docs: arm64: convert docs to ReST and rename to .rst
[linux-2.6-block.git] / arch / arm64 / include / asm / kvm_mmu.h
CommitLineData
37c43753
MZ
1/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#ifndef __ARM64_KVM_MMU_H__
19#define __ARM64_KVM_MMU_H__
20
21#include <asm/page.h>
22#include <asm/memory.h>
20475f78 23#include <asm/cpufeature.h>
37c43753
MZ
24
25/*
cedbb8b7 26 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
37c43753
MZ
27 * "negative" addresses. This makes it impossible to directly share
28 * mappings with the kernel.
29 *
30 * Instead, give the HYP mode its own VA region at a fixed offset from
31 * the kernel by just masking the top bits (which are all ones for a
82a81bff 32 * kernel address). We need to find out how many bits to mask.
cedbb8b7 33 *
82a81bff
MZ
34 * We want to build a set of page tables that cover both parts of the
35 * idmap (the trampoline page used to initialize EL2), and our normal
36 * runtime VA space, at the same time.
37 *
38 * Given that the kernel uses VA_BITS for its entire address space,
39 * and that half of that space (VA_BITS - 1) is used for the linear
40 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41 *
42 * The main question is "Within the VA_BITS space, does EL2 use the
43 * top or the bottom half of that space to shadow the kernel's linear
44 * mapping?". As we need to idmap the trampoline page, this is
45 * determined by the range in which this page lives.
46 *
47 * If the page is in the bottom half, we have to use the top half. If
48 * the page is in the top half, we have to use the bottom half:
49 *
2077be67 50 * T = __pa_symbol(__hyp_idmap_text_start)
82a81bff
MZ
51 * if (T & BIT(VA_BITS - 1))
52 * HYP_VA_MIN = 0 //idmap in upper half
53 * else
54 * HYP_VA_MIN = 1 << (VA_BITS - 1)
55 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56 *
57 * This of course assumes that the trampoline page exists within the
58 * VA_BITS range. If it doesn't, then it means we're in the odd case
59 * where the kernel idmap (as well as HYP) uses more levels than the
60 * kernel runtime page tables (as seen when the kernel is configured
61 * for 4k pages, 39bits VA, and yet memory lives just above that
62 * limit, forcing the idmap to use 4 levels of page tables while the
63 * kernel itself only uses 3). In this particular case, it doesn't
64 * matter which side of VA_BITS we use, as we're guaranteed not to
65 * conflict with anything.
66 *
67 * When using VHE, there are no separate hyp mappings and all KVM
68 * functionality is already mapped as part of the main kernel
69 * mappings, and none of this applies in that case.
37c43753 70 */
d53d9bc6 71
37c43753
MZ
72#ifdef __ASSEMBLY__
73
cedbb8b7 74#include <asm/alternative.h>
cedbb8b7 75
37c43753
MZ
76/*
77 * Convert a kernel VA into a HYP VA.
78 * reg: VA to be converted.
fd81e6bf 79 *
2b4d1606
MZ
80 * The actual code generation takes place in kvm_update_va_mask, and
81 * the instructions below are only there to reserve the space and
82 * perform the register allocation (kvm_update_va_mask uses the
83 * specific registers encoded in the instructions).
