KVM: SVM: Rename vmplX_ssp -> plX_ssp
[linux-2.6-block.git] / arch / arm64 / include / asm / kvm_arm.h
CommitLineData
caab277b 1/* SPDX-License-Identifier: GPL-2.0-only */
0369f6a3
MZ
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
0369f6a3
MZ
5 */
6
7#ifndef __ARM64_KVM_ARM_H__
8#define __ARM64_KVM_ARM_H__
9
6e53031e 10#include <asm/esr.h>
286fb1cc 11#include <asm/memory.h>
af94aad4 12#include <asm/sysreg.h>
0369f6a3
MZ
13#include <asm/types.h>
14
15/* Hyp Configuration Register (HCR) bits */
2d701243
FT
16
17#define HCR_TID5 (UL(1) << 58)
18#define HCR_DCT (UL(1) << 57)
e1f358b5
SP
19#define HCR_ATA_SHIFT 56
20#define HCR_ATA (UL(1) << HCR_ATA_SHIFT)
3ea84b4f
MZ
21#define HCR_TTLBOS (UL(1) << 55)
22#define HCR_TTLBIS (UL(1) << 54)
23#define HCR_ENSCXT (UL(1) << 53)
24#define HCR_TOCU (UL(1) << 52)
2d701243 25#define HCR_AMVOFFEN (UL(1) << 51)
3ea84b4f 26#define HCR_TICAB (UL(1) << 50)
c876c3f1 27#define HCR_TID4 (UL(1) << 49)
2d701243 28#define HCR_FIEN (UL(1) << 47)
e48d53a9 29#define HCR_FWB (UL(1) << 46)
3ea84b4f
MZ
30#define HCR_NV2 (UL(1) << 45)
31#define HCR_AT (UL(1) << 44)
32#define HCR_NV1 (UL(1) << 43)
33#define HCR_NV (UL(1) << 42)
b3669b1e
MR
34#define HCR_API (UL(1) << 41)
35#define HCR_APK (UL(1) << 40)
558daf69
DG
36#define HCR_TEA (UL(1) << 37)
37#define HCR_TERR (UL(1) << 36)
cc33c4e2 38#define HCR_TLOR (UL(1) << 35)
68908bf7 39#define HCR_E2H (UL(1) << 34)
0369f6a3
MZ
40#define HCR_ID (UL(1) << 33)
41#define HCR_CD (UL(1) << 32)
42#define HCR_RW_SHIFT 31
43#define HCR_RW (UL(1) << HCR_RW_SHIFT)
44#define HCR_TRVM (UL(1) << 30)
45#define HCR_HCD (UL(1) << 29)
46#define HCR_TDZ (UL(1) << 28)
47#define HCR_TGE (UL(1) << 27)
48#define HCR_TVM (UL(1) << 26)
49#define HCR_TTLB (UL(1) << 25)
50#define HCR_TPU (UL(1) << 24)
dabb1667 51#define HCR_TPC (UL(1) << 23) /* HCR_TPCP if FEAT_DPB */
0369f6a3 52#define HCR_TSW (UL(1) << 22)
dabb1667 53#define HCR_TACR (UL(1) << 21)
0369f6a3
MZ
54#define HCR_TIDCP (UL(1) << 20)
55#define HCR_TSC (UL(1) << 19)
56#define HCR_TID3 (UL(1) << 18)
57#define HCR_TID2 (UL(1) << 17)
58#define HCR_TID1 (UL(1) << 16)
59#define HCR_TID0 (UL(1) << 15)
60#define HCR_TWE (UL(1) << 14)
61#define HCR_TWI (UL(1) << 13)
62#define HCR_DC (UL(1) << 12)
63#define HCR_BSU (3 << 10)
64#define HCR_BSU_IS (UL(1) << 10)
65#define HCR_FB (UL(1) << 9)
7b17145e 66#define HCR_VSE (UL(1) << 8)
0369f6a3
MZ
67#define HCR_VI (UL(1) << 7)
68#define HCR_VF (UL(1) << 6)
69#define HCR_AMO (UL(1) << 5)
70#define HCR_IMO (UL(1) << 4)
71#define HCR_FMO (UL(1) << 3)
72#define HCR_PTW (UL(1) << 2)
73#define HCR_SWIO (UL(1) << 1)
74#define HCR_VM (UL(1) << 0)
2d701243 75#define HCR_RES0 ((UL(1) << 48) | (UL(1) << 39))
0369f6a3
MZ
76
77/*
78 * The bits we set in HCR:
cc33c4e2 79 * TLOR: Trap LORegion register accesses
ef769e32 80 * RW: 64bit by default, can be overridden for 32bit VMs
dabb1667 81 * TACR: Trap ACTLR
0369f6a3
MZ
82 * TSC: Trap SMC
83 * TSW: Trap cache operations by set/way
d241aac7 84 * TWE: Trap WFE
0369f6a3
MZ
85 * TWI: Trap WFI
