KVM: arm64: Support PUD hugepage in stage2_is_exec()
[linux-2.6-block.git] / arch / arm64 / include / asm / kvm_mmu.h
CommitLineData
37c43753
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef __ARM64_KVM_MMU_H__
19#define __ARM64_KVM_MMU_H__
20
21#include <asm/page.h>
22#include <asm/memory.h>
20475f78 23#include <asm/cpufeature.h>
37c43753
MZ
24
25/*
cedbb8b7 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
37c43753
MZ
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
29 *
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
82a81bff 32 * kernel address). We need to find out how many bits to mask.
cedbb8b7 33 *
82a81bff
MZ
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
37 *
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41 *
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
46 *
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
49 *
2077be67 50 * T = __pa_symbol(__hyp_idmap_text_start)
82a81bff
MZ
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
53 * else
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56 *
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
66 *
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
37c43753 70 */
d53d9bc6 71
37c43753
MZ
72#ifdef __ASSEMBLY__
73
cedbb8b7 74#include <asm/alternative.h>
cedbb8b7 75
37c43753
MZ
76/*
77 * Convert a kernel VA into a HYP VA.
78 * reg: VA to be converted.
fd81e6bf 79 *
2b4d1606
MZ
80 * The actual code generation takes place in kvm_update_va_mask, and
81 * the instructions below are only there to reserve the space and
82 * perform the register allocation (kvm_update_va_mask uses the
83 * specific registers encoded in the instructions).
37c43753
MZ
84 */
85.macro kern_hyp_va reg
2b4d1606 86alternative_cb kvm_update_va_mask
ed57cac8
MZ
87 and \reg, \reg, #1 /* mask with va_mask */
88 ror \reg, \reg, #1 /* rotate to the first tag bit */
89 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
90 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
91 ror \reg, \reg, #63 /* rotate back */
2b4d1606 92alternative_cb_end
37c43753
MZ
93.endm
94
95#else
96
38f791a4 97#include <asm/pgalloc.h>
02f7760e 98#include <asm/cache.h>
37c43753 99#include <asm/cacheflush.h>
e4c5a685
AB
100#include <asm/mmu_context.h>
101#include <asm/pgtable.h>
37c43753 102
2b4d1606
MZ
103void kvm_update_va_mask(struct alt_instr *alt,
104 __le32 *origptr, __le32 *updptr, int nr_inst);
105
fd81e6bf
MZ
106static inline unsigned long __kern_hyp_va(unsigned long v)
107{
ed57cac8
MZ
108 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
109 "ror %0, %0, #1\n"
110 "add %0, %0, #0\n"
111 "add %0, %0, #0, lsl 12\n"
112 "ror %0, %0, #63\n",
2b4d1606
MZ
113 kvm_update_va_mask)
114 : "+r" (v));
fd81e6bf
MZ
115 return v;
116}
117
94d0e598 118#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
37c43753 119
44a497ab
MZ
120/*
121 * Obtain the PC-relative address of a kernel symbol
122 * s: symbol
123 *
124 * The goal of this macro is to return a symbol's address based on a
125 * PC-relative computation, as opposed to a loading the VA from a
126 * constant pool or something similar. This works well for HYP, as an
127 * absolute VA is guaranteed to be wrong. Only use this if trying to
128 * obtain the address of a symbol (i.e. not something you obtained by
129 * following a pointer).
130 */
131#define hyp_symbol_addr(s) \
132 ({ \
133 typeof(s) *addr; \
134 asm("adrp %0, %1\n" \
135 "add %0, %0, :lo12:%1\n" \
136 : "=r" (addr) : "S" (&s)); \
137 addr; \
138 })
139
37c43753 140/*
dbff124e 141 * We currently only support a 40bit IPA.
