Merge tag 'pm-6.16-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-block.git] / arch / arm64 / include / asm / kvm_mmu.h
CommitLineData
caab277b 1/* SPDX-License-Identifier: GPL-2.0-only */
37c43753
MZ
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
37c43753
MZ
5 */
6
7#ifndef __ARM64_KVM_MMU_H__
8#define __ARM64_KVM_MMU_H__
9
10#include <asm/page.h>
11#include <asm/memory.h>
9ef2b48b 12#include <asm/mmu.h>
20475f78 13#include <asm/cpufeature.h>
37c43753
MZ
14
15/*
cedbb8b7 16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
37c43753
MZ
17 * "negative" addresses. This makes it impossible to directly share
18 * mappings with the kernel.
19 *
20 * Instead, give the HYP mode its own VA region at a fixed offset from
21 * the kernel by just masking the top bits (which are all ones for a
82a81bff 22 * kernel address). We need to find out how many bits to mask.
cedbb8b7 23 *
82a81bff
MZ
24 * We want to build a set of page tables that cover both parts of the
25 * idmap (the trampoline page used to initialize EL2), and our normal
26 * runtime VA space, at the same time.
27 *
28 * Given that the kernel uses VA_BITS for its entire address space,
29 * and that half of that space (VA_BITS - 1) is used for the linear
30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31 *
32 * The main question is "Within the VA_BITS space, does EL2 use the
33 * top or the bottom half of that space to shadow the kernel's linear
34 * mapping?". As we need to idmap the trampoline page, this is
35 * determined by the range in which this page lives.
36 *
37 * If the page is in the bottom half, we have to use the top half. If
38 * the page is in the top half, we have to use the bottom half:
39 *
2077be67 40 * T = __pa_symbol(__hyp_idmap_text_start)
82a81bff
MZ
41 * if (T & BIT(VA_BITS - 1))
42 * HYP_VA_MIN = 0 //idmap in upper half
43 * else
44 * HYP_VA_MIN = 1 << (VA_BITS - 1)
45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46 *
82a81bff
MZ
47 * When using VHE, there are no separate hyp mappings and all KVM
48 * functionality is already mapped as part of the main kernel
49 * mappings, and none of this applies in that case.
37c43753 50 */
d53d9bc6 51
37c43753
MZ
52#ifdef __ASSEMBLY__
53
cedbb8b7 54#include <asm/alternative.h>
cedbb8b7 55
68b824e4 56/*
97cbd2fc
DB
57 * Convert a hypervisor VA to a PA
58 * reg: hypervisor address to be converted in place
68b824e4 59 * tmp: temporary register
68b824e4 60 */
97cbd2fc
DB
61.macro hyp_pa reg, tmp
62 ldr_l \tmp, hyp_physvirt_offset
63 add \reg, \reg, \tmp
68b824e4
MZ
64.endm
65
5be1d622 66/*
97cbd2fc
DB
67 * Convert a hypervisor VA to a kernel image address
68 * reg: hypervisor address to be converted in place
5be1d622
DB
69 * tmp: temporary register
70 *
71 * The actual code generation takes place in kvm_get_kimage_voffset, and
72 * the instructions below are only there to reserve the space and
97cbd2fc 73 * perform the register allocation (kvm_get_kimage_voffset uses the
5be1d622
DB
74 * specific registers encoded in the instructions).