86 * TIDCP: Trap L2CTLR/L2ECTLR
87 * BSU_IS: Upgrade barriers to the inner shareable domain
ad14c192 88 * FB: Force broadcast of all maintenance operations
0369f6a3
MZ
89 * AMO: Override CPSR.A and enable signaling with VA
90 * IMO: Override CPSR.I and enable signaling with VI
91 * FMO: Override CPSR.F and enable signaling with VF
92 * SWIO: Turn set/way invalidates into set/way clean+invalidate
71a7f8cb 93 * PTW: Take a stage2 fault if a stage1 walk steps in device memory
fd1264c4 94 * TID3: Trap EL1 reads of group 3 ID registers
8cc6deda 95 * TID2: Trap CTR_EL0, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1
0369f6a3 96 */
d241aac7 97#define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
dabb1667 98 HCR_BSU_IS | HCR_FB | HCR_TACR | \
35a84dec 99 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
c876c3f1 100 HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3)
3b714d24 101#define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
b93c17c4 102#define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
68908bf7 103#define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
0369f6a3 104
e0bb80c6
KM
105#define HCRX_GUEST_FLAGS \
106 (HCRX_EL2_SMPME | HCRX_EL2_TCR2En | \
107 (cpus_have_final_cap(ARM64_HAS_MOPS) ? (HCRX_EL2_MSCEn | HCRX_EL2_MCE2) : 0))
7df71709 108#define HCRX_HOST_FLAGS (HCRX_EL2_MSCEn | HCRX_EL2_TCR2En)
af94aad4 109
0369f6a3 110/* TCR_EL2 Registers bits */
d4fbbb26 111#define TCR_EL2_DS (1UL << 32)
1f80d150 112#define TCR_EL2_RES1 ((1U << 31) | (1 << 23))
a563f759
SP
113#define TCR_EL2_TBI (1 << 20)
114#define TCR_EL2_PS_SHIFT 16
115#define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT)
116#define TCR_EL2_PS_40B (2 << TCR_EL2_PS_SHIFT)
117#define TCR_EL2_TG0_MASK TCR_TG0_MASK
118#define TCR_EL2_SH0_MASK TCR_SH0_MASK
119#define TCR_EL2_ORGN0_MASK TCR_ORGN0_MASK
120#define TCR_EL2_IRGN0_MASK TCR_IRGN0_MASK
121#define TCR_EL2_T0SZ_MASK 0x3f
122#define TCR_EL2_MASK (TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
123 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
0369f6a3 124
0369f6a3 125/* VTCR_EL2 Registers bits */
d4fbbb26 126#define VTCR_EL2_DS TCR_EL2_DS
df655b75 127#define VTCR_EL2_RES1 (1U << 31)
06485053
CM
128#define VTCR_EL2_HD (1 << 22)
129#define VTCR_EL2_HA (1 << 21)
b2df44ff 130#define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT
a563f759
SP
131#define VTCR_EL2_PS_MASK TCR_EL2_PS_MASK
132#define VTCR_EL2_TG0_MASK TCR_TG0_MASK
133#define VTCR_EL2_TG0_4K TCR_TG0_4K
02e0b760 134#define VTCR_EL2_TG0_16K TCR_TG0_16K
a563f759
SP
135#define VTCR_EL2_TG0_64K TCR_TG0_64K
136#define VTCR_EL2_SH0_MASK TCR_SH0_MASK
137#define VTCR_EL2_SH0_INNER TCR_SH0_INNER
138#define VTCR_EL2_ORGN0_MASK TCR_ORGN0_MASK
139#define VTCR_EL2_ORGN0_WBWA TCR_ORGN0_WBWA
140#define VTCR_EL2_IRGN0_MASK TCR_IRGN0_MASK
141#define VTCR_EL2_IRGN0_WBWA TCR_IRGN0_WBWA
142#define VTCR_EL2_SL0_SHIFT 6
143#define VTCR_EL2_SL0_MASK (3 << VTCR_EL2_SL0_SHIFT)
0369f6a3 144#define VTCR_EL2_T0SZ_MASK 0x3f
cb678d60
SP
