mm: treewide: clarify pgtable_page_{ctor,dtor}() naming
[linux-2.6-block.git] / arch / arm / mm / mmu.c
CommitLineData
d2912cb1 1// SPDX-License-Identifier: GPL-2.0-only
d111e8f9
RK
2/*
3 * linux/arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
d111e8f9 6 */
ae8f1541 7#include <linux/module.h>
d111e8f9
RK
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/init.h>
d111e8f9
RK
11#include <linux/mman.h>
12#include <linux/nodemask.h>
2778f620 13#include <linux/memblock.h>
d907387c 14#include <linux/fs.h>
0536bdf3 15#include <linux/vmalloc.h>
158e8bfe 16#include <linux/sizes.h>
d111e8f9 17
15d07dc9 18#include <asm/cp15.h>
0ba8b9b2 19#include <asm/cputype.h>
37efe642 20#include <asm/sections.h>
3f973e22 21#include <asm/cachetype.h>
99b4ac9a 22#include <asm/fixmap.h>
ebd4922e 23#include <asm/sections.h>
d111e8f9 24#include <asm/setup.h>
e616c591 25#include <asm/smp_plat.h>
d111e8f9 26#include <asm/tlb.h>
d73cd428 27#include <asm/highmem.h>
9f97da78 28#include <asm/system_info.h>
247055aa 29#include <asm/traps.h>
a77e0c7b
SS
30#include <asm/procinfo.h>
31#include <asm/memory.h>
d111e8f9
RK
32
33#include <asm/mach/arch.h>
34#include <asm/mach/map.h>
c2794437 35#include <asm/mach/pci.h>
a05e54c1 36#include <asm/fixmap.h>
d111e8f9 37
9254970c 38#include "fault.h"
d111e8f9 39#include "mm.h"
de40614e 40#include "tcm.h"
d111e8f9 41
d111e8f9
RK
42/*
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
45 */
46struct page *empty_zero_page;
3653f3ab 47EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
48
49/*
50 * The pmd table for the upper-most set of pages.
51 */
52pmd_t *top_pmd;
53
1d4d3715
JL
54pmdval_t user_pmd_table = _PAGE_USER_TABLE;
55
ae8f1541
RK
56#define CPOLICY_UNCACHED 0
57#define CPOLICY_BUFFERED 1
58#define CPOLICY_WRITETHROUGH 2
59#define CPOLICY_WRITEBACK 3
60#define CPOLICY_WRITEALLOC 4
61
62static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
63static unsigned int ecc_mask __initdata = 0;
44b18693 64pgprot_t pgprot_user;
ae8f1541 65pgprot_t pgprot_kernel;
cc577c26
CD
66pgprot_t pgprot_hyp_device;
67pgprot_t pgprot_s2;
68pgprot_t pgprot_s2_device;
ae8f1541 69
44b18693 70EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
71EXPORT_SYMBOL(pgprot_kernel);
72
73struct cachepolicy {
74 const char policy[16];
75 unsigned int cr_mask;
442e70c0 76 pmdval_t pmd;
f6e3354d 77 pteval_t pte;
cc577c26 78 pteval_t pte_s2;
ae8f1541
RK
79};
80
cc577c26
CD
81#ifdef CONFIG_ARM_LPAE
82#define s2_policy(policy) policy
83#else
84#define s2_policy(policy) 0
85#endif
86
cf763e4e
MZ
87unsigned long kimage_voffset __ro_after_init;
88
ae8f1541
RK
89static struct cachepolicy cache_policies[] __initdata = {
90 {
91 .policy = "uncached",
92 .cr_mask = CR_W|CR_C,
93 .pmd = PMD_SECT_UNCACHED,
bb30f36f 94 .pte = L_PTE_MT_UNCACHED,
cc577c26 95 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
96 }, {
97 .policy = "buffered",
98 .cr_mask = CR_C,
99 .pmd = PMD_SECT_BUFFERED,
bb30f36f 100 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 101 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
102 }, {
103 .policy = "writethrough",
104 .cr_mask = 0,
105 .pmd = PMD_SECT_WT,
bb30f36f 106 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 107 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
108 }, {
109 .policy = "writeback",
110 .cr_mask = 0,
111 .pmd = PMD_SECT_WB,
bb30f36f 112 .pte = L_PTE_MT_WRITEBACK,
cc577c26 113 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
114 }, {
115 .policy = "writealloc",
116 .cr_mask = 0,
117 .pmd = PMD_SECT_WBWA,
bb30f36f 118 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 119 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
120 }
121};
122
b849a60e 123#ifdef CONFIG_CPU_CP15
20e7e364
RK
124static unsigned long initial_pmd_value __initdata = 0;
125
ae8f1541 126/*
ca8f0b0a
RK
127 * Initialise the cache_policy variable with the initial state specified
128 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
129 * the C code sets the page tables up with the same policy as the head
130 * assembly code, which avoids an illegal state where the TLBs can get
131 * confused. See comments in early_cachepolicy() for more information.
ae8f1541 132 */
ca8f0b0a 133void __init init_default_cache_policy(unsigned long pmd)
ae8f1541
RK
134{
135 int i;
136
20e7e364
RK
137 initial_pmd_value = pmd;
138
6b3142b2 139 pmd &= PMD_SECT_CACHE_MASK;
ca8f0b0a
RK
140
141 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
142 if (cache_policies[i].pmd == pmd) {
143 cachepolicy = i;
144 break;
145 }
146
147 if (i == ARRAY_SIZE(cache_policies))
148 pr_err("ERROR: could not find cache policy\n");
149}
150
151/*
152 * These are useful for identifying cache coherency problems by allowing
153 * the cache or the cache and writebuffer to be turned off. (Note: the
154 * write buffer should not be on and the cache off).
155 */
156static int __init early_cachepolicy(char *p)
157{
158 int i, selected = -1;
159
ae8f1541
RK
160 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
161 int len = strlen(cache_policies[i].policy);
162
2b0d8c25 163 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ca8f0b0a 164 selected = i;
ae8f1541
RK
165 break;
166 }
167 }
ca8f0b0a
RK
168
169 if (selected == -1)
170 pr_err("ERROR: unknown or unsupported cache policy\n");
171
4b46d641
RK
172 /*
173 * This restriction is partly to do with the way we boot; it is
174 * unpredictable to have memory mapped using two different sets of
175 * memory attributes (shared, type, and cache attribs). We can not
176 * change these attributes once the initial assembly has setup the
177 * page tables.
