arm64/sysreg: Fix typo in SCTR_EL1.SPINTMASK
[linux-block.git] / arch / arm64 / Kconfig
CommitLineData
ec8f24b7 1# SPDX-License-Identifier: GPL-2.0-only
8c2c3df3
CM
2config ARM64
3 def_bool y
b6197b93 4 select ACPI_CCA_REQUIRED if ACPI
d8f4f161 5 select ACPI_GENERIC_GSI if ACPI
5f1ae4eb 6 select ACPI_GTDT if ACPI
c6bb8f89 7 select ACPI_IORT if ACPI
6933de0c 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI
52146173 9 select ACPI_MCFG if (ACPI && PCI)
888125a7 10 select ACPI_SPCR_TABLE if ACPI
0ce82232 11 select ACPI_PPTT if ACPI
09587a09 12 select ARCH_HAS_DEBUG_WX
6dd8b1a0 13 select ARCH_BINFMT_ELF_EXTRA_PHDRS
ab7876a9 14 select ARCH_BINFMT_ELF_STATE
cd9bc2c9 15 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
1e866974 16 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
91024b3c
AK
17 select ARCH_ENABLE_MEMORY_HOTPLUG
18 select ARCH_ENABLE_MEMORY_HOTREMOVE
66f24fa7 19 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
1e866974 20 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
c2280be8 21 select ARCH_HAS_CACHE_LINE_SIZE
2792d84e 22 select ARCH_HAS_CURRENT_STACK_POINTER
ec6d06ef 23 select ARCH_HAS_DEBUG_VIRTUAL
399145f9 24 select ARCH_HAS_DEBUG_VM_PGTABLE
13bf5ced 25 select ARCH_HAS_DMA_PREP_COHERENT
38b04a74 26 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
e75bef2a 27 select ARCH_HAS_FAST_MULTIPLIER
6974f0c4 28 select ARCH_HAS_FORTIFY_SOURCE
957e3fac 29 select ARCH_HAS_GCOV_PROFILE_ALL
4eb0716e 30 select ARCH_HAS_GIGANTIC_PAGE
5e4c7549 31 select ARCH_HAS_KCOV
d8ae8a37 32 select ARCH_HAS_KEEPINITRD
f1e3a12b 33 select ARCH_HAS_MEMBARRIER_SYNC_CORE
0ebeea8c 34 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
73b20c84 35 select ARCH_HAS_PTE_DEVMAP
3010a5ea 36 select ARCH_HAS_PTE_SPECIAL
347cb6af 37 select ARCH_HAS_SETUP_DMA_OPS
4739d53f 38 select ARCH_HAS_SET_DIRECT_MAP
d2852a22 39 select ARCH_HAS_SET_MEMORY
5fc57df2 40 select ARCH_STACKWALK
ad21fc4f
LA
41 select ARCH_HAS_STRICT_KERNEL_RWX
42 select ARCH_HAS_STRICT_MODULE_RWX
886643b7
CH
43 select ARCH_HAS_SYNC_DMA_FOR_DEVICE
44 select ARCH_HAS_SYNC_DMA_FOR_CPU
4378a7d4 45 select ARCH_HAS_SYSCALL_WRAPPER
dc2acded 46 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
1f85008e 47 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
63703f37 48 select ARCH_HAS_ZONE_DMA_SET if EXPERT
ab7876a9 49 select ARCH_HAVE_ELF_PROT
396a5d4a 50 select ARCH_HAVE_NMI_SAFE_CMPXCHG
d593d64f 51 select ARCH_HAVE_TRACE_MMIO_ACCESS
7ef858da
TG
52 select ARCH_INLINE_READ_LOCK if !PREEMPTION
53 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
54 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
55 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
56 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
57 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
58 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
59 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
60 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
61 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
62 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
63 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
64 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
65 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
66 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
67 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
68 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
69 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
70 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
71 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
72 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
73 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
74 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
75 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
76 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
77 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
350e88ba 78 select ARCH_KEEP_MEMBLOCK
c63c8700 79 select ARCH_USE_CMPXCHG_LOCKREF
bf7f15c5 80 select ARCH_USE_GNU_PROPERTY
dce44566 81 select ARCH_USE_MEMTEST
087133ac 82 select ARCH_USE_QUEUED_RWLOCKS
c1109047 83 select ARCH_USE_QUEUED_SPINLOCKS
50479d58 84 select ARCH_USE_SYM_ANNOTATIONS
5d6ad668 85 select ARCH_SUPPORTS_DEBUG_PAGEALLOC
855f9a8e 86 select ARCH_SUPPORTS_HUGETLBFS
c484f256 87 select ARCH_SUPPORTS_MEMORY_FAILURE
5287569a 88 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
112b6a8e
ST
89 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
90 select ARCH_SUPPORTS_LTO_CLANG_THIN
9186ad8e 91 select ARCH_SUPPORTS_CFI_CLANG
4badad35 92 select ARCH_SUPPORTS_ATOMIC_RMW
42a7ba16 93 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
56166230 94 select ARCH_SUPPORTS_NUMA_BALANCING
42b25471 95 select ARCH_SUPPORTS_PAGE_TABLE_CHECK
84c187af 96 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
81c22041 97 select ARCH_WANT_DEFAULT_BPF_JIT
67f3977f 98 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
b6f35981 99 select ARCH_WANT_FRAME_POINTERS
3876d4a3 100 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
47010c04 101 select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
59612b24 102 select ARCH_WANT_LD_ORPHAN_WARN
51c2ee6d 103 select ARCH_WANTS_NO_INSTR
d0637c50 104 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
f0b7f8a4 105 select ARCH_HAS_UBSAN_SANITIZE_ALL
25c92a37 106 select ARM_AMBA
1aee5d7a 107 select ARM_ARCH_TIMER
c4188edc 108 select ARM_GIC
875cbf3e 109 select AUDIT_ARCH_COMPAT_GENERIC
3ee80364 110 select ARM_GIC_V2M if PCI
021f6537 111 select ARM_GIC_V3
3ee80364 112 select ARM_GIC_V3_ITS if PCI
bff60792 113 select ARM_PSCI_FW
10916706 114 select BUILDTIME_TABLE_SORT
db2789b5 115 select CLONE_BACKWARDS
7ca2ef33 116 select COMMON_CLK
166936ba 117 select CPU_PM if (SUSPEND || CPU_IDLE)
7481cddf 118 select CRC32
7bc13fd3 119 select DCACHE_WORD_ACCESS
0c3b3171 120 select DMA_DIRECT_REMAP
ef37566c 121 select EDAC_SUPPORT
2f34f173 122 select FRAME_POINTER
d4932f9e 123 select GENERIC_ALLOCATOR
2ef7a295 124 select GENERIC_ARCH_TOPOLOGY
4b3dc967 125 select GENERIC_CLOCKEVENTS_BROADCAST
3be1a5c4 126 select GENERIC_CPU_AUTOPROBE
61ae1321 127 select GENERIC_CPU_VULNERABILITIES
bf4b558e 128 select GENERIC_EARLY_IOREMAP
2314ee4d 129 select GENERIC_IDLE_POLL_SETUP
f23eab0b 130 select GENERIC_IOREMAP
d3afc7f1 131 select GENERIC_IRQ_IPI
8c2c3df3
CM
132 select GENERIC_IRQ_PROBE
133 select GENERIC_IRQ_SHOW
6544e67b 134 select GENERIC_IRQ_SHOW_LEVEL
6585bd82 135 select GENERIC_LIB_DEVMEM_IS_ALLOWED
cb61f676 136 select GENERIC_PCI_IOMAP
102f45fd 137 select GENERIC_PTDUMP
65cd4f6c 138 select GENERIC_SCHED_CLOCK
8c2c3df3
CM
139 select GENERIC_SMP_IDLE_THREAD
140 select GENERIC_TIME_VSYSCALL
28b1a824 141 select GENERIC_GETTIMEOFDAY
9614cc57 142 select GENERIC_VDSO_TIME_NS
8c2c3df3 143 select HARDIRQS_SW_RESEND
45544eee 144 select HAVE_MOVE_PMD
f5308c89 145 select HAVE_MOVE_PUD
eb01d42a 146 select HAVE_PCI
9f9a35a7 147 select HAVE_ACPI_APEI if (ACPI && EFI)
5284e1b4 148 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
875cbf3e 149 select HAVE_ARCH_AUDITSYSCALL
8e7a4cef 150 select HAVE_ARCH_BITREVERSE
689eae42 151 select HAVE_ARCH_COMPILER_H
e9207223 152 select HAVE_ARCH_HUGE_VMALLOC
324420bf 153 select HAVE_ARCH_HUGE_VMAP
9732cafd 154 select HAVE_ARCH_JUMP_LABEL
c296146c 155 select HAVE_ARCH_JUMP_LABEL_RELATIVE
e17d8025 156 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
71b613fc 157 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
2d4acb90 158 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
94ab5b61 159 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
dd03762a
KW
160 # Some instrumentation may be unsound, hence EXPERT
161 select HAVE_ARCH_KCSAN if EXPERT
840b2398 162 select HAVE_ARCH_KFENCE
9529247d 163 select HAVE_ARCH_KGDB
8f0d3aa9
DC
164 select HAVE_ARCH_MMAP_RND_BITS
165 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
271ca788 166 select HAVE_ARCH_PREL32_RELOCATIONS
70918779 167 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
a1ae65b2 168 select HAVE_ARCH_SECCOMP_FILTER
0b3e3366 169 select HAVE_ARCH_STACKLEAK
9e8084d3 170 select HAVE_ARCH_THREAD_STRUCT_WHITELIST
8c2c3df3 171 select HAVE_ARCH_TRACEHOOK
8ee70879 172 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
e3067861 173 select HAVE_ARCH_VMAP_STACK
8ee70879 174 select HAVE_ARM_SMCCC
2ff2b7ec 175 select HAVE_ASM_MODVERSIONS
6077776b 176 select HAVE_EBPF_JIT
af64d2aa 177 select HAVE_C_RECORDMCOUNT
5284e1b4 178 select HAVE_CMPXCHG_DOUBLE
95eff6b2 179 select HAVE_CMPXCHG_LOCAL
24a9c541 180 select HAVE_CONTEXT_TRACKING_USER
b69ec42b 181 select HAVE_DEBUG_KMEMLEAK
6ac2104d 182 select HAVE_DMA_CONTIGUOUS
bd7d38db 183 select HAVE_DYNAMIC_FTRACE
a31d793d
ST
184 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
185 if DYNAMIC_FTRACE_WITH_REGS
50afc33a 186 select HAVE_EFFICIENT_UNALIGNED_ACCESS
67a929e0 187 select HAVE_FAST_GUP
af64d2aa 188 select HAVE_FTRACE_MCOUNT_RECORD
819e50e2 189 select HAVE_FUNCTION_TRACER
42d038c4 190 select HAVE_FUNCTION_ERROR_INJECTION
819e50e2 191 select HAVE_FUNCTION_GRAPH_TRACER
6b90bd4b 192 select HAVE_GCC_PLUGINS
8c2c3df3 193 select HAVE_HW_BREAKPOINT if PERF_EVENTS
893dea9c 194 select HAVE_IOREMAP_PROT
24da208d 195 select HAVE_IRQ_TIME_ACCOUNTING
e26bb75a 196 select HAVE_KVM
396a5d4a 197 select HAVE_NMI
55834a77 198 select HAVE_PATA_PLATFORM
8c2c3df3 199 select HAVE_PERF_EVENTS
2ee0d7fd
JP
200 select HAVE_PERF_REGS
201 select HAVE_PERF_USER_STACK_DUMP
1b2d3451 202 select HAVE_PREEMPT_DYNAMIC_KEY
0a8ea52c 203 select HAVE_REGS_AND_STACK_ACCESS_API
a68773bd 204 select HAVE_POSIX_CPU_TIMERS_TASK_WORK
a823c35f 205 select HAVE_FUNCTION_ARG_ACCESS_API
ff2e6d72 206 select MMU_GATHER_RCU_TABLE_FREE
409d5db4 207 select HAVE_RSEQ
d148eac0 208 select HAVE_STACKPROTECTOR
055b1212 209 select HAVE_SYSCALL_TRACEPOINTS
2dd0e8d2 210 select HAVE_KPROBES
cd1ee3b1 211 select HAVE_KRETPROBES
28b1a824 212 select HAVE_GENERIC_VDSO
876945db 213 select IOMMU_DMA if IOMMU_SUPPORT
8c2c3df3 214 select IRQ_DOMAIN
e8557d1f 215 select IRQ_FORCED_THREADING
f6f37d93 216 select KASAN_VMALLOC if KASAN
fea2acaa 217 select MODULES_USE_ELF_RELA
f616ab59 218 select NEED_DMA_MAP_STATE
86596f0a 219 select NEED_SG_DMA_LENGTH
8c2c3df3
CM
220 select OF
221 select OF_EARLY_FLATTREE
2eac9c2d 222 select PCI_DOMAINS_GENERIC if PCI
52146173 223 select PCI_ECAM if (ACPI && PCI)