37c43753 142 */
dbff124e 143#define KVM_PHYS_SHIFT (40)
e55cac5b 144
13ac4bbc 145#define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
e55cac5b
SP
146#define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
147#define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
37c43753 148
865b30cd
SP
149static inline bool kvm_page_empty(void *ptr)
150{
151 struct page *ptr_page = virt_to_page(ptr);
152 return page_count(ptr_page) == 1;
153}
37c43753 154
c0ef6326
SP
155#include <asm/stage2_pgtable.h>
156
c8dddecd 157int create_hyp_mappings(void *from, void *to, pgprot_t prot);
807a3784 158int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
1bb32a44
MZ
159 void __iomem **kaddr,
160 void __iomem **haddr);
dc2e4633
MZ
161int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
162 void **haddr);
37c43753
MZ
163void free_hyp_pgds(void);
164
957db105 165void stage2_unmap_vm(struct kvm *kvm);
37c43753
MZ
166int kvm_alloc_stage2_pgd(struct kvm *kvm);
167void kvm_free_stage2_pgd(struct kvm *kvm);
168int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 169 phys_addr_t pa, unsigned long size, bool writable);
37c43753
MZ
170
171int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
172
173void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
174
175phys_addr_t kvm_mmu_get_httbr(void);
37c43753
MZ
176phys_addr_t kvm_get_idmap_vector(void);
177int kvm_mmu_init(void);
178void kvm_clear_hyp_idmap(void);
179
0db9dd8a
MZ
180#define kvm_mk_pmd(ptep) \
181 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
182#define kvm_mk_pud(pmdp) \
183 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
184#define kvm_mk_pgd(pudp) \
185 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
186
f8df7338
PA
187#define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
188#define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
189
190#define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
191
06485053 192static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
37c43753 193{
06485053
CM
194 pte_val(pte) |= PTE_S2_RDWR;
195 return pte;
37c43753
MZ
196}
197
06485053 198static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
ad361f09 199{
06485053
CM
200 pmd_val(pmd) |= PMD_S2_RDWR;
201 return pmd;
ad361f09
CD
202}
203
d0e22b4a
MZ
204static inline pte_t kvm_s2pte_mkexec(pte_t pte)
205{
206 pte_val(pte) &= ~PTE_S2_XN;
207 return pte;
208}
209
210static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
211{
212 pmd_val(pmd) &= ~PMD_S2_XN;
213 return pmd;
214}
215
20a004e7 216static inline void kvm_set_s2pte_readonly(pte_t *ptep)
8199ed0e 217{
0966253d
CM
218 pteval_t old_pteval, pteval;
219
20a004e7 220 pteval = READ_ONCE(pte_val(*ptep));
0966253d
CM
221 do {
222 old_pteval = pteval;
223 pteval &= ~PTE_S2_RDWR;
224 pteval |= PTE_S2_RDONLY;
20a004e7 225 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
0966253d 226 } while (pteval != old_pteval);
8199ed0e
MS
227}
228
20a004e7 229static inline bool kvm_s2pte_readonly(pte_t *ptep)
8199ed0e 230{
20a004e7 231 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
8199ed0e
MS
232}
233
20a004e7 234static inline bool kvm_s2pte_exec(pte_t *ptep)
7a3796d2 235{
20a004e7 236 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
7a3796d2
MZ
237}
238
20a004e7 239static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
8199ed0e 240{
20a004e7 241 kvm_set_s2pte_readonly((pte_t *)pmdp);
8199ed0e
MS
242}
243
20a004e7 244static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
8199ed0e 245{
20a004e7 246 return kvm_s2pte_readonly((pte_t *)pmdp);
38f791a4
CD
247}
248
20a004e7 249static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
7a3796d2 250{
20a004e7 251 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
7a3796d2
MZ
252}
253
4ea5af53
PA
254static inline void kvm_set_s2pud_readonly(pud_t *pudp)
255{
256 kvm_set_s2pte_readonly((pte_t *)pudp);
257}
258
259static inline bool kvm_s2pud_readonly(pud_t *pudp)
260{
261 return kvm_s2pte_readonly((pte_t *)pudp);
262}
263
86d1c55e
PA
264static inline bool kvm_s2pud_exec(pud_t *pudp)
265{
266 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
267}
268
66f877fa 269#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
38f791a4
CD
270
271#ifdef __PAGETABLE_PMD_FOLDED
66f877fa 272#define hyp_pmd_table_empty(pmdp) (0)
38f791a4 273#else
66f877fa 274#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
38f791a4
CD
275#endif
276
277#ifdef __PAGETABLE_PUD_FOLDED
66f877fa 278#define hyp_pud_table_empty(pudp) (0)
4f853a71 279#else
66f877fa 280#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
4f853a71 281#endif
4f853a71 282
37c43753
MZ
283struct kvm;
284
2d58b733
MZ
285#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
286
287static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
37c43753 288{
8d404c4c 289 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
2d58b733
MZ
290}
291
17ab9d57 292static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
2d58b733 293{
0d3e4d4f
MZ
294 void *va = page_address(pfn_to_page(pfn));
295
e48d53a9
MZ
296 /*
297 * With FWB, we ensure that the guest always accesses memory using
298 * cacheable attributes, and we don't have to clean to PoC when
299 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
300 * PoU is not required either in this case.