178 */
ca8f0b0a
RK
179 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
180 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
181 cache_policies[cachepolicy].policy);
182 return 0;
183 }
184
185 if (selected != cachepolicy) {
186 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
187 cachepolicy = selected;
188 flush_cache_all();
189 set_cr(cr);
11179d8c 190 }
2b0d8c25 191 return 0;
ae8f1541 192}
2b0d8c25 193early_param("cachepolicy", early_cachepolicy);
ae8f1541 194
2b0d8c25 195static int __init early_nocache(char *__unused)
ae8f1541
RK
196{
197 char *p = "buffered";
4ed89f22 198 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
199 early_cachepolicy(p);
200 return 0;
ae8f1541 201}
2b0d8c25 202early_param("nocache", early_nocache);
ae8f1541 203
2b0d8c25 204static int __init early_nowrite(char *__unused)
ae8f1541
RK
205{
206 char *p = "uncached";
4ed89f22 207 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
208 early_cachepolicy(p);
209 return 0;
ae8f1541 210}
2b0d8c25 211early_param("nowb", early_nowrite);
ae8f1541 212
1b6ba46b 213#ifndef CONFIG_ARM_LPAE
2b0d8c25 214static int __init early_ecc(char *p)
ae8f1541 215{
2b0d8c25 216 if (memcmp(p, "on", 2) == 0)
ae8f1541 217 ecc_mask = PMD_PROTECTION;
2b0d8c25 218 else if (memcmp(p, "off", 3) == 0)
ae8f1541 219 ecc_mask = 0;
2b0d8c25 220 return 0;
ae8f1541 221}
2b0d8c25 222early_param("ecc", early_ecc);
1b6ba46b 223#endif
ae8f1541 224
b849a60e
UKK
225#else /* ifdef CONFIG_CPU_CP15 */
226
227static int __init early_cachepolicy(char *p)
228{
8b521cb2 229 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
b849a60e
UKK
230}
231early_param("cachepolicy", early_cachepolicy);
232
233static int __init noalign_setup(char *__unused)
234{
8b521cb2 235 pr_warn("noalign kernel parameter not supported without cp15\n");
b849a60e
UKK
236}
237__setup("noalign", noalign_setup);
238
239#endif /* ifdef CONFIG_CPU_CP15 / else */
240
36bb94ba 241#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
4d9c5b89 242#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
b1cce6b1 243#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 244
7619751f 245static struct mem_type mem_types[] __ro_after_init = {
0af92bef 246 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
248 L_PTE_SHARED,
4d9c5b89
CD
249 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
250 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
251 L_PTE_SHARED,
0af92bef 252 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 253 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
254 .domain = DOMAIN_IO,
255 },
256 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 257 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 258 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 259 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
260 .domain = DOMAIN_IO,
261 },
262 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 263 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
264 .prot_l1 = PMD_TYPE_TABLE,
265 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
266 .domain = DOMAIN_IO,
c2794437 267 },
1ad77a87 268 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 269 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 270 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 271 .prot_sect = PROT_SECT_DEVICE,
0af92bef 272 .domain = DOMAIN_IO,
ae8f1541 273 },
ebb4c658
RK
274 [MT_UNCACHED] = {
275 .prot_pte = PROT_PTE_DEVICE,
276 .prot_l1 = PMD_TYPE_TABLE,
277 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
278 .domain = DOMAIN_IO,
279 },
ae8f1541 280 [MT_CACHECLEAN] = {
9ef79635 281 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
282 .domain = DOMAIN_KERNEL,
283 },
1b6ba46b 284#ifndef CONFIG_ARM_LPAE
ae8f1541 285 [MT_MINICLEAN] = {
9ef79635 286 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
287 .domain = DOMAIN_KERNEL,
288 },
1b6ba46b 289#endif
ae8f1541
RK
290 [MT_LOW_VECTORS] = {
291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 292 L_PTE_RDONLY,
ae8f1541 293 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 294 .domain = DOMAIN_VECTORS,
ae8f1541
RK
295 },
296 [MT_HIGH_VECTORS] = {
297 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 298 L_PTE_USER | L_PTE_RDONLY,
ae8f1541 299 .prot_l1 = PMD_TYPE_TABLE,
a02d8dfd 300 .domain = DOMAIN_VECTORS,
ae8f1541 301 },
2e2c9de2 302 [MT_MEMORY_RWX] = {
36bb94ba 303 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 304 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
306 .domain = DOMAIN_KERNEL,
307 },
ebd4922e
RK
308 [MT_MEMORY_RW] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 L_PTE_XN,
311 .prot_l1 = PMD_TYPE_TABLE,
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 .domain = DOMAIN_KERNEL,
314 },
ae8f1541 315 [MT_ROM] = {
9ef79635 316 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
317 .domain = DOMAIN_KERNEL,
318 },
2e2c9de2 319 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 321 L_PTE_MT_BUFFERABLE,
f1a2481c 322 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
324 .domain = DOMAIN_KERNEL,
325 },
2e2c9de2 326 [MT_MEMORY_RW_DTCM] = {
f444fce3 327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 328 L_PTE_XN,
f444fce3
LW
329 .prot_l1 = PMD_TYPE_TABLE,
330 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
331 .domain = DOMAIN_KERNEL,
cb9d7707 332 },
2e2c9de2 333 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 335 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 336 .domain = DOMAIN_KERNEL,
cb9d7707 337 },
2e2c9de2 338 [MT_MEMORY_RW_SO] = {
8fb54284 339 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 340 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
341 .prot_l1 = PMD_TYPE_TABLE,
342 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
343 PMD_SECT_UNCACHED | PMD_SECT_XN,
344 .domain = DOMAIN_KERNEL,
345 },
c7909509 346 [MT_MEMORY_DMA_READY] = {
71b55663
RK
347 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
348 L_PTE_XN,
c7909509
MS
349 .prot_l1 = PMD_TYPE_TABLE,
350 .domain = DOMAIN_KERNEL,
351 },
ae8f1541
RK
352};
353
b29e9f5e
RK
354const struct mem_type *get_mem_type(unsigned int type)
355{
356 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
357}
69d3a84a 358EXPORT_SYMBOL(get_mem_type);
b29e9f5e 359
a5f4c561
SA
360static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
361
362static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
363 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
364
365static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
366{
367 return &bm_pte[pte_index(addr)];
368}
369
370static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
371{
372 return pte_offset_kernel(dir, addr);
373}
374
375static inline pmd_t * __init fixmap_pmd(unsigned long addr)
376{
377 pgd_t *pgd = pgd_offset_k(addr);
378 pud_t *pud = pud_offset(pgd, addr);
379 pmd_t *pmd = pmd_offset(pud, addr);
380
381 return pmd;
382}
383
384void __init early_fixmap_init(void)
385{
386 pmd_t *pmd;
387
388 /*
389 * The early fixmap range spans multiple pmds, for which
390 * we are not prepared:
391 */
2937367b 392 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
a5f4c561
SA
393 != FIXADDR_TOP >> PMD_SHIFT);
394
395 pmd = fixmap_pmd(FIXADDR_TOP);
396 pmd_populate_kernel(&init_mm, pmd, bm_pte);
397
398 pte_offset_fixmap = pte_offset_early_fixmap;
399}
400
99b4ac9a
KC
401/*
402 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
403 * As a result, this can only be called with preemption disabled, as under
404 * stop_machine().
