
7559b7d7
MB
1393 if (!current->thread.sve_state) {
1394 force_sig(SIGKILL);
1395 return;
1396 }
bc0ee476 1397
6dcdefcd 1398 get_cpu_fpsimd_context();
bc0ee476 1399
bc0ee476
DM
1400 if (test_and_set_thread_flag(TIF_SVE))
1401 WARN_ON(1); /* SVE access shouldn't have trapped */
1402
cccb78ce 1403 /*
8bd7f91c
MB
1404 * Even if the task can have used streaming mode we can only
1405 * generate SVE access traps in normal SVE mode and
1406 * transitioning out of streaming mode may discard any
1407 * streaming mode state. Always clear the high bits to avoid
1408 * any potential errors tracking what is properly initialised.
1409 */
1410 sve_init_regs();
1411
1412 put_cpu_fpsimd_context();
1413}
1414
1415/*
1416 * Trapped SME access
1417 *
1418 * Storage is allocated for the full SVE and SME state, the current
1419 * FPSIMD register contents are migrated to SVE if SVE is not already
1420 * active, and the access trap is disabled.
1421 *
1422 * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
1423 * would have disabled the SME access trap for userspace during
1424 * ret_to_user, making an SVE access trap impossible in that case.
1425 */
0616ea3f 1426void do_sme_acc(unsigned long esr, struct pt_regs *regs)
8bd7f91c
MB
1427{
1428 /* Even if we chose not to use SME, the hardware could still trap: */
1429 if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
1430 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1431 return;
1432 }
1433
1434 /*
1435 * If this not a trap due to SME being disabled then something
1436 * is being used in the wrong mode, report as SIGILL.
cccb78ce 1437 */
8bd7f91c
MB
1438 if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
1439 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
1440 return;
1441 }
1442
1443 sve_alloc(current);
1444 sme_alloc(current);
1445 if (!current->thread.sve_state || !current->thread.za_state) {
1446 force_sig(SIGKILL);
1447 return;
1448 }
1449
1450 get_cpu_fpsimd_context();
1451
1452 /* With TIF_SME userspace shouldn't generate any traps */
1453 if (test_and_set_thread_flag(TIF_SME))
1454 WARN_ON(1);
1455
cccb78ce 1456 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
ad4711f9 1457 unsigned long vq_minus_one =
8bd7f91c
MB
1458 sve_vq_from_vl(task_get_sme_vl(current)) - 1;
1459 sme_set_vq(vq_minus_one);
1460
cccb78ce 1461 fpsimd_bind_task_to_cpu();
cccb78ce
MB
1462 }
1463
8bd7f91c
MB
1464 /*
1465 * If SVE was not already active initialise the SVE registers,
1466 * any non-shared state between the streaming and regular SVE
1467 * registers is architecturally guaranteed to be zeroed when
1468 * we enter streaming mode. We do not need to initialize ZA
1469 * since ZA must be disabled at this point and enabling ZA is
1470 * architecturally defined to zero ZA.
1471 */
1472 if (system_supports_sve() && !test_thread_flag(TIF_SVE))
1473 sve_init_regs();
1474
6dcdefcd 1475 put_cpu_fpsimd_context();
bc0ee476
DM
1476}
1477
53631b54
CM
1478/*
1479 * Trapped FP/ASIMD access.
1480 */
8d56e5c5 1481void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
53631b54
CM
1482{
1483 /* TODO: implement lazy context saving/restoring */
1484 WARN_ON(1);
1485}
1486
1487/*
1488 * Raise a SIGFPE for the current process.
1489 */
8d56e5c5 1490void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
53631b54 1491{
af4a81b9
DM
1492 unsigned int si_code = FPE_FLTUNK;
1493
1494 if (esr & ESR_ELx_FP_EXC_TFV) {
1495 if (esr & FPEXC_IOF)
1496 si_code = FPE_FLTINV;
1497 else if (esr & FPEXC_DZF)
1498 si_code = FPE_FLTDIV;
1499 else if (esr & FPEXC_OFF)
1500 si_code = FPE_FLTOVF;
1501 else if (esr & FPEXC_UFF)
1502 si_code = FPE_FLTUND;
1503 else if (esr & FPEXC_IXF)
1504 si_code = FPE_FLTRES;
1505 }
53631b54 1506
c8526809
EB
1507 send_sig_fault(SIGFPE, si_code,
1508 (void __user *)instruction_pointer(regs),
1509 current);
53631b54
CM
1510}
1511
1512void fpsimd_thread_switch(struct task_struct *next)
1513{
df3fb968
DM
1514 bool wrong_task, wrong_cpu;
1515
82e0191a
SP
1516 if (!system_supports_fpsimd())
1517 return;
df3fb968 1518
6dcdefcd
JG
1519 __get_cpu_fpsimd_context();
1520
df3fb968
DM
1521 /* Save unsaved fpsimd state, if any: */
1522 fpsimd_save();
1523
005f78cd 1524 /*
df3fb968
DM
1525 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
1526 * state. For kernel threads, FPSIMD registers are never loaded
1527 * and wrong_task and wrong_cpu will always be true.