37c43753
MZ
84 */
85.macro kern_hyp_va reg
2b4d1606 86alternative_cb kvm_update_va_mask
ed57cac8
MZ
87 and \reg, \reg, #1 /* mask with va_mask */
88 ror \reg, \reg, #1 /* rotate to the first tag bit */
89 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
90 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
91 ror \reg, \reg, #63 /* rotate back */
2b4d1606 92alternative_cb_end
37c43753
MZ
93.endm
94
95#else
96
38f791a4 97#include <asm/pgalloc.h>
02f7760e 98#include <asm/cache.h>
37c43753 99#include <asm/cacheflush.h>
e4c5a685
AB
100#include <asm/mmu_context.h>
101#include <asm/pgtable.h>
37c43753 102
2b4d1606
MZ
103void kvm_update_va_mask(struct alt_instr *alt,
104 __le32 *origptr, __le32 *updptr, int nr_inst);
105
fd81e6bf
MZ
106static inline unsigned long __kern_hyp_va(unsigned long v)
107{
ed57cac8
MZ
108 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
109 "ror %0, %0, #1\n"
110 "add %0, %0, #0\n"
111 "add %0, %0, #0, lsl 12\n"
112 "ror %0, %0, #63\n",
2b4d1606
MZ
113 kvm_update_va_mask)
114 : "+r" (v));
fd81e6bf
MZ
115 return v;
116}
117
94d0e598 118#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
37c43753 119
44a497ab
MZ
120/*
121 * Obtain the PC-relative address of a kernel symbol
122 * s: symbol
123 *
124 * The goal of this macro is to return a symbol's address based on a
125 * PC-relative computation, as opposed to a loading the VA from a
126 * constant pool or something similar. This works well for HYP, as an
127 * absolute VA is guaranteed to be wrong. Only use this if trying to
128 * obtain the address of a symbol (i.e. not something you obtained by
129 * following a pointer).
130 */
131#define hyp_symbol_addr(s) \
132 ({ \
133 typeof(s) *addr; \
134 asm("adrp %0, %1\n" \
135 "add %0, %0, :lo12:%1\n" \
136 : "=r" (addr) : "S" (&s)); \
137 addr; \
138 })
139
37c43753 140/*
1b44471b
ZY
141 * We currently support using a VM-specified IPA size. For backward
142 * compatibility, the default IPA size is fixed to 40bits.
37c43753 143 */
dbff124e 144#define KVM_PHYS_SHIFT (40)
e55cac5b 145
13ac4bbc 146#define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
e55cac5b
SP
147#define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
148#define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
37c43753 149
865b30cd
SP
150static inline bool kvm_page_empty(void *ptr)
151{
152 struct page *ptr_page = virt_to_page(ptr);
153 return page_count(ptr_page) == 1;
154}
37c43753 155
c0ef6326
SP
156#include <asm/stage2_pgtable.h>
157
c8dddecd 158int create_hyp_mappings(void *from, void *to, pgprot_t prot);
807a3784 159int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
1bb32a44
MZ
160 void __iomem **kaddr,
161 void __iomem **haddr);
dc2e4633
MZ
162int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
163 void **haddr);
37c43753
MZ
164void free_hyp_pgds(void);
165
957db105 166void stage2_unmap_vm(struct kvm *kvm);
37c43753
MZ
167int kvm_alloc_stage2_pgd(struct kvm *kvm);
168void kvm_free_stage2_pgd(struct kvm *kvm);
169int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 170 phys_addr_t pa, unsigned long size, bool writable);
37c43753
MZ
171
172int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
173
174void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
175
176phys_addr_t kvm_mmu_get_httbr(void);
37c43753
MZ
177phys_addr_t kvm_get_idmap_vector(void);
178int kvm_mmu_init(void);
179void kvm_clear_hyp_idmap(void);
180
0db9dd8a
MZ
181#define kvm_mk_pmd(ptep) \
182 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
183#define kvm_mk_pud(pmdp) \
184 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
185#define kvm_mk_pgd(pudp) \
186 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
187
b8e0ba7c
PA
188#define kvm_set_pud(pudp, pud) set_pud(pudp, pud)
189
f8df7338
PA
190#define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
191#define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
b8e0ba7c 192#define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot)
f8df7338 193
eb3f0624
PA
