Merge branch 'spectre' of git://git.armlinux.org.uk/~rmk/linux-arm
[linux-block.git] / arch / arm / vfp / vfpmodule.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/vfp/vfpmodule.c
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
1da177e4 11#include <linux/types.h>
90b44199 12#include <linux/cpu.h>
746a9d19 13#include <linux/cpu_pm.h>
998de4ac 14#include <linux/hardirq.h>
1da177e4 15#include <linux/kernel.h>
90b44199 16#include <linux/notifier.h>
1da177e4 17#include <linux/signal.h>
3f07c014 18#include <linux/sched/signal.h>
90b44199 19#include <linux/smp.h>
1da177e4 20#include <linux/init.h>
2498814f
WD
21#include <linux/uaccess.h>
22#include <linux/user.h>
73c132c1 23#include <linux/export.h>
d6551e88 24
15d07dc9 25#include <asm/cp15.h>
5aaf2544 26#include <asm/cputype.h>
9f97da78 27#include <asm/system_info.h>
d6551e88 28#include <asm/thread_notify.h>
1da177e4
LT
29#include <asm/vfp.h>
30
31#include "vfpinstr.h"
32#include "vfp.h"
33
34/*
35 * Our undef handlers (in entry.S)
36 */
a85b2257
NP
37asmlinkage void vfp_testing_entry(void);
38asmlinkage void vfp_support_entry(void);
39asmlinkage void vfp_null_entry(void);
1da177e4 40
a85b2257 41asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
af61bdf0 42
f8f2a852
RK
43/*
44 * Dual-use variable.
45 * Used in startup: set to non-zero if VFP checks fail
46 * After startup, holds VFP architecture
47 */
48unsigned int VFP_arch;
49
af61bdf0
RK
50/*
51 * The pointer to the vfpstate structure of the thread which currently
52 * owns the context held in the VFP hardware, or NULL if the hardware
53 * context is invalid.
f8f2a852
RK
54 *
55 * For UP, this is sufficient to tell which thread owns the VFP context.
56 * However, for SMP, we also need to check the CPU number stored in the
57 * saved state too to catch migrations.
af61bdf0
RK
58 */
59union vfp_state *vfp_current_hw_state[NR_CPUS];
1da177e4
LT
60
61/*
f8f2a852
RK
62 * Is 'thread's most up to date state stored in this CPUs hardware?
63 * Must be called from non-preemptible context.
1da177e4 64 */
f8f2a852
RK
65static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
66{
67#ifdef CONFIG_SMP
68 if (thread->vfpstate.hard.cpu != cpu)
69 return false;
70#endif
71 return vfp_current_hw_state[cpu] == &thread->vfpstate;
72}
73
74/*
75 * Force a reload of the VFP context from the thread structure. We do
76 * this by ensuring that access to the VFP hardware is disabled, and
48af9fea 77 * clear vfp_current_hw_state. Must be called from non-preemptible context.
f8f2a852
RK
78 */
79static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
80{
81 if (vfp_state_in_hw(cpu, thread)) {
82 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
83 vfp_current_hw_state[cpu] = NULL;
84 }
85#ifdef CONFIG_SMP
86 thread->vfpstate.hard.cpu = NR_CPUS;
87#endif
88}
1da177e4 89
0d782dc4
RK
90/*
91 * Per-thread VFP initialization.
92 */
93static void vfp_thread_flush(struct thread_info *thread)
94{
95 union vfp_state *vfp = &thread->vfpstate;
96 unsigned int cpu;
97
0d782dc4
RK
98 /*
99 * Disable VFP to ensure we initialize it first. We must ensure
19dad35f
RK
100 * that the modification of vfp_current_hw_state[] and hardware
101 * disable are done for the same CPU and without preemption.
102 *
103 * Do this first to ensure that preemption won't overwrite our
104 * state saving should access to the VFP be enabled at this point.