005f78cd 1528 */
df3fb968 1529 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
09d1223a 1530 &next->thread.uw.fpsimd_state;
df3fb968 1531 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
005f78cd 1532
df3fb968
DM
1533 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1534 wrong_task || wrong_cpu);
6dcdefcd
JG
1535
1536 __put_cpu_fpsimd_context();
53631b54
CM
1537}
1538
5838a155 1539static void fpsimd_flush_thread_vl(enum vec_type type)
53631b54 1540{
7582e220 1541 int vl, supported_vl;
bc0ee476 1542
5838a155
MB
1543 /*
1544 * Reset the task vector length as required. This is where we
1545 * ensure that all user tasks have a valid vector length
1546 * configured: no kernel task can become a user task without
1547 * an exec and hence a call to this function. By the time the
1548 * first call to this function is made, all early hardware
1549 * probing is complete, so __sve_default_vl should be valid.
1550 * If a bug causes this to go wrong, we make some noise and
1551 * try to fudge thread.sve_vl to a safe value here.
1552 */
1553 vl = task_get_vl_onexec(current, type);
1554 if (!vl)
1555 vl = get_default_vl(type);
1556
1557 if (WARN_ON(!sve_vl_valid(vl)))
97bcbee4 1558 vl = vl_info[type].min_vl;
5838a155
MB
1559
1560 supported_vl = find_supported_vector_length(type, vl);
1561 if (WARN_ON(supported_vl != vl))
1562 vl = supported_vl;
1563
1564 task_set_vl(current, type, vl);
1565
1566 /*
1567 * If the task is not set to inherit, ensure that the vector
1568 * length will be reset by a subsequent exec:
1569 */
1570 if (!test_thread_flag(vec_vl_inherit_flag(type)))
1571 task_set_vl_onexec(current, type, 0);
1572}
1573
1574void fpsimd_flush_thread(void)
1575{
a1259dd8
SAS
1576 void *sve_state = NULL;
1577 void *za_state = NULL;
1578
82e0191a
SP
1579 if (!system_supports_fpsimd())
1580 return;
cb84d11e 1581
6dcdefcd 1582 get_cpu_fpsimd_context();
cb84d11e 1583
efbc2024 1584 fpsimd_flush_task_state(current);
65896545
DM
1585 memset(&current->thread.uw.fpsimd_state, 0,
1586 sizeof(current->thread.uw.fpsimd_state));
bc0ee476
DM
1587
1588 if (system_supports_sve()) {
1589 clear_thread_flag(TIF_SVE);
a1259dd8
SAS
1590
1591 /* Defer kfree() while in atomic context */
1592 sve_state = current->thread.sve_state;
1593 current->thread.sve_state = NULL;
1594
5838a155 1595 fpsimd_flush_thread_vl(ARM64_VEC_SVE);
bc0ee476
DM
1596 }
1597
8bd7f91c
MB
1598 if (system_supports_sme()) {
1599 clear_thread_flag(TIF_SME);
a1259dd8
SAS
1600
1601 /* Defer kfree() while in atomic context */
1602 za_state = current->thread.za_state;
1603 current->thread.za_state = NULL;
1604
af7167d6 1605 fpsimd_flush_thread_vl(ARM64_VEC_SME);
8bd7f91c
MB
1606 current->thread.svcr = 0;
1607 }
af7167d6 1608
6dcdefcd 1609 put_cpu_fpsimd_context();
a1259dd8
SAS
1610 kfree(sve_state);
1611 kfree(za_state);
53631b54
CM
1612}
1613
c51f9269 1614/*
005f78cd
AB
1615 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1616 * currently held in the registers does in fact belong to 'current'
c51f9269
AB
1617 */
1618void fpsimd_preserve_current_state(void)
1619{
82e0191a
SP
1620 if (!system_supports_fpsimd())
1621 return;
cb84d11e 1622
6dcdefcd 1623 get_cpu_fpsimd_context();
d1797615 1624 fpsimd_save();
6dcdefcd 1625 put_cpu_fpsimd_context();
c51f9269
AB
1626}
1627
8cd969d2
DM
1628/*
1629 * Like fpsimd_preserve_current_state(), but ensure that
65896545 1630 * current->thread.uw.fpsimd_state is updated so that it can be copied to
8cd969d2
DM
1631 * the signal frame.