20f1b79d 224 select PCI_SYSCALL if PCI
aa1e8ec1
CM
225 select POWER_RESET
226 select POWER_SUPPLY
8c2c3df3 227 select SPARSE_IRQ
09230cbc 228 select SWIOTLB
7ac57a89 229 select SYSCTL_EXCEPTION_TRACE
c02433dd 230 select THREAD_INFO_IN_TASK
7677f7fd 231 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
4aae683f 232 select TRACE_IRQFLAGS_SUPPORT
3381da25 233 select TRACE_IRQFLAGS_NMI_SUPPORT
8eb858c4 234 select HAVE_SOFTIRQ_ON_OWN_STACK
8c2c3df3
CM
235 help
236 ARM 64-bit (AArch64) Linux support.
237
45bd8951
NC
238config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
239 def_bool CC_IS_CLANG
240 # https://github.com/ClangBuiltLinux/linux/issues/1507
241 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
242 select HAVE_DYNAMIC_FTRACE_WITH_REGS
243
244config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
245 def_bool CC_IS_GCC
246 depends on $(cc-option,-fpatchable-function-entry=2)
247 select HAVE_DYNAMIC_FTRACE_WITH_REGS
248
8c2c3df3
CM
249config 64BIT
250 def_bool y
251
8c2c3df3
CM
252config MMU
253 def_bool y
254
030c4d24
MR
255config ARM64_PAGE_SHIFT
256 int
257 default 16 if ARM64_64K_PAGES
258 default 14 if ARM64_16K_PAGES
259 default 12
260
c0d6de32 261config ARM64_CONT_PTE_SHIFT
030c4d24
MR
262 int
263 default 5 if ARM64_64K_PAGES
264 default 7 if ARM64_16K_PAGES
265 default 4
266
e6765941
GS
267config ARM64_CONT_PMD_SHIFT
268 int
269 default 5 if ARM64_64K_PAGES
270 default 5 if ARM64_16K_PAGES
271 default 4
272
8f0d3aa9 273config ARCH_MMAP_RND_BITS_MIN
3cb7e662
JH
274 default 14 if ARM64_64K_PAGES
275 default 16 if ARM64_16K_PAGES
276 default 18
8f0d3aa9
DC
277
278# max bits determined by the following formula:
279# VA_BITS - PAGE_SHIFT - 3
280config ARCH_MMAP_RND_BITS_MAX
3cb7e662
JH
281 default 19 if ARM64_VA_BITS=36
282 default 24 if ARM64_VA_BITS=39
283 default 27 if ARM64_VA_BITS=42
284 default 30 if ARM64_VA_BITS=47
285 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
286 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
287 default 33 if ARM64_VA_BITS=48
288 default 14 if ARM64_64K_PAGES
289 default 16 if ARM64_16K_PAGES
290 default 18
8f0d3aa9
DC
291
292config ARCH_MMAP_RND_COMPAT_BITS_MIN
3cb7e662
JH
293 default 7 if ARM64_64K_PAGES
294 default 9 if ARM64_16K_PAGES
295 default 11
8f0d3aa9
DC
296
297config ARCH_MMAP_RND_COMPAT_BITS_MAX
3cb7e662 298 default 16
8f0d3aa9 299
ce816fa8 300config NO_IOPORT_MAP
d1e6dc91 301 def_bool y if !PCI
8c2c3df3
CM
302
303config STACKTRACE_SUPPORT
304 def_bool y
305
bf0c4e04
JVS
306config ILLEGAL_POINTER_VALUE
307 hex
308 default 0xdead000000000000
309
8c2c3df3
CM
310config LOCKDEP_SUPPORT
311 def_bool y
312
9fb7410f
DM
313config GENERIC_BUG
314 def_bool y
315 depends on BUG
316
317config GENERIC_BUG_RELATIVE_POINTERS
318 def_bool y
319 depends on GENERIC_BUG
320
8c2c3df3
CM
321config GENERIC_HWEIGHT
322 def_bool y
323
324config GENERIC_CSUM
3cb7e662 325 def_bool y
8c2c3df3
CM
326
327config GENERIC_CALIBRATE_DELAY
328 def_bool y
329
ca6e51d5
OS
330config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
331 def_bool y
332
4b3dc967
WD
333config SMP
334 def_bool y
335
4cfb3613
AB
336config KERNEL_MODE_NEON
337 def_bool y
338
92cc15fc
RH
339config FIX_EARLYCON_MEM
340 def_bool y
341
9f25e6ad
KS
342config PGTABLE_LEVELS
343 int
21539939 344 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
9f25e6ad 345 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
b6d00d47 346 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
9f25e6ad 347 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
44eaacf1
SP
348 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
349 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
9f25e6ad 350
9842ceae
PA
351config ARCH_SUPPORTS_UPROBES
352 def_bool y
353
8f360948
AB
354config ARCH_PROC_KCORE_TEXT
355 def_bool y
356
8bf9284d
VM
357config BROKEN_GAS_INST
358 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
359
6bd1d0be
SC
360config KASAN_SHADOW_OFFSET
361 hex
0fea6e9a 362 depends on KASAN_GENERIC || KASAN_SW_TAGS
f4693c27
AB
363 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
364 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
365 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
366 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
367 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
368 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
369 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
370 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
371 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
372 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
6bd1d0be
SC
373 default 0xffffffffffffffff
374
6a377491 375source "arch/arm64/Kconfig.platforms"
8c2c3df3 376
8c2c3df3
CM
377menu "Kernel Features"
378
c0a01b84
AP
379menu "ARM errata workarounds via the alternatives framework"
380
c9460dcb 381config ARM64_WORKAROUND_CLEAN_CACHE
bc15cf70 382 bool
c9460dcb 383
c0a01b84
AP
384config ARM64_ERRATUM_826319
385 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
386 default y
c9460dcb 387 select ARM64_WORKAROUND_CLEAN_CACHE
c0a01b84
AP
388 help
389 This option adds an alternative code sequence to work around ARM
390 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
391 AXI master interface and an L2 cache.
392
393 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
394 and is unable to accept a certain write via this interface, it will
395 not progress on read data presented on the read data channel and the
396 system can deadlock.
397
398 The workaround promotes data cache clean instructions to
399 data cache clean-and-invalidate.
400 Please note that this does not necessarily enable the workaround,
401 as it depends on the alternative framework, which will only patch
402 the kernel if an affected CPU is detected.
403
404 If unsure, say Y.
405
406config ARM64_ERRATUM_827319
407 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
408 default y
c9460dcb 409 select ARM64_WORKAROUND_CLEAN_CACHE
c0a01b84
AP
410 help
411 This option adds an alternative code sequence to work around ARM
412 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
413 master interface and an L2 cache.
414
415 Under certain conditions this erratum can cause a clean line eviction
416 to occur at the same time as another transaction to the same address
417 on the AMBA 5 CHI interface, which can cause data corruption if the
418 interconnect reorders the two transactions.
419
420 The workaround promotes data cache clean instructions to
421 data cache clean-and-invalidate.
422 Please note that this does not necessarily enable the workaround,
423 as it depends on the alternative framework, which will only patch
424 the kernel if an affected CPU is detected.
425
426 If unsure, say Y.
427
428config ARM64_ERRATUM_824069
429 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
430 default y
c9460dcb 431 select ARM64_WORKAROUND_CLEAN_CACHE
c0a01b84
AP
432 help
433 This option adds an alternative code sequence to work around ARM
434 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
435 to a coherent interconnect.
436
437 If a Cortex-A53 processor is executing a store or prefetch for
438 write instruction at the same time as a processor in another
439 cluster is executing a cache maintenance operation to the same
440 address, then this erratum might cause a clean cache line to be
441 incorrectly marked as dirty.
442
443 The workaround promotes data cache clean instructions to
444 data cache clean-and-invalidate.
445 Please note that this option does not necessarily enable the
446 workaround, as it depends on the alternative framework, which will
447 only patch the kernel if an affected CPU is detected.
448
449 If unsure, say Y.
450
451config ARM64_ERRATUM_819472
452 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
453 default y
c9460dcb 454 select ARM64_WORKAROUND_CLEAN_CACHE
c0a01b84
AP
455 help
456 This option adds an alternative code sequence to work around ARM
457 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
458 present when it is connected to a coherent interconnect.
459
460 If the processor is executing a load and store exclusive sequence at
461 the same time as a processor in another cluster is executing a cache
462 maintenance operation to the same address, then this erratum might
463 cause data corruption.
464
465 The workaround promotes data cache clean instructions to
466 data cache clean-and-invalidate.
467 Please note that this does not necessarily enable the workaround,
468 as it depends on the alternative framework, which will only patch
469 the kernel if an affected CPU is detected.
470
471 If unsure, say Y.
472
473config ARM64_ERRATUM_832075
474 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
475 default y
476 help
477 This option adds an alternative code sequence to work around ARM
478 erratum 832075 on Cortex-A57 parts up to r1p2.
479
480 Affected Cortex-A57 parts might deadlock when exclusive load/store
481 instructions to Write-Back memory are mixed with Device loads.
482
483 The workaround is to promote device loads to use Load-Acquire
484 semantics.
485 Please note that this does not necessarily enable the workaround,
498cd5c3
MZ
486 as it depends on the alternative framework, which will only patch
487 the kernel if an affected CPU is detected.
488
489 If unsure, say Y.
490
491config ARM64_ERRATUM_834220
492 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
493 depends on KVM
494 default y
495 help
496 This option adds an alternative code sequence to work around ARM
497 erratum 834220 on Cortex-A57 parts up to r1p2.
498
499 Affected Cortex-A57 parts might report a Stage 2 translation
500 fault as the result of a Stage 1 fault for load crossing a
501 page boundary when there is a permission or device memory
502 alignment fault at Stage 1 and a translation fault at Stage 2.
503
504 The workaround is to verify that the Stage 1 translation
505 doesn't generate a fault before handling the Stage 2 fault.