0d782dc4
RK
105 */
106 cpu = get_cpu();
af61bdf0
RK
107 if (vfp_current_hw_state[cpu] == vfp)
108 vfp_current_hw_state[cpu] = NULL;
0d782dc4
RK
109 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
110 put_cpu();
19dad35f
RK
111
112 memset(vfp, 0, sizeof(union vfp_state));
113
114 vfp->hard.fpexc = FPEXC_EN;
115 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
116#ifdef CONFIG_SMP
117 vfp->hard.cpu = NR_CPUS;
118#endif
0d782dc4
RK
119}
120
797245f5 121static void vfp_thread_exit(struct thread_info *thread)
0d782dc4
RK
122{
123 /* release case: Per-thread VFP cleanup. */
124 union vfp_state *vfp = &thread->vfpstate;
797245f5 125 unsigned int cpu = get_cpu();
0d782dc4 126
af61bdf0
RK
127 if (vfp_current_hw_state[cpu] == vfp)
128 vfp_current_hw_state[cpu] = NULL;
797245f5 129 put_cpu();
0d782dc4
RK
130}
131
c98c0977
CM
132static void vfp_thread_copy(struct thread_info *thread)
133{
134 struct thread_info *parent = current_thread_info();
135
136 vfp_sync_hwstate(parent);
137 thread->vfpstate = parent->vfpstate;
f8f2a852
RK
138#ifdef CONFIG_SMP
139 thread->vfpstate.hard.cpu = NR_CPUS;
140#endif
c98c0977
CM
141}
142
0d782dc4
RK
143/*
144 * When this function is called with the following 'cmd's, the following
145 * is true while this function is being run:
146 * THREAD_NOFTIFY_SWTICH:
147 * - the previously running thread will not be scheduled onto another CPU.
148 * - the next thread to be run (v) will not be running on another CPU.
149 * - thread->cpu is the local CPU number
150 * - not preemptible as we're called in the middle of a thread switch
151 * THREAD_NOTIFY_FLUSH:
152 * - the thread (v) will be running on the local CPU, so
153 * v === current_thread_info()
154 * - thread->cpu is the local CPU number at the time it is accessed,
155 * but may change at any time.
156 * - we could be preempted if tree preempt rcu is enabled, so
157 * it is unsafe to use thread->cpu.
797245f5 158 * THREAD_NOTIFY_EXIT
797245f5
RK
159 * - we could be preempted if tree preempt rcu is enabled, so
160 * it is unsafe to use thread->cpu.
0d782dc4 161 */
d6551e88 162static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
1da177e4 163{
d6551e88 164 struct thread_info *thread = v;
2e82669a
CM
165 u32 fpexc;
166#ifdef CONFIG_SMP
167 unsigned int cpu;
168#endif
1da177e4 169
2e82669a
CM
170 switch (cmd) {
171 case THREAD_NOTIFY_SWITCH:
172 fpexc = fmrx(FPEXC);
c6428464
CM
173
174#ifdef CONFIG_SMP
2e82669a 175 cpu = thread->cpu;
0d782dc4 176
c6428464
CM
177 /*
178 * On SMP, if VFP is enabled, save the old state in
179 * case the thread migrates to a different CPU. The
180 * restoring is done lazily.
181 */
f8f2a852 182 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
af61bdf0 183 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
c6428464
CM
184#endif
185
681a4991
RK
186 /*
187 * Always disable VFP so we can lazily save/restore the
188 * old state.
189 */
228adef1 190 fmxr(FPEXC, fpexc & ~FPEXC_EN);
2e82669a 191 break;
681a4991 192
2e82669a 193 case THREAD_NOTIFY_FLUSH:
0d782dc4 194 vfp_thread_flush(thread);
2e82669a
CM
195 break;
196
197 case THREAD_NOTIFY_EXIT:
797245f5 198 vfp_thread_exit(thread);
c98c0977
CM
199 break;
200
201 case THREAD_NOTIFY_COPY:
202 vfp_thread_copy(thread);
2e82669a
CM
203 break;
204 }
681a4991 205
d6551e88 206 return NOTIFY_DONE;
1da177e4
LT
207}
208
d6551e88
RK
209static struct notifier_block vfp_notifier_block = {
210 .notifier_call = vfp_notifier,
211};
212
1da177e4
LT
213/*
214 * Raise a SIGFPE for the current process.