1632 */
1633void fpsimd_signal_preserve_current_state(void)
1634{
1635 fpsimd_preserve_current_state();
ef9c5d09 1636 if (test_thread_flag(TIF_SVE))
8cd969d2
DM
1637 sve_to_fpsimd(current);
1638}
1639
8884b7bd
DM
1640/*
1641 * Associate current's FPSIMD context with this cpu
6dcdefcd
JG
1642 * The caller must have ownership of the cpu FPSIMD context before calling
1643 * this function.
8884b7bd 1644 */
b24b5205 1645static void fpsimd_bind_task_to_cpu(void)
8884b7bd 1646{
cb968afc
DM
1647 struct fpsimd_last_state_struct *last =
1648 this_cpu_ptr(&fpsimd_last_state);
8884b7bd 1649
52f73c38 1650 WARN_ON(!system_supports_fpsimd());
65896545 1651 last->st = &current->thread.uw.fpsimd_state;
04950674 1652 last->sve_state = current->thread.sve_state;
0033cd93 1653 last->za_state = current->thread.za_state;
0423eedc 1654 last->sve_vl = task_get_sve_vl(current);
af7167d6 1655 last->sme_vl = task_get_sme_vl(current);
b40c559b 1656 last->svcr = &current->thread.svcr;
20b85472 1657 current->thread.fpsimd_cpu = smp_processor_id();
0cff8e77 1658
8bd7f91c
MB
1659 /*
1660 * Toggle SVE and SME trapping for userspace if needed, these
1661 * are serialsied by ret_to_user().
1662 */
1663 if (system_supports_sme()) {
1664 if (test_thread_flag(TIF_SME))
1665 sme_user_enable();
1666 else
1667 sme_user_disable();
1668 }
1669
0cff8e77 1670 if (system_supports_sve()) {
0cff8e77
DM
1671 if (test_thread_flag(TIF_SVE))
1672 sve_user_enable();
1673 else
1674 sve_user_disable();
0cff8e77 1675 }
8884b7bd
DM
1676}
1677
04950674 1678void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
0033cd93
MB
1679 unsigned int sve_vl, void *za_state,
1680 unsigned int sme_vl, u64 *svcr)
e6b673b7
DM
1681{
1682 struct fpsimd_last_state_struct *last =
1683 this_cpu_ptr(&fpsimd_last_state);
1684
52f73c38 1685 WARN_ON(!system_supports_fpsimd());
e6b673b7
DM
1686 WARN_ON(!in_softirq() && !irqs_disabled());
1687
1688 last->st = st;
b40c559b 1689 last->svcr = svcr;
04950674 1690 last->sve_state = sve_state;
0033cd93 1691 last->za_state = za_state;
04950674 1692 last->sve_vl = sve_vl;
af7167d6 1693 last->sme_vl = sme_vl;
8884b7bd
DM
1694}
1695
c51f9269 1696/*
005f78cd
AB
1697 * Load the userland FPSIMD state of 'current' from memory, but only if the
1698 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
12b792e5
MB
1699 * state of 'current'. This is called when we are preparing to return to
1700 * userspace to ensure that userspace sees a good register state.
005f78cd
AB
1701 */
1702void fpsimd_restore_current_state(void)
1703{
52f73c38
SP
1704 /*
1705 * For the tasks that were created before we detected the absence of
1706 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1707 * e.g, init. This could be then inherited by the children processes.
1708 * If we later detect that the system doesn't support FP/SIMD,
1709 * we must clear the flag for all the tasks to indicate that the
1710 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1711 * do_notify_resume().