75 */
97cbd2fc
DB
76.macro hyp_kimg_va reg, tmp
77 /* Convert hyp VA -> PA. */
78 hyp_pa \reg, \tmp
79
80 /* Load kimage_voffset. */
4c0bd995 81alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset
5be1d622
DB
82 movz \tmp, #0
83 movk \tmp, #0, lsl #16
84 movk \tmp, #0, lsl #32
85 movk \tmp, #0, lsl #48
86alternative_cb_end
87
97cbd2fc
DB
88 /* Convert PA -> kimg VA. */
89 add \reg, \reg, \tmp
5be1d622
DB
90.endm
91
37c43753
MZ
92#else
93
65fddcfc 94#include <linux/pgtable.h>
38f791a4 95#include <asm/pgalloc.h>
02f7760e 96#include <asm/cache.h>
37c43753 97#include <asm/cacheflush.h>
e4c5a685 98#include <asm/mmu_context.h>
191e0e15 99#include <asm/kvm_emulate.h>
3248136b 100#include <asm/kvm_host.h>
4f128f8e 101#include <asm/kvm_nested.h>
37c43753 102
2b4d1606
MZ
103void kvm_update_va_mask(struct alt_instr *alt,
104 __le32 *origptr, __le32 *updptr, int nr_inst);
0492747c 105void kvm_compute_layout(void);
6ec6259d 106void kvm_apply_hyp_relocations(void);
2b4d1606 107
aec0fae6
AS
108#define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
109
d198e266
JG
110/*
111 * Convert a kernel VA into a HYP VA.
112 *
113 * Can be called from hyp or non-hyp context.
114 *
115 * The actual code generation takes place in kvm_update_va_mask(), and
116 * the instructions below are only there to reserve the space and
117 * perform the register allocation (kvm_update_va_mask() uses the
118 * specific registers encoded in the instructions).
119 */
5c37f1ae 120static __always_inline unsigned long __kern_hyp_va(unsigned long v)
fd81e6bf 121{
d198e266
JG
122/*
123 * This #ifndef is an optimisation for when this is called from VHE hyp
124 * context. When called from a VHE non-hyp context, kvm_update_va_mask() will
125 * replace the instructions with `nop`s.
126 */
1a6511eb 127#ifndef __KVM_VHE_HYPERVISOR__
d198e266
JG
128 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" /* mask with va_mask */
129 "ror %0, %0, #1\n" /* rotate to the first tag bit */
130 "add %0, %0, #0\n" /* insert the low 12 bits of the tag */
131 "add %0, %0, #0, lsl 12\n" /* insert the top 12 bits of the tag */
132 "ror %0, %0, #63\n", /* rotate back */
4c0bd995 133 ARM64_ALWAYS_SYSTEM,
2b4d1606
MZ
134 kvm_update_va_mask)
135 : "+r" (v));
1a6511eb 136#endif
fd81e6bf
MZ
137 return v;
138}
139
94d0e598 140#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
37c43753 141
68344037
VD
142extern u32 __hyp_va_bits;
143
37c43753 144/*
1b44471b
ZY
145 * We currently support using a VM-specified IPA size. For backward
146 * compatibility, the default IPA size is fixed to 40bits.
37c43753 147 */
dbff124e 148#define KVM_PHYS_SHIFT (40)
e55cac5b 149
fe49fd94
MZ
150#define kvm_phys_shift(mmu) VTCR_EL2_IPA((mmu)->vtcr)
151#define kvm_phys_size(mmu) (_AC(1, ULL) << kvm_phys_shift(mmu))
152#define kvm_phys_mask(mmu) (kvm_phys_size(mmu) - _AC(1, ULL))
37c43753 153
0f9d09b8 154#include <asm/kvm_pgtable.h>
c0ef6326
SP
155#include <asm/stage2_pgtable.h>
156
3f868e14 157int kvm_share_hyp(void *from, void *to);
52b28657 158void kvm_unshare_hyp(void *from, void *to);
0f9d09b8 159int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
ce335431
KS
160int __create_hyp_mappings(unsigned long start, unsigned long size,
161 unsigned long phys, enum kvm_pgtable_prot prot);
92abe0f8 162int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
807a3784 163int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
1bb32a44
MZ
164 void __iomem **kaddr,
165 void __iomem **haddr);
dc2e4633
MZ
166int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
167 void **haddr);
f156a7d1 168int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr);
8d20bd63 169void __init free_hyp_pgds(void);