506 Please note that this does not necessarily enable the workaround,
c0a01b84
AP
507 as it depends on the alternative framework, which will only patch
508 the kernel if an affected CPU is detected.
509
510 If unsure, say Y.
511
44b3834b
JM
512config ARM64_ERRATUM_1742098
513 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
514 depends on COMPAT
515 default y
516 help
517 This option removes the AES hwcap for aarch32 user-space to
518 workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
519
520 Affected parts may corrupt the AES state if an interrupt is
521 taken between a pair of AES instructions. These instructions
522 are only present if the cryptography extensions are present.
523 All software should have a fallback implementation for CPUs
524 that don't implement the cryptography extensions.
525
526 If unsure, say Y.
527
905e8c5d
WD
528config ARM64_ERRATUM_845719
529 bool "Cortex-A53: 845719: a load might read incorrect data"
530 depends on COMPAT
531 default y
532 help
533 This option adds an alternative code sequence to work around ARM
534 erratum 845719 on Cortex-A53 parts up to r0p4.
535
536 When running a compat (AArch32) userspace on an affected Cortex-A53
537 part, a load at EL0 from a virtual address that matches the bottom 32
538 bits of the virtual address used by a recent load at (AArch64) EL1
539 might return incorrect data.
540
541 The workaround is to write the contextidr_el1 register on exception
542 return to a 32-bit task.
543 Please note that this does not necessarily enable the workaround,
544 as it depends on the alternative framework, which will only patch
545 the kernel if an affected CPU is detected.
546
547 If unsure, say Y.
548
df057cc7
WD
549config ARM64_ERRATUM_843419
550 bool "Cortex-A53: 843419: A load or store might access an incorrect address"
df057cc7 551 default y
a257e025 552 select ARM64_MODULE_PLTS if MODULES
df057cc7 553 help
6ffe9923 554 This option links the kernel with '--fix-cortex-a53-843419' and
a257e025
AB
555 enables PLT support to replace certain ADRP instructions, which can
556 cause subsequent memory accesses to use an incorrect address on
557 Cortex-A53 parts up to r0p4.
df057cc7
WD
558
559 If unsure, say Y.
560
987fdfec
MY
561config ARM64_LD_HAS_FIX_ERRATUM_843419
562 def_bool $(ld-option,--fix-cortex-a53-843419)
563
ece1397c
SP
564config ARM64_ERRATUM_1024718
565 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
566 default y
567 help
bc15cf70 568 This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
ece1397c 569
c0b15c25 570 Affected Cortex-A55 cores (all revisions) could cause incorrect
ece1397c 571 update of the hardware dirty bit when the DBM/AP bits are updated
bc15cf70 572 without a break-before-make. The workaround is to disable the usage
ece1397c 573 of hardware DBM locally on the affected cores. CPUs not affected by
bc15cf70 574 this erratum will continue to use the feature.
df057cc7
WD
575
576 If unsure, say Y.
577
a5325089 578config ARM64_ERRATUM_1418040
6989303a 579 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
95b861a4 580 default y
c2b5bba3 581 depends on COMPAT
95b861a4 582 help
24cf262d 583 This option adds a workaround for ARM Cortex-A76/Neoverse-N1
a5325089 584 errata 1188873 and 1418040.
95b861a4 585
a5325089 586 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
6989303a
MZ
587 cause register corruption when accessing the timer registers
588 from AArch32 userspace.
95b861a4
MZ
589
590 If unsure, say Y.
591
02ab1f50 592config ARM64_WORKAROUND_SPECULATIVE_AT
e85d68fa
SP
593 bool
594
a457b0f7 595config ARM64_ERRATUM_1165522
02ab1f50 596 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
a457b0f7 597 default y
02ab1f50 598 select ARM64_WORKAROUND_SPECULATIVE_AT
a457b0f7 599 help
bc15cf70 600 This option adds a workaround for ARM Cortex-A76 erratum 1165522.
a457b0f7
MZ
601
602 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
603 corrupted TLBs by speculating an AT instruction during a guest
604 context switch.
605
606 If unsure, say Y.
607
02ab1f50
AS
608config ARM64_ERRATUM_1319367
609 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
610 default y
611 select ARM64_WORKAROUND_SPECULATIVE_AT
612 help
613 This option adds work arounds for ARM Cortex-A57 erratum 1319537
614 and A72 erratum 1319367
615
616 Cortex-A57 and A72 cores could end-up with corrupted TLBs by
617 speculating an AT instruction during a guest context switch.
618
619 If unsure, say Y.
620
275fa0ea 621config ARM64_ERRATUM_1530923
02ab1f50 622 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
275fa0ea 623 default y
02ab1f50 624 select ARM64_WORKAROUND_SPECULATIVE_AT
275fa0ea
SP
625 help
626 This option adds a workaround for ARM Cortex-A55 erratum 1530923.
627
628 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
629 corrupted TLBs by speculating an AT instruction during a guest
630 context switch.
631
632 If unsure, say Y.
a457b0f7 633
ebcea694
GU
634config ARM64_WORKAROUND_REPEAT_TLBI
635 bool
636
ce8c80c5
CM
637config ARM64_ERRATUM_1286807
638 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
639 default y
640 select ARM64_WORKAROUND_REPEAT_TLBI
641 help
bc15cf70 642 This option adds a workaround for ARM Cortex-A76 erratum 1286807.
ce8c80c5
CM
643
644 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
645 address for a cacheable mapping of a location is being
646 accessed by a core while another core is remapping the virtual
647 address to a new physical page using the recommended
648 break-before-make sequence, then under very rare circumstances
649 TLBI+DSB completes before a read using the translation being
650 invalidated has been observed by other observers. The
651 workaround repeats the TLBI+DSB operation.
652
969f5ea6
WD
653config ARM64_ERRATUM_1463225
654 bool "Cortex-A76: Software Step might prevent interrupt recognition"
655 default y
656 help
657 This option adds a workaround for Arm Cortex-A76 erratum 1463225.
658
659 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
660 of a system call instruction (SVC) can prevent recognition of
661 subsequent interrupts when software stepping is disabled in the
662 exception handler of the system call and either kernel debugging
663 is enabled or VHE is in use.
664
665 Work around the erratum by triggering a dummy step exception
666 when handling a system call from a task that is being stepped
667 in a VHE configuration of the kernel.
668
669 If unsure, say Y.
670
05460849
JM
671config ARM64_ERRATUM_1542419
672 bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
673 default y
674 help
675 This option adds a workaround for ARM Neoverse-N1 erratum
676 1542419.
677
678 Affected Neoverse-N1 cores could execute a stale instruction when
679 modified by another CPU. The workaround depends on a firmware
680 counterpart.
681
682 Workaround the issue by hiding the DIC feature from EL0. This
683 forces user-space to perform cache maintenance.
684
685 If unsure, say Y.
686
96d389ca
RH
687config ARM64_ERRATUM_1508412
688 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
689 default y
690 help
691 This option adds a workaround for Arm Cortex-A77 erratum 1508412.
692
693 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
694 of a store-exclusive or read of PAR_EL1 and a load with device or
695 non-cacheable memory attributes. The workaround depends on a firmware
696 counterpart.
697
698 KVM guests must also have the workaround implemented or they can
699 deadlock the system.
700
701 Work around the issue by inserting DMB SY barriers around PAR_EL1
702 register reads and warning KVM users. The DMB barrier is sufficient
703 to prevent a speculative PAR_EL1 read.
704
705 If unsure, say Y.
706
b9d216fc
SP
707config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
708 bool
709
297ae1eb
JM
710config ARM64_ERRATUM_2051678
711 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
a4b92ceb 712 default y
297ae1eb
JM
713 help
714 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
0ff74a23 715 Affected Cortex-A510 might not respect the ordering rules for
297ae1eb
JM
716 hardware update of the page table's dirty bit. The workaround
717 is to not enable the feature on affected CPUs.
718
719 If unsure, say Y.
720
1dd498e5
JM
721config ARM64_ERRATUM_2077057
722 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
4c11113c 723 default y
1dd498e5
JM
724 help
725 This option adds the workaround for ARM Cortex-A510 erratum 2077057.
726 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
727 expected, but a Pointer Authentication trap is taken instead. The
728 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
729 EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
730
731 This can only happen when EL2 is stepping EL1.
732
733 When these conditions occur, the SPSR_EL2 value is unchanged from the
734 previous guest entry, and can be restored from the in-memory copy.
735
736 If unsure, say Y.
737
1bdb0fbb
JM
738config ARM64_ERRATUM_2658417
739 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
740 default y
741 help
742 This option adds the workaround for ARM Cortex-A510 erratum 2658417.
743 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
744 BFMMLA or VMMLA instructions in rare circumstances when a pair of
745 A510 CPUs are using shared neon hardware. As the sharing is not
746 discoverable by the kernel, hide the BF16 HWCAP to indicate that
747 user-space should not be using these instructions.
748
749 If unsure, say Y.
750
b9d216fc 751config ARM64_ERRATUM_2119858
eb30d838 752 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
b9d216fc 753 default y
b9d216fc
SP
754 depends on CORESIGHT_TRBE
755 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
756 help
eb30d838 757 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
b9d216fc 758
eb30d838 759 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
b9d216fc
SP
760 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
761 the event of a WRAP event.
762
763 Work around the issue by always making sure we move the TRBPTR_EL1 by
764 256 bytes before enabling the buffer and filling the first 256 bytes of
765 the buffer with ETM ignore packets upon disabling.
766
767 If unsure, say Y.
768
769config ARM64_ERRATUM_2139208
770 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
771 default y
b9d216fc
SP
772 depends on CORESIGHT_TRBE
773 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
774 help
775 This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
776
777 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
778 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
779 the event of a WRAP event.
780
781 Work around the issue by always making sure we move the TRBPTR_EL1 by
782 256 bytes before enabling the buffer and filling the first 256 bytes of
783 the buffer with ETM ignore packets upon disabling.
784
785 If unsure, say Y.
786
fa82d0b4
SP
787config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
788 bool
789
790config ARM64_ERRATUM_2054223
791 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
792 default y
793 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
794 help
795 Enable workaround for ARM Cortex-A710 erratum 2054223
796
797 Affected cores may fail to flush the trace data on a TSB instruction, when
798 the PE is in trace prohibited state. This will cause losing a few bytes
799 of the trace cached.
800
801 Workaround is to issue two TSB consecutively on affected cores.
802
803 If unsure, say Y.
804
805config ARM64_ERRATUM_2067961
806 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
807 default y
808 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
809 help
810 Enable workaround for ARM Neoverse-N2 erratum 2067961
811
812 Affected cores may fail to flush the trace data on a TSB instruction, when
813 the PE is in trace prohibited state. This will cause losing a few bytes
814 of the trace cached.
