Commit | Line | Data |
---|---|---|
caab277b | 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
37c43753 MZ |
2 | /* |
3 | * Copyright (C) 2012,2013 - ARM Ltd | |
4 | * Author: Marc Zyngier <marc.zyngier@arm.com> | |
37c43753 MZ |
5 | */ |
6 | ||
7 | #ifndef __ARM64_KVM_MMU_H__ | |
8 | #define __ARM64_KVM_MMU_H__ | |
9 | ||
10 | #include <asm/page.h> | |
11 | #include <asm/memory.h> | |
9ef2b48b | 12 | #include <asm/mmu.h> |
20475f78 | 13 | #include <asm/cpufeature.h> |
37c43753 MZ |
14 | |
15 | /* | |
cedbb8b7 | 16 | * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express |
37c43753 MZ |
17 | * "negative" addresses. This makes it impossible to directly share |
18 | * mappings with the kernel. | |
19 | * | |
20 | * Instead, give the HYP mode its own VA region at a fixed offset from | |
21 | * the kernel by just masking the top bits (which are all ones for a | |
82a81bff | 22 | * kernel address). We need to find out how many bits to mask. |
cedbb8b7 | 23 | * |
82a81bff MZ |
24 | * We want to build a set of page tables that cover both parts of the |
25 | * idmap (the trampoline page used to initialize EL2), and our normal | |
26 | * runtime VA space, at the same time. | |
27 | * | |
28 | * Given that the kernel uses VA_BITS for its entire address space, | |
29 | * and that half of that space (VA_BITS - 1) is used for the linear | |
30 | * mapping, we can also limit the EL2 space to (VA_BITS - 1). | |
31 | * | |
32 | * The main question is "Within the VA_BITS space, does EL2 use the | |
33 | * top or the bottom half of that space to shadow the kernel's linear | |
34 | * mapping?". As we need to idmap the trampoline page, this is | |
35 | * determined by the range in which this page lives. | |
36 | * | |
37 | * If the page is in the bottom half, we have to use the top half. If | |
38 | * the page is in the top half, we have to use the bottom half: | |
39 | * | |
2077be67 | 40 | * T = __pa_symbol(__hyp_idmap_text_start) |
82a81bff MZ |
41 | * if (T & BIT(VA_BITS - 1)) |
42 | * HYP_VA_MIN = 0 //idmap in upper half | |
43 | * else | |
44 | * HYP_VA_MIN = 1 << (VA_BITS - 1) | |
45 | * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 | |
46 | * | |
82a81bff MZ |
47 | * When using VHE, there are no separate hyp mappings and all KVM |
48 | * functionality is already mapped as part of the main kernel | |
49 | * mappings, and none of this applies in that case. | |
37c43753 | 50 | */ |
d53d9bc6 | 51 | |
37c43753 MZ |
52 | #ifdef __ASSEMBLY__ |
53 | ||
cedbb8b7 | 54 | #include <asm/alternative.h> |
cedbb8b7 | 55 | |
68b824e4 | 56 | /* |
97cbd2fc DB |
57 | * Convert a hypervisor VA to a PA |
58 | * reg: hypervisor address to be converted in place | |
68b824e4 | 59 | * tmp: temporary register |
68b824e4 | 60 | */ |
97cbd2fc DB |
61 | .macro hyp_pa reg, tmp |
62 | ldr_l \tmp, hyp_physvirt_offset | |
63 | add \reg, \reg, \tmp | |
68b824e4 MZ |
64 | .endm |
65 | ||
5be1d622 | 66 | /* |
97cbd2fc DB |
67 | * Convert a hypervisor VA to a kernel image address |
68 | * reg: hypervisor address to be converted in place | |
5be1d622 DB |
69 | * tmp: temporary register |
70 | * | |
71 | * The actual code generation takes place in kvm_get_kimage_voffset, and | |
72 | * the instructions below are only there to reserve the space and | |
97cbd2fc | 73 | * perform the register allocation (kvm_get_kimage_voffset uses the |
5be1d622 DB |
74 | * specific registers encoded in the instructions). |
75 | */ | |
97cbd2fc DB |
76 | .macro hyp_kimg_va reg, tmp |
77 | /* Convert hyp VA -> PA. */ | |
78 | hyp_pa \reg, \tmp | |
79 | ||
80 | /* Load kimage_voffset. */ | |
4c0bd995 | 81 | alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset |
5be1d622 DB |
82 | movz \tmp, #0 |
83 | movk \tmp, #0, lsl #16 | |
84 | movk \tmp, #0, lsl #32 | |
85 | movk \tmp, #0, lsl #48 | |
86 | alternative_cb_end | |
87 | ||
97cbd2fc DB |
88 | /* Convert PA -> kimg VA. */ |
89 | add \reg, \reg, \tmp | |
5be1d622 DB |
90 | .endm |
91 | ||
37c43753 MZ |
92 | #else |
93 | ||
65fddcfc | 94 | #include <linux/pgtable.h> |