405 */
406void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
407{
408 unsigned long vaddr = __fix_to_virt(idx);
a5f4c561 409 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
99b4ac9a
KC
410
411 /* Make sure fixmap region does not exceed available allocation. */
412 BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
413 FIXADDR_END);
414 BUG_ON(idx >= __end_of_fixed_addresses);
415
b089c31c
JM
416 /* we only support device mappings until pgprot_kernel has been set */
417 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
418 pgprot_val(pgprot_kernel) == 0))
419 return;
420
99b4ac9a
KC
421 if (pgprot_val(prot))
422 set_pte_at(NULL, vaddr, pte,
423 pfn_pte(phys >> PAGE_SHIFT, prot));
424 else
425 pte_clear(NULL, vaddr, pte);
426 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
427}
428
ae8f1541
RK
429/*
430 * Adjust the PMD section entries according to the CPU in use.
431 */
432static void __init build_mem_type_table(void)
433{
434 struct cachepolicy *cp;
435 unsigned int cr = get_cr();
442e70c0 436 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 437 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
438 int cpu_arch = cpu_architecture();
439 int i;
440
11179d8c 441 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 442#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
443 if (cachepolicy > CPOLICY_BUFFERED)
444 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 445#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
446 if (cachepolicy > CPOLICY_WRITETHROUGH)
447 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 448#endif
11179d8c 449 }
ae8f1541
RK
450 if (cpu_arch < CPU_ARCH_ARMv5) {
451 if (cachepolicy >= CPOLICY_WRITEALLOC)
452 cachepolicy = CPOLICY_WRITEBACK;
453 ecc_mask = 0;
454 }
ca8f0b0a 455
20e7e364
RK
456 if (is_smp()) {
457 if (cachepolicy != CPOLICY_WRITEALLOC) {
458 pr_warn("Forcing write-allocate cache policy for SMP\n");
459 cachepolicy = CPOLICY_WRITEALLOC;
460 }
461 if (!(initial_pmd_value & PMD_SECT_S)) {
462 pr_warn("Forcing shared mappings for SMP\n");
463 initial_pmd_value |= PMD_SECT_S;
464 }
ca8f0b0a 465 }
ae8f1541 466
1ad77a87 467 /*
b1cce6b1
RK
468 * Strip out features not present on earlier architectures.
469 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
470 * without extended page tables don't have the 'Shared' bit.
1ad77a87 471 */
b1cce6b1
RK
472 if (cpu_arch < CPU_ARCH_ARMv5)
473 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
474 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
475 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
476 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
477 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
478
479 /*
b1cce6b1
RK
480 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
481 * "update-able on write" bit on ARM610). However, Xscale and
482 * Xscale3 require this bit to be cleared.
ae8f1541 483 */
d33c43ac 484 if (cpu_is_xscale_family()) {
9ef79635 485 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 486 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
487 mem_types[i].prot_l1 &= ~PMD_BIT4;
488 }
489 } else if (cpu_arch < CPU_ARCH_ARMv6) {
490 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
491 if (mem_types[i].prot_l1)
492 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
493 if (mem_types[i].prot_sect)
494 mem_types[i].prot_sect |= PMD_BIT4;
495 }
496 }
ae8f1541 497
b1cce6b1
RK
498 /*
499 * Mark the device areas according to the CPU/architecture.
500 */
501 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
502 if (!cpu_is_xsc3()) {
503 /*
504 * Mark device regions on ARMv6+ as execute-never
505 * to prevent speculative instruction fetches.
506 */
507 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
508 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
509 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
510 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
511
512 /* Also setup NX memory mapping */
513 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
514 }
515 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
516 /*
517 * For ARMv7 with TEX remapping,
518 * - shared device is SXCB=1100
519 * - nonshared device is SXCB=0100
520 * - write combine device mem is SXCB=0001
521 * (Uncached Normal memory)
522 */
523 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
524 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
525 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
526 } else if (cpu_is_xsc3()) {
527 /*
528 * For Xscale3,
529 * - shared device is TEXCB=00101
530 * - nonshared device is TEXCB=01000
531 * - write combine device mem is TEXCB=00100
532 * (Inner/Outer Uncacheable in xsc3 parlance)
533 */
534 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
535 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
536 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
537 } else {
538 /*
539 * For ARMv6 and ARMv7 without TEX remapping,
540 * - shared device is TEXCB=00001
541 * - nonshared device is TEXCB=01000
542 * - write combine device mem is TEXCB=00100
543 * (Uncached Normal in ARMv6 parlance).
544 */
545 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
546 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
547 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
548 }
549 } else {
550 /*
551 * On others, write combining is "Uncached/Buffered"
552 */
553 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
554 }
555
556 /*
557 * Now deal with the memory-type mappings
558 */
ae8f1541 559 cp = &cache_policies[cachepolicy];
bb30f36f 560 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26 561 s2_pgprot = cp->pte_s2;
4d9c5b89
CD
562 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
563 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
bb30f36f 564
1d4d3715 565#ifndef CONFIG_ARM_LPAE
b6ccb980
WD
566 /*
567 * We don't use domains on ARMv6 (since this causes problems with
568 * v6/v7 kernels), so we must use a separate memory type for user
569 * r/o, kernel r/w to map the vectors page.
