KVM: arm/arm64: Move ioremap calls to create_hyp_io_mappings
[linux-2.6-block.git] / arch / arm64 / include / asm / kvm_mmu.h
CommitLineData
37c43753
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef __ARM64_KVM_MMU_H__
19#define __ARM64_KVM_MMU_H__
20
21#include <asm/page.h>
22#include <asm/memory.h>
20475f78 23#include <asm/cpufeature.h>
37c43753
MZ
24
25/*
cedbb8b7 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
37c43753
MZ
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
29 *
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
82a81bff 32 * kernel address). We need to find out how many bits to mask.
cedbb8b7 33 *
82a81bff
MZ
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
37 *
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41 *
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
46 *
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
49 *
2077be67 50 * T = __pa_symbol(__hyp_idmap_text_start)
82a81bff
MZ
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
53 * else
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56 *
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
66 *
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
37c43753 70 */
d53d9bc6 71
37c43753
MZ
72#ifdef __ASSEMBLY__
73
cedbb8b7
MZ
74#include <asm/alternative.h>
75#include <asm/cpufeature.h>
76
37c43753
MZ
77/*
78 * Convert a kernel VA into a HYP VA.
79 * reg: VA to be converted.
fd81e6bf 80 *
2b4d1606
MZ
81 * The actual code generation takes place in kvm_update_va_mask, and
82 * the instructions below are only there to reserve the space and
83 * perform the register allocation (kvm_update_va_mask uses the
84 * specific registers encoded in the instructions).
37c43753
MZ
85 */
86.macro kern_hyp_va reg
2b4d1606
MZ
87alternative_cb kvm_update_va_mask
88 and \reg, \reg, #1
89alternative_cb_end
37c43753
MZ
90.endm
91
92#else
93
38f791a4 94#include <asm/pgalloc.h>
02f7760e 95#include <asm/cache.h>
37c43753 96#include <asm/cacheflush.h>
e4c5a685
AB
97#include <asm/mmu_context.h>
98#include <asm/pgtable.h>
37c43753 99
2b4d1606
MZ
100void kvm_update_va_mask(struct alt_instr *alt,
101 __le32 *origptr, __le32 *updptr, int nr_inst);
102
fd81e6bf
MZ
103static inline unsigned long __kern_hyp_va(unsigned long v)
104{
2b4d1606
MZ
105 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n",
106 kvm_update_va_mask)
107 : "+r" (v));
fd81e6bf
MZ
108 return v;
109}
110
94d0e598 111#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
37c43753 112
44a497ab
MZ
113/*
114 * Obtain the PC-relative address of a kernel symbol
115 * s: symbol
116 *
117 * The goal of this macro is to return a symbol's address based on a
118 * PC-relative computation, as opposed to a loading the VA from a
119 * constant pool or something similar. This works well for HYP, as an
120 * absolute VA is guaranteed to be wrong. Only use this if trying to
121 * obtain the address of a symbol (i.e. not something you obtained by
122 * following a pointer).
123 */
124#define hyp_symbol_addr(s) \
125 ({ \
126 typeof(s) *addr; \
127 asm("adrp %0, %1\n" \
128 "add %0, %0, :lo12:%1\n" \
129 : "=r" (addr) : "S" (&s)); \
130 addr; \
131 })
132
37c43753 133/*
dbff124e 134 * We currently only support a 40bit IPA.