215 * sicode describes the signal being raised.
216 */
2bbd7e9b 217static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
1da177e4 218{
1da177e4
LT
219 /*
220 * This is the same as NWFPE, because it's not clear what
221 * this is used for
222 */
223 current->thread.error_code = 0;
224 current->thread.trap_no = 6;
225
b0594548
EB
226 send_sig_fault(SIGFPE, sicode,
227 (void __user *)(instruction_pointer(regs) - 4),
228 current);
1da177e4
LT
229}
230
c98929c0 231static void vfp_panic(char *reason, u32 inst)
1da177e4
LT
232{
233 int i;
234
dc457078
NP
235 pr_err("VFP: Error: %s\n", reason);
236 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
c98929c0 237 fmrx(FPEXC), fmrx(FPSCR), inst);
1da177e4 238 for (i = 0; i < 32; i += 2)
dc457078 239 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
1da177e4
LT
240 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
241}
242
243/*
244 * Process bitmask of exception conditions.
245 */
246static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
247{
248 int si_code = 0;
249
250 pr_debug("VFP: raising exceptions %08x\n", exceptions);
251
7c6f2514 252 if (exceptions == VFP_EXCEPTION_ERROR) {
c98929c0 253 vfp_panic("unhandled bounce", inst);
92d44a42 254 vfp_raise_sigfpe(FPE_FLTINV, regs);
1da177e4
LT
255 return;
256 }
257
258 /*
dbead405 259 * If any of the status flags are set, update the FPSCR.
1da177e4
LT
260 * Comparison instructions always return at least one of
261 * these flags set.
262 */
dbead405
CM
263 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
264 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
265
1da177e4
LT
266 fpscr |= exceptions;
267
268 fmxr(FPSCR, fpscr);
269
270#define RAISE(stat,en,sig) \
271 if (exceptions & stat && fpscr & en) \
272 si_code = sig;
273
274 /*
275 * These are arranged in priority order, least to highest.
276 */
e0f205d9 277 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
1da177e4
LT
278 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
279 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
280 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
281 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
282
283 if (si_code)
284 vfp_raise_sigfpe(si_code, regs);
285}
286
287/*
288 * Emulate a VFP instruction.
289 */
290static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
291{
7c6f2514 292 u32 exceptions = VFP_EXCEPTION_ERROR;
1da177e4
LT
293
294 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
295
296 if (INST_CPRTDO(inst)) {
297 if (!INST_CPRT(inst)) {
298 /*
299 * CPDO
300 */
301 if (vfp_single(inst)) {
302 exceptions = vfp_single_cpdo(inst, fpscr);
303 } else {
304 exceptions = vfp_double_cpdo(inst, fpscr);
305 }
306 } else {
307 /*
308 * A CPRT instruction can not appear in FPINST2, nor
309 * can it cause an exception. Therefore, we do not
310 * have to emulate it.
311 */
312 }
313 } else {
314 /*
315 * A CPDT instruction can not appear in FPINST2, nor can
316 * it cause an exception. Therefore, we do not have to
317 * emulate it.
318 */
319 }
928bd1b4 320 return exceptions & ~VFP_NAN_FLAG;
1da177e4
LT
321}
322
323/*
324 * Package up a bounce condition.
325 */
c98929c0 326void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
1da177e4 327{
c98929c0 328 u32 fpscr, orig_fpscr, fpsid, exceptions;
1da177e4
LT
329
330 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
331
332 /*
c98929c0
CM
333 * At this point, FPEXC can have the following configuration:
334 *
335 * EX DEX IXE
336 * 0 1 x - synchronous exception
337 * 1 x 0 - asynchronous exception
338 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
339 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
340 * implementation), undefined otherwise
341 *
342 * Clear various bits and enable access to the VFP so we can
343 * handle the bounce.