194#define kvm_pud_pfn(pud) pud_pfn(pud)
195
f8df7338 196#define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
b8e0ba7c 197#define kvm_pud_mkhuge(pud) pud_mkhuge(pud)
f8df7338 198
06485053 199static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
37c43753 200{
06485053
CM
201 pte_val(pte) |= PTE_S2_RDWR;
202 return pte;
37c43753
MZ
203}
204
06485053 205static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
ad361f09 206{
06485053
CM
207 pmd_val(pmd) |= PMD_S2_RDWR;
208 return pmd;
ad361f09
CD
209}
210
b8e0ba7c
PA
211static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
212{
213 pud_val(pud) |= PUD_S2_RDWR;
214 return pud;
215}
216
d0e22b4a
MZ
217static inline pte_t kvm_s2pte_mkexec(pte_t pte)
218{
219 pte_val(pte) &= ~PTE_S2_XN;
220 return pte;
221}
222
223static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
224{
225 pmd_val(pmd) &= ~PMD_S2_XN;
226 return pmd;
227}
228
b8e0ba7c
PA
229static inline pud_t kvm_s2pud_mkexec(pud_t pud)
230{
231 pud_val(pud) &= ~PUD_S2_XN;
232 return pud;
233}
234
20a004e7 235static inline void kvm_set_s2pte_readonly(pte_t *ptep)
8199ed0e 236{
0966253d
CM
237 pteval_t old_pteval, pteval;
238
20a004e7 239 pteval = READ_ONCE(pte_val(*ptep));
0966253d
CM
240 do {
241 old_pteval = pteval;
242 pteval &= ~PTE_S2_RDWR;
243 pteval |= PTE_S2_RDONLY;
20a004e7 244 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
0966253d 245 } while (pteval != old_pteval);
8199ed0e
MS
246}
247
20a004e7 248static inline bool kvm_s2pte_readonly(pte_t *ptep)
8199ed0e 249{
20a004e7 250 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
8199ed0e
MS
251}
252
20a004e7 253static inline bool kvm_s2pte_exec(pte_t *ptep)
7a3796d2 254{
20a004e7 255 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
7a3796d2
MZ
256}
257
20a004e7 258static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
8199ed0e 259{
20a004e7 260 kvm_set_s2pte_readonly((pte_t *)pmdp);
8199ed0e
MS
261}
262
20a004e7 263static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
8199ed0e 264{
20a004e7 265 return kvm_s2pte_readonly((pte_t *)pmdp);
38f791a4
CD
266}
267
20a004e7 268static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
7a3796d2 269{
20a004e7 270 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
7a3796d2
MZ
271}
272
4ea5af53
PA
273static inline void kvm_set_s2pud_readonly(pud_t *pudp)
274{
275 kvm_set_s2pte_readonly((pte_t *)pudp);
276}
277
278static inline bool kvm_s2pud_readonly(pud_t *pudp)
279{
280 return kvm_s2pte_readonly((pte_t *)pudp);
281}
282
86d1c55e
PA
283static inline bool kvm_s2pud_exec(pud_t *pudp)
284{
285 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
286}
287
eb3f0624
PA
288static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
289{
290 return pud_mkyoung(pud);
291}
292
35a63966
PA
293static inline bool kvm_s2pud_young(pud_t pud)
294{
295 return pud_young(pud);
296}
297
66f877fa 298#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
38f791a4
CD
299
300#ifdef __PAGETABLE_PMD_FOLDED
66f877fa 301#define hyp_pmd_table_empty(pmdp) (0)
38f791a4 302#else
66f877fa 303#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
38f791a4
CD
304#endif
305
306#ifdef __PAGETABLE_PUD_FOLDED
66f877fa 307#define hyp_pud_table_empty(pudp) (0)
4f853a71 308#else
66f877fa 309#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
4f853a71 310#endif
4f853a71 311
37c43753
MZ
312struct kvm;
313
2d58b733
MZ
314#define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
315
316static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
37c43753 317{
8d404c4c 318 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
2d58b733
MZ
319}
320
17ab9d57 321static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
2d58b733 322{
0d3e4d4f
MZ
323 void *va = page_address(pfn_to_page(pfn));
324
e48d53a9
MZ
325 /*
326 * With FWB, we ensure that the guest always accesses memory using
327 * cacheable attributes, and we don't have to clean to PoC when
328 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
329 * PoU is not required either in this case.