37c43753 135 */
dbff124e 136#define KVM_PHYS_SHIFT (40)
37c43753
MZ
137#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
138#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
139
c0ef6326
SP
140#include <asm/stage2_pgtable.h>
141
c8dddecd 142int create_hyp_mappings(void *from, void *to, pgprot_t prot);
807a3784
MZ
143int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
144 void __iomem **kaddr);
37c43753
MZ
145void free_hyp_pgds(void);
146
957db105 147void stage2_unmap_vm(struct kvm *kvm);
37c43753
MZ
148int kvm_alloc_stage2_pgd(struct kvm *kvm);
149void kvm_free_stage2_pgd(struct kvm *kvm);
150int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 151 phys_addr_t pa, unsigned long size, bool writable);
37c43753
MZ
152
153int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
154
155void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
156
157phys_addr_t kvm_mmu_get_httbr(void);
37c43753
MZ
158phys_addr_t kvm_get_idmap_vector(void);
159int kvm_mmu_init(void);
160void kvm_clear_hyp_idmap(void);
161
162#define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
ad361f09 163#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
37c43753 164
06485053 165static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
37c43753 166{
06485053
CM
167 pte_val(pte) |= PTE_S2_RDWR;
168 return pte;
37c43753
MZ
169}
170
06485053 171static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
ad361f09 172{
06485053
CM
173 pmd_val(pmd) |= PMD_S2_RDWR;
174 return pmd;
ad361f09
CD
175}
176
d0e22b4a
MZ
177static inline pte_t kvm_s2pte_mkexec(pte_t pte)
178{
179 pte_val(pte) &= ~PTE_S2_XN;
180 return pte;
181}
182
183static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
184{
185 pmd_val(pmd) &= ~PMD_S2_XN;
186 return pmd;
187}
188
20a004e7 189static inline void kvm_set_s2pte_readonly(pte_t *ptep)
8199ed0e 190{
0966253d
CM
191 pteval_t old_pteval, pteval;
192
20a004e7 193 pteval = READ_ONCE(pte_val(*ptep));
0966253d
CM
194 do {
195 old_pteval = pteval;
196 pteval &= ~PTE_S2_RDWR;
197 pteval |= PTE_S2_RDONLY;
20a004e7 198 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
0966253d 199 } while (pteval != old_pteval);
8199ed0e
MS
200}
201
20a004e7 202static inline bool kvm_s2pte_readonly(pte_t *ptep)
8199ed0e 203{
20a004e7 204 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
8199ed0e
MS
205}
206
20a004e7 207static inline bool kvm_s2pte_exec(pte_t *ptep)
7a3796d2 208{
20a004e7 209 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
7a3796d2
MZ
210}
211
20a004e7 212static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
8199ed0e 213{
20a004e7 214 kvm_set_s2pte_readonly((pte_t *)pmdp);
8199ed0e
MS
215}
216
20a004e7 217static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
8199ed0e 218{
20a004e7 219 return kvm_s2pte_readonly((pte_t *)pmdp);
38f791a4
CD
220}
221
20a004e7 222static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
7a3796d2 223{
20a004e7 224 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
7a3796d2
MZ
225}
226
4f853a71
CD
227static inline bool kvm_page_empty(void *ptr)
228{
229 struct page *ptr_page = virt_to_page(ptr);
230 return page_count(ptr_page) == 1;
231}
232
66f877fa 233#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
38f791a4
CD
234
235#ifdef __PAGETABLE_PMD_FOLDED
66f877fa 236#define hyp_pmd_table_empty(pmdp) (0)
38f791a4 237#else
66f877fa 238#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
38f791a4
CD
239#endif
240
241#ifdef __PAGETABLE_PUD_FOLDED
66f877fa 242#define hyp_pud_table_empty(pudp) (0)
4f853a71 243#else
66f877fa 244#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
4f853a71 245#endif
4f853a71 246
37c43753
MZ
247struct kvm;
248
2d58b733
MZ
249#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
250
251static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
37c43753 252{
8d404c4c 253 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
2d58b733
MZ
254}
255
17ab9d57 256static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
2d58b733 257{
0d3e4d4f
MZ
258 void *va = page_address(pfn_to_page(pfn));
259
8f36ebaf 260 kvm_flush_dcache_to_poc(va, size);