570 */
b6ccb980
WD
571 if (cpu_arch == CPU_ARCH_ARMv6)
572 vecs_pgprot |= L_PTE_MT_VECTORS;
1d4d3715
JL
573
574 /*
575 * Check is it with support for the PXN bit
576 * in the Short-descriptor translation table format descriptors.
577 */
578 if (cpu_arch == CPU_ARCH_ARMv7 &&
ad84f56b 579 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
1d4d3715
JL
580 user_pmd_table |= PMD_PXNTABLE;
581 }
b6ccb980 582#endif
bb30f36f 583
ae8f1541
RK
584 /*
585 * ARMv6 and above have extended page tables.
586 */
587 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 588#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
589 /*
590 * Mark cache clean areas and XIP ROM read only
591 * from SVC mode and no access from userspace.
592 */
593 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
594 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
595 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 596#endif
ae8f1541 597
20e7e364
RK
598 /*
599 * If the initial page tables were created with the S bit
600 * set, then we need to do the same here for the same
601 * reasons given in early_cachepolicy().
602 */
603 if (initial_pmd_value & PMD_SECT_S) {
f00ec48f
RK
604 user_pgprot |= L_PTE_SHARED;
605 kern_pgprot |= L_PTE_SHARED;
606 vecs_pgprot |= L_PTE_SHARED;
cc577c26 607 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
608 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
609 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
610 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
611 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
612 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
613 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
614 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
615 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 616 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
617 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
618 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 619 }
ae8f1541
RK
620 }
621
e4707dd3
PW
622 /*
623 * Non-cacheable Normal - intended for memory areas that must
624 * not cause dirty cache line writebacks when used
625 */
626 if (cpu_arch >= CPU_ARCH_ARMv6) {
627 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
628 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 629 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
630 PMD_SECT_BUFFERED;
631 } else {
632 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 633 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
634 PMD_SECT_TEX(1);
635 }
636 } else {
2e2c9de2 637 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
638 }
639
1b6ba46b
CM
640#ifdef CONFIG_ARM_LPAE
641 /*
642 * Do not generate access flag faults for the kernel mappings.
643 */
644 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
645 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
646 if (mem_types[i].prot_sect)
647 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
648 }
649 kern_pgprot |= PTE_EXT_AF;
650 vecs_pgprot |= PTE_EXT_AF;
1d4d3715
JL
651
652 /*
653 * Set PXN for user mappings
654 */
655 user_pgprot |= PTE_EXT_PXN;
1b6ba46b
CM
656#endif
657
ae8f1541 658 for (i = 0; i < 16; i++) {
864aa04c 659 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 660 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
661 }
662
bb30f36f
RK
663 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
664 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 665
44b18693 666 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 667 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 668 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
669 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
670 pgprot_s2_device = __pgprot(s2_device_pgprot);
671 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
672
673 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
674 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
675 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
676 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
677 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
678 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 679 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 680 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
681 mem_types[MT_ROM].prot_sect |= cp->pmd;
682
683 switch (cp->pmd) {
684 case PMD_SECT_WT:
685 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
686 break;
687 case PMD_SECT_WB:
688 case PMD_SECT_WBWA:
689 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
690 break;
691 }
905b5797
MS
692 pr_info("Memory policy: %sData cache %s\n",
693 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
694
695 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
696 struct mem_type *t = &mem_types[i];
697 if (t->prot_l1)
698 t->prot_l1 |= PMD_DOMAIN(t->domain);
699 if (t->prot_sect)
700 t->prot_sect |= PMD_DOMAIN(t->domain);
701 }
ae8f1541
RK
702}
703
d907387c
CM
704#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
705pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
706 unsigned long size, pgprot_t vma_prot)
707{
708 if (!pfn_valid(pfn))
709 return pgprot_noncached(vma_prot);
710 else if (file->f_flags & O_SYNC)
711 return pgprot_writecombine(vma_prot);
712 return vma_prot;
713}
714EXPORT_SYMBOL(phys_mem_access_prot);
715#endif
716
ae8f1541
RK
717#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
718
0536bdf3
NP
719static void __init *early_alloc(unsigned long sz)
720{
8a7f97b9
MR
721 void *ptr = memblock_alloc(sz, sz);
722
723 if (!ptr)
724 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
725 __func__, sz, sz);
726
727 return ptr;
0536bdf3
NP
728}
729
c7936206
AB
730static void *__init late_alloc(unsigned long sz)
731{
28bcf593 732 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
c7936206 733
b4ed71f5 734 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
61444cde 735 BUG();
c7936206
AB
736 return ptr;
737}
738
3ed3a4f0 739static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
f579b2b1
AB
740 unsigned long prot,
741 void *(*alloc)(unsigned long sz))
ae8f1541 742{
24e6c699 743 if (pmd_none(*pmd)) {
f579b2b1 744 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 745 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 746 }
4bb2e27d
RK
747 BUG_ON(pmd_bad(*pmd));
748 return pte_offset_kernel(pmd, addr);
749}
ae8f1541 750
f579b2b1
AB
751static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
752 unsigned long prot)
753{
3ed3a4f0 754 return arm_pte_alloc(pmd, addr, prot, early_alloc);
f579b2b1
AB
755}
756
4bb2e27d
RK
757static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
758 unsigned long end, unsigned long pfn,
f579b2b1 759 const struct mem_type *type,
b430e55b
AB
760 void *(*alloc)(unsigned long sz),
761 bool ng)
4bb2e27d 762{
3ed3a4f0 763 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
24e6c699 764 do {
b430e55b
AB
765 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
766 ng ? PTE_EXT_NG : 0);
24e6c699
RK
767 pfn++;
768 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
769}
770
37468b30 771static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0 772 unsigned long end, phys_addr_t phys,
b430e55b 773 const struct mem_type *type, bool ng)
ae8f1541 774{
37468b30
PYC
775 pmd_t *p = pmd;
776
e651eab0 777#ifndef CONFIG_ARM_LPAE
24e6c699 778 /*
e651eab0
S
779 * In classic MMU format, puds and pmds are folded in to
780 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
781 * group of L1 entries making up one logical pointer to
782 * an L2 table (2MB), where as PMDs refer to the individual
783 * L1 entries (1MB). Hence increment to get the correct
784 * offset for odd 1MB sections.