815
816 Workaround is to issue two TSB consecutively on affected cores.
817
818 If unsure, say Y.
819
8d81b2a3
SP
820config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
821 bool
822
823config ARM64_ERRATUM_2253138
824 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
8d81b2a3
SP
825 depends on CORESIGHT_TRBE
826 default y
827 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
828 help
829 This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
830
831 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
832 for TRBE. Under some conditions, the TRBE might generate a write to the next
833 virtually addressed page following the last page of the TRBE address space
834 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
835
836 Work around this in the driver by always making sure that there is a
837 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
838
839 If unsure, say Y.
840
841config ARM64_ERRATUM_2224489
eb30d838 842 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
8d81b2a3
SP
843 depends on CORESIGHT_TRBE
844 default y
845 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
846 help
eb30d838 847 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
8d81b2a3 848
eb30d838 849 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
8d81b2a3
SP
850 for TRBE. Under some conditions, the TRBE might generate a write to the next
851 virtually addressed page following the last page of the TRBE address space
852 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
853
854 Work around this in the driver by always making sure that there is a
855 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
856
857 If unsure, say Y.
858
39fdb65f
JM
859config ARM64_ERRATUM_2441009
860 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
861 default y
862 select ARM64_WORKAROUND_REPEAT_TLBI
863 help
864 This option adds a workaround for ARM Cortex-A510 erratum #2441009.
865
866 Under very rare circumstances, affected Cortex-A510 CPUs
867 may not handle a race between a break-before-make sequence on one
868 CPU, and another CPU accessing the same page. This could allow a
869 store to a page that has been unmapped.
870
871 Work around this by adding the affected CPUs to the list that needs
872 TLB sequences to be done twice.
873
874 If unsure, say Y.
875
607a9afa
AK
876config ARM64_ERRATUM_2064142
877 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
ac0ba210 878 depends on CORESIGHT_TRBE
607a9afa
AK
879 default y
880 help
881 This option adds the workaround for ARM Cortex-A510 erratum 2064142.
882
883 Affected Cortex-A510 core might fail to write into system registers after the
884 TRBE has been disabled. Under some conditions after the TRBE has been disabled
885 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
886 and TRBTRG_EL1 will be ignored and will not be effected.
887
888 Work around this in the driver by executing TSB CSYNC and DSB after collection
889 is stopped and before performing a system register write to one of the affected
890 registers.
891
892 If unsure, say Y.
893
3bd94a87
AK
894config ARM64_ERRATUM_2038923
895 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
f209e9fe 896 depends on CORESIGHT_TRBE
3bd94a87
AK
897 default y
898 help
899 This option adds the workaround for ARM Cortex-A510 erratum 2038923.
900
901 Affected Cortex-A510 core might cause an inconsistent view on whether trace is
902 prohibited within the CPU. As a result, the trace buffer or trace buffer state
903 might be corrupted. This happens after TRBE buffer has been enabled by setting
904 TRBLIMITR_EL1.E, followed by just a single context synchronization event before
905 execution changes from a context, in which trace is prohibited to one where it
906 isn't, or vice versa. In these mentioned conditions, the view of whether trace
907 is prohibited is inconsistent between parts of the CPU, and the trace buffer or
908 the trace buffer state might be corrupted.
909
910 Work around this in the driver by preventing an inconsistent view of whether the
911 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
912 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
913 two ISB instructions if no ERET is to take place.
914
915 If unsure, say Y.
916
708e8af4
AK
917config ARM64_ERRATUM_1902691
918 bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
3a828845 919 depends on CORESIGHT_TRBE
708e8af4
AK
920 default y
921 help
922 This option adds the workaround for ARM Cortex-A510 erratum 1902691.
923
924 Affected Cortex-A510 core might cause trace data corruption, when being written
925 into the memory. Effectively TRBE is broken and hence cannot be used to capture
926 trace data.
927
928 Work around this problem in the driver by just preventing TRBE initialization on
929 affected cpus. The firmware must have disabled the access to TRBE for the kernel
930 on such implementations. This will cover the kernel for any firmware that doesn't
931 do this already.
932
933 If unsure, say Y.
934
e89d120c
IV
935config ARM64_ERRATUM_2457168
936 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
937 depends on ARM64_AMU_EXTN
938 default y
939 help
940 This option adds the workaround for ARM Cortex-A510 erratum 2457168.
941
942 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
943 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
944 incorrectly giving a significantly higher output value.
945
946 Work around this problem by returning 0 when reading the affected counter in
947 key locations that results in disabling all users of this counter. This effect
948 is the same to firmware disabling affected counters.
949
950 If unsure, say Y.
951
94100970
RR
952config CAVIUM_ERRATUM_22375
953 bool "Cavium erratum 22375, 24313"
954 default y
955 help
bc15cf70 956 Enable workaround for errata 22375 and 24313.
94100970
RR
957
958 This implements two gicv3-its errata workarounds for ThunderX. Both
bc15cf70 959 with a small impact affecting only ITS table allocation.
94100970
RR
960
961 erratum 22375: only alloc 8MB table size
962 erratum 24313: ignore memory access type
963
964 The fixes are in ITS initialization and basically ignore memory access
965 type and table size provided by the TYPER and BASER registers.
966
967 If unsure, say Y.
968
fbf8f40e
GK
969config CAVIUM_ERRATUM_23144
970 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
971 depends on NUMA
972 default y
973 help
974 ITS SYNC command hang for cross node io and collections/cpu mapping.
975
976 If unsure, say Y.
977
6d4e11c5 978config CAVIUM_ERRATUM_23154
24a147bc 979 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
6d4e11c5
RR
980 default y
981 help
24a147bc 982 The ThunderX GICv3 implementation requires a modified version for
6d4e11c5
RR
983 reading the IAR status to ensure data synchronization
984 (access to icc_iar1_el1 is not sync'ed before and after).
985
24a147bc
LC
986 It also suffers from erratum 38545 (also present on Marvell's
987 OcteonTX and OcteonTX2), resulting in deactivated interrupts being
988 spuriously presented to the CPU interface.
989
6d4e11c5
RR
990 If unsure, say Y.
991
104a0c02
AP
992config CAVIUM_ERRATUM_27456
993 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
994 default y
995 help
996 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
997 instructions may cause the icache to become corrupted if it
998 contains data for a non-current ASID. The fix is to
999 invalidate the icache when changing the mm context.
1000
1001 If unsure, say Y.
1002
690a3415
DD
1003config CAVIUM_ERRATUM_30115
1004 bool "Cavium erratum 30115: Guest may disable interrupts in host"
1005 default y
1006 help
1007 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1008 1.2, and T83 Pass 1.0, KVM guest execution may disable
1009 interrupts in host. Trapping both GICv3 group-0 and group-1
1010 accesses sidesteps the issue.
1011
1012 If unsure, say Y.
1013
603afdc9
MZ
1014config CAVIUM_TX2_ERRATUM_219
1015 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1016 default y
1017 help
1018 On Cavium ThunderX2, a load, store or prefetch instruction between a
1019 TTBR update and the corresponding context synchronizing operation can
1020 cause a spurious Data Abort to be delivered to any hardware thread in
1021 the CPU core.
1022
1023 Work around the issue by avoiding the problematic code sequence and
1024 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1025 trap handler performs the corresponding register access, skips the
1026 instruction and ensures context synchronization by virtue of the
1027 exception return.
1028
1029 If unsure, say Y.
1030
ebcea694
GU
1031config FUJITSU_ERRATUM_010001
1032 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1033 default y
1034 help
1035 This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1036 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1037 accesses may cause undefined fault (Data abort, DFSC=0b111111).
1038 This fault occurs under a specific hardware condition when a
1039 load/store instruction performs an address translation using:
1040 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1041 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1042 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1043 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1044
1045 The workaround is to ensure these bits are clear in TCR_ELx.
1046 The workaround only affects the Fujitsu-A64FX.
1047
1048 If unsure, say Y.
1049
1050config HISILICON_ERRATUM_161600802
1051 bool "Hip07 161600802: Erroneous redistributor VLPI base"
1052 default y
1053 help
1054 The HiSilicon Hip07 SoC uses the wrong redistributor base
1055 when issued ITS commands such as VMOVP and VMAPP, and requires
1056 a 128kB offset to be applied to the target address in this commands.
1057
1058 If unsure, say Y.
1059
38fd94b0
CC
1060config QCOM_FALKOR_ERRATUM_1003
1061 bool "Falkor E1003: Incorrect translation due to ASID change"
1062 default y
38fd94b0
CC
1063 help
1064 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
d1777e68
WD
1065 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1066 in TTBR1_EL1, this situation only occurs in the entry trampoline and
1067 then only for entries in the walk cache, since the leaf translation
1068 is unchanged. Work around the erratum by invalidating the walk cache
1069 entries for the trampoline before entering the kernel proper.
38fd94b0 1070
d9ff80f8
CC
1071config QCOM_FALKOR_ERRATUM_1009
1072 bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1073 default y
ce8c80c5 1074 select ARM64_WORKAROUND_REPEAT_TLBI
d9ff80f8
CC
1075 help
1076 On Falkor v1, the CPU may prematurely complete a DSB following a
1077 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1078 one more time to fix the issue.
1079
1080 If unsure, say Y.
1081
90922a2d
SD
1082config QCOM_QDF2400_ERRATUM_0065
1083 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1084 default y
1085 help
1086 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1087 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1088 been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1089
1090 If unsure, say Y.
1091
932b50c7
SD
1092config QCOM_FALKOR_ERRATUM_E1041
1093 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1094 default y
1095 help
1096 Falkor CPU may speculatively fetch instructions from an improper
1097 memory location when MMU translation is changed from SCTLR_ELn[M]=1
1098 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1099
1100 If unsure, say Y.
1101
20109a85
RW
1102config NVIDIA_CARMEL_CNP_ERRATUM
1103 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1104 default y
1105 help
1106 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1107 invalidate shared TLB entries installed by a different core, as it would
1108 on standard ARM cores.
1109
1110 If unsure, say Y.
1111
ebcea694
GU
1112config SOCIONEXT_SYNQUACER_PREITS
1113 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
3e32131a
ZL
1114 default y
1115 help
ebcea694
GU
1116 Socionext Synquacer SoCs implement a separate h/w block to generate
1117 MSI doorbell writes with non-zero values for the device ID.
3e32131a
ZL
1118
1119 If unsure, say Y.
1120
3cb7e662 1121endmenu # "ARM errata workarounds via the alternatives framework"
c0a01b84 1122
e41ceed0
JL
1123choice
1124 prompt "Page size"
1125 default ARM64_4K_PAGES
1126 help
1127 Page size (translation granule) configuration.
1128
1129config ARM64_4K_PAGES
1130 bool "4KB"
1131 help
1132 This feature enables 4KB pages support.
1133
44eaacf1
SP
1134config ARM64_16K_PAGES
1135 bool "16KB"
1136 help
1137 The system will use 16KB pages support. AArch32 emulation
1138 requires applications compiled with 16K (or a multiple of 16K)
1139 aligned segments.
1140
8c2c3df3 1141config ARM64_64K_PAGES
e41ceed0 1142 bool "64KB"
8c2c3df3
CM
1143 help
1144 This feature enables 64KB pages support (4KB by default)
1145 allowing only two levels of page tables and faster TLB
db488be3
SP
1146 look-up. AArch32 emulation requires applications compiled
1147 with 64K aligned segments.
8c2c3df3 1148
e41ceed0
JL
1149endchoice
1150
1151choice
1152 prompt "Virtual address space size"
1153 default ARM64_VA_BITS_39 if ARM64_4K_PAGES
44eaacf1 1154 default ARM64_VA_BITS_47 if ARM64_16K_PAGES
e41ceed0
JL
1155 default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1156 help
1157 Allows choosing one of multiple possible virtual address
1158 space sizes. The level of translation table is determined by
1159 a combination of page size and virtual address space size.
