KVM: arm: page logging 2nd stage fault handling
[linux-2.6-block.git] / arch / arm64 / include / asm / kvm_mmu.h
CommitLineData
37c43753
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef __ARM64_KVM_MMU_H__
19#define __ARM64_KVM_MMU_H__
20
21#include <asm/page.h>
22#include <asm/memory.h>
23
24/*
25 * As we only have the TTBR0_EL2 register, we cannot express
26 * "negative" addresses. This makes it impossible to directly share
27 * mappings with the kernel.
28 *
29 * Instead, give the HYP mode its own VA region at a fixed offset from
30 * the kernel by just masking the top bits (which are all ones for a
31 * kernel address).
32 */
33#define HYP_PAGE_OFFSET_SHIFT VA_BITS
34#define HYP_PAGE_OFFSET_MASK ((UL(1) << HYP_PAGE_OFFSET_SHIFT) - 1)
35#define HYP_PAGE_OFFSET (PAGE_OFFSET & HYP_PAGE_OFFSET_MASK)
36
37/*
38 * Our virtual mapping for the idmap-ed MMU-enable code. Must be
39 * shared across all the page-tables. Conveniently, we use the last
40 * possible page, where no kernel mapping will ever exist.
41 */
42#define TRAMPOLINE_VA (HYP_PAGE_OFFSET_MASK & PAGE_MASK)
43
38f791a4
CD
44/*
45 * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation
46 * levels in addition to the PGD and potentially the PUD which are
47 * pre-allocated (we pre-allocate the fake PGD and the PUD when the Stage-2
48 * tables use one level of tables less than the kernel.
49 */
50#ifdef CONFIG_ARM64_64K_PAGES
51#define KVM_MMU_CACHE_MIN_PAGES 1
52#else
53#define KVM_MMU_CACHE_MIN_PAGES 2
54#endif
55
37c43753
MZ
56#ifdef __ASSEMBLY__
57
58/*
59 * Convert a kernel VA into a HYP VA.
60 * reg: VA to be converted.
61 */
62.macro kern_hyp_va reg
63 and \reg, \reg, #HYP_PAGE_OFFSET_MASK
64.endm
65
66#else
67
38f791a4 68#include <asm/pgalloc.h>
37c43753
MZ
69#include <asm/cachetype.h>
70#include <asm/cacheflush.h>
71
72#define KERN_TO_HYP(kva) ((unsigned long)kva - PAGE_OFFSET + HYP_PAGE_OFFSET)
73
74/*
dbff124e 75 * We currently only support a 40bit IPA.
37c43753 76 */
dbff124e 77#define KVM_PHYS_SHIFT (40)
37c43753
MZ
78#define KVM_PHYS_SIZE (1UL << KVM_PHYS_SHIFT)
79#define KVM_PHYS_MASK (KVM_PHYS_SIZE - 1UL)
80
37c43753
MZ
81int create_hyp_mappings(void *from, void *to);
82int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
83void free_boot_hyp_pgd(void);
84void free_hyp_pgds(void);
85
957db105 86void stage2_unmap_vm(struct kvm *kvm);
37c43753
MZ
87int kvm_alloc_stage2_pgd(struct kvm *kvm);
88void kvm_free_stage2_pgd(struct kvm *kvm);
89int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 90 phys_addr_t pa, unsigned long size, bool writable);
37c43753
MZ
91
92int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
93
94void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
95
96phys_addr_t kvm_mmu_get_httbr(void);
97phys_addr_t kvm_mmu_get_boot_httbr(void);
98phys_addr_t kvm_get_idmap_vector(void);
99int kvm_mmu_init(void);
100void kvm_clear_hyp_idmap(void);
101
102#define kvm_set_pte(ptep, pte) set_pte(ptep, pte)
ad361f09 103#define kvm_set_pmd(pmdp, pmd) set_pmd(pmdp, pmd)
37c43753 104
37c43753 105static inline void kvm_clean_pgd(pgd_t *pgd) {}
38f791a4 106static inline void kvm_clean_pmd(pmd_t *pmd) {}
37c43753
MZ
107static inline void kvm_clean_pmd_entry(pmd_t *pmd) {}
108static inline void kvm_clean_pte(pte_t *pte) {}
109static inline void kvm_clean_pte_entry(pte_t *pte) {}
110
111static inline void kvm_set_s2pte_writable(pte_t *pte)
112{
113 pte_val(*pte) |= PTE_S2_RDWR;
114}
115
ad361f09
CD
116static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
117{
118 pmd_val(*pmd) |= PMD_S2_RDWR;
119}
120
a3c8bd31
MZ
121#define kvm_pgd_addr_end(addr, end) pgd_addr_end(addr, end)
122#define kvm_pud_addr_end(addr, end) pud_addr_end(addr, end)
123#define kvm_pmd_addr_end(addr, end) pmd_addr_end(addr, end)
124
38f791a4
CD
125/*
126 * In the case where PGDIR_SHIFT is larger than KVM_PHYS_SHIFT, we can address
127 * the entire IPA input range with a single pgd entry, and we would only need
128 * one pgd entry. Note that in this case, the pgd is actually not used by
129 * the MMU for Stage-2 translations, but is merely a fake pgd used as a data
130 * structure for the kernel pgtable macros to work.