a15f6939 261}
2d58b733 262
17ab9d57 263static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
a15f6939
MZ
264 unsigned long size)
265{
87da236e 266 if (icache_is_aliasing()) {
37c43753
MZ
267 /* any kind of VIPT cache */
268 __flush_icache_all();
87da236e
WD
269 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
270 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
a15f6939
MZ
271 void *va = page_address(pfn_to_page(pfn));
272
4fee9473
MZ
273 invalidate_icache_range((unsigned long)va,
274 (unsigned long)va + size);
37c43753
MZ
275 }
276}
277
363ef89f
MZ
278static inline void __kvm_flush_dcache_pte(pte_t pte)
279{
280 struct page *page = pte_page(pte);
281 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
282}
283
284static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
285{
286 struct page *page = pmd_page(pmd);
287 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
288}
289
290static inline void __kvm_flush_dcache_pud(pud_t pud)
291{
292 struct page *page = pud_page(pud);
293 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
294}
295
2077be67 296#define kvm_virt_to_phys(x) __pa_symbol(x)
37c43753 297
3c1e7165
MZ
298void kvm_set_way_flush(struct kvm_vcpu *vcpu);
299void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
9d218a1f 300
e4c5a685
AB
301static inline bool __kvm_cpu_uses_extended_idmap(void)
302{
fa2a8445
KM
303 return __cpu_uses_extended_idmap_level();
304}
305
306static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
307{
308 return idmap_ptrs_per_pgd;
e4c5a685
AB
309}
310
19338304
KM
311/*
312 * Can't use pgd_populate here, because the extended idmap adds an extra level
313 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
314 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
315 */
e4c5a685
AB
316static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
317 pgd_t *hyp_pgd,
318 pgd_t *merged_hyp_pgd,
319 unsigned long hyp_idmap_start)
320{
321 int idmap_idx;
75387b92 322 u64 pgd_addr;
e4c5a685
AB
323
324 /*
325 * Use the first entry to access the HYP mappings. It is
326 * guaranteed to be free, otherwise we wouldn't use an
327 * extended idmap.
328 */
329 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
75387b92
KM
330 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
331 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
e4c5a685
AB
332
333 /*
334 * Create another extended level entry that points to the boot HYP map,
335 * which contains an ID mapping of the HYP init code. We essentially
336 * merge the boot and runtime HYP maps by doing so, but they don't
337 * overlap anyway, so this is fine.
338 */
339 idmap_idx = hyp_idmap_start >> VA_BITS;
340 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
75387b92
KM
341 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
342 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
e4c5a685
AB
343}
344
20475f78
VM
345static inline unsigned int kvm_get_vmid_bits(void)
346{
46823dd1 347 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
20475f78 348
28c5dcb2 349 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
20475f78
VM
350}
351
6840bdd7
MZ
352#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
353#include <asm/mmu.h>
354
355static inline void *kvm_get_hyp_vector(void)
356{
357 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
358 void *vect = kvm_ksym_ref(__kvm_hyp_vector);
359
360 if (data->fn) {
361 vect = __bp_harden_hyp_vecs_start +
362 data->hyp_vectors_slot * SZ_2K;
363
364 if (!has_vhe())
365 vect = lm_alias(vect);
366 }
367
368 return vect;
369}
370
371static inline int kvm_map_vectors(void)
372{
373 return create_hyp_mappings(kvm_ksym_ref(__bp_harden_hyp_vecs_start),
374 kvm_ksym_ref(__bp_harden_hyp_vecs_end),
375 PAGE_HYP_EXEC);
376}
377
378#else
379static inline void *kvm_get_hyp_vector(void)
380{
381 return kvm_ksym_ref(__kvm_hyp_vector);
382}
383
384static inline int kvm_map_vectors(void)
385{
386 return 0;
387}
388#endif
389
529c4b05
KM
390#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
391
37c43753
MZ
392#endif /* __ASSEMBLY__ */
393#endif /* __ARM64_KVM_MMU_H__ */