1160
21539939 1161config ARM64_VA_BITS_36
56a3f30e 1162 bool "36-bit" if EXPERT
21539939
SP
1163 depends on ARM64_16K_PAGES
1164
e41ceed0
JL
1165config ARM64_VA_BITS_39
1166 bool "39-bit"
1167 depends on ARM64_4K_PAGES
1168
1169config ARM64_VA_BITS_42
1170 bool "42-bit"
1171 depends on ARM64_64K_PAGES
1172
44eaacf1
SP
1173config ARM64_VA_BITS_47
1174 bool "47-bit"
1175 depends on ARM64_16K_PAGES
1176
c79b954b
JL
1177config ARM64_VA_BITS_48
1178 bool "48-bit"
c79b954b 1179
b6d00d47
SC
1180config ARM64_VA_BITS_52
1181 bool "52-bit"
68d23da4
WD
1182 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1183 help
1184 Enable 52-bit virtual addressing for userspace when explicitly
b6d00d47
SC
1185 requested via a hint to mmap(). The kernel will also use 52-bit
1186 virtual addresses for its own mappings (provided HW support for
1187 this feature is available, otherwise it reverts to 48-bit).
68d23da4
WD
1188
1189 NOTE: Enabling 52-bit virtual addressing in conjunction with
1190 ARMv8.3 Pointer Authentication will result in the PAC being
1191 reduced from 7 bits to 3 bits, which may have a significant
1192 impact on its susceptibility to brute-force attacks.
1193
1194 If unsure, select 48-bit virtual addressing instead.
1195
e41ceed0
JL
1196endchoice
1197
68d23da4
WD
1198config ARM64_FORCE_52BIT
1199 bool "Force 52-bit virtual addresses for userspace"
b6d00d47 1200 depends on ARM64_VA_BITS_52 && EXPERT
68d23da4
WD
1201 help
1202 For systems with 52-bit userspace VAs enabled, the kernel will attempt
1203 to maintain compatibility with older software by providing 48-bit VAs
1204 unless a hint is supplied to mmap.
1205
1206 This configuration option disables the 48-bit compatibility logic, and
1207 forces all userspace addresses to be 52-bit on HW that supports it. One
1208 should only enable this configuration option for stress testing userspace
1209 memory management code. If unsure say N here.
1210
e41ceed0
JL
1211config ARM64_VA_BITS
1212 int
21539939 1213 default 36 if ARM64_VA_BITS_36
e41ceed0
JL
1214 default 39 if ARM64_VA_BITS_39
1215 default 42 if ARM64_VA_BITS_42
44eaacf1 1216 default 47 if ARM64_VA_BITS_47
b6d00d47
SC
1217 default 48 if ARM64_VA_BITS_48
1218 default 52 if ARM64_VA_BITS_52
e41ceed0 1219
982aa7c5
KM
1220choice
1221 prompt "Physical address space size"
1222 default ARM64_PA_BITS_48
1223 help
1224 Choose the maximum physical address range that the kernel will
1225 support.
1226
1227config ARM64_PA_BITS_48
1228 bool "48-bit"
1229
f77d2817
KM
1230config ARM64_PA_BITS_52
1231 bool "52-bit (ARMv8.2)"
1232 depends on ARM64_64K_PAGES
1233 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1234 help
1235 Enable support for a 52-bit physical address space, introduced as
1236 part of the ARMv8.2-LPA extension.
1237
1238 With this enabled, the kernel will also continue to work on CPUs that
1239 do not support ARMv8.2-LPA, but with some added memory overhead (and
1240 minor performance overhead).
1241
982aa7c5
KM
1242endchoice
1243
1244config ARM64_PA_BITS
1245 int
1246 default 48 if ARM64_PA_BITS_48
f77d2817 1247 default 52 if ARM64_PA_BITS_52
982aa7c5 1248
d8e85e14
AR
1249choice
1250 prompt "Endianness"
1251 default CPU_LITTLE_ENDIAN
1252 help
1253 Select the endianness of data accesses performed by the CPU. Userspace
1254 applications will need to be compiled and linked for the endianness
1255 that is selected here.
1256
a872013d 1257config CPU_BIG_ENDIAN
e9c6deee
NC
1258 bool "Build big-endian kernel"
1259 depends on !LD_IS_LLD || LLD_VERSION >= 130000
1260 help
d8e85e14
AR
1261 Say Y if you plan on running a kernel with a big-endian userspace.
1262
1263config CPU_LITTLE_ENDIAN
1264 bool "Build little-endian kernel"
1265 help
1266 Say Y if you plan on running a kernel with a little-endian userspace.
1267 This is usually the case for distributions targeting arm64.
1268
1269endchoice
a872013d 1270
f6e763b9
MB
1271config SCHED_MC
1272 bool "Multi-core scheduler support"
f6e763b9
MB
1273 help
1274 Multi-core scheduler support improves the CPU scheduler's decision
1275 making when dealing with multi-core CPU chips at a cost of slightly
1276 increased overhead in some places. If unsure say N here.
1277
778c558f
BS
1278config SCHED_CLUSTER
1279 bool "Cluster scheduler support"
1280 help
1281 Cluster scheduler support improves the CPU scheduler's decision
1282 making when dealing with machines that have clusters of CPUs.
1283 Cluster usually means a couple of CPUs which are placed closely
1284 by sharing mid-level caches, last-level cache tags or internal
1285 busses.
1286
f6e763b9
MB
1287config SCHED_SMT
1288 bool "SMT scheduler support"
f6e763b9
MB
1289 help
1290 Improves the CPU scheduler's decision making when dealing with
1291 MultiThreading at a cost of slightly increased overhead in some
1292 places. If unsure say N here.
1293
8c2c3df3 1294config NR_CPUS
62aa9655
GK
1295 int "Maximum number of CPUs (2-4096)"
1296 range 2 4096
846a415b 1297 default "256"
8c2c3df3 1298
9327e2c6
MR
1299config HOTPLUG_CPU
1300 bool "Support for hot-pluggable CPUs"
217d453d 1301 select GENERIC_IRQ_MIGRATION
9327e2c6
MR
1302 help
1303 Say Y here to experiment with turning CPUs off and on. CPUs
1304 can be controlled through /sys/devices/system/cpu.
1305
1a2db300
GK
1306# Common NUMA Features
1307config NUMA
4399e6cd 1308 bool "NUMA Memory Allocation and Scheduler Support"
ae3c107c 1309 select GENERIC_ARCH_NUMA
0c2a6cce
KW
1310 select ACPI_NUMA if ACPI
1311 select OF_NUMA
7ecd19cf
KW
1312 select HAVE_SETUP_PER_CPU_AREA
1313 select NEED_PER_CPU_EMBED_FIRST_CHUNK
1314 select NEED_PER_CPU_PAGE_FIRST_CHUNK
1315 select USE_PERCPU_NUMA_NODE_ID
1a2db300 1316 help
4399e6cd 1317 Enable NUMA (Non-Uniform Memory Access) support.
1a2db300
GK
1318
1319 The kernel will try to allocate memory used by a CPU on the
1320 local memory of the CPU and add some more
1321 NUMA awareness to the kernel.
1322
1323config NODES_SHIFT
1324 int "Maximum NUMA Nodes (as a power of 2)"
1325 range 1 10
2a13c13b 1326 default "4"
a9ee6cf5 1327 depends on NUMA
1a2db300
GK
1328 help
1329 Specify the maximum number of NUMA Nodes available on the target
1330 system. Increases memory reserved to accommodate various tables.
1331
8636a1f9 1332source "kernel/Kconfig.hz"
8c2c3df3 1333
8c2c3df3
CM
1334config ARCH_SPARSEMEM_ENABLE
1335 def_bool y
1336 select SPARSEMEM_VMEMMAP_ENABLE
782276b4 1337 select SPARSEMEM_VMEMMAP
e7d4bac4 1338
8c2c3df3 1339config HW_PERF_EVENTS
6475b2d8
MR
1340 def_bool y
1341 depends on ARM_PMU
8c2c3df3 1342
afcf5441 1343# Supported by clang >= 7.0 or GCC >= 12.0.0
5287569a
ST
1344config CC_HAVE_SHADOW_CALL_STACK
1345 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1346
dfd57bc3
SS
1347config PARAVIRT
1348 bool "Enable paravirtualization code"
1349 help
1350 This changes the kernel so it can modify itself when it is run
1351 under a hypervisor, potentially improving performance significantly
1352 over full virtualization.
1353
1354config PARAVIRT_TIME_ACCOUNTING
1355 bool "Paravirtual steal time accounting"
1356 select PARAVIRT
dfd57bc3
SS
1357 help
1358 Select this option to enable fine granularity task steal time
1359 accounting. Time spent executing other tasks in parallel with
1360 the current vCPU is discounted from the vCPU power. To account for
1361 that, there can be a small performance impact.
1362
1363 If in doubt, say N here.
1364
d28f6df1
GL
1365config KEXEC
1366 depends on PM_SLEEP_SMP
1367 select KEXEC_CORE
1368 bool "kexec system call"
a7f7f624 1369 help
d28f6df1
GL
1370 kexec is a system call that implements the ability to shutdown your
1371 current kernel, and to start another kernel. It is like a reboot
1372 but it is independent of the system firmware. And like a reboot
1373 you can start any kernel with it, not just Linux.
1374
3ddd9992
AT
1375config KEXEC_FILE
1376 bool "kexec file based system call"
1377 select KEXEC_CORE
dce92f6b 1378 select HAVE_IMA_KEXEC if IMA
3ddd9992
AT
1379 help
1380 This is new version of kexec system call. This system call is
1381 file based and takes file descriptors as system call argument
1382 for kernel and initramfs as opposed to list of segments as
1383 accepted by previous system call.
1384
99d5cadf 1385config KEXEC_SIG
732b7b93
AT
1386 bool "Verify kernel signature during kexec_file_load() syscall"
1387 depends on KEXEC_FILE
1388 help
1389 Select this option to verify a signature with loaded kernel
1390 image. If configured, any attempt of loading a image without
1391 valid signature will fail.
1392
1393 In addition to that option, you need to enable signature
1394 verification for the corresponding kernel image type being
1395 loaded in order for this to work.
1396
1397config KEXEC_IMAGE_VERIFY_SIG
1398 bool "Enable Image signature verification support"
1399 default y
99d5cadf 1400 depends on KEXEC_SIG
732b7b93
AT
1401 depends on EFI && SIGNED_PE_FILE_VERIFICATION
1402 help
1403 Enable Image signature verification support.
1404
1405comment "Support for PE file signature verification disabled"
99d5cadf 1406 depends on KEXEC_SIG
732b7b93
AT
1407 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1408
e62aaeac
AT
1409config CRASH_DUMP
1410 bool "Build kdump crash kernel"
1411 help
1412 Generate crash dump after being started by kexec. This should
1413 be normally only set in special crash dump kernels which are
1414 loaded in the main kernel with kexec-tools into a specially
1415 reserved region and then later executed after a crash by
1416 kdump/kexec.
1417
330d4810 1418 For more details see Documentation/admin-guide/kdump/kdump.rst
e62aaeac 1419
072e3d96
PT
1420config TRANS_TABLE
1421 def_bool y
08eae0ef 1422 depends on HIBERNATION || KEXEC_CORE
072e3d96 1423
aa42aa13
SS
1424config XEN_DOM0
1425 def_bool y
1426 depends on XEN
1427
1428config XEN
c2ba1f7d 1429 bool "Xen guest support on ARM64"
aa42aa13 1430 depends on ARM64 && OF
83862ccf 1431 select SWIOTLB_XEN
dfd57bc3 1432 select PARAVIRT
aa42aa13
SS
1433 help
1434 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1435
d03bb145
SC
1436config FORCE_MAX_ZONEORDER
1437 int
79cc2ed5
AK
1438 default "14" if ARM64_64K_PAGES
1439 default "12" if ARM64_16K_PAGES
d03bb145 1440 default "11"
44eaacf1
SP
1441 help
1442 The kernel memory allocator divides physically contiguous memory
1443 blocks into "zones", where each zone is a power of two number of
1444 pages. This option selects the largest power of two that the kernel
1445 keeps in the memory allocator. If you need to allocate very large
1446 blocks of physically contiguous memory, then you may need to
1447 increase this value.