131 */
132#if PGDIR_SHIFT > KVM_PHYS_SHIFT
133#define PTRS_PER_S2_PGD_SHIFT 0
134#else
135#define PTRS_PER_S2_PGD_SHIFT (KVM_PHYS_SHIFT - PGDIR_SHIFT)
136#endif
137#define PTRS_PER_S2_PGD (1 << PTRS_PER_S2_PGD_SHIFT)
138#define S2_PGD_ORDER get_order(PTRS_PER_S2_PGD * sizeof(pgd_t))
139
140/*
141 * If we are concatenating first level stage-2 page tables, we would have less
142 * than or equal to 16 pointers in the fake PGD, because that's what the
143 * architecture allows. In this case, (4 - CONFIG_ARM64_PGTABLE_LEVELS)
144 * represents the first level for the host, and we add 1 to go to the next
145 * level (which uses contatenation) for the stage-2 tables.
146 */
147#if PTRS_PER_S2_PGD <= 16
148#define KVM_PREALLOC_LEVEL (4 - CONFIG_ARM64_PGTABLE_LEVELS + 1)
149#else
150#define KVM_PREALLOC_LEVEL (0)
151#endif
152
153/**
154 * kvm_prealloc_hwpgd - allocate inital table for VTTBR
155 * @kvm: The KVM struct pointer for the VM.
156 * @pgd: The kernel pseudo pgd
157 *
158 * When the kernel uses more levels of page tables than the guest, we allocate
159 * a fake PGD and pre-populate it to point to the next-level page table, which
160 * will be the real initial page table pointed to by the VTTBR.
161 *
162 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for the PMD and
163 * the kernel will use folded pud. When KVM_PREALLOC_LEVEL==1, we
164 * allocate 2 consecutive PUD pages.
165 */
166static inline int kvm_prealloc_hwpgd(struct kvm *kvm, pgd_t *pgd)
167{
168 unsigned int i;
169 unsigned long hwpgd;
170
171 if (KVM_PREALLOC_LEVEL == 0)
172 return 0;
173
174 hwpgd = __get_free_pages(GFP_KERNEL | __GFP_ZERO, PTRS_PER_S2_PGD_SHIFT);
175 if (!hwpgd)
176 return -ENOMEM;
177
178 for (i = 0; i < PTRS_PER_S2_PGD; i++) {
179 if (KVM_PREALLOC_LEVEL == 1)
180 pgd_populate(NULL, pgd + i,
181 (pud_t *)hwpgd + i * PTRS_PER_PUD);
182 else if (KVM_PREALLOC_LEVEL == 2)
183 pud_populate(NULL, pud_offset(pgd, 0) + i,
184 (pmd_t *)hwpgd + i * PTRS_PER_PMD);
185 }
186
187 return 0;
188}
189
190static inline void *kvm_get_hwpgd(struct kvm *kvm)
191{
192 pgd_t *pgd = kvm->arch.pgd;
193 pud_t *pud;
194
195 if (KVM_PREALLOC_LEVEL == 0)
196 return pgd;
197
198 pud = pud_offset(pgd, 0);
199 if (KVM_PREALLOC_LEVEL == 1)
200 return pud;
201
202 BUG_ON(KVM_PREALLOC_LEVEL != 2);
203 return pmd_offset(pud, 0);
204}
205
206static inline void kvm_free_hwpgd(struct kvm *kvm)
207{
208 if (KVM_PREALLOC_LEVEL > 0) {
209 unsigned long hwpgd = (unsigned long)kvm_get_hwpgd(kvm);
210 free_pages(hwpgd, PTRS_PER_S2_PGD_SHIFT);
211 }
212}
213
4f853a71
CD
214static inline bool kvm_page_empty(void *ptr)
215{
216 struct page *ptr_page = virt_to_page(ptr);
217 return page_count(ptr_page) == 1;
218}
219
38f791a4
CD
220#define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
221
222#ifdef __PAGETABLE_PMD_FOLDED
223#define kvm_pmd_table_empty(kvm, pmdp) (0)
224#else
225#define kvm_pmd_table_empty(kvm, pmdp) \
226 (kvm_page_empty(pmdp) && (!(kvm) || KVM_PREALLOC_LEVEL < 2))
227#endif
228
229#ifdef __PAGETABLE_PUD_FOLDED
230#define kvm_pud_table_empty(kvm, pudp) (0)
4f853a71 231#else
38f791a4
CD
232#define kvm_pud_table_empty(kvm, pudp) \
233 (kvm_page_empty(pudp) && (!(kvm) || KVM_PREALLOC_LEVEL < 1))
4f853a71 234#endif
4f853a71
CD
235
236
37c43753
MZ
237struct kvm;
238
2d58b733
MZ
239#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
240
241static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
37c43753 242{
2d58b733
MZ
243 return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
244}
245
246static inline void coherent_cache_guest_page(struct kvm_vcpu *vcpu, hva_t hva,
840f4bfb
LE
247 unsigned long size,
248 bool ipa_uncached)
2d58b733 249{
840f4bfb 250 if (!vcpu_has_cache_enabled(vcpu) || ipa_uncached)
2d58b733
MZ
251 kvm_flush_dcache_to_poc((void *)hva, size);
252
37c43753 253 if (!icache_is_aliasing()) { /* PIPT */
ad361f09 254 flush_icache_range(hva, hva + size);
37c43753
MZ
255 } else if (!icache_is_aivivt()) { /* non ASID-tagged VIVT */
256 /* any kind of VIPT cache */
257 __flush_icache_all();
258 }
259}
260
4fda342c 261#define kvm_virt_to_phys(x) __virt_to_phys((unsigned long)(x))
37c43753 262
9d218a1f
MZ
263void stage2_flush_vm(struct kvm *kvm);
264
37c43753
MZ
265#endif /* __ASSEMBLY__ */
266#endif /* __ARM64_KVM_MMU_H__ */