1da177e4 344 */
c98929c0 345 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
1da177e4 346
c98929c0 347 fpsid = fmrx(FPSID);
1da177e4
LT
348 orig_fpscr = fpscr = fmrx(FPSCR);
349
350 /*
c98929c0 351 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
1da177e4 352 */
c98929c0
CM
353 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
354 && (fpscr & FPSCR_IXE)) {
355 /*
356 * Synchronous exception, emulate the trigger instruction
357 */
1da177e4
LT
358 goto emulate;
359 }
360
c98929c0 361 if (fpexc & FPEXC_EX) {
85d6943a 362#ifndef CONFIG_CPU_FEROCEON
c98929c0
CM
363 /*
364 * Asynchronous exception. The instruction is read from FPINST
365 * and the interrupted instruction has to be restarted.
366 */
367 trigger = fmrx(FPINST);
368 regs->ARM_pc -= 4;
85d6943a 369#endif
c98929c0
CM
370 } else if (!(fpexc & FPEXC_DEX)) {
371 /*
372 * Illegal combination of bits. It can be caused by an
373 * unallocated VFP instruction but with FPSCR.IXE set and not
374 * on VFP subarch 1.
375 */
376 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
f2255be8 377 goto exit;
c98929c0 378 }
1da177e4
LT
379
380 /*
c98929c0
CM
381 * Modify fpscr to indicate the number of iterations remaining.
382 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
383 * whether FPEXC.VECITR or FPSCR.LEN is used.
1da177e4 384 */
c98929c0 385 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
1da177e4
LT
386 u32 len;
387
388 len = fpexc + (1 << FPEXC_LENGTH_BIT);
389
390 fpscr &= ~FPSCR_LENGTH_MASK;
391 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
392 }
393
394 /*
395 * Handle the first FP instruction. We used to take note of the
396 * FPEXC bounce reason, but this appears to be unreliable.
397 * Emulate the bounced instruction instead.
398 */
c98929c0 399 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
1da177e4 400 if (exceptions)
c98929c0 401 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
1da177e4
LT
402
403 /*
c98929c0
CM
404 * If there isn't a second FP instruction, exit now. Note that
405 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
1da177e4 406 */
5e4ba617 407 if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
f2255be8 408 goto exit;
1da177e4
LT
409
410 /*
411 * The barrier() here prevents fpinst2 being read
412 * before the condition above.
413 */
414 barrier();
415 trigger = fmrx(FPINST2);
1da177e4
LT
416
417 emulate:
c98929c0 418 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
1da177e4
LT
419 if (exceptions)
420 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
f2255be8
GD
421 exit:
422 preempt_enable();
1da177e4 423}
efe90d27 424
8e140362
RK
425static void vfp_enable(void *unused)
426{
998de4ac
WD
427 u32 access;
428
429 BUG_ON(preemptible());
430 access = get_copro_access();
8e140362
RK
431
432 /*
433 * Enable full access to VFP (cp10 and cp11)
434 */
435 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
436}
437
7d7d7a41
FF
438/* Called by platforms on which we want to disable VFP because it may not be
439 * present on all CPUs within a SMP complex. Needs to be called prior to
440 * vfp_init().
