arm/arm64: KVM: Kill free_boot_hyp_pgd
[linux-block.git] / arch / arm64 / include / asm / kvm_mmu.h
CommitLineData
37c43753
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef __ARM64_KVM_MMU_H__
19#define __ARM64_KVM_MMU_H__
20
21#include <asm/page.h>
22#include <asm/memory.h>
20475f78 23#include <asm/cpufeature.h>
37c43753
MZ
24
25/*
cedbb8b7 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
37c43753
MZ
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
29 *
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
82a81bff 32 * kernel address). We need to find out how many bits to mask.
cedbb8b7 33 *
82a81bff
MZ
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
37 *
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41 *
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
46 *
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
49 *
50 * T = __virt_to_phys(__hyp_idmap_text_start)
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
53 * else
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56 *
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
66 *
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
37c43753 70 */
d53d9bc6
MZ
71
72#define HYP_PAGE_OFFSET_HIGH_MASK ((UL(1) << VA_BITS) - 1)
73#define HYP_PAGE_OFFSET_LOW_MASK ((UL(1) << (VA_BITS - 1)) - 1)
74
75/* Temporary compat define */
76#define HYP_PAGE_OFFSET_MASK HYP_PAGE_OFFSET_HIGH_MASK
37c43753
MZ
77
78/*
79 * Our virtual mapping for the idmap-ed MMU-enable code. Must be
80 * shared across all the page-tables. Conveniently, we use the last
81 * possible page, where no kernel mapping will ever exist.
82 */
83#define TRAMPOLINE_VA (HYP_PAGE_OFFSET_MASK & PAGE_MASK)
84
85#ifdef __ASSEMBLY__
86
cedbb8b7
MZ
87#include <asm/alternative.h>
88#include <asm/cpufeature.h>
89
37c43753
MZ
90/*
91 * Convert a kernel VA into a HYP VA.
92 * reg: VA to be converted.
fd81e6bf
MZ
93 *
94 * This generates the following sequences:
95 * - High mask:
96 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
97 * nop
98 * - Low mask:
99 * and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
100 * and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK
101 * - VHE:
102 * nop
103 * nop
104 *
105 * The "low mask" version works because the mask is a strict subset of
106 * the "high mask", hence performing the first mask for nothing.
107 * Should be completely invisible on any viable CPU.
37c43753
MZ
108 */
109.macro kern_hyp_va reg
fd81e6bf
MZ
110alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
111 and \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK
cedbb8b7
MZ
112alternative_else
113 nop
114alternative_endif
fd81e6bf
MZ
115alternative_if_not ARM64_HYP_OFFSET_LOW
116 nop
117alternative_else
118 and \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK
119alternative_endif
37c43753
MZ
120.endm
121
122#else
123
38f791a4 124#include <asm/pgalloc.h>
37c43753
MZ
125#include <asm/cachetype.h>
126#include <asm/cacheflush.h>
e4c5a685
AB
127#include <asm/mmu_context.h>
128#include <asm/pgtable.h>
37c43753 129
fd81e6bf
MZ
130static inline unsigned long __kern_hyp_va(unsigned long v)
131{
132 asm volatile(ALTERNATIVE("and %0, %0, %1",
133 "nop",
134 ARM64_HAS_VIRT_HOST_EXTN)
135 : "+r" (v)
136 : "i" (HYP_PAGE_OFFSET_HIGH_MASK));
137 asm volatile(ALTERNATIVE("nop",
138 "and %0, %0, %1",
139 ARM64_HYP_OFFSET_LOW)
140 : "+r" (v)
141 : "i" (HYP_PAGE_OFFSET_LOW_MASK));
142 return v;
143}
144
145#define kern_hyp_va(v) (typeof(v))(__kern_hyp_va((unsigned long)(v)))
146#define KERN_TO_HYP(v) kern_hyp_va(v)
37c43753
MZ
147
148/*
dbff124e 149 * We currently only support a 40bit IPA.