38f791a4 | 95 | #include <asm/pgalloc.h> |
02f7760e | 96 | #include <asm/cache.h> |
37c43753 | 97 | #include <asm/cacheflush.h> |
e4c5a685 | 98 | #include <asm/mmu_context.h> |
191e0e15 | 99 | #include <asm/kvm_emulate.h> |
3248136b | 100 | #include <asm/kvm_host.h> |
4f128f8e | 101 | #include <asm/kvm_nested.h> |
37c43753 | 102 | |
2b4d1606 MZ |
103 | void kvm_update_va_mask(struct alt_instr *alt, |
104 | __le32 *origptr, __le32 *updptr, int nr_inst); | |
0492747c | 105 | void kvm_compute_layout(void); |
6ec6259d | 106 | void kvm_apply_hyp_relocations(void); |
2b4d1606 | 107 | |
aec0fae6 AS |
108 | #define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset) |
109 | ||
d198e266 JG |
110 | /* |
111 | * Convert a kernel VA into a HYP VA. | |
112 | * | |
113 | * Can be called from hyp or non-hyp context. | |
114 | * | |
115 | * The actual code generation takes place in kvm_update_va_mask(), and | |
116 | * the instructions below are only there to reserve the space and | |
117 | * perform the register allocation (kvm_update_va_mask() uses the | |
118 | * specific registers encoded in the instructions). | |
119 | */ | |
5c37f1ae | 120 | static __always_inline unsigned long __kern_hyp_va(unsigned long v) |
fd81e6bf | 121 | { |
d198e266 JG |
122 | /* |
123 | * This #ifndef is an optimisation for when this is called from VHE hyp | |
124 | * context. When called from a VHE non-hyp context, kvm_update_va_mask() will | |
125 | * replace the instructions with `nop`s. | |
126 | */ | |
1a6511eb | 127 | #ifndef __KVM_VHE_HYPERVISOR__ |
d198e266 JG |
128 | asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" /* mask with va_mask */ |
129 | "ror %0, %0, #1\n" /* rotate to the first tag bit */ | |
130 | "add %0, %0, #0\n" /* insert the low 12 bits of the tag */ | |
131 | "add %0, %0, #0, lsl 12\n" /* insert the top 12 bits of the tag */ | |
132 | "ror %0, %0, #63\n", /* rotate back */ | |
4c0bd995 | 133 | ARM64_ALWAYS_SYSTEM, |
2b4d1606 MZ |
134 | kvm_update_va_mask) |
135 | : "+r" (v)); | |
1a6511eb | 136 | #endif |
fd81e6bf MZ |
137 | return v; |
138 | } | |
139 | ||
94d0e598 | 140 | #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) |
37c43753 | 141 | |
68344037 VD |
142 | extern u32 __hyp_va_bits; |
143 | ||
37c43753 | 144 | /* |
1b44471b ZY |
145 | * We currently support using a VM-specified IPA size. For backward |
146 | * compatibility, the default IPA size is fixed to 40bits. | |
37c43753 | 147 | */ |
dbff124e | 148 | #define KVM_PHYS_SHIFT (40) |
e55cac5b | 149 | |
fe49fd94 MZ |
150 | #define kvm_phys_shift(mmu) VTCR_EL2_IPA((mmu)->vtcr) |
151 | #define kvm_phys_size(mmu) (_AC(1, ULL) << kvm_phys_shift(mmu)) | |
152 | #define kvm_phys_mask(mmu) (kvm_phys_size(mmu) - _AC(1, ULL)) | |
37c43753 | 153 | |
0f9d09b8 | 154 | #include <asm/kvm_pgtable.h> |
c0ef6326 SP |
155 | #include <asm/stage2_pgtable.h> |
156 | ||
3f868e14 | 157 | int kvm_share_hyp(void *from, void *to); |
52b28657 | 158 | void kvm_unshare_hyp(void *from, void *to); |
0f9d09b8 | 159 | int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot); |
ce335431 KS |
160 | int __create_hyp_mappings(unsigned long start, unsigned long size, |
161 | unsigned long phys, enum kvm_pgtable_prot prot); | |
92abe0f8 | 162 | int hyp_alloc_private_va_range(size_t size, unsigned long *haddr); |
807a3784 | 163 | int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, |
1bb32a44 MZ |
164 | void __iomem **kaddr, |
165 | void __iomem **haddr); | |
dc2e4633 MZ |
166 | int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, |
167 | void **haddr); | |
f156a7d1 | 168 | int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr); |
8d20bd63 | 169 | void __init free_hyp_pgds(void); |
37c43753 | 170 | |
3c164eb9 OU |
171 | void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start, |
172 | u64 size, bool may_block); | |
ec14c272 CD |
173 | void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end); |
174 | void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end); | |
4f128f8e | 175 | |