330 */
331 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
332 return;
333
8f36ebaf 334 kvm_flush_dcache_to_poc(va, size);
a15f6939 335}
2d58b733 336
17ab9d57 337static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
a15f6939
MZ
338 unsigned long size)
339{
87da236e 340 if (icache_is_aliasing()) {
37c43753
MZ
341 /* any kind of VIPT cache */
342 __flush_icache_all();
87da236e
WD
343 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
344 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
a15f6939
MZ
345 void *va = page_address(pfn_to_page(pfn));
346
4fee9473
MZ
347 invalidate_icache_range((unsigned long)va,
348 (unsigned long)va + size);
37c43753
MZ
349 }
350}
351
363ef89f
MZ
352static inline void __kvm_flush_dcache_pte(pte_t pte)
353{
e48d53a9
MZ
354 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
355 struct page *page = pte_page(pte);
356 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
357 }
363ef89f
MZ
358}
359
360static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
361{
e48d53a9
MZ
362 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
363 struct page *page = pmd_page(pmd);
364 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
365 }
363ef89f
MZ
366}
367
368static inline void __kvm_flush_dcache_pud(pud_t pud)
369{
e48d53a9
MZ
370 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
371 struct page *page = pud_page(pud);
372 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
373 }
363ef89f
MZ
374}
375
2077be67 376#define kvm_virt_to_phys(x) __pa_symbol(x)
37c43753 377
3c1e7165
MZ
378void kvm_set_way_flush(struct kvm_vcpu *vcpu);
379void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
9d218a1f 380
e4c5a685
AB
381static inline bool __kvm_cpu_uses_extended_idmap(void)
382{
fa2a8445
KM
383 return __cpu_uses_extended_idmap_level();
384}
385
386static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
387{
388 return idmap_ptrs_per_pgd;
e4c5a685
AB
389}
390
19338304
KM
391/*
392 * Can't use pgd_populate here, because the extended idmap adds an extra level
393 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
394 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
395 */
e4c5a685
AB
396static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
397 pgd_t *hyp_pgd,
398 pgd_t *merged_hyp_pgd,
399 unsigned long hyp_idmap_start)
400{
401 int idmap_idx;
75387b92 402 u64 pgd_addr;
e4c5a685
AB
403
404 /*
405 * Use the first entry to access the HYP mappings. It is
406 * guaranteed to be free, otherwise we wouldn't use an
407 * extended idmap.
408 */
409 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
75387b92
KM
410 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
411 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
e4c5a685
AB
412
413 /*
414 * Create another extended level entry that points to the boot HYP map,
415 * which contains an ID mapping of the HYP init code. We essentially
416 * merge the boot and runtime HYP maps by doing so, but they don't
417 * overlap anyway, so this is fine.
418 */
419 idmap_idx = hyp_idmap_start >> VA_BITS;
420 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
75387b92
KM
421 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
422 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
e4c5a685
AB
423}
424
20475f78
VM
425static inline unsigned int kvm_get_vmid_bits(void)
426{
46823dd1 427 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
20475f78 428
28c5dcb2 429 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
20475f78
VM
430}
431
bf308242
AP
432/*
433 * We are not in the kvm->srcu critical section most of the time, so we take
434 * the SRCU read lock here. Since we copy the data from the user page, we
435 * can immediately drop the lock again.
436 */
437static inline int kvm_read_guest_lock(struct kvm *kvm,
438 gpa_t gpa, void *data, unsigned long len)
439{
440 int srcu_idx = srcu_read_lock(&kvm->srcu);
441 int ret = kvm_read_guest(kvm, gpa, data, len);
442
443 srcu_read_unlock(&kvm->srcu, srcu_idx);
444
445 return ret;
446}
447
a6ecfb11
MZ
448static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
449 const void *data, unsigned long len)
450{
451 int srcu_idx = srcu_read_lock(&kvm->srcu);
452 int ret = kvm_write_guest(kvm, gpa, data, len);
453
454 srcu_read_unlock(&kvm->srcu, srcu_idx);
455
456 return ret;
457}
458
dee39247
MZ
459#ifdef CONFIG_KVM_INDIRECT_VECTORS
460/*
461 * EL2 vectors can be mapped and rerouted in a number of ways,
462 * depending on the kernel configuration and CPU present:
463 *
464 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
465 * hardening sequence is placed in one of the vector slots, which is
466 * executed before jumping to the real vectors.