785 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 786 */
e651eab0
S
787 if (addr & SECTION_SIZE)
788 pmd++;
1b6ba46b 789#endif
e651eab0 790 do {
b430e55b 791 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
e651eab0
S
792 phys += SECTION_SIZE;
793 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 794
37468b30 795 flush_pmd_entry(p);
e651eab0 796}
ae8f1541 797
e651eab0
S
798static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
799 unsigned long end, phys_addr_t phys,
f579b2b1 800 const struct mem_type *type,
b430e55b 801 void *(*alloc)(unsigned long sz), bool ng)
e651eab0
S
802{
803 pmd_t *pmd = pmd_offset(pud, addr);
804 unsigned long next;
805
806 do {
24e6c699 807 /*
e651eab0
S
808 * With LPAE, we must loop over to map
809 * all the pmds for the given range.
24e6c699 810 */
e651eab0
S
811 next = pmd_addr_end(addr, end);
812
813 /*
814 * Try a section mapping - addr, next and phys must all be
815 * aligned to a section boundary.
816 */
817 if (type->prot_sect &&
818 ((addr | next | phys) & ~SECTION_MASK) == 0) {
b430e55b 819 __map_init_section(pmd, addr, next, phys, type, ng);
e651eab0
S
820 } else {
821 alloc_init_pte(pmd, addr, next,
b430e55b 822 __phys_to_pfn(phys), type, alloc, ng);
e651eab0
S
823 }
824
825 phys += next - addr;
826
827 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
828}
829
14904927 830static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d 831 unsigned long end, phys_addr_t phys,
f579b2b1 832 const struct mem_type *type,
b430e55b 833 void *(*alloc)(unsigned long sz), bool ng)
516295e5
RK
834{
835 pud_t *pud = pud_offset(pgd, addr);
836 unsigned long next;
837
838 do {
839 next = pud_addr_end(addr, end);
b430e55b 840 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
516295e5
RK
841 phys += next - addr;
842 } while (pud++, addr = next, addr != end);
843}
844
1b6ba46b 845#ifndef CONFIG_ARM_LPAE
1bdb2d4e
AB
846static void __init create_36bit_mapping(struct mm_struct *mm,
847 struct map_desc *md,
b430e55b
AB
848 const struct mem_type *type,
849 bool ng)
4a56c1e4 850{
97092e0c
RK
851 unsigned long addr, length, end;
852 phys_addr_t phys;
4a56c1e4
RK
853 pgd_t *pgd;
854
855 addr = md->virtual;
cae6292b 856 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
857 length = PAGE_ALIGN(md->length);
858
859 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
4ed89f22 860 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 861 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
862 return;
863 }
864
865 /* N.B. ARMv6 supersections are only defined to work with domain 0.
866 * Since domain assignments can in fact be arbitrary, the
867 * 'domain == 0' check below is required to insure that ARMv6
868 * supersections are only allocated for domain 0 regardless
869 * of the actual domain assignments in use.
870 */
871 if (type->domain) {
4ed89f22 872 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
29a38193 873 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
874 return;
875 }
876
877 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
4ed89f22 878 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
29a38193 879 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
880 return;
881 }
882
883 /*
884 * Shift bits [35:32] of address into bits [23:20] of PMD
885 * (See ARMv6 spec).
886 */
887 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
888
1bdb2d4e 889 pgd = pgd_offset(mm, addr);
4a56c1e4
RK
890 end = addr + length;
891 do {
516295e5
RK
892 pud_t *pud = pud_offset(pgd, addr);
893 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
894 int i;
895
896 for (i = 0; i < 16; i++)
b430e55b
AB
897 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
898 (ng ? PMD_SECT_nG : 0));
4a56c1e4
RK
899
900 addr += SUPERSECTION_SIZE;
901 phys += SUPERSECTION_SIZE;
902 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
903 } while (addr != end);
904}
1b6ba46b 905#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 906
f579b2b1 907static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
b430e55b
AB
908 void *(*alloc)(unsigned long sz),
909 bool ng)
ae8f1541 910{
cae6292b
WD
911 unsigned long addr, length, end;
912 phys_addr_t phys;
d5c98176 913 const struct mem_type *type;
24e6c699 914 pgd_t *pgd;
ae8f1541 915
d5c98176 916 type = &mem_types[md->type];
ae8f1541 917
1b6ba46b 918#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
919 /*
920 * Catch 36-bit addresses
921 */
4a56c1e4 922 if (md->pfn >= 0x100000) {
b430e55b 923 create_36bit_mapping(mm, md, type, ng);
4a56c1e4 924 return;
ae8f1541 925 }
1b6ba46b 926#endif
ae8f1541 927
7b9c7b4d 928 addr = md->virtual & PAGE_MASK;
cae6292b 929 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 930 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 931
24e6c699 932 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
4ed89f22
RK
933 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
934 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
935 return;
936 }
937
1bdb2d4e 938 pgd = pgd_offset(mm, addr);
24e6c699
RK
939 end = addr + length;
940 do {
941 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 942
b430e55b 943 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
ae8f1541 944
24e6c699
RK
945 phys += next - addr;
946 addr = next;
947 } while (pgd++, addr != end);
ae8f1541
RK
948}
949
1bdb2d4e
AB
950/*
951 * Create the page directory entries and any necessary
952 * page tables for the mapping specified by `md'. We
953 * are able to cope here with varying sizes and address
954 * offsets, and we take full advantage of sections and
955 * supersections.