957db105 | 176 | void stage2_unmap_vm(struct kvm *kvm); |
315775ff | 177 | int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type); |
ce2b6022 | 178 | void kvm_uninit_stage2_mmu(struct kvm *kvm); |
a0e50aa3 | 179 | void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu); |
37c43753 | 180 | int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
c40f2f8f | 181 | phys_addr_t pa, unsigned long size, bool writable); |
37c43753 | 182 | |
74cc7e0c | 183 | int kvm_handle_guest_abort(struct kvm_vcpu *vcpu); |
37c43753 | 184 | |
37c43753 | 185 | phys_addr_t kvm_mmu_get_httbr(void); |
37c43753 | 186 | phys_addr_t kvm_get_idmap_vector(void); |
8d20bd63 | 187 | int __init kvm_mmu_init(u32 *hyp_va_bits); |
e9f63768 | 188 | |
bc1d2892 QP |
189 | static inline void *__kvm_vector_slot2addr(void *base, |
190 | enum arm64_hyp_spectre_vector slot) | |
191 | { | |
192 | int idx = slot - (slot != HYP_VECTOR_DIRECT); | |
193 | ||
194 | return base + (idx * SZ_2K); | |
195 | } | |
196 | ||
37c43753 MZ |
197 | struct kvm; |
198 | ||
814b1860 | 199 | #define kvm_flush_dcache_to_poc(a,l) \ |
fade9c2c | 200 | dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l)) |
2d58b733 MZ |
201 | |
202 | static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) | |
37c43753 | 203 | { |
191e0e15 CD |
204 | u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C; |
205 | int reg; | |
206 | ||
207 | if (vcpu_is_el2(vcpu)) | |
208 | reg = SCTLR_EL2; | |
209 | else | |
210 | reg = SCTLR_EL1; | |
211 | ||
212 | return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits; | |
2d58b733 MZ |
213 | } |
214 | ||
378e6a9c | 215 | static inline void __clean_dcache_guest_page(void *va, size_t size) |
2d58b733 | 216 | { |
e48d53a9 MZ |
217 | /* |
218 | * With FWB, we ensure that the guest always accesses memory using | |
219 | * cacheable attributes, and we don't have to clean to PoC when | |
220 | * faulting in pages. Furthermore, FWB implies IDC, so cleaning to | |
221 | * PoU is not required either in this case. | |
222 | */ | |
d8569fba | 223 | if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) |
e48d53a9 MZ |
224 | return; |
225 | ||
8f36ebaf | 226 | kvm_flush_dcache_to_poc(va, size); |
a15f6939 | 227 | } |
2d58b733 | 228 | |
909b583f OU |
229 | static inline size_t __invalidate_icache_max_range(void) |
230 | { | |
231 | u8 iminline; | |
232 | u64 ctr; | |
233 | ||
234 | asm volatile(ALTERNATIVE_CB("movz %0, #0\n" | |
235 | "movk %0, #0, lsl #16\n" | |
236 | "movk %0, #0, lsl #32\n" | |
237 | "movk %0, #0, lsl #48\n", | |
238 | ARM64_ALWAYS_SYSTEM, | |
239 | kvm_compute_final_ctr_el0) | |
240 | : "=r" (ctr)); | |
241 | ||
242 | iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2; | |
243 | return MAX_DVM_OPS << iminline; | |
244 | } | |
245 | ||
378e6a9c | 246 | static inline void __invalidate_icache_guest_page(void *va, size_t size) |
a15f6939 | 247 | { |
909b583f OU |
248 | /* |
249 | * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the | |
250 | * invalidation range exceeds our arbitrary limit on invadations by | |
251 | * cache line. | |
252 | */ | |
253 | if (icache_is_aliasing() || size > __invalidate_icache_max_range()) | |
fade9c2c | 254 | icache_inval_all_pou(); |
909b583f | 255 | else |
85c653fc | 256 | icache_inval_pou((unsigned long)va, (unsigned long)va + size); |
37c43753 MZ |
257 | } |
258 | ||
3c1e7165 MZ |
259 | void kvm_set_way_flush(struct kvm_vcpu *vcpu); |
260 | void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); | |
9d218a1f | 261 | |
20475f78 VM |
262 | static inline unsigned int kvm_get_vmid_bits(void) |
263 | { | |
46823dd1 | 264 | int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
20475f78 | 265 | |
c73433fc | 266 | return get_vmid_bits(reg); |
20475f78 VM |
267 | } |
268 | ||
bf308242 AP |
269 | /* |
270 | * We are not in the kvm->srcu critical section most of the time, so we take | |
271 | * the SRCU read lock here. Since we copy the data from the user page, we | |
272 | * can immediately drop the lock again. | |
273 | */ | |