1712 */
1713 if (!system_supports_fpsimd()) {
1714 clear_thread_flag(TIF_FOREIGN_FPSTATE);
82e0191a 1715 return;
52f73c38 1716 }
cb84d11e 1717
6dcdefcd 1718 get_cpu_fpsimd_context();
cb84d11e 1719
005f78cd 1720 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
bc0ee476 1721 task_fpsimd_load();
0cff8e77 1722 fpsimd_bind_task_to_cpu();
005f78cd 1723 }
cb84d11e 1724
6dcdefcd 1725 put_cpu_fpsimd_context();
005f78cd
AB
1726}
1727
1728/*
1729 * Load an updated userland FPSIMD state for 'current' from memory and set the
1730 * flag that indicates that the FPSIMD register contents are the most recent
12b792e5
MB
1731 * FPSIMD state of 'current'. This is used by the signal code to restore the
1732 * register state when returning from a signal handler in FPSIMD only cases,
1733 * any SVE context will be discarded.
c51f9269 1734 */
0abdeff5 1735void fpsimd_update_current_state(struct user_fpsimd_state const *state)
c51f9269 1736{
52f73c38 1737 if (WARN_ON(!system_supports_fpsimd()))
82e0191a 1738 return;
cb84d11e 1739
6dcdefcd 1740 get_cpu_fpsimd_context();
cb84d11e 1741
65896545 1742 current->thread.uw.fpsimd_state = *state;
ef9c5d09 1743 if (test_thread_flag(TIF_SVE))
8cd969d2 1744 fpsimd_to_sve(current);
9de52a75 1745
8cd969d2 1746 task_fpsimd_load();
0cff8e77 1747 fpsimd_bind_task_to_cpu();
8cd969d2 1748
0cff8e77 1749 clear_thread_flag(TIF_FOREIGN_FPSTATE);
cb84d11e 1750
6dcdefcd 1751 put_cpu_fpsimd_context();
c51f9269
AB
1752}
1753
005f78cd
AB
1754/*
1755 * Invalidate live CPU copies of task t's FPSIMD state
efbc2024
DM
1756 *
1757 * This function may be called with preemption enabled. The barrier()
1758 * ensures that the assignment to fpsimd_cpu is visible to any
1759 * preemption/softirq that could race with set_tsk_thread_flag(), so
1760 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1761 *
1762 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1763 * subsequent code.
005f78cd
AB
1764 */
1765void fpsimd_flush_task_state(struct task_struct *t)
1766{
20b85472 1767 t->thread.fpsimd_cpu = NR_CPUS;
52f73c38
SP
1768 /*
1769 * If we don't support fpsimd, bail out after we have
1770 * reset the fpsimd_cpu for this task and clear the
1771 * FPSTATE.
1772 */
1773 if (!system_supports_fpsimd())
1774 return;
efbc2024
DM
1775 barrier();
1776 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1777
1778 barrier();
005f78cd
AB
1779}
1780
efbc2024
DM
1781/*
1782 * Invalidate any task's FPSIMD state that is present on this cpu.
6dcdefcd
JG
1783 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1784 * before calling this function.
efbc2024 1785 */
54b8c7cb 1786static void fpsimd_flush_cpu_state(void)
17eed27b 1787{
52f73c38 1788 WARN_ON(!system_supports_fpsimd());
cb968afc 1789 __this_cpu_write(fpsimd_last_state.st, NULL);
d45d7ff7
MB
1790
1791 /*
1792 * Leaving streaming mode enabled will cause issues for any kernel
1793 * NEON and leaving streaming mode or ZA enabled may increase power
1794 * consumption.
1795 */
1796 if (system_supports_sme())
1797 sme_smstop();
1798
d8ad71fa 1799 set_thread_flag(TIF_FOREIGN_FPSTATE);
17eed27b
DM
1800}
1801
54b8c7cb
JG
1802/*
1803 * Save the FPSIMD state to memory and invalidate cpu view.
6dcdefcd 1804 * This function must be called with preemption disabled.
54b8c7cb
JG
1805 */
1806void fpsimd_save_and_flush_cpu_state(void)
1807{
52f73c38
SP
1808 if (!system_supports_fpsimd())
1809 return;
6dcdefcd
JG
1810 WARN_ON(preemptible());
1811 __get_cpu_fpsimd_context();
54b8c7cb
JG
1812 fpsimd_save();
1813 fpsimd_flush_cpu_state();
6dcdefcd 1814 __put_cpu_fpsimd_context();
54b8c7cb 1815}
4cfb3613 1816
4cfb3613 1817#ifdef CONFIG_KERNEL_MODE_NEON
190f1ca8 1818
4cfb3613
AB
1819/*
1820 * Kernel-side NEON support functions
1821 */
cb84d11e
DM
1822
1823/*
1824 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1825 * context
1826 *
1827 * Must not be called unless may_use_simd() returns true.