441 */
442void vfp_disable(void)
443{
444 if (VFP_arch) {
445 pr_debug("%s: should be called prior to vfp_init\n", __func__);
446 return;
447 }
448 VFP_arch = 1;
449}
450
746a9d19 451#ifdef CONFIG_CPU_PM
328f5cc3 452static int vfp_pm_suspend(void)
fc0b7a20
BD
453{
454 struct thread_info *ti = current_thread_info();
455 u32 fpexc = fmrx(FPEXC);
456
457 /* if vfp is on, then save state for resumption */
458 if (fpexc & FPEXC_EN) {
dc457078 459 pr_debug("%s: saving vfp state\n", __func__);
fc0b7a20
BD
460 vfp_save_state(&ti->vfpstate, fpexc);
461
462 /* disable, just in case */
463 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
24b35521
CC
464 } else if (vfp_current_hw_state[ti->cpu]) {
465#ifndef CONFIG_SMP
466 fmxr(FPEXC, fpexc | FPEXC_EN);
467 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
468 fmxr(FPEXC, fpexc);
469#endif
fc0b7a20
BD
470 }
471
472 /* clear any information we had about last context state */
a84b895a 473 vfp_current_hw_state[ti->cpu] = NULL;
fc0b7a20
BD
474
475 return 0;
476}
477
328f5cc3 478static void vfp_pm_resume(void)
fc0b7a20
BD
479{
480 /* ensure we have access to the vfp */
481 vfp_enable(NULL);
482
483 /* and disable it to ensure the next usage restores the state */
484 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
fc0b7a20
BD
485}
486
746a9d19
CC
487static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
488 void *v)
489{
490 switch (cmd) {
491 case CPU_PM_ENTER:
492 vfp_pm_suspend();
493 break;
494 case CPU_PM_ENTER_FAILED:
495 case CPU_PM_EXIT:
496 vfp_pm_resume();
497 break;
498 }
499 return NOTIFY_OK;
500}
501
502static struct notifier_block vfp_cpu_pm_notifier_block = {
503 .notifier_call = vfp_cpu_pm_notifier,
fc0b7a20
BD
504};
505
fc0b7a20
BD
506static void vfp_pm_init(void)
507{
746a9d19 508 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
fc0b7a20
BD
509}
510
fc0b7a20
BD
511#else
512static inline void vfp_pm_init(void) { }
746a9d19 513#endif /* CONFIG_CPU_PM */
fc0b7a20 514
f8f2a852
RK
515/*
516 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
517 * with the hardware state.
518 */
ad187f95 519void vfp_sync_hwstate(struct thread_info *thread)
3d1228ea
CM
520{
521 unsigned int cpu = get_cpu();
3d1228ea 522
f8f2a852 523 if (vfp_state_in_hw(cpu, thread)) {
54cb3dbb 524 u32 fpexc = fmrx(FPEXC);
3d1228ea 525
54cb3dbb
RK
526 /*
527 * Save the last VFP state on this CPU.
528 */
529 fmxr(FPEXC, fpexc | FPEXC_EN);
530 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
ad187f95
RK
531 fmxr(FPEXC, fpexc);
532 }
3d1228ea 533
ad187f95
RK
534 put_cpu();
535}
536
f8f2a852 537/* Ensure that the thread reloads the hardware VFP state on the next use. */
ad187f95
RK
538void vfp_flush_hwstate(struct thread_info *thread)
539{
540 unsigned int cpu = get_cpu();
3d1228ea 541
f8f2a852 542 vfp_force_reload(cpu, thread);
ad187f95 543
3d1228ea
CM
544 put_cpu();
545}
3d1228ea 546
2498814f
WD
547/*
548 * Save the current VFP state into the provided structures and prepare
549 * for entry into a new function (signal handler).
550 */
3aa2df6e
JT
551int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
552 struct user_vfp_exc *ufp_exc)
2498814f
WD
553{
554 struct thread_info *thread = current_thread_info();
555 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
2498814f
WD
556
557 /* Ensure that the saved hwstate is up-to-date. */
558 vfp_sync_hwstate(thread);
559
560 /*
561 * Copy the floating point registers. There can be unused
562 * registers see asm/hwcap.h for details.
563 */
3aa2df6e
JT
564 memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
565
2498814f
WD
566 /*
567 * Copy the status and control register.
568 */
3aa2df6e 569 ufp->fpscr = hwstate->fpscr;
2498814f
WD
570
571 /*
572 * Copy the exception registers.
573 */
3aa2df6e
JT
574 ufp_exc->fpexc = hwstate->fpexc;
575 ufp_exc->fpinst = hwstate->fpinst;
5df7a99b 576 ufp_exc->fpinst2 = hwstate->fpinst2;
ff9a184c
WD
577
578 /* Ensure that VFP is disabled. */
579 vfp_flush_hwstate(thread);
580
581 /*
582 * As per the PCS, clear the length and stride bits for function
583 * entry.