145#define VTCR_EL2_VS_SHIFT 19
146#define VTCR_EL2_VS_8BIT (0 << VTCR_EL2_VS_SHIFT)
147#define VTCR_EL2_VS_16BIT (1 << VTCR_EL2_VS_SHIFT)
0369f6a3 148
b2df44ff
SP
149#define VTCR_EL2_T0SZ(x) TCR_T0SZ(x)
150
dbff124e
JS
151/*
152 * We configure the Stage-2 page tables to always restrict the IPA space to be
153 * 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are
154 * not known to exist and will break with this configuration.
155 *
315775ff 156 * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
84ed7412 157 *
dbff124e 158 * Note that when using 4K pages, we concatenate two first level page tables
02e0b760 159 * together. With 16K pages, we concatenate 16 first level page tables.
dbff124e 160 *
dbff124e 161 */
acd05010 162
acd05010
SP
163#define VTCR_EL2_COMMON_BITS (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
164 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
165
0369f6a3 166/*
7e813045
SP
167 * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
168 * Interestingly, it depends on the page size.
169 * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
170 *
171 * -----------------------------------------
172 * | Entry level | 4K | 16K/64K |
173 * ------------------------------------------
174 * | Level: 0 | 2 | - |
175 * ------------------------------------------
176 * | Level: 1 | 1 | 2 |
177 * ------------------------------------------
178 * | Level: 2 | 0 | 1 |
179 * ------------------------------------------
180 * | Level: 3 | - | 0 |
181 * ------------------------------------------
182 *
183 * The table roughly translates to :
184 *
185 * SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
186 *
187 * Where TGRAN_SL0_BASE is a magic number depending on the page size:
188 * TGRAN_SL0_BASE(4K) = 2
189 * TGRAN_SL0_BASE(16K) = 3
190 * TGRAN_SL0_BASE(64K) = 3
191 * provided we take care of ruling out the unsupported cases and
192 * Entry_Level = 4 - Number_of_levels.
193 *
0369f6a3 194 */
7e813045
SP
195#ifdef CONFIG_ARM64_64K_PAGES
196
197#define VTCR_EL2_TGRAN VTCR_EL2_TG0_64K
198#define VTCR_EL2_TGRAN_SL0_BASE 3UL
199
02e0b760 200#elif defined(CONFIG_ARM64_16K_PAGES)
7e813045
SP
201
202#define VTCR_EL2_TGRAN VTCR_EL2_TG0_16K
203#define VTCR_EL2_TGRAN_SL0_BASE 3UL
204
02e0b760 205#else /* 4K */
7e813045
SP
206
207#define VTCR_EL2_TGRAN VTCR_EL2_TG0_4K
208#define VTCR_EL2_TGRAN_SL0_BASE 2UL
209
0369f6a3
MZ
210#endif
211
7e813045
SP
212#define VTCR_EL2_LVLS_TO_SL0(levels) \
213 ((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
214#define VTCR_EL2_SL0_TO_LVLS(sl0) \
215 ((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
216#define VTCR_EL2_LVLS(vtcr) \
217 VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
218
219#define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
13ac4bbc
SP
220#define VTCR_EL2_IPA(vtcr) (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
221
59558330
SP
222/*
223 * ARM VMSAv8-64 defines an algorithm for finding the translation table
224 * descriptors in section D4.2.8 in ARM DDI 0487C.a.