1828 * Task context in the FPSIMD registers is saved back to memory as necessary.
1829 *
1830 * A matching call to kernel_neon_end() must be made before returning from the
1831 * calling context.
1832 *
1833 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1834 * called.
1835 */
1836void kernel_neon_begin(void)
4cfb3613 1837{
82e0191a
SP
1838 if (WARN_ON(!system_supports_fpsimd()))
1839 return;
4cfb3613 1840
cb84d11e
DM
1841 BUG_ON(!may_use_simd());
1842
6dcdefcd 1843 get_cpu_fpsimd_context();
cb84d11e 1844
df3fb968
DM
1845 /* Save unsaved fpsimd state, if any: */
1846 fpsimd_save();
cb84d11e
DM
1847
1848 /* Invalidate any task state remaining in the fpsimd regs: */
17eed27b 1849 fpsimd_flush_cpu_state();
4cfb3613 1850}
cb84d11e 1851EXPORT_SYMBOL(kernel_neon_begin);
4cfb3613 1852
cb84d11e
DM
1853/*
1854 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1855 *
1856 * Must be called from a context in which kernel_neon_begin() was previously
1857 * called, with no call to kernel_neon_end() in the meantime.
1858 *
1859 * The caller must not use the FPSIMD registers after this function is called,
1860 * unless kernel_neon_begin() is called again in the meantime.
1861 */
4cfb3613
AB
1862void kernel_neon_end(void)
1863{
82e0191a
SP
1864 if (!system_supports_fpsimd())
1865 return;
cb84d11e 1866
6dcdefcd 1867 put_cpu_fpsimd_context();
4cfb3613
AB
1868}
1869EXPORT_SYMBOL(kernel_neon_end);
1870
e580b8bc
DM
1871#ifdef CONFIG_EFI
1872
20b85472 1873static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
3b66023d 1874static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
fdfa976c 1875static DEFINE_PER_CPU(bool, efi_sve_state_used);
e0838f63 1876static DEFINE_PER_CPU(bool, efi_sm_state);
4328825d
DM
1877
1878/*
1879 * EFI runtime services support functions
1880 *
1881 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1882 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1883 * is always used rather than being an optional accelerator.
1884 *
1885 * These functions provide the necessary support for ensuring FPSIMD
1886 * save/restore in the contexts from which EFI is used.
1887 *
1888 * Do not use them for any other purpose -- if tempted to do so, you are
1889 * either doing something wrong or you need to propose some refactoring.
1890 */
1891
1892/*
1893 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1894 */
1895void __efi_fpsimd_begin(void)
1896{
1897 if (!system_supports_fpsimd())
1898 return;
1899
1900 WARN_ON(preemptible());
1901
fdfa976c 1902 if (may_use_simd()) {
4328825d 1903 kernel_neon_begin();
fdfa976c
DM
1904 } else {
1905 /*
1906 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1907 * preserving:
1908 */
1909 if (system_supports_sve() && likely(efi_sve_state)) {
1910 char *sve_state = this_cpu_ptr(efi_sve_state);
e0838f63
MB
1911 bool ffr = true;
1912 u64 svcr;
fdfa976c
DM
1913
1914 __this_cpu_write(efi_sve_state_used, true);
1915
e0838f63 1916 if (system_supports_sme()) {
ec0067a6 1917 svcr = read_sysreg_s(SYS_SVCR);
e0838f63
MB
1918
1919 if (!system_supports_fa64())
ec0067a6 1920 ffr = svcr & SVCR_SM_MASK;
e0838f63
MB
1921
1922 __this_cpu_write(efi_sm_state, ffr);
1923 }
1924
b5bc00ff 1925 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
9f584866 1926 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
e0838f63
MB
1927 ffr);
1928
1929 if (system_supports_sme())
ec0067a6
MB
1930 sysreg_clear_set_s(SYS_SVCR,
1931 SVCR_SM_MASK, 0);
e0838f63 1932
fdfa976c
DM
1933 } else {
1934 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1935 }
1936
4328825d
DM
1937 __this_cpu_write(efi_fpsimd_state_used, true);
1938 }
1939}
1940
1941/*
1942 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1943 */
1944void __efi_fpsimd_end(void)
1945{
1946 if (!system_supports_fpsimd())
1947 return;
1948
fdfa976c 1949 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
4328825d 1950 kernel_neon_end();
fdfa976c
DM
1951 } else {
1952 if (system_supports_sve() &&
1953 likely(__this_cpu_read(efi_sve_state_used))) {
1954 char const *sve_state = this_cpu_ptr(efi_sve_state);
e0838f63
MB
1955 bool ffr = true;
1956
1957 /*
1958 * Restore streaming mode; EFI calls are
1959 * normal function calls so should not return in
1960 * streaming mode.