956 */
957static void __init create_mapping(struct map_desc *md)
958{
959 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
960 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
961 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
962 return;
963 }
964
965 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
966 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
967 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
968 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
969 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
970 }
971
b430e55b 972 __create_mapping(&init_mm, md, early_alloc, false);
1bdb2d4e
AB
973}
974
c7936206
AB
975void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
976 bool ng)
977{
978#ifdef CONFIG_ARM_LPAE
979 pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
980 if (WARN_ON(!pud))
981 return;
982 pmd_alloc(mm, pud, 0);
983#endif
984 __create_mapping(mm, md, late_alloc, ng);
985}
986
ae8f1541
RK
987/*
988 * Create the architecture specific mappings
989 */
990void __init iotable_init(struct map_desc *io_desc, int nr)
991{
0536bdf3
NP
992 struct map_desc *md;
993 struct vm_struct *vm;
101eeda3 994 struct static_vm *svm;
0536bdf3
NP
995
996 if (!nr)
997 return;
ae8f1541 998
c2938eeb 999 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
8a7f97b9
MR
1000 if (!svm)
1001 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1002 __func__, sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
1003
1004 for (md = io_desc; nr; md++, nr--) {
1005 create_mapping(md);
101eeda3
JK
1006
1007 vm = &svm->vm;
0536bdf3
NP
1008 vm->addr = (void *)(md->virtual & PAGE_MASK);
1009 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
1010 vm->phys_addr = __pfn_to_phys(md->pfn);
1011 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 1012 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 1013 vm->caller = iotable_init;
101eeda3 1014 add_static_vm_early(svm++);
0536bdf3 1015 }
ae8f1541
RK
1016}
1017
c2794437
RH
1018void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1019 void *caller)
1020{
1021 struct vm_struct *vm;
101eeda3
JK
1022 struct static_vm *svm;
1023
c2938eeb 1024 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
8a7f97b9
MR
1025 if (!svm)
1026 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1027 __func__, sizeof(*svm), __alignof__(*svm));
c2794437 1028
101eeda3 1029 vm = &svm->vm;
c2794437
RH
1030 vm->addr = (void *)addr;
1031 vm->size = size;
863e99a8 1032 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 1033 vm->caller = caller;
101eeda3 1034 add_static_vm_early(svm);
c2794437
RH
1035}
1036
19b52abe
NP
1037#ifndef CONFIG_ARM_LPAE
1038
1039/*
1040 * The Linux PMD is made of two consecutive section entries covering 2MB
1041 * (see definition in include/asm/pgtable-2level.h). However a call to
1042 * create_mapping() may optimize static mappings by using individual
1043 * 1MB section mappings. This leaves the actual PMD potentially half
1044 * initialized if the top or bottom section entry isn't used, leaving it
1045 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1046 * the virtual space left free by that unused section entry.
1047 *
1048 * Let's avoid the issue by inserting dummy vm entries covering the unused
1049 * PMD halves once the static mappings are in place.
1050 */
1051
1052static void __init pmd_empty_section_gap(unsigned long addr)
1053{
c2794437 1054 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
1055}
1056
1057static void __init fill_pmd_gaps(void)
1058{
101eeda3 1059 struct static_vm *svm;
19b52abe
NP
1060 struct vm_struct *vm;
1061 unsigned long addr, next = 0;
1062 pmd_t *pmd;
1063
101eeda3
JK
1064 list_for_each_entry(svm, &static_vmlist, list) {
1065 vm = &svm->vm;
19b52abe
NP
1066 addr = (unsigned long)vm->addr;
1067 if (addr < next)
1068 continue;
1069
1070 /*
1071 * Check if this vm starts on an odd section boundary.
1072 * If so and the first section entry for this PMD is free
1073 * then we block the corresponding virtual address.
1074 */
1075 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1076 pmd = pmd_off_k(addr);
1077 if (pmd_none(*pmd))
1078 pmd_empty_section_gap(addr & PMD_MASK);
1079 }
1080
1081 /*
1082 * Then check if this vm ends on an odd section boundary.
1083 * If so and the second section entry for this PMD is empty
1084 * then we block the corresponding virtual address.
1085 */
1086 addr += vm->size;
1087 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1088 pmd = pmd_off_k(addr) + 1;
1089 if (pmd_none(*pmd))
1090 pmd_empty_section_gap(addr);
1091 }
1092
1093 /* no need to look at any vm entry until we hit the next PMD */
1094 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1095 }
1096}
1097
1098#else
1099#define fill_pmd_gaps() do { } while (0)
1100#endif
1101
c2794437
RH
1102#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1103static void __init pci_reserve_io(void)
1104{
101eeda3 1105 struct static_vm *svm;
c2794437 1106
101eeda3
JK
1107 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1108 if (svm)
1109 return;
c2794437 1110
c2794437
RH
1111 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1112}
1113#else
1114#define pci_reserve_io() do { } while (0)
1115#endif
1116
e5c5f2ad
RH
1117#ifdef CONFIG_DEBUG_LL
1118void __init debug_ll_io_init(void)
1119{
1120 struct map_desc map;
1121
1122 debug_ll_addr(&map.pfn, &map.virtual);
1123 if (!map.pfn || !map.virtual)
1124 return;
1125 map.pfn = __phys_to_pfn(map.pfn);
1126 map.virtual &= PAGE_MASK;
1127 map.length = PAGE_SIZE;
1128 map.type = MT_DEVICE;
ee4de5d9 1129 iotable_init(&map, 1);
e5c5f2ad
RH
1130}
1131#endif
1132
0536bdf3
NP
1133static void * __initdata vmalloc_min =
1134 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
1135
1136/*
1137 * vmalloc=size forces the vmalloc area to be exactly 'size'
1138 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 1139 * area - the default is 240m.
6c5da7ac 1140 */
2b0d8c25 1141static int __init early_vmalloc(char *arg)
6c5da7ac 1142{
79612395 1143 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
1144
1145 if (vmalloc_reserve < SZ_16M) {
1146 vmalloc_reserve = SZ_16M;
4ed89f22 1147 pr_warn("vmalloc area too small, limiting to %luMB\n",
6c5da7ac
RK
1148 vmalloc_reserve >> 20);
1149 }
9210807c
NP
1150
1151 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1152 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
4ed89f22 1153 pr_warn("vmalloc area is too big, limiting to %luMB\n",
9210807c
NP
1154 vmalloc_reserve >> 20);
1155 }
79612395
RK
1156
1157 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 1158 return 0;
6c5da7ac 1159}
2b0d8c25 1160early_param("vmalloc", early_vmalloc);
6c5da7ac 1161
c7909509 1162phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1163
374d446d 1164void __init adjust_lowmem_bounds(void)
60296c71 1165{
c65b7e98 1166 phys_addr_t memblock_limit = 0;
b9a01989 1167 u64 vmalloc_limit;
1c2f87c2 1168 struct memblock_region *reg;
98562656 1169 phys_addr_t lowmem_limit = 0;
60296c71 1170
b9a01989
NP
1171 /*
1172 * Let's use our own (unoptimized) equivalent of __pa() that is
1173 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1174 * The result is used as the upper bound on physical memory address
1175 * and may itself be outside the valid range for which phys_addr_t
1176 * and therefore __pa() is defined.