225 *
226 * The algorithm defines the expectations on the translation table
227 * addresses for each level, based on PAGE_SIZE, entry level
228 * and the translation table size (T0SZ). The variable "x" in the
229 * algorithm determines the alignment of a table base address at a given
230 * level and thus determines the alignment of VTTBR:BADDR for stage2
231 * page table entry level.
232 * Since the number of bits resolved at the entry level could vary
233 * depending on the T0SZ, the value of "x" is defined based on a
234 * Magic constant for a given PAGE_SIZE and Entry Level. The
235 * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
236 * x = PAGE_SHIFT).
237 *
238 * The value of "x" for entry level is calculated as :
239 * x = Magic_N - T0SZ
240 *
241 * where Magic_N is an integer depending on the page size and the entry
242 * level of the page table as below:
243 *
244 * --------------------------------------------
245 * | Entry level | 4K 16K 64K |
246 * --------------------------------------------
247 * | Level: 0 (4 levels) | 28 | - | - |
248 * --------------------------------------------
249 * | Level: 1 (3 levels) | 37 | 31 | 25 |
250 * --------------------------------------------
251 * | Level: 2 (2 levels) | 46 | 42 | 38 |
252 * --------------------------------------------
253 * | Level: 3 (1 level) | - | 53 | 51 |
254 * --------------------------------------------
255 *
256 * We have a magic formula for the Magic_N below:
257 *
258 * Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
259 *
260 * where Number_of_levels = (4 - Level). We are only interested in the
261 * value for Entry_Level for the stage2 page table.
262 *
263 * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
264 *
265 * x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
266 * = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
267 *
268 * Here is one way to explain the Magic Formula:
269 *
270 * x = log2(Size_of_Entry_Level_Table)
271 *
272 * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
273 * PAGE_SHIFT bits in the PTE, we have :
274 *
275 * Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
276 * = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
277 * where n = number of levels, and since each pointer is 8bytes, we have:
278 *
279 * x = Bits_Entry_Level + 3
280 * = IPA_SHIFT - (PAGE_SHIFT - 3) * n
281 *
282 * The only constraint here is that, we have to find the number of page table
283 * levels for a given IPA size (which we do, see stage2_pt_levels())
284 */
285#define ARM64_VTTBR_X(ipa, levels) ((ipa) - ((levels) * (PAGE_SHIFT - 3)))
acd05010 286
ab510027 287#define VTTBR_CNP_BIT (UL(1))
286fb1cc 288#define VTTBR_VMID_SHIFT (UL(48))
20475f78 289#define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
0369f6a3
MZ
290
291/* Hyp System Trap Register */
0369f6a3
MZ
292#define HSTR_EL2_T(x) (1 << x)
293
edce2292 294/* Hyp Coprocessor Trap Register Shifts */
33c76a0b
MS
295#define CPTR_EL2_TFP_SHIFT 10
296
0369f6a3 297/* Hyp Coprocessor Trap Register */
1f80d150 298#define CPTR_EL2_TCPAC (1U << 31)