1961 */
1962 if (system_supports_sme()) {
1963 if (__this_cpu_read(efi_sm_state)) {
ec0067a6 1964 sysreg_clear_set_s(SYS_SVCR,
e0838f63 1965 0,
ec0067a6 1966 SVCR_SM_MASK);
e0838f63
MB
1967 if (!system_supports_fa64())
1968 ffr = efi_sm_state;
1969 }
1970 }
fdfa976c 1971
b5bc00ff 1972 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
fdfa976c 1973 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
e0838f63 1974 ffr);
fdfa976c
DM
1975
1976 __this_cpu_write(efi_sve_state_used, false);
1977 } else {
1978 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1979 }
1980 }
4328825d
DM
1981}
1982
e580b8bc
DM
1983#endif /* CONFIG_EFI */
1984
4cfb3613
AB
1985#endif /* CONFIG_KERNEL_MODE_NEON */
1986
fb1ab1ab
LP
1987#ifdef CONFIG_CPU_PM
1988static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1989 unsigned long cmd, void *v)
1990{
1991 switch (cmd) {
1992 case CPU_PM_ENTER:
54b8c7cb 1993 fpsimd_save_and_flush_cpu_state();
fb1ab1ab
LP
1994 break;
1995 case CPU_PM_EXIT:
fb1ab1ab
LP
1996 break;
1997 case CPU_PM_ENTER_FAILED:
1998 default:
1999 return NOTIFY_DONE;
2000 }
2001 return NOTIFY_OK;
2002}
2003
2004static struct notifier_block fpsimd_cpu_pm_notifier_block = {
2005 .notifier_call = fpsimd_cpu_pm_notifier,
2006};
2007
a7c61a34 2008static void __init fpsimd_pm_init(void)
fb1ab1ab
LP
2009{
2010 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
2011}
2012
2013#else
2014static inline void fpsimd_pm_init(void) { }
2015#endif /* CONFIG_CPU_PM */
2016
32365e64 2017#ifdef CONFIG_HOTPLUG_CPU
c23a7266 2018static int fpsimd_cpu_dead(unsigned int cpu)
32365e64 2019{
cb968afc 2020 per_cpu(fpsimd_last_state.st, cpu) = NULL;
c23a7266 2021 return 0;
32365e64
JL
2022}
2023
32365e64
JL
2024static inline void fpsimd_hotplug_init(void)
2025{
c23a7266
SAS
2026 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
2027 NULL, fpsimd_cpu_dead);
32365e64
JL
2028}
2029
2030#else
2031static inline void fpsimd_hotplug_init(void) { }
2032#endif
2033
53631b54
CM
2034/*
2035 * FP/SIMD support code initialisation.
2036 */
2037static int __init fpsimd_init(void)
2038{
aaba098f 2039 if (cpu_have_named_feature(FP)) {
fe80f9f2
SP
2040 fpsimd_pm_init();
2041 fpsimd_hotplug_init();
2042 } else {
53631b54 2043 pr_notice("Floating-point is not implemented\n");
53631b54 2044 }
53631b54 2045
aaba098f 2046 if (!cpu_have_named_feature(ASIMD))
53631b54 2047 pr_notice("Advanced SIMD is not implemented\n");
fb1ab1ab 2048
5e64b862
MB
2049
2050 if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
2051 pr_notice("SME is implemented but not SVE\n");
2052
12f1bacf
MB
2053 sve_sysctl_init();
2054 sme_sysctl_init();
2055
2056 return 0;
53631b54 2057}
ae2e972d 2058core_initcall(fpsimd_init);