274 | static inline int kvm_read_guest_lock(struct kvm *kvm, | |
275 | gpa_t gpa, void *data, unsigned long len) | |
276 | { | |
277 | int srcu_idx = srcu_read_lock(&kvm->srcu); | |
278 | int ret = kvm_read_guest(kvm, gpa, data, len); | |
279 | ||
280 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
281 | ||
282 | return ret; | |
283 | } | |
284 | ||
a6ecfb11 MZ |
285 | static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, |
286 | const void *data, unsigned long len) | |
287 | { | |
288 | int srcu_idx = srcu_read_lock(&kvm->srcu); | |
289 | int ret = kvm_write_guest(kvm, gpa, data, len); | |
290 | ||
291 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
292 | ||
293 | return ret; | |
294 | } | |
295 | ||
529c4b05 KM |
296 | #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) |
297 | ||
cf364e08 MZ |
298 | /* |
299 | * When this is (directly or indirectly) used on the TLB invalidation | |
300 | * path, we rely on a previously issued DSB so that page table updates | |
301 | * and VMID reads are correctly ordered. | |
302 | */ | |
a0e50aa3 | 303 | static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu) |
ab510027 | 304 | { |
a0e50aa3 | 305 | struct kvm_vmid *vmid = &mmu->vmid; |
e329fb75 CD |
306 | u64 vmid_field, baddr; |
307 | u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; | |
308 | ||
a0e50aa3 | 309 | baddr = mmu->pgd_phys; |
3248136b JG |
310 | vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT; |
311 | vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits); | |
e329fb75 | 312 | return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; |
ab510027 VM |
313 | } |
314 | ||
fe677be9 MZ |
315 | /* |
316 | * Must be called from hyp code running at EL2 with an updated VTTBR | |
317 | * and interrupts disabled. | |
318 | */ | |
4efc0ede MZ |
319 | static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu, |
320 | struct kvm_arch *arch) | |
fe677be9 | 321 | { |
fe49fd94 | 322 | write_sysreg(mmu->vtcr, vtcr_el2); |
a0e50aa3 | 323 | write_sysreg(kvm_get_vttbr(mmu), vttbr_el2); |
fe677be9 MZ |
324 | |
325 | /* | |
326 | * ARM errata 1165522 and 1530923 require the actual execution of the | |
327 | * above before we can switch to the EL1/EL0 translation regime used by | |
328 | * the guest. | |
329 | */ | |
330 | asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT)); | |
331 | } | |
332 | ||
cfb1a98d QP |
333 | static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu) |
334 | { | |
335 | return container_of(mmu->arch, struct kvm, arch); | |
336 | } | |
4f128f8e MZ |
337 | |
338 | static inline u64 get_vmid(u64 vttbr) | |
339 | { | |
340 | return (vttbr & VTTBR_VMID_MASK(kvm_get_vmid_bits())) >> | |
341 | VTTBR_VMID_SHIFT; | |
342 | } | |
343 | ||
344 | static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu) | |
345 | { | |
346 | return !(mmu->tlb_vttbr & VTTBR_CNP_BIT); | |
347 | } | |
348 | ||
349 | static inline bool kvm_is_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) | |
350 | { | |
351 | /* | |
352 | * Be careful, mmu may not be fully initialised so do look at | |
353 | * *any* of its fields. | |
354 | */ | |
355 | return &kvm->arch.mmu != mmu; | |
356 | } | |
357 | ||
fce886a6 QP |
358 | static inline void kvm_fault_lock(struct kvm *kvm) |
359 | { | |
360 | if (is_protected_kvm_enabled()) | |
361 | write_lock(&kvm->mmu_lock); | |
362 | else | |
363 | read_lock(&kvm->mmu_lock); | |
364 | } | |
365 | ||
366 | static inline void kvm_fault_unlock(struct kvm *kvm) | |
367 | { | |
368 | if (is_protected_kvm_enabled()) | |
369 | write_unlock(&kvm->mmu_lock); | |
370 | else | |
371 | read_unlock(&kvm->mmu_lock); | |
372 | } | |
373 | ||
7c4f7354 SE |
374 | #ifdef CONFIG_PTDUMP_STAGE2_DEBUGFS |
375 | void kvm_s2_ptdump_create_debugfs(struct kvm *kvm); | |
376 | #else | |
377 | static inline void kvm_s2_ptdump_create_debugfs(struct kvm *kvm) {} | |
378 | #endif /* CONFIG_PTDUMP_STAGE2_DEBUGFS */ | |
379 | ||
37c43753 MZ |
380 | #endif /* __ASSEMBLY__ */ |
381 | #endif /* __ARM64_KVM_MMU_H__ */ |