4fcdf106 299#define CPTR_EL2_TAM (1 << 30)
0369f6a3 300#define CPTR_EL2_TTA (1 << 20)
b4adc83b 301#define CPTR_EL2_TSM (1 << 12)
33c76a0b 302#define CPTR_EL2_TFP (1 << CPTR_EL2_TFP_SHIFT)
67236564 303#define CPTR_EL2_TZ (1 << 8)
dabb1667 304#define CPTR_NVHE_EL2_RES1 0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */
2d701243
FT
305#define CPTR_NVHE_EL2_RES0 (GENMASK(63, 32) | \
306 GENMASK(29, 21) | \
307 GENMASK(19, 14) | \
308 BIT(11))
0369f6a3
MZ
309
310/* Hyp Debug Configuration Register bits */
a1319260
SP
311#define MDCR_EL2_E2TB_MASK (UL(0x3))
312#define MDCR_EL2_E2TB_SHIFT (UL(24))
2d701243
FT
313#define MDCR_EL2_HPMFZS (UL(1) << 36)
314#define MDCR_EL2_HPMFZO (UL(1) << 29)
315#define MDCR_EL2_MTPME (UL(1) << 28)
316#define MDCR_EL2_TDCC (UL(1) << 27)
53868390 317#define MDCR_EL2_HLP (UL(1) << 26)
2d701243 318#define MDCR_EL2_HCCD (UL(1) << 23)
d6c850dd 319#define MDCR_EL2_TTRF (UL(1) << 19)
2d701243 320#define MDCR_EL2_HPMD (UL(1) << 17)
d6c850dd 321#define MDCR_EL2_TPMS (UL(1) << 14)
f85279b4
WD
322#define MDCR_EL2_E2PB_MASK (UL(0x3))
323#define MDCR_EL2_E2PB_SHIFT (UL(12))
d6c850dd
FT
324#define MDCR_EL2_TDRA (UL(1) << 11)
325#define MDCR_EL2_TDOSA (UL(1) << 10)
326#define MDCR_EL2_TDA (UL(1) << 9)
327#define MDCR_EL2_TDE (UL(1) << 8)
328#define MDCR_EL2_HPME (UL(1) << 7)
329#define MDCR_EL2_TPM (UL(1) << 6)
330#define MDCR_EL2_TPMCR (UL(1) << 5)
331#define MDCR_EL2_HPMN_MASK (UL(0x1F))
2d701243
FT
332#define MDCR_EL2_RES0 (GENMASK(63, 37) | \
333 GENMASK(35, 30) | \
334 GENMASK(25, 24) | \
335 GENMASK(22, 20) | \
336 BIT(18) | \
337 GENMASK(16, 15))
0369f6a3 338
e930694e
MZ
339/*
340 * FGT register definitions
341 *
342 * RES0 and polarity masks as of DDI0487J.a, to be updated as needed.
343 * We're not using the generated masks as they are usually ahead of
344 * the published ARM ARM, which we use as a reference.
345 *
346 * Once we get to a point where the two describe the same thing, we'll
347 * merge the definitions. One day.
348 */
9ff67dd2 349#define __HFGRTR_EL2_RES0 HFGxTR_EL2_RES0
e930694e 350#define __HFGRTR_EL2_MASK GENMASK(49, 0)
5f6bd3f3 351#define __HFGRTR_EL2_nMASK ~(__HFGRTR_EL2_RES0 | __HFGRTR_EL2_MASK)
e930694e 352
9ff67dd2
FT
353/*
354 * The HFGWTR bits are a subset of HFGRTR bits. To ensure we don't miss any
355 * future additions, define __HFGWTR* macros relative to __HFGRTR* ones.
356 */
357#define __HFGRTR_ONLY_MASK (BIT(46) | BIT(42) | BIT(40) | BIT(28) | \
358 GENMASK(26, 25) | BIT(21) | BIT(18) | \
e930694e 359 GENMASK(15, 14) | GENMASK(10, 9) | BIT(2))
9ff67dd2
FT
360#define __HFGWTR_EL2_RES0 (__HFGRTR_EL2_RES0 | __HFGRTR_ONLY_MASK)
361#define __HFGWTR_EL2_MASK (__HFGRTR_EL2_MASK & ~__HFGRTR_ONLY_MASK)
5f6bd3f3 362#define __HFGWTR_EL2_nMASK ~(__HFGWTR_EL2_RES0 | __HFGWTR_EL2_MASK)
9ff67dd2
FT
363
364#define __HFGITR_EL2_RES0 HFGITR_EL2_RES0
fc04838f 365#define __HFGITR_EL2_MASK (BIT(62) | BIT(60) | GENMASK(54, 0))
5f6bd3f3 366#define __HFGITR_EL2_nMASK ~(__HFGITR_EL2_RES0 | __HFGITR_EL2_MASK)
039f9f12 367
9ff67dd2 368#define __HDFGRTR_EL2_RES0 HDFGRTR_EL2_RES0
fc04838f
FT