301 */
302 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
303 return;
304
8f36ebaf 305 kvm_flush_dcache_to_poc(va, size);
a15f6939 306}
2d58b733 307
17ab9d57 308static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
a15f6939
MZ
309 unsigned long size)
310{
87da236e 311 if (icache_is_aliasing()) {
37c43753
MZ
312 /* any kind of VIPT cache */
313 __flush_icache_all();
87da236e
WD
314 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
315 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
a15f6939
MZ
316 void *va = page_address(pfn_to_page(pfn));
317
4fee9473
MZ
318 invalidate_icache_range((unsigned long)va,
319 (unsigned long)va + size);
37c43753
MZ
320 }
321}
322
363ef89f
MZ
323static inline void __kvm_flush_dcache_pte(pte_t pte)
324{
e48d53a9
MZ
325 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
326 struct page *page = pte_page(pte);
327 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
328 }
363ef89f
MZ
329}
330
331static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
332{
e48d53a9
MZ
333 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
334 struct page *page = pmd_page(pmd);
335 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
336 }
363ef89f
MZ
337}
338
339static inline void __kvm_flush_dcache_pud(pud_t pud)
340{
e48d53a9
MZ
341 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
342 struct page *page = pud_page(pud);
343 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
344 }
363ef89f
MZ
345}
346
2077be67 347#define kvm_virt_to_phys(x) __pa_symbol(x)
37c43753 348
3c1e7165
MZ
349void kvm_set_way_flush(struct kvm_vcpu *vcpu);
350void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
9d218a1f 351
e4c5a685
AB
352static inline bool __kvm_cpu_uses_extended_idmap(void)
353{
fa2a8445
KM
354 return __cpu_uses_extended_idmap_level();
355}
356
357static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
358{
359 return idmap_ptrs_per_pgd;
e4c5a685
AB
360}
361
19338304
KM
362/*
363 * Can't use pgd_populate here, because the extended idmap adds an extra level
364 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
365 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
366 */
e4c5a685
AB
367static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
368 pgd_t *hyp_pgd,
369 pgd_t *merged_hyp_pgd,
370 unsigned long hyp_idmap_start)
371{
372 int idmap_idx;
75387b92 373 u64 pgd_addr;
e4c5a685
AB
374
375 /*
376 * Use the first entry to access the HYP mappings. It is
377 * guaranteed to be free, otherwise we wouldn't use an
378 * extended idmap.
379 */
380 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
75387b92
KM
381 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
382 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
e4c5a685
AB
383
384 /*
385 * Create another extended level entry that points to the boot HYP map,
386 * which contains an ID mapping of the HYP init code. We essentially
387 * merge the boot and runtime HYP maps by doing so, but they don't
388 * overlap anyway, so this is fine.
389 */
390 idmap_idx = hyp_idmap_start >> VA_BITS;
391 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
75387b92
KM
392 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
393 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
e4c5a685
AB
394}
395
20475f78
VM
396static inline unsigned int kvm_get_vmid_bits(void)
397{
46823dd1 398 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
20475f78 399
28c5dcb2 400 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
20475f78
VM
401}
402
bf308242
AP
403/*
404 * We are not in the kvm->srcu critical section most of the time, so we take
405 * the SRCU read lock here. Since we copy the data from the user page, we
406 * can immediately drop the lock again.