1177 */
1178 vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1179
00d2ec1e
MR
1180 /*
1181 * The first usable region must be PMD aligned. Mark its start
1182 * as MEMBLOCK_NOMAP if it isn't
1183 */
1184 for_each_memblock(memory, reg) {
1185 if (!memblock_is_nomap(reg)) {
1186 if (!IS_ALIGNED(reg->base, PMD_SIZE)) {
1187 phys_addr_t len;
1188
1189 len = round_up(reg->base, PMD_SIZE) - reg->base;
1190 memblock_mark_nomap(reg->base, len);
1191 }
1192 break;
1193 }
1194 }
1195
1c2f87c2
LA
1196 for_each_memblock(memory, reg) {
1197 phys_addr_t block_start = reg->base;
1198 phys_addr_t block_end = reg->base + reg->size;
77f73a2c 1199
1d31999c
CL
1200 if (memblock_is_nomap(reg))
1201 continue;
1202
374d446d 1203 if (reg->base < vmalloc_limit) {
98562656 1204 if (block_end > lowmem_limit)
374d446d
LA
1205 /*
1206 * Compare as u64 to ensure vmalloc_limit does
1207 * not get truncated. block_end should always
1208 * fit in phys_addr_t so there should be no
1209 * issue with assignment.
1210 */
98562656 1211 lowmem_limit = min_t(u64,
374d446d
LA
1212 vmalloc_limit,
1213 block_end);
c65b7e98
RK
1214
1215 /*
965278dc 1216 * Find the first non-pmd-aligned page, and point
c65b7e98 1217 * memblock_limit at it. This relies on rounding the
965278dc
MR
1218 * limit down to be pmd-aligned, which happens at the
1219 * end of this function.
c65b7e98
RK
1220 *
1221 * With this algorithm, the start or end of almost any
965278dc
MR
1222 * bank can be non-pmd-aligned. The only exception is
1223 * that the start of the bank 0 must be section-
c65b7e98
RK
1224 * aligned, since otherwise memory would need to be
1225 * allocated when mapping the start of bank 0, which
1226 * occurs before any free memory is mapped.
1227 */
1228 if (!memblock_limit) {
965278dc 1229 if (!IS_ALIGNED(block_start, PMD_SIZE))
1c2f87c2 1230 memblock_limit = block_start;
965278dc 1231 else if (!IS_ALIGNED(block_end, PMD_SIZE))
98562656 1232 memblock_limit = lowmem_limit;
c65b7e98 1233 }
e616c591 1234
e616c591
RK
1235 }
1236 }
1c2f87c2 1237
98562656
LA
1238 arm_lowmem_limit = lowmem_limit;
1239
c7909509 1240 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98 1241
9e25ebfe
DB
1242 if (!memblock_limit)
1243 memblock_limit = arm_lowmem_limit;
1244
c65b7e98 1245 /*
965278dc 1246 * Round the memblock limit down to a pmd size. This
c65b7e98 1247 * helps to ensure that we will allocate memory from the
965278dc 1248 * last full pmd, which should be mapped.
c65b7e98 1249 */
9e25ebfe 1250 memblock_limit = round_down(memblock_limit, PMD_SIZE);
c65b7e98 1251
374d446d
LA
1252 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1253 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1254 phys_addr_t end = memblock_end_of_DRAM();
1255
1256 pr_notice("Ignoring RAM at %pa-%pa\n",
1257 &memblock_limit, &end);
1258 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1259
1260 memblock_remove(memblock_limit, end - memblock_limit);
1261 }
1262 }
1263
c65b7e98 1264 memblock_set_current_limit(memblock_limit);
60296c71
LB
1265}
1266
4b5f32ce 1267static inline void prepare_page_table(void)
d111e8f9
RK
1268{
1269 unsigned long addr;
8df65168 1270 phys_addr_t end;
d111e8f9
RK
1271
1272 /*
1273 * Clear out all the mappings below the kernel image.
1274 */
e73fc88e 1275 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1276 pmd_clear(pmd_off_k(addr));
1277
1278#ifdef CONFIG_XIP_KERNEL
1279 /* The XIP kernel is mapped in the module area -- skip over it */
02afa9a8 1280 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1281#endif
e73fc88e 1282 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1283 pmd_clear(pmd_off_k(addr));
1284
8df65168
RK
1285 /*
1286 * Find the end of the first block of lowmem.
1287 */
1288 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1289 if (end >= arm_lowmem_limit)
1290 end = arm_lowmem_limit;
8df65168 1291
d111e8f9
RK
1292 /*
1293 * Clear out all the kernel space mappings, except for the first
0536bdf3 1294 * memory bank, up to the vmalloc region.
d111e8f9 1295 */
8df65168 1296 for (addr = __phys_to_virt(end);
0536bdf3 1297 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1298 pmd_clear(pmd_off_k(addr));
1299}
1300
1b6ba46b
CM
1301#ifdef CONFIG_ARM_LPAE
1302/* the first page is reserved for pgd */
1303#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1304 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1305#else
e73fc88e 1306#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1307#endif
e73fc88e 1308
d111e8f9 1309/*
2778f620 1310 * Reserve the special regions of memory
d111e8f9 1311 */
2778f620 1312void __init arm_mm_memblock_reserve(void)
d111e8f9 1313{
d111e8f9
RK
1314 /*
1315 * Reserve the page tables. These are already in use,
1316 * and can only be in node 0.
1317 */
e73fc88e 1318 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1319
d111e8f9
RK
1320#ifdef CONFIG_SA1111
1321 /*
1322 * Because of the SA1111 DMA bug, we want to preserve our
1323 * precious DMA-able memory...
1324 */
2778f620 1325 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1326#endif
d111e8f9
RK
1327}
1328
1329/*
0536bdf3 1330 * Set up the device mappings. Since we clear out the page tables for all
a5f4c561
SA
1331 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1332 * device mappings. This means earlycon can be used to debug this function
1333 * Any other function or debugging method which may touch any device _will_
1334 * crash the kernel.
d111e8f9 1335 */
ff69a4c8 1336static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1337{
1338 struct map_desc map;
1339 unsigned long addr;
94e5a85b 1340 void *vectors;
d111e8f9
RK
1341
1342 /*
1343 * Allocate the vector page early.
1344 */
19accfd3 1345 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1346
1347 early_trap_init(vectors);
d111e8f9 1348
a5f4c561
SA
1349 /*
1350 * Clear page table except top pmd used by early fixmaps
1351 */
1352 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
d111e8f9
RK
1353 pmd_clear(pmd_off_k(addr));
1354
1355 /*
1356 * Map the kernel if it is XIP.
1357 * It is always first in the modulearea.