369#define __HDFGRTR_EL2_MASK (BIT(63) | GENMASK(58, 50) | GENMASK(48, 43) | \
370 GENMASK(41, 40) | GENMASK(37, 22) | \
371 GENMASK(19, 9) | GENMASK(7, 0))
5f6bd3f3 372#define __HDFGRTR_EL2_nMASK ~(__HDFGRTR_EL2_RES0 | __HDFGRTR_EL2_MASK)
d0be0b2e 373
9ff67dd2 374#define __HDFGWTR_EL2_RES0 HDFGWTR_EL2_RES0
fc04838f
FT
375#define __HDFGWTR_EL2_MASK (GENMASK(57, 52) | GENMASK(50, 48) | \
376 GENMASK(46, 44) | GENMASK(42, 41) | \
377 GENMASK(37, 35) | GENMASK(33, 31) | \
378 GENMASK(29, 23) | GENMASK(21, 10) | \
379 GENMASK(8, 7) | GENMASK(5, 0))
5f6bd3f3 380#define __HDFGWTR_EL2_nMASK ~(__HDFGWTR_EL2_RES0 | __HDFGWTR_EL2_MASK)
d0be0b2e 381
9ff67dd2 382#define __HAFGRTR_EL2_RES0 HAFGRTR_EL2_RES0
f9d6ed02 383#define __HAFGRTR_EL2_MASK (GENMASK(49, 17) | GENMASK(4, 0))
5f6bd3f3 384#define __HAFGRTR_EL2_nMASK ~(__HAFGRTR_EL2_RES0 | __HAFGRTR_EL2_MASK)
d0be0b2e 385
03fb54d0 386/* Similar definitions for HCRX_EL2 */
9ff67dd2 387#define __HCRX_EL2_RES0 HCRX_EL2_RES0
fc04838f 388#define __HCRX_EL2_MASK (BIT(6))
5f6bd3f3 389#define __HCRX_EL2_nMASK ~(__HCRX_EL2_RES0 | __HCRX_EL2_MASK)
03fb54d0 390
0369f6a3 391/* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
286fb1cc 392#define HPFAR_MASK (~UL(0xf))
bc1d7de8
SP
393/*
394 * We have
395 * PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12]
396 * HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12]
a0d37784
RR
397 *
398 * Always assume 52 bit PA since at this point, we don't know how many PA bits
399 * the page table has been set up for. This should be safe since unused address
400 * bits in PAR are res0.
bc1d7de8
SP
401 */
402#define PAR_TO_HPFAR(par) \
a0d37784 403 (((par) & GENMASK_ULL(52 - 1, 12)) >> 8)
0369f6a3 404
b5905dc1
CD
405#define ECN(x) { ESR_ELx_EC_##x, #x }
406
407#define kvm_arm_exception_class \
408 ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
6701c619
ZY
409 ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
410 ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
411 ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
412 ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
b5905dc1
CD
413 ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
414 ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
415 ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
6898a55c 416 ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET)
b5905dc1 417
75c76ab5 418#define CPACR_EL1_TTA (1 << 28)
32876224 419
47f3a2fc
JL
420#define kvm_mode_names \
421 { PSR_MODE_EL0t, "EL0t" }, \
422 { PSR_MODE_EL1t, "EL1t" }, \
423 { PSR_MODE_EL1h, "EL1h" }, \
424 { PSR_MODE_EL2t, "EL2t" }, \
425 { PSR_MODE_EL2h, "EL2h" }, \
426 { PSR_MODE_EL3t, "EL3t" }, \
427 { PSR_MODE_EL3h, "EL3h" }, \
428 { PSR_AA32_MODE_USR, "32-bit USR" }, \
429 { PSR_AA32_MODE_FIQ, "32-bit FIQ" }, \
430 { PSR_AA32_MODE_IRQ, "32-bit IRQ" }, \
431 { PSR_AA32_MODE_SVC, "32-bit SVC" }, \
432 { PSR_AA32_MODE_ABT, "32-bit ABT" }, \
433 { PSR_AA32_MODE_HYP, "32-bit HYP" }, \
434 { PSR_AA32_MODE_UND, "32-bit UND" }, \
435 { PSR_AA32_MODE_SYS, "32-bit SYS" }
436
0369f6a3 437#endif /* __ARM64_KVM_ARM_H__ */