584 */
585 hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
2498814f
WD
586 return 0;
587}
588
589/* Sanitise and restore the current VFP state from the provided structures. */
42019fc5 590int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
2498814f
WD
591{
592 struct thread_info *thread = current_thread_info();
593 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
594 unsigned long fpexc;
2498814f 595
56cb2484
WD
596 /* Disable VFP to avoid corrupting the new thread state. */
597 vfp_flush_hwstate(thread);
2498814f
WD
598
599 /*
600 * Copy the floating point registers. There can be unused
601 * registers see asm/hwcap.h for details.
602 */
42019fc5 603 memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
2498814f
WD
604 /*
605 * Copy the status and control register.
606 */
42019fc5 607 hwstate->fpscr = ufp->fpscr;
2498814f
WD
608
609 /*
610 * Sanitise and restore the exception registers.
611 */
42019fc5 612 fpexc = ufp_exc->fpexc;
2498814f
WD
613
614 /* Ensure the VFP is enabled. */
615 fpexc |= FPEXC_EN;
616
617 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
618 fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
619 hwstate->fpexc = fpexc;
620
42019fc5
RK
621 hwstate->fpinst = ufp_exc->fpinst;
622 hwstate->fpinst2 = ufp_exc->fpinst2;
2498814f 623
42019fc5 624 return 0;
2498814f
WD
625}
626
90b44199
RK
627/*
628 * VFP hardware can lose all context when a CPU goes offline.
74c25bee
RK
629 * As we will be running in SMP mode with CPU hotplug, we will save the
630 * hardware state at every thread switch. We clear our held state when
631 * a CPU has been killed, indicating that the VFP hardware doesn't contain
632 * a threads VFP state. When a CPU starts up, we re-enable access to the
e5b61baf 633 * VFP hardware. The callbacks below are called on the CPU which
90b44199
RK
634 * is being offlined/onlined.
635 */
e5b61baf 636static int vfp_dying_cpu(unsigned int cpu)
90b44199 637{
1328f020 638 vfp_current_hw_state[cpu] = NULL;
e5b61baf
TG
639 return 0;
640}
641
642static int vfp_starting_cpu(unsigned int unused)
643{
644 vfp_enable(NULL);
645 return 0;
90b44199 646}
8e140362 647
ab3da156
AB
648void vfp_kmode_exception(void)
649{
650 /*
651 * If we reach this point, a floating point exception has been raised
652 * while running in kernel mode. If the NEON/VFP unit was enabled at the
653 * time, it means a VFP instruction has been issued that requires
654 * software assistance to complete, something which is not currently
655 * supported in kernel mode.
656 * If the NEON/VFP unit was disabled, and the location pointed to below
657 * is properly preceded by a call to kernel_neon_begin(), something has
658 * caused the task to be scheduled out and back in again. In this case,
659 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
660 * be helpful in localizing the problem.
661 */
662 if (fmrx(FPEXC) & FPEXC_EN)
663 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
664 else
665 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
666}
667
73c132c1
AB
668#ifdef CONFIG_KERNEL_MODE_NEON
669
670/*
671 * Kernel-side NEON support functions
672 */
673void kernel_neon_begin(void)
674{
675 struct thread_info *thread = current_thread_info();
676 unsigned int cpu;
677 u32 fpexc;
678
679 /*
680 * Kernel mode NEON is only allowed outside of interrupt context
681 * with preemption disabled. This will make sure that the kernel
682 * mode NEON register contents never need to be preserved.