37c43753 150 */
dbff124e 151#define KVM_PHYS_SHIFT (40)
37c43753
MZ
152#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
153#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
154
c0ef6326
SP
155#include <asm/stage2_pgtable.h>
156
c8dddecd 157int create_hyp_mappings(void *from, void *to, pgprot_t prot);
37c43753 158int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
37c43753
MZ
159void free_hyp_pgds(void);
160
957db105 161void stage2_unmap_vm(struct kvm *kvm);
37c43753
MZ
162int kvm_alloc_stage2_pgd(struct kvm *kvm);
163void kvm_free_stage2_pgd(struct kvm *kvm);
164int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 165 phys_addr_t pa, unsigned long size, bool writable);
37c43753
MZ
166
167int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
168
169void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
170
171phys_addr_t kvm_mmu_get_httbr(void);
37c43753 172phys_addr_t kvm_get_idmap_vector(void);
67f69197 173phys_addr_t kvm_get_idmap_start(void);
37c43753
MZ
174int kvm_mmu_init(void);
175void kvm_clear_hyp_idmap(void);
176
177#define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
ad361f09 178#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
37c43753 179
37c43753 180static inline void kvm_clean_pgd(pgd_t *pgd) {}
38f791a4 181static inline void kvm_clean_pmd(pmd_t *pmd) {}
37c43753
MZ
182static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
183static inline void kvm_clean_pte(pte_t *pte) {}
184static inline void kvm_clean_pte_entry(pte_t *pte) {}
185
06485053 186static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
37c43753 187{
06485053
CM
188 pte_val(pte) |= PTE_S2_RDWR;
189 return pte;
37c43753
MZ
190}
191
06485053 192static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
ad361f09 193{
06485053
CM
194 pmd_val(pmd) |= PMD_S2_RDWR;
195 return pmd;
ad361f09
CD
196}
197
8199ed0e
MS
198static inline void kvm_set_s2pte_readonly(pte_t *pte)
199{
06485053
CM
200 pteval_t pteval;
201 unsigned long tmp;
202
203 asm volatile("// kvm_set_s2pte_readonly\n"
204 " prfm pstl1strm, %2\n"
205 "1: ldxr %0, %2\n"
206 " and %0, %0, %3 // clear PTE_S2_RDWR\n"
207 " orr %0, %0, %4 // set PTE_S2_RDONLY\n"
208 " stxr %w1, %0, %2\n"
209 " cbnz %w1, 1b\n"
210 : "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*pte))
211 : "L" (~PTE_S2_RDWR), "L" (PTE_S2_RDONLY));
8199ed0e
MS
212}
213
214static inline bool kvm_s2pte_readonly(pte_t *pte)
215{
216 return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
217}
218
219static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
220{
06485053 221 kvm_set_s2pte_readonly((pte_t *)pmd);
8199ed0e
MS
222}
223
224static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
225{
06485053 226 return kvm_s2pte_readonly((pte_t *)pmd);
38f791a4
CD
227}
228
4f853a71
CD
229static inline bool kvm_page_empty(void *ptr)
230{
231 struct page *ptr_page = virt_to_page(ptr);
232 return page_count(ptr_page) == 1;
233}
234
66f877fa 235#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
38f791a4
CD
236
237#ifdef __PAGETABLE_PMD_FOLDED
66f877fa 238#define hyp_pmd_table_empty(pmdp) (0)
38f791a4 239#else
66f877fa 240#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
38f791a4
CD
241#endif
242
243#ifdef __PAGETABLE_PUD_FOLDED
66f877fa 244#define hyp_pud_table_empty(pudp) (0)
4f853a71 245#else
66f877fa 246#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
4f853a71 247#endif
4f853a71 248
37c43753
MZ
249struct kvm;
250
2d58b733
MZ
251#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
252
253static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
37c43753 254{
2d58b733
MZ
255 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
256}
257
ba049e93
DW
258static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
259 kvm_pfn_t pfn,
0d3e4d4f
MZ
260 unsigned long size,
261 bool ipa_uncached)
2d58b733 262{
0d3e4d4f
MZ
263 void *va = page_address(pfn_to_page(pfn));
264
840f4bfb 265 if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
0d3e4d4f 266 kvm_flush_dcache_to_poc(va, size);
2d58b733 267
37c43753 268 if (!icache_is_aliasing()) { /* PIPT */
0d3e4d4f
MZ
269 flush_icache_range((unsigned long)va,
270 (unsigned long)va + size);
37c43753
MZ
271 } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */
272 /* any kind of VIPT cache */
273 __flush_icache_all();
274 }
275}
276
363ef89f
MZ
277static inline void __kvm_flush_dcache_pte(pte_t pte)
278{
279 struct page *page = pte_page(pte);
280 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
281}
282
283static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
284{
285 struct page *page = pmd_page(pmd);
286 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
287}
288
289static inline void __kvm_flush_dcache_pud(pud_t pud)
290{
291 struct page *page = pud_page(pud);
292 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
293}
294
4fda342c 295#define kvm_virt_to_phys(x) __virt_to_phys((unsigned long)(x))
37c43753 296
3c1e7165
MZ
297void kvm_set_way_flush(struct kvm_vcpu *vcpu);
298void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
9d218a1f 299
e4c5a685
AB
300static inline bool __kvm_cpu_uses_extended_idmap(void)
301{
302 return __cpu_uses_extended_idmap();
303}
304
305static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
306 pgd_t *hyp_pgd,
307 pgd_t *merged_hyp_pgd,
308 unsigned long hyp_idmap_start)
309{
310 int idmap_idx;
311
312 /*
313 * Use the first entry to access the HYP mappings. It is
314 * guaranteed to be free, otherwise we wouldn't use an
315 * extended idmap.
316 */
317 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
318 merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
319
320 /*
321 * Create another extended level entry that points to the boot HYP map,
322 * which contains an ID mapping of the HYP init code. We essentially
323 * merge the boot and runtime HYP maps by doing so, but they don't
324 * overlap anyway, so this is fine.
325 */
326 idmap_idx = hyp_idmap_start >> VA_BITS;
327 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
328 merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
329}
330
20475f78
VM
331static inline unsigned int kvm_get_vmid_bits(void)
332{
333 int reg = read_system_reg(SYS_ID_AA64MMFR1_EL1);
334
28c5dcb2 335 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
20475f78
VM
336}
337
37c43753
MZ
338#endif /* __ASSEMBLY__ */
339#endif /* __ARM64_KVM_MMU_H__ */