467 *
468 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
469 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
470 * hardening sequence is mapped next to the idmap page, and executed
471 * before jumping to the real vectors.
472 *
473 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
474 * empty slot is selected, mapped next to the idmap page, and
475 * executed before jumping to the real vectors.
476 *
477 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
478 * VHE, as we don't have hypervisor-specific mappings. If the system
479 * is VHE and yet selects this capability, it will be ignored.
480 */
6840bdd7
MZ
481#include <asm/mmu.h>
482
dee39247
MZ
483extern void *__kvm_bp_vect_base;
484extern int __kvm_harden_el2_vector_slot;
485
6840bdd7
MZ
486static inline void *kvm_get_hyp_vector(void)
487{
488 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
dee39247
MZ
489 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
490 int slot = -1;
6840bdd7 491
dee39247
MZ
492 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
493 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
494 slot = data->hyp_vectors_slot;
495 }
6840bdd7 496
dee39247
MZ
497 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
498 vect = __kvm_bp_vect_base;
499 if (slot == -1)
500 slot = __kvm_harden_el2_vector_slot;
6840bdd7
MZ
501 }
502
dee39247
MZ
503 if (slot != -1)
504 vect += slot * SZ_2K;
505
6840bdd7
MZ
506 return vect;
507}
508
dee39247 509/* This is only called on a !VHE system */
6840bdd7
MZ
510static inline int kvm_map_vectors(void)
511{
dee39247
MZ
512 /*
513 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
514 * HEL2 = ARM64_HARDEN_EL2_VECTORS
515 *
516 * !HBP + !HEL2 -> use direct vectors
517 * HBP + !HEL2 -> use hardened vectors in place
518 * !HBP + HEL2 -> allocate one vector slot and use exec mapping
519 * HBP + HEL2 -> use hardened vertors and use exec mapping
520 */
521 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
522 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
523 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
524 }
525
526 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
527 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
528 unsigned long size = (__bp_harden_hyp_vecs_end -
529 __bp_harden_hyp_vecs_start);
530
531 /*
532 * Always allocate a spare vector slot, as we don't
533 * know yet which CPUs have a BP hardening slot that
534 * we can reuse.
535 */
536 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
537 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
538 return create_hyp_exec_mappings(vect_pa, size,
539 &__kvm_bp_vect_base);
540 }
541
4340ba80 542 return 0;
6840bdd7 543}
6840bdd7
MZ
544#else
545static inline void *kvm_get_hyp_vector(void)
546{
3c5e8123 547 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
6840bdd7
MZ
548}
549
550static inline int kvm_map_vectors(void)
551{
552 return 0;
553}
554#endif
555
55e3748e
MZ
556#ifdef CONFIG_ARM64_SSBD
557DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
558
559static inline int hyp_map_aux_data(void)
560{
561 int cpu, err;
562
563 for_each_possible_cpu(cpu) {
564 u64 *ptr;
565
566 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
567 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
568 if (err)
569 return err;
570 }
571 return 0;
572}
573#else
574static inline int hyp_map_aux_data(void)
575{
576 return 0;
577}
578#endif
579
529c4b05
KM
580#define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
581
59558330
SP
582/*
583 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
584 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
585 * 52bit IPS.
586 */
587static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
588{
589 int x = ARM64_VTTBR_X(ipa_shift, levels);
590
591 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
592}
593
594static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
595{
596 unsigned int x = arm64_vttbr_x(ipa_shift, levels);
597
598 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
599}
600
601static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
602{
603 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
604}
605
e329fb75 606static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
ab510027 607{
e329fb75
CD
608 struct kvm_vmid *vmid = &kvm->arch.vmid;
609 u64 vmid_field, baddr;
610 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
611
612 baddr = kvm->arch.pgd_phys;
613 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
614 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
ab510027
VM
615}
616
37c43753
MZ
617#endif /* __ASSEMBLY__ */
618#endif /* __ARM64_KVM_MMU_H__ */