1448
1449 This config option is actually maximum order plus one. For example,
1450 a value of 11 means that the largest free memory block is 2^10 pages.
1451
1452 We make sure that we can allocate upto a HugePage size for each configuration.
1453 Hence we have :
1454 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1455
1456 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1457 4M allocations matching the default size used by generic code.
d03bb145 1458
084eb77c 1459config UNMAP_KERNEL_AT_EL0
0617052d 1460 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
084eb77c
WD
1461 default y
1462 help
0617052d
WD
1463 Speculation attacks against some high-performance processors can
1464 be used to bypass MMU permission checks and leak kernel data to
1465 userspace. This can be defended against by unmapping the kernel
1466 when running in userspace, mapping it back in on exception entry
1467 via a trampoline page in the vector table.
084eb77c
WD
1468
1469 If unsure, say Y.
1470
558c303c
JM
1471config MITIGATE_SPECTRE_BRANCH_HISTORY
1472 bool "Mitigate Spectre style attacks against branch history" if EXPERT
1473 default y
1474 help
1475 Speculation attacks against some high-performance processors can
1476 make use of branch history to influence future speculation.
1477 When taking an exception from user-space, a sequence of branches
1478 or a firmware call overwrites the branch history.
1479
c55191e9
AB
1480config RODATA_FULL_DEFAULT_ENABLED
1481 bool "Apply r/o permissions of VM areas also to their linear aliases"
1482 default y
1483 help
1484 Apply read-only attributes of VM areas to the linear alias of
1485 the backing pages as well. This prevents code or read-only data
1486 from being modified (inadvertently or intentionally) via another
1487 mapping of the same memory page. This additional enhancement can
1488 be turned off at runtime by passing rodata=[off|on] (and turned on
1489 with rodata=full if this option is set to 'n')
1490
1491 This requires the linear region to be mapped down to pages,
1492 which may adversely affect performance in some cases.
1493
dd523791
WD
1494config ARM64_SW_TTBR0_PAN
1495 bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1496 help
1497 Enabling this option prevents the kernel from accessing
1498 user-space memory directly by pointing TTBR0_EL1 to a reserved
1499 zeroed area and reserved ASID. The user access routines
1500 restore the valid TTBR0_EL1 temporarily.
1501
63f0c603
CM
1502config ARM64_TAGGED_ADDR_ABI
1503 bool "Enable the tagged user addresses syscall ABI"
1504 default y
1505 help
1506 When this option is enabled, user applications can opt in to a
1507 relaxed ABI via prctl() allowing tagged addresses to be passed
1508 to system calls as pointer arguments. For details, see
799c8510 1509 Documentation/arm64/tagged-address-abi.rst.
63f0c603 1510
dd523791
WD
1511menuconfig COMPAT
1512 bool "Kernel support for 32-bit EL0"
1513 depends on ARM64_4K_PAGES || EXPERT
dd523791
WD
1514 select HAVE_UID16
1515 select OLD_SIGSUSPEND3
1516 select COMPAT_OLD_SIGACTION
1517 help
1518 This option enables support for a 32-bit EL0 running under a 64-bit
1519 kernel at EL1. AArch32-specific components such as system calls,
1520 the user helper functions, VFP support and the ptrace interface are
1521 handled appropriately by the kernel.
1522
1523 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1524 that you will only be able to execute AArch32 binaries that were compiled
1525 with page size aligned segments.
1526
1527 If you want to execute 32-bit userspace applications, say Y.
1528
1529if COMPAT
1530
1531config KUSER_HELPERS
7c4791c9 1532 bool "Enable kuser helpers page for 32-bit applications"
dd523791
WD
1533 default y
1534 help
1535 Warning: disabling this option may break 32-bit user programs.
1536
1537 Provide kuser helpers to compat tasks. The kernel provides
1538 helper code to userspace in read only form at a fixed location
1539 to allow userspace to be independent of the CPU type fitted to
1540 the system. This permits binaries to be run on ARMv4 through
1541 to ARMv8 without modification.
1542
dc7a12bd 1543 See Documentation/arm/kernel_user_helpers.rst for details.
dd523791
WD
1544
1545 However, the fixed address nature of these helpers can be used
1546 by ROP (return orientated programming) authors when creating
1547 exploits.
1548
1549 If all of the binaries and libraries which run on your platform
1550 are built specifically for your platform, and make no use of
1551 these helpers, then you can turn this option off to hinder
1552 such exploits. However, in that case, if a binary or library
1553 relying on those helpers is run, it will not function correctly.
1554
1555 Say N here only if you are absolutely certain that you do not
1556 need these helpers; otherwise, the safe option is to say Y.
1557
7c4791c9
WD
1558config COMPAT_VDSO
1559 bool "Enable vDSO for 32-bit applications"
3e6f8d1f
ND
1560 depends on !CPU_BIG_ENDIAN
1561 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
7c4791c9
WD
1562 select GENERIC_COMPAT_VDSO
1563 default y
1564 help
1565 Place in the process address space of 32-bit applications an
1566 ELF shared object providing fast implementations of gettimeofday
1567 and clock_gettime.
1568
1569 You must have a 32-bit build of glibc 2.22 or later for programs
1570 to seamlessly take advantage of this.
dd523791 1571
625412c2
ND
1572config THUMB2_COMPAT_VDSO
1573 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1574 depends on COMPAT_VDSO
1575 default y
1576 help
1577 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1578 otherwise with '-marm'.
1579
3fc24ef3
AB
1580config COMPAT_ALIGNMENT_FIXUPS
1581 bool "Fix up misaligned multi-word loads and stores in user space"
1582
1b907f46
WD
1583menuconfig ARMV8_DEPRECATED
1584 bool "Emulate deprecated/obsolete ARMv8 instructions"
6cfa7cc4 1585 depends on SYSCTL
1b907f46
WD
1586 help
1587 Legacy software support may require certain instructions
1588 that have been deprecated or obsoleted in the architecture.
1589
1590 Enable this config to enable selective emulation of these
1591 features.
1592
1593 If unsure, say Y
1594
1595if ARMV8_DEPRECATED
1596
1597config SWP_EMULATION
1598 bool "Emulate SWP/SWPB instructions"
1599 help
1600 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1601 they are always undefined. Say Y here to enable software
1602 emulation of these instructions for userspace using LDXR/STXR.
dd720784
MB
1603 This feature can be controlled at runtime with the abi.swp
1604 sysctl which is disabled by default.
1b907f46
WD
1605
1606 In some older versions of glibc [<=2.8] SWP is used during futex
1607 trylock() operations with the assumption that the code will not
1608 be preempted. This invalid assumption may be more likely to fail
1609 with SWP emulation enabled, leading to deadlock of the user
1610 application.
1611
1612 NOTE: when accessing uncached shared regions, LDXR/STXR rely
1613 on an external transaction monitoring block called a global
1614 monitor to maintain update atomicity. If your system does not
1615 implement a global monitor, this option can cause programs that
1616 perform SWP operations to uncached memory to deadlock.
1617
1618 If unsure, say Y
1619
1620config CP15_BARRIER_EMULATION
1621 bool "Emulate CP15 Barrier instructions"
1622 help
1623 The CP15 barrier instructions - CP15ISB, CP15DSB, and
1624 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1625 strongly recommended to use the ISB, DSB, and DMB
1626 instructions instead.
1627
1628 Say Y here to enable software emulation of these
1629 instructions for AArch32 userspace code. When this option is
1630 enabled, CP15 barrier usage is traced which can help
dd720784
MB
1631 identify software that needs updating. This feature can be
1632 controlled at runtime with the abi.cp15_barrier sysctl.
1b907f46
WD
1633
1634 If unsure, say Y
1635
2d888f48
SP
1636config SETEND_EMULATION
1637 bool "Emulate SETEND instruction"
1638 help
1639 The SETEND instruction alters the data-endianness of the
1640 AArch32 EL0, and is deprecated in ARMv8.
1641
1642 Say Y here to enable software emulation of the instruction
dd720784
MB
1643 for AArch32 userspace code. This feature can be controlled
1644 at runtime with the abi.setend sysctl.
2d888f48
SP
1645
1646 Note: All the cpus on the system must have mixed endian support at EL0
1647 for this feature to be enabled. If a new CPU - which doesn't support mixed
1648 endian - is hotplugged in after this feature has been enabled, there could
1649 be unexpected results in the applications.
1650
1651 If unsure, say Y
3cb7e662 1652endif # ARMV8_DEPRECATED
1b907f46 1653
3cb7e662 1654endif # COMPAT
ba42822a 1655
0e4a0709
WD
1656menu "ARMv8.1 architectural features"
1657
1658config ARM64_HW_AFDBM
1659 bool "Support for hardware updates of the Access and Dirty page flags"
1660 default y
1661 help
1662 The ARMv8.1 architecture extensions introduce support for
1663 hardware updates of the access and dirty information in page
1664 table entries. When enabled in TCR_EL1 (HA and HD bits) on
1665 capable processors, accesses to pages with PTE_AF cleared will
1666 set this bit instead of raising an access flag fault.
1667 Similarly, writes to read-only pages with the DBM bit set will
1668 clear the read-only bit (AP[2]) instead of raising a
1669 permission fault.
1670
1671 Kernels built with this configuration option enabled continue
1672 to work on pre-ARMv8.1 hardware and the performance impact is
1673 minimal. If unsure, say Y.
1674
1675config ARM64_PAN
1676 bool "Enable support for Privileged Access Never (PAN)"
1677 default y
1678 help
3cb7e662
JH
1679 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1680 prevents the kernel or hypervisor from accessing user-space (EL0)
1681 memory directly.
0e4a0709 1682
3cb7e662
JH
1683 Choosing this option will cause any unprotected (not using
1684 copy_to_user et al) memory access to fail with a permission fault.
0e4a0709 1685
3cb7e662
JH
1686 The feature is detected at runtime, and will remain as a 'nop'
1687 instruction if the cpu does not implement the feature.
0e4a0709 1688
364a5a8a
WD
1689config AS_HAS_LDAPR
1690 def_bool $(as-instr,.arch_extension rcpc)
1691
2decad92
CM
1692config AS_HAS_LSE_ATOMICS
1693 def_bool $(as-instr,.arch_extension lse)
1694
0e4a0709 1695config ARM64_LSE_ATOMICS
395af861
CM
1696 bool
1697 default ARM64_USE_LSE_ATOMICS
2decad92 1698 depends on AS_HAS_LSE_ATOMICS
395af861
CM
1699
1700config ARM64_USE_LSE_ATOMICS
0e4a0709 1701 bool "Atomic instructions"
b32baf91 1702 depends on JUMP_LABEL
7bd99b40 1703 default y
0e4a0709
WD
1704 help
1705 As part of the Large System Extensions, ARMv8.1 introduces new
1706 atomic instructions that are designed specifically to scale in
1707 very large systems.