37c43753 170
3c164eb9
OU
171void kvm_stage2_unmap_range(struct kvm_s2_mmu *mmu, phys_addr_t start,
172 u64 size, bool may_block);
ec14c272
CD
173void kvm_stage2_flush_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end);
174void kvm_stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end);
4f128f8e 175
957db105 176void stage2_unmap_vm(struct kvm *kvm);
315775ff 177int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
ce2b6022 178void kvm_uninit_stage2_mmu(struct kvm *kvm);
a0e50aa3 179void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
37c43753 180int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 181 phys_addr_t pa, unsigned long size, bool writable);
37c43753 182
74cc7e0c 183int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
37c43753 184
37c43753 185phys_addr_t kvm_mmu_get_httbr(void);
37c43753 186phys_addr_t kvm_get_idmap_vector(void);
8d20bd63 187int __init kvm_mmu_init(u32 *hyp_va_bits);
e9f63768 188
bc1d2892
QP
189static inline void *__kvm_vector_slot2addr(void *base,
190 enum arm64_hyp_spectre_vector slot)
191{
192 int idx = slot - (slot != HYP_VECTOR_DIRECT);
193
194 return base + (idx * SZ_2K);
195}
196
37c43753
MZ
197struct kvm;
198
814b1860 199#define kvm_flush_dcache_to_poc(a,l) \
fade9c2c 200 dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l))
2d58b733
MZ
201
202static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
37c43753 203{
191e0e15
CD
204 u64 cache_bits = SCTLR_ELx_M | SCTLR_ELx_C;
205 int reg;
206
207 if (vcpu_is_el2(vcpu))
208 reg = SCTLR_EL2;
209 else
210 reg = SCTLR_EL1;
211
212 return (vcpu_read_sys_reg(vcpu, reg) & cache_bits) == cache_bits;
2d58b733
MZ
213}
214
378e6a9c 215static inline void __clean_dcache_guest_page(void *va, size_t size)
2d58b733 216{
e48d53a9
MZ
217 /*
218 * With FWB, we ensure that the guest always accesses memory using
219 * cacheable attributes, and we don't have to clean to PoC when
220 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
221 * PoU is not required either in this case.
222 */
d8569fba 223 if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
e48d53a9
MZ
224 return;
225
8f36ebaf 226 kvm_flush_dcache_to_poc(va, size);
a15f6939 227}
2d58b733 228
909b583f
OU
229static inline size_t __invalidate_icache_max_range(void)
230{
231 u8 iminline;
232 u64 ctr;
233
234 asm volatile(ALTERNATIVE_CB("movz %0, #0\n"
235 "movk %0, #0, lsl #16\n"
236 "movk %0, #0, lsl #32\n"
237 "movk %0, #0, lsl #48\n",
238 ARM64_ALWAYS_SYSTEM,
239 kvm_compute_final_ctr_el0)
240 : "=r" (ctr));
241
242 iminline = SYS_FIELD_GET(CTR_EL0, IminLine, ctr) + 2;
243 return MAX_DVM_OPS << iminline;
244}
245
378e6a9c 246static inline void __invalidate_icache_guest_page(void *va, size_t size)
a15f6939 247{
909b583f
OU
248 /*
249 * Blow the whole I-cache if it is aliasing (i.e. VIPT) or the
250 * invalidation range exceeds our arbitrary limit on invadations by
251 * cache line.
252 */
253 if (icache_is_aliasing() || size > __invalidate_icache_max_range())
fade9c2c 254 icache_inval_all_pou();
909b583f 255 else
85c653fc 256 icache_inval_pou((unsigned long)va, (unsigned long)va + size);
37c43753
MZ
257}
258
3c1e7165
MZ
259void kvm_set_way_flush(struct kvm_vcpu *vcpu);
260void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
9d218a1f 261
20475f78
VM
262static inline unsigned int kvm_get_vmid_bits(void)
263{
46823dd1 264 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
20475f78 265
c73433fc 266 return get_vmid_bits(reg);
20475f78
VM
267}
268
bf308242
AP
269/*
270 * We are not in the kvm->srcu critical section most of the time, so we take
271 * the SRCU read lock here. Since we copy the data from the user page, we
272 * can immediately drop the lock again.