683 */
684 BUG_ON(in_interrupt());
685 cpu = get_cpu();
686
687 fpexc = fmrx(FPEXC) | FPEXC_EN;
688 fmxr(FPEXC, fpexc);
689
690 /*
691 * Save the userland NEON/VFP state. Under UP,
692 * the owner could be a task other than 'current'
693 */
694 if (vfp_state_in_hw(cpu, thread))
695 vfp_save_state(&thread->vfpstate, fpexc);
696#ifndef CONFIG_SMP
697 else if (vfp_current_hw_state[cpu] != NULL)
698 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
699#endif
700 vfp_current_hw_state[cpu] = NULL;
701}
702EXPORT_SYMBOL(kernel_neon_begin);
703
704void kernel_neon_end(void)
705{
706 /* Disable the NEON/VFP unit. */
707 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
708 put_cpu();
709}
710EXPORT_SYMBOL(kernel_neon_end);
711
712#endif /* CONFIG_KERNEL_MODE_NEON */
713
1da177e4
LT
714/*
715 * VFP support code initialisation.
716 */
717static int __init vfp_init(void)
718{
719 unsigned int vfpsid;
efe90d27 720 unsigned int cpu_arch = cpu_architecture();
efe90d27 721
e5b61baf
TG
722 /*
723 * Enable the access to the VFP on all online CPUs so the
724 * following test on FPSID will succeed.
725 */
c98929c0 726 if (cpu_arch >= CPU_ARCH_ARMv6)
998de4ac 727 on_each_cpu(vfp_enable, NULL, 1);
1da177e4
LT
728
729 /*
730 * First check that there is a VFP that we can use.
731 * The handler is already setup to just log calls, so
732 * we just need to read the VFPSID register.
733 */
5d4cae5f 734 vfp_vector = vfp_testing_entry;
b9338a78 735 barrier();
1da177e4 736 vfpsid = fmrx(FPSID);
8e140362 737 barrier();
5d4cae5f 738 vfp_vector = vfp_null_entry;
1da177e4 739
dc457078 740 pr_info("VFP support v0.3: ");
6c96a4a6 741 if (VFP_arch) {
dc457078 742 pr_cont("not present\n");
6c96a4a6
SB
743 return 0;
744 /* Extract the architecture on CPUID scheme */
745 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
746 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
747 VFP_arch >>= FPSID_ARCH_BIT;
efe90d27 748 /*
6c96a4a6
SB
749 * Check for the presence of the Advanced SIMD
750 * load/store instructions, integer and single
751 * precision floating point operations. Only check
752 * for NEON if the hardware has the MVFR registers.
efe90d27 753 */
2b94fe2a
SB
754 if (IS_ENABLED(CONFIG_NEON) &&
755 (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
6c96a4a6 756 elf_hwcap |= HWCAP_NEON;
6c96a4a6 757
2b94fe2a
SB
758 if (IS_ENABLED(CONFIG_VFPv3)) {
759 u32 mvfr0 = fmrx(MVFR0);
760 if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
761 ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
762 elf_hwcap |= HWCAP_VFPv3;
763 /*
764 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
765 * this configuration only have 16 x 64bit
766 * registers.
767 */
768 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
769 /* also v4-D16 */
770 elf_hwcap |= HWCAP_VFPv3D16;
771 else
772 elf_hwcap |= HWCAP_VFPD32;
773 }
774
775 if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
776 elf_hwcap |= HWCAP_VFPv4;
777 }
6c96a4a6
SB
778 /* Extract the architecture version on pre-cpuid scheme */
779 } else {
780 if (vfpsid & FPSID_NODOUBLE) {
781 pr_cont("no double precision support\n");
782 return 0;
18b9dc13 783 }
6c96a4a6
SB
784
785 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
1da177e4 786 }
6c96a4a6 787
e5b61baf 788 cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
73c1b41e 789 "arm/vfp:starting", vfp_starting_cpu,
e5b61baf 790 vfp_dying_cpu);
6c96a4a6
SB
791
792 vfp_vector = vfp_support_entry;
793
794 thread_register_notifier(&vfp_notifier_block);
795 vfp_pm_init();
796
797 /*
798 * We detected VFP, and the support code is
799 * in place; report VFP support to userspace.
800 */
801 elf_hwcap |= HWCAP_VFP;
802
803 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
804 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
805 VFP_arch,
806 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
807 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
808 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
809
1da177e4
LT
810 return 0;
811}
812
0773d73d 813core_initcall(vfp_init);