407 */
408static inline int kvm_read_guest_lock(struct kvm *kvm,
409 gpa_t gpa, void *data, unsigned long len)
410{
411 int srcu_idx = srcu_read_lock(&kvm->srcu);
412 int ret = kvm_read_guest(kvm, gpa, data, len);
413
414 srcu_read_unlock(&kvm->srcu, srcu_idx);
415
416 return ret;
417}
418
dee39247
MZ
419#ifdef CONFIG_KVM_INDIRECT_VECTORS
420/*
421 * EL2 vectors can be mapped and rerouted in a number of ways,
422 * depending on the kernel configuration and CPU present:
423 *
424 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
425 * hardening sequence is placed in one of the vector slots, which is
426 * executed before jumping to the real vectors.
427 *
428 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
429 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
430 * hardening sequence is mapped next to the idmap page, and executed
431 * before jumping to the real vectors.
432 *
433 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
434 * empty slot is selected, mapped next to the idmap page, and
435 * executed before jumping to the real vectors.
436 *
437 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
438 * VHE, as we don't have hypervisor-specific mappings. If the system
439 * is VHE and yet selects this capability, it will be ignored.
440 */
6840bdd7
MZ
441#include <asm/mmu.h>
442
dee39247
MZ
443extern void *__kvm_bp_vect_base;
444extern int __kvm_harden_el2_vector_slot;
445
6840bdd7
MZ
446static inline void *kvm_get_hyp_vector(void)
447{
448 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
dee39247
MZ
449 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
450 int slot = -1;
6840bdd7 451
dee39247
MZ
452 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
453 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
454 slot = data->hyp_vectors_slot;
455 }
6840bdd7 456
dee39247
MZ
457 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
458 vect = __kvm_bp_vect_base;
459 if (slot == -1)
460 slot = __kvm_harden_el2_vector_slot;
6840bdd7
MZ
461 }
462
dee39247
MZ
463 if (slot != -1)
464 vect += slot * SZ_2K;
465
6840bdd7
MZ
466 return vect;
467}
468
dee39247 469/* This is only called on a !VHE system */
6840bdd7
MZ
470static inline int kvm_map_vectors(void)
471{
dee39247
MZ
472 /*
473 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
474 * HEL2 = ARM64_HARDEN_EL2_VECTORS
475 *
476 * !HBP + !HEL2 -> use direct vectors
477 * HBP + !HEL2 -> use hardened vectors in place
478 * !HBP + HEL2 -> allocate one vector slot and use exec mapping
479 * HBP + HEL2 -> use hardened vertors and use exec mapping
480 */
481 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
482 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
483 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
484 }
485
486 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
487 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
488 unsigned long size = (__bp_harden_hyp_vecs_end -
489 __bp_harden_hyp_vecs_start);
490
491 /*
492 * Always allocate a spare vector slot, as we don't
493 * know yet which CPUs have a BP hardening slot that
494 * we can reuse.
495 */
496 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
497 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
498 return create_hyp_exec_mappings(vect_pa, size,
499 &__kvm_bp_vect_base);
500 }
501
4340ba80 502 return 0;
6840bdd7 503}
6840bdd7
MZ
504#else
505static inline void *kvm_get_hyp_vector(void)
506{
3c5e8123 507 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
6840bdd7
MZ
508}
509
510static inline int kvm_map_vectors(void)
511{
512 return 0;
513}
514#endif
515
55e3748e
MZ
516#ifdef CONFIG_ARM64_SSBD
517DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
518
519static inline int hyp_map_aux_data(void)
520{
521 int cpu, err;
522
523 for_each_possible_cpu(cpu) {
524 u64 *ptr;
525
526 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
527 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
528 if (err)
529 return err;
530 }
531 return 0;
532}
533#else
534static inline int hyp_map_aux_data(void)
535{
536 return 0;
537}
538#endif
539
529c4b05
KM
540#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
541
59558330
SP
542/*
543 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
544 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
545 * 52bit IPS.
546 */
547static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
548{
549 int x = ARM64_VTTBR_X(ipa_shift, levels);
550
551 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
552}
553
554static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
555{
556 unsigned int x = arm64_vttbr_x(ipa_shift, levels);
557
558 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
559}
560
561static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
562{
563 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
564}
565
ab510027
VM
566static inline bool kvm_cpu_has_cnp(void)
567{
568 return system_supports_cnp();
569}
570
37c43753
MZ
571#endif /* __ASSEMBLY__ */
572#endif /* __ARM64_KVM_MMU_H__ */