273 */
274static inline int kvm_read_guest_lock(struct kvm *kvm,
275 gpa_t gpa, void *data, unsigned long len)
276{
277 int srcu_idx = srcu_read_lock(&kvm->srcu);
278 int ret = kvm_read_guest(kvm, gpa, data, len);
279
280 srcu_read_unlock(&kvm->srcu, srcu_idx);
281
282 return ret;
283}
284
a6ecfb11
MZ
285static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
286 const void *data, unsigned long len)
287{
288 int srcu_idx = srcu_read_lock(&kvm->srcu);
289 int ret = kvm_write_guest(kvm, gpa, data, len);
290
291 srcu_read_unlock(&kvm->srcu, srcu_idx);
292
293 return ret;
294}
295
529c4b05
KM
296#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
297
cf364e08
MZ
298/*
299 * When this is (directly or indirectly) used on the TLB invalidation
300 * path, we rely on a previously issued DSB so that page table updates
301 * and VMID reads are correctly ordered.
302 */
a0e50aa3 303static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
ab510027 304{
a0e50aa3 305 struct kvm_vmid *vmid = &mmu->vmid;
e329fb75
CD
306 u64 vmid_field, baddr;
307 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
308
a0e50aa3 309 baddr = mmu->pgd_phys;
3248136b
JG
310 vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
311 vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
e329fb75 312 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
ab510027
VM
313}
314
fe677be9
MZ
315/*
316 * Must be called from hyp code running at EL2 with an updated VTTBR
317 * and interrupts disabled.
318 */
4efc0ede
MZ
319static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
320 struct kvm_arch *arch)
fe677be9 321{
fe49fd94 322 write_sysreg(mmu->vtcr, vtcr_el2);
a0e50aa3 323 write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
fe677be9
MZ
324
325 /*
326 * ARM errata 1165522 and 1530923 require the actual execution of the
327 * above before we can switch to the EL1/EL0 translation regime used by
328 * the guest.
329 */
330 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
331}
332
cfb1a98d
QP
333static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
334{
335 return container_of(mmu->arch, struct kvm, arch);
336}
4f128f8e
MZ
337
338static inline u64 get_vmid(u64 vttbr)
339{
340 return (vttbr & VTTBR_VMID_MASK(kvm_get_vmid_bits())) >>
341 VTTBR_VMID_SHIFT;
342}
343
344static inline bool kvm_s2_mmu_valid(struct kvm_s2_mmu *mmu)
345{
346 return !(mmu->tlb_vttbr & VTTBR_CNP_BIT);
347}
348
349static inline bool kvm_is_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
350{
351 /*
352 * Be careful, mmu may not be fully initialised so do look at
353 * *any* of its fields.
354 */
355 return &kvm->arch.mmu != mmu;
356}
357
fce886a6
QP
358static inline void kvm_fault_lock(struct kvm *kvm)
359{
360 if (is_protected_kvm_enabled())
361 write_lock(&kvm->mmu_lock);
362 else
363 read_lock(&kvm->mmu_lock);
364}
365
366static inline void kvm_fault_unlock(struct kvm *kvm)
367{
368 if (is_protected_kvm_enabled())
369 write_unlock(&kvm->mmu_lock);
370 else
371 read_unlock(&kvm->mmu_lock);
372}
373
7c4f7354
SE
374#ifdef CONFIG_PTDUMP_STAGE2_DEBUGFS
375void kvm_s2_ptdump_create_debugfs(struct kvm *kvm);
376#else
377static inline void kvm_s2_ptdump_create_debugfs(struct kvm *kvm) {}
378#endif /* CONFIG_PTDUMP_STAGE2_DEBUGFS */
379
37c43753
MZ
380#endif /* __ASSEMBLY__ */
381#endif /* __ARM64_KVM_MMU_H__ */