1708
1709 Say Y here to make use of these instructions for the in-kernel
1710 atomic routines. This incurs a small overhead on CPUs that do
1711 not support these instructions and requires the kernel to be
7bd99b40
WD
1712 built with binutils >= 2.25 in order for the new instructions
1713 to be used.
0e4a0709 1714
3cb7e662 1715endmenu # "ARMv8.1 architectural features"
0e4a0709 1716
f993318b
WD
1717menu "ARMv8.2 architectural features"
1718
2c54b423 1719config AS_HAS_ARMV8_2
3cb7e662 1720 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
2c54b423
AB
1721
1722config AS_HAS_SHA3
3cb7e662 1723 def_bool $(as-instr,.arch armv8.2-a+sha3)
2c54b423 1724
d50e071f
RM
1725config ARM64_PMEM
1726 bool "Enable support for persistent memory"
1727 select ARCH_HAS_PMEM_API
5d7bdeb1 1728 select ARCH_HAS_UACCESS_FLUSHCACHE
d50e071f
RM
1729 help
1730 Say Y to enable support for the persistent memory API based on the
1731 ARMv8.2 DCPoP feature.
1732
1733 The feature is detected at runtime, and the kernel will use DC CVAC
1734 operations if DC CVAP is not supported (following the behaviour of
1735 DC CVAP itself if the system does not define a point of persistence).
1736
64c02720
XX
1737config ARM64_RAS_EXTN
1738 bool "Enable support for RAS CPU Extensions"
1739 default y
1740 help
1741 CPUs that support the Reliability, Availability and Serviceability
1742 (RAS) Extensions, part of ARMv8.2 are able to track faults and
1743 errors, classify them and report them to software.
1744
1745 On CPUs with these extensions system software can use additional
1746 barriers to determine if faults are pending and read the
1747 classification from a new set of registers.
1748
1749 Selecting this feature will allow the kernel to use these barriers
1750 and access the new registers if the system supports the extension.
1751 Platform RAS features may additionally depend on firmware support.
1752
5ffdfaed
VM
1753config ARM64_CNP
1754 bool "Enable support for Common Not Private (CNP) translations"
1755 default y
1756 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1757 help
1758 Common Not Private (CNP) allows translation table entries to
1759 be shared between different PEs in the same inner shareable
1760 domain, so the hardware can use this fact to optimise the
1761 caching of such entries in the TLB.
1762
1763 Selecting this option allows the CNP feature to be detected
1764 at runtime, and does not affect PEs that do not implement
1765 this feature.
1766
3cb7e662 1767endmenu # "ARMv8.2 architectural features"
f993318b 1768
04ca3204
MR
1769menu "ARMv8.3 architectural features"
1770
1771config ARM64_PTR_AUTH
1772 bool "Enable support for pointer authentication"
1773 default y
1774 help
1775 Pointer authentication (part of the ARMv8.3 Extensions) provides
1776 instructions for signing and authenticating pointers against secret
1777 keys, which can be used to mitigate Return Oriented Programming (ROP)
1778 and other attacks.
1779
1780 This option enables these instructions at EL0 (i.e. for userspace).
04ca3204
MR
1781 Choosing this option will cause the kernel to initialise secret keys
1782 for each process at exec() time, with these keys being
1783 context-switched along with the process.
1784
1785 The feature is detected at runtime. If the feature is not present in
384b40ca 1786 hardware it will not be advertised to userspace/KVM guest nor will it
dfb0589c 1787 be enabled.
04ca3204 1788
6982934e
KM
1789 If the feature is present on the boot CPU but not on a late CPU, then
1790 the late CPU will be parked. Also, if the boot CPU does not have
1791 address auth and the late CPU has then the late CPU will still boot
1792 but with the feature disabled. On such a system, this option should
1793 not be selected.
1794
b27a9f41 1795config ARM64_PTR_AUTH_KERNEL
d053e71a 1796 bool "Use pointer authentication for kernel"
b27a9f41
DK
1797 default y
1798 depends on ARM64_PTR_AUTH
1799 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1800 # Modern compilers insert a .note.gnu.property section note for PAC
1801 # which is only understood by binutils starting with version 2.33.1.
1802 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1803 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1804 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1805 help
1806 If the compiler supports the -mbranch-protection or
1807 -msign-return-address flag (e.g. GCC 7 or later), then this option
1808 will cause the kernel itself to be compiled with return address
1809 protection. In this case, and if the target hardware is known to
1810 support pointer authentication, then CONFIG_STACKPROTECTOR can be
1811 disabled with minimal loss of protection.
1812
74afda40
KM
1813 This feature works with FUNCTION_GRAPH_TRACER option only if
1814 DYNAMIC_FTRACE_WITH_REGS is enabled.
1815
1816config CC_HAS_BRANCH_PROT_PAC_RET
1817 # GCC 9 or later, clang 8 or later
1818 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1819
1820config CC_HAS_SIGN_RETURN_ADDRESS
1821 # GCC 7, 8
1822 def_bool $(cc-option,-msign-return-address=all)
1823
1824config AS_HAS_PAC
4d0831e8 1825 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
74afda40 1826
3b446c7d
ND
1827config AS_HAS_CFI_NEGATE_RA_STATE
1828 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1829
3cb7e662 1830endmenu # "ARMv8.3 architectural features"
04ca3204 1831
2c9d45b4
IV
1832menu "ARMv8.4 architectural features"
1833
1834config ARM64_AMU_EXTN
1835 bool "Enable support for the Activity Monitors Unit CPU extension"
1836 default y
1837 help
1838 The activity monitors extension is an optional extension introduced
1839 by the ARMv8.4 CPU architecture. This enables support for version 1
1840 of the activity monitors architecture, AMUv1.
1841
1842 To enable the use of this extension on CPUs that implement it, say Y.
1843
1844 Note that for architectural reasons, firmware _must_ implement AMU
1845 support when running on CPUs that present the activity monitors
1846 extension. The required support is present in:
1847 * Version 1.5 and later of the ARM Trusted Firmware
1848
1849 For kernels that have this configuration enabled but boot with broken
1850 firmware, you may need to say N here until the firmware is fixed.
1851 Otherwise you may experience firmware panics or lockups when
1852 accessing the counter registers. Even if you are not observing these
1853 symptoms, the values returned by the register reads might not
1854 correctly reflect reality. Most commonly, the value read will be 0,
1855 indicating that the counter is not enabled.
1856
7c78f67e
ZY
1857config AS_HAS_ARMV8_4
1858 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1859
1860config ARM64_TLB_RANGE
1861 bool "Enable support for tlbi range feature"
1862 default y
1863 depends on AS_HAS_ARMV8_4
1864 help
1865 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1866 range of input addresses.
1867
1868 The feature introduces new assembly instructions, and they were
1869 support when binutils >= 2.30.
1870
3cb7e662 1871endmenu # "ARMv8.4 architectural features"
04ca3204 1872
3e6c69a0
MB
1873menu "ARMv8.5 architectural features"
1874
f469c032
VF
1875config AS_HAS_ARMV8_5
1876 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1877
383499f8
DM
1878config ARM64_BTI
1879 bool "Branch Target Identification support"
1880 default y
1881 help
1882 Branch Target Identification (part of the ARMv8.5 Extensions)
1883 provides a mechanism to limit the set of locations to which computed
1884 branch instructions such as BR or BLR can jump.
1885
1886 To make use of BTI on CPUs that support it, say Y.
1887
1888 BTI is intended to provide complementary protection to other control
1889 flow integrity protection mechanisms, such as the Pointer
1890 authentication mechanism provided as part of the ARMv8.3 Extensions.
1891 For this reason, it does not make sense to enable this option without
1892 also enabling support for pointer authentication. Thus, when
1893 enabling this option you should also select ARM64_PTR_AUTH=y.
1894
1895 Userspace binaries must also be specifically compiled to make use of
1896 this mechanism. If you say N here or the hardware does not support
1897 BTI, such binaries can still run, but you get no additional
1898 enforcement of branch destinations.
1899
97fed779
MB
1900config ARM64_BTI_KERNEL
1901 bool "Use Branch Target Identification for kernel"
1902 default y
1903 depends on ARM64_BTI
b27a9f41 1904 depends on ARM64_PTR_AUTH_KERNEL
97fed779 1905 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
3a88d7c5
WD
1906 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1907 depends on !CC_IS_GCC || GCC_VERSION >= 100100
8cdd23c2
NC
1908 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1909 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
97fed779
MB
1910 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1911 help
1912 Build the kernel with Branch Target Identification annotations
1913 and enable enforcement of this for kernel code. When this option
1914 is enabled and the system supports BTI all kernel code including
1915 modular code must have BTI enabled.
1916
1917config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1918 # GCC 9 or later, clang 8 or later
1919 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1920
3e6c69a0
MB
1921config ARM64_E0PD
1922 bool "Enable support for E0PD"
1923 default y
1924 help
e717d93b
WD
1925 E0PD (part of the ARMv8.5 extensions) allows us to ensure
1926 that EL0 accesses made via TTBR1 always fault in constant time,
1927 providing similar benefits to KASLR as those provided by KPTI, but
1928 with lower overhead and without disrupting legitimate access to
1929 kernel memory such as SPE.
3e6c69a0 1930
e717d93b 1931 This option enables E0PD for TTBR1 where available.
3e6c69a0 1932
89b94df9
VF
1933config ARM64_AS_HAS_MTE
1934 # Initial support for MTE went in binutils 2.32.0, checked with
1935 # ".arch armv8.5-a+memtag" below. However, this was incomplete
1936 # as a late addition to the final architecture spec (LDGM/STGM)
1937 # is only supported in the newer 2.32.x and 2.33 binutils
1938 # versions, hence the extra "stgm" instruction check below.
1939 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1940
1941config ARM64_MTE
1942 bool "Memory Tagging Extension support"
1943 default y
1944 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
f469c032 1945 depends on AS_HAS_ARMV8_5
2decad92 1946 depends on AS_HAS_LSE_ATOMICS
98c970da
VF
1947 # Required for tag checking in the uaccess routines
1948 depends on ARM64_PAN
f3ba50a7 1949 select ARCH_HAS_SUBPAGE_FAULTS
89b94df9
VF
1950 select ARCH_USES_HIGH_VMA_FLAGS
1951 help
1952 Memory Tagging (part of the ARMv8.5 Extensions) provides
1953 architectural support for run-time, always-on detection of
1954 various classes of memory error to aid with software debugging
1955 to eliminate vulnerabilities arising from memory-unsafe
1956 languages.
1957
1958 This option enables the support for the Memory Tagging
1959 Extension at EL0 (i.e. for userspace).
1960
1961 Selecting this option allows the feature to be detected at
1962 runtime. Any secondary CPU not implementing this feature will
1963 not be allowed a late bring-up.
1964
1965 Userspace binaries that want to use this feature must
1966 explicitly opt in. The mechanism for the userspace is
1967 described in:
1968
1969 Documentation/arm64/memory-tagging-extension.rst.
1970
3cb7e662 1971endmenu # "ARMv8.5 architectural features"
3e6c69a0 1972
18107f8a
VM
1973menu "ARMv8.7 architectural features"
1974
1975config ARM64_EPAN
1976 bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1977 default y
1978 depends on ARM64_PAN
1979 help
3cb7e662
JH
1980 Enhanced Privileged Access Never (EPAN) allows Privileged
1981 Access Never to be used with Execute-only mappings.
18107f8a 1982
3cb7e662
JH
1983 The feature is detected at runtime, and will remain disabled
1984 if the cpu does not implement the feature.
1985endmenu # "ARMv8.7 architectural features"
18107f8a 1986
ddd25ad1
DM
1987config ARM64_SVE
1988 bool "ARM Scalable Vector Extension support"
1989 default y
1990 help
1991 The Scalable Vector Extension (SVE) is an extension to the AArch64
1992 execution state which complements and extends the SIMD functionality
1993 of the base architecture to support much larger vectors and to enable
1994 additional vectorisation opportunities.
1995
1996 To enable use of this extension on CPUs that implement it, say Y.
1997
06a916fe
DM
1998 On CPUs that support the SVE2 extensions, this option will enable
1999 those too.
2000
5043694e
DM
2001 Note that for architectural reasons, firmware _must_ implement SVE
2002 support when running on SVE capable hardware. The required support
2003 is present in:
2004
2005 * version 1.5 and later of the ARM Trusted Firmware
2006 * the AArch64 boot wrapper since commit 5e1261e08abf
2007 ("bootwrapper: SVE: Enable SVE for EL2 and below").
2008
2009 For other firmware implementations, consult the firmware documentation
2010 or vendor.
2011
2012 If you need the kernel to boot on SVE-capable hardware with broken
2013 firmware, you may need to say N here until you get your firmware
2014 fixed. Otherwise, you may experience firmware panics or lockups when
2015 booting the kernel. If unsure and you are not observing these
2016 symptoms, you should assume that it is safe to say Y.
fd045f6c 2017
a1f4ccd2
MB
2018config ARM64_SME
2019 bool "ARM Scalable Matrix Extension support"
2020 default y
2021 depends on ARM64_SVE
2022 help
2023 The Scalable Matrix Extension (SME) is an extension to the AArch64
2024 execution state which utilises a substantial subset of the SVE
2025 instruction set, together with the addition of new architectural
2026 register state capable of holding two dimensional matrix tiles to
2027 enable various matrix operations.
2028
fd045f6c 2029config ARM64_MODULE_PLTS
58557e48 2030 bool "Use PLTs to allow module memory to spill over into vmalloc area"
faaa73bc 2031 depends on MODULES
fd045f6c 2032 select HAVE_MOD_ARCH_SPECIFIC
58557e48
FF
2033 help
2034 Allocate PLTs when loading modules so that jumps and calls whose
2035 targets are too far away for their relative offsets to be encoded
2036 in the instructions themselves can be bounced via veneers in the
2037 module's PLT. This allows modules to be allocated in the generic
2038 vmalloc area after the dedicated module memory area has been
2039 exhausted.
2040
2041 When running with address space randomization (KASLR), the module
2042 region itself may be too far away for ordinary relative jumps and
2043 calls, and so in that case, module PLTs are required and cannot be
2044 disabled.
2045
2046 Specific errata workaround(s) might also force module PLTs to be
2047 enabled (ARM64_ERRATUM_843419).
fd045f6c 2048
bc3c03cc
JT
2049config ARM64_PSEUDO_NMI
2050 bool "Support for NMI-like interrupts"
3c9c1dcd 2051 select ARM_GIC_V3
bc3c03cc
JT
2052 help
2053 Adds support for mimicking Non-Maskable Interrupts through the use of
2054 GIC interrupt priority. This support requires version 3 or later of
bc15cf70 2055 ARM GIC.
bc3c03cc
JT
2056
2057 This high priority configuration for interrupts needs to be
2058 explicitly enabled by setting the kernel parameter
2059 "irqchip.gicv3_pseudo_nmi" to 1.
2060
2061 If unsure, say N
2062
48ce8f80
JT
2063if ARM64_PSEUDO_NMI
2064config ARM64_DEBUG_PRIORITY_MASKING
2065 bool "Debug interrupt priority masking"
2066 help
2067 This adds runtime checks to functions enabling/disabling
2068 interrupts when using priority masking. The additional checks verify
2069 the validity of ICC_PMR_EL1 when calling concerned functions.
2070
2071 If unsure, say N
3cb7e662 2072endif # ARM64_PSEUDO_NMI
48ce8f80 2073
1e48ef7f 2074config RELOCATABLE
dd4bc607 2075 bool "Build a relocatable kernel image" if EXPERT
5cf896fb 2076 select ARCH_HAS_RELR
dd4bc607 2077 default y
1e48ef7f
AB
2078 help
2079 This builds the kernel as a Position Independent Executable (PIE),
2080 which retains all relocation metadata required to relocate the
2081 kernel binary at runtime to a different virtual address than the
2082 address it was linked at.
2083 Since AArch64 uses the RELA relocation format, this requires a
2084 relocation pass at runtime even if the kernel is loaded at the
2085 same address it was linked at.
2086
f80fb3a3
AB
2087config RANDOMIZE_BASE
2088 bool "Randomize the address of the kernel image"
b9c220b5 2089 select ARM64_MODULE_PLTS if MODULES
f80fb3a3
AB
2090 select RELOCATABLE
2091 help
2092 Randomizes the virtual address at which the kernel image is
2093 loaded, as a security feature that deters exploit attempts
2094 relying on knowledge of the location of kernel internals.
2095
2096 It is the bootloader's job to provide entropy, by passing a
2097 random u64 value in /chosen/kaslr-seed at kernel entry.
2098
2b5fe07a
AB
2099 When booting via the UEFI stub, it will invoke the firmware's
2100 EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2101 to the kernel proper. In addition, it will randomise the physical
2102 location of the kernel Image as well.
2103
f80fb3a3
AB
2104 If unsure, say N.
2105
2106config RANDOMIZE_MODULE_REGION_FULL
f9c4ff2a 2107 bool "Randomize the module region over a 2 GB range"
e71a4e1b 2108 depends on RANDOMIZE_BASE
f80fb3a3
AB
2109 default y
2110 help
f9c4ff2a 2111 Randomizes the location of the module region inside a 2 GB window
f2b9ba87 2112 covering the core kernel. This way, it is less likely for modules
f80fb3a3
AB
2113 to leak information about the location of core kernel data structures
2114 but it does imply that function calls between modules and the core
2115 kernel will need to be resolved via veneers in the module PLT.
2116
2117 When this option is not set, the module region will be randomized over
2118 a limited range that contains the [_stext, _etext] interval of the
f9c4ff2a
BS
2119 core kernel, so branch relocations are almost always in range unless
2120 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2121 particular case of region exhaustion, modules might be able to fall
2122 back to a larger 2GB area.
f80fb3a3 2123
0a1213fa
AB
2124config CC_HAVE_STACKPROTECTOR_SYSREG
2125 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2126
2127config STACKPROTECTOR_PER_TASK
2128 def_bool y
2129 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2130
5028fbad
HM
2131# The GPIO number here must be sorted by descending number. In case of
2132# a multiplatform kernel, we just want the highest value required by the
2133# selected platforms.
2134config ARCH_NR_GPIO
2135 int
2136 default 2048 if ARCH_APPLE
2137 default 0
2138 help
2139 Maximum number of GPIOs in the system.
2140
2141 If unsure, leave the default value.
2142
3cb7e662 2143endmenu # "Kernel Features"
8c2c3df3
CM
2144
2145menu "Boot options"
2146
5e89c55e
LP
2147config ARM64_ACPI_PARKING_PROTOCOL
2148 bool "Enable support for the ARM64 ACPI parking protocol"
2149 depends on ACPI
2150 help
2151 Enable support for the ARM64 ACPI parking protocol. If disabled
2152 the kernel will not allow booting through the ARM64 ACPI parking
2153 protocol even if the corresponding data is present in the ACPI
2154 MADT table.
2155
8c2c3df3
CM
2156config CMDLINE
2157 string "Default kernel command string"
2158 default ""
2159 help
2160 Provide a set of default command-line options at build time by
2161 entering them here. As a minimum, you should specify the the
2162 root device (e.g. root=/dev/nfs).
2163
1e40d105
TH
2164choice
2165 prompt "Kernel command line type" if CMDLINE != ""
2166 default CMDLINE_FROM_BOOTLOADER
2167 help
2168 Choose how the kernel will handle the provided default kernel
2169 command line string.
2170
2171config CMDLINE_FROM_BOOTLOADER
2172 bool "Use bootloader kernel arguments if available"
2173 help
2174 Uses the command-line options passed by the boot loader. If
2175 the boot loader doesn't provide any, the default kernel command
2176 string provided in CMDLINE will be used.
2177
8c2c3df3
CM
2178config CMDLINE_FORCE
2179 bool "Always use the default kernel command string"
2180 help
2181 Always use the default kernel command string, even if the boot
2182 loader passes other arguments to the kernel.
2183 This is useful if you cannot or don't want to change the
2184 command-line options your boot loader passes to the kernel.
2185
1e40d105
TH
2186endchoice
2187
f4f75ad5
AB
2188config EFI_STUB
2189 bool
2190
f84d0275
MS
2191config EFI
2192 bool "UEFI runtime support"
2193 depends on OF && !CPU_BIG_ENDIAN
b472db6c 2194 depends on KERNEL_MODE_NEON
2c870e61 2195 select ARCH_SUPPORTS_ACPI
f84d0275
MS
2196 select LIBFDT
2197 select UCS2_STRING
2198 select EFI_PARAMS_FROM_FDT
e15dd494 2199 select EFI_RUNTIME_WRAPPERS
f4f75ad5 2200 select EFI_STUB
2e0eb483 2201 select EFI_GENERIC_STUB
8d39cee0 2202 imply IMA_SECURE_AND_OR_TRUSTED_BOOT
f84d0275
MS
2203 default y
2204 help
2205 This option provides support for runtime services provided
2206 by UEFI firmware (such as non-volatile variables, realtime
3cb7e662 2207 clock, and platform reset). A UEFI stub is also provided to
3c7f2550
MS
2208 allow the kernel to be booted as an EFI application. This
2209 is only useful on systems that have UEFI firmware.
f84d0275 2210
d1ae8c00
YL
2211config DMI
2212 bool "Enable support for SMBIOS (DMI) tables"
2213 depends on EFI
2214 default y
2215 help
2216 This enables SMBIOS/DMI feature for systems.
2217
2218 This option is only useful on systems that have UEFI firmware.
2219 However, even with this option, the resultant kernel should
2220 continue to boot on existing non-UEFI platforms.
2221
3cb7e662 2222endmenu # "Boot options"
8c2c3df3 2223
166936ba
LP
2224menu "Power management options"
2225
2226source "kernel/power/Kconfig"
2227
82869ac5
JM
2228config ARCH_HIBERNATION_POSSIBLE
2229 def_bool y
2230 depends on CPU_PM
2231
2232config ARCH_HIBERNATION_HEADER
2233 def_bool y
2234 depends on HIBERNATION
2235
166936ba
LP
2236config ARCH_SUSPEND_POSSIBLE
2237 def_bool y
2238
3cb7e662 2239endmenu # "Power management options"
166936ba 2240
1307220d
LP
2241menu "CPU Power Management"
2242
2243source "drivers/cpuidle/Kconfig"
2244
52e7e816
RH
2245source "drivers/cpufreq/Kconfig"
2246
3cb7e662 2247endmenu # "CPU Power Management"
52e7e816 2248
b6a02173
GG
2249source "drivers/acpi/Kconfig"
2250
c3eb5b14
MZ
2251source "arch/arm64/kvm/Kconfig"
2252
2c98833a
AB
2253if CRYPTO
2254source "arch/arm64/crypto/Kconfig"
3cb7e662 2255endif # CRYPTO