1358 */
1359#ifdef CONFIG_XIP_KERNEL
1360 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1361 map.virtual = MODULES_VADDR;
02afa9a8 1362 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1363 map.type = MT_ROM;
1364 create_mapping(&map);
1365#endif
1366
1367 /*
1368 * Map the cache flushing regions.
1369 */
1370#ifdef FLUSH_BASE
1371 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1372 map.virtual = FLUSH_BASE;
1373 map.length = SZ_1M;
1374 map.type = MT_CACHECLEAN;
1375 create_mapping(&map);
1376#endif
1377#ifdef FLUSH_BASE_MINICACHE
1378 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1379 map.virtual = FLUSH_BASE_MINICACHE;
1380 map.length = SZ_1M;
1381 map.type = MT_MINICLEAN;
1382 create_mapping(&map);
1383#endif
1384
1385 /*
1386 * Create a mapping for the machine vectors at the high-vectors
1387 * location (0xffff0000). If we aren't using high-vectors, also
1388 * create a mapping at the low-vectors virtual address.
1389 */
94e5a85b 1390 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1391 map.virtual = 0xffff0000;
1392 map.length = PAGE_SIZE;
a5463cd3 1393#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1394 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1395#else
1396 map.type = MT_LOW_VECTORS;
1397#endif
d111e8f9
RK
1398 create_mapping(&map);
1399
1400 if (!vectors_high()) {
1401 map.virtual = 0;
19accfd3 1402 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1403 map.type = MT_LOW_VECTORS;
1404 create_mapping(&map);
1405 }
1406
19accfd3
RK
1407 /* Now create a kernel read-only mapping */
1408 map.pfn += 1;
1409 map.virtual = 0xffff0000 + PAGE_SIZE;
1410 map.length = PAGE_SIZE;
1411 map.type = MT_LOW_VECTORS;
1412 create_mapping(&map);
1413
d111e8f9
RK
1414 /*
1415 * Ask the machine support to map in the statically mapped devices.
1416 */
1417 if (mdesc->map_io)
1418 mdesc->map_io();
bc37324e
MR
1419 else
1420 debug_ll_io_init();
19b52abe 1421 fill_pmd_gaps();
d111e8f9 1422
c2794437
RH
1423 /* Reserve fixed i/o space in VMALLOC region */
1424 pci_reserve_io();
1425
d111e8f9
RK
1426 /*
1427 * Finally flush the caches and tlb to ensure that we're in a
1428 * consistent state wrt the writebuffer. This also ensures that
1429 * any write-allocated cache lines in the vector page are written
1430 * back. After this point, we can start to touch devices again.
1431 */
1432 local_flush_tlb_all();
1433 flush_cache_all();
bbeb9209
LS
1434
1435 /* Enable asynchronous aborts */
9254970c 1436 early_abt_enable();
d111e8f9
RK
1437}
1438
d73cd428
NP
1439static void __init kmap_init(void)
1440{
1441#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1442 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1443 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428 1444#endif
836a2418
RH
1445
1446 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1447 _PAGE_KERNEL_TABLE);
d73cd428
NP
1448}
1449
a2227120
RK
1450static void __init map_lowmem(void)
1451{
8df65168 1452 struct memblock_region *reg;
a09975bf 1453 phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
ac084688 1454 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
a2227120
RK
1455
1456 /* Map all the lowmem memory banks. */
8df65168
RK
1457 for_each_memblock(memory, reg) {
1458 phys_addr_t start = reg->base;
1459 phys_addr_t end = start + reg->size;
1460 struct map_desc map;
1461
09414d00
AB
1462 if (memblock_is_nomap(reg))
1463 continue;
1464
c7909509
MS
1465 if (end > arm_lowmem_limit)
1466 end = arm_lowmem_limit;
8df65168
RK
1467 if (start >= end)
1468 break;
1469
1e6b4811 1470 if (end < kernel_x_start) {
ebd4922e
RK
1471 map.pfn = __phys_to_pfn(start);
1472 map.virtual = __phys_to_virt(start);
1473 map.length = end - start;
1474 map.type = MT_MEMORY_RWX;
a2227120 1475
1e6b4811
KC
1476 create_mapping(&map);
1477 } else if (start >= kernel_x_end) {
1478 map.pfn = __phys_to_pfn(start);
1479 map.virtual = __phys_to_virt(start);
1480 map.length = end - start;
1481 map.type = MT_MEMORY_RW;
1482
ebd4922e
RK
1483 create_mapping(&map);
1484 } else {
1485 /* This better cover the entire kernel */
1486 if (start < kernel_x_start) {
1487 map.pfn = __phys_to_pfn(start);
1488 map.virtual = __phys_to_virt(start);
1489 map.length = kernel_x_start - start;
1490 map.type = MT_MEMORY_RW;
1491
1492 create_mapping(&map);
1493 }
1494
1495 map.pfn = __phys_to_pfn(kernel_x_start);
1496 map.virtual = __phys_to_virt(kernel_x_start);
1497 map.length = kernel_x_end - kernel_x_start;
1498 map.type = MT_MEMORY_RWX;
1499
1500 create_mapping(&map);
1501
1502 if (kernel_x_end < end) {
1503 map.pfn = __phys_to_pfn(kernel_x_end);
1504 map.virtual = __phys_to_virt(kernel_x_end);
1505 map.length = end - kernel_x_end;
1506 map.type = MT_MEMORY_RW;
1507
1508 create_mapping(&map);
1509 }
1510 }
a2227120
RK
1511 }
1512}
1513
d8dc7fbd
RK
1514#ifdef CONFIG_ARM_PV_FIXUP
1515extern unsigned long __atags_pointer;
1516typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1517pgtables_remap lpae_pgtables_remap_asm;
1518
a77e0c7b
SS
1519/*
1520 * early_paging_init() recreates boot time page table setup, allowing machines
1521 * to switch over to a high (>4G) address space on LPAE systems
1522 */
b089c31c 1523static void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1524{
d8dc7fbd
RK
1525 pgtables_remap *lpae_pgtables_remap;
1526 unsigned long pa_pgd;
1527 unsigned int cr, ttbcr;
c8ca2b4b 1528 long long offset;
d8dc7fbd 1529 void *boot_data;
a77e0c7b 1530
c0b759d8 1531 if (!mdesc->pv_fixup)
a77e0c7b
SS
1532 return;
1533
c0b759d8 1534 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1535 if (offset == 0)
1536 return;
a77e0c7b 1537
d8dc7fbd
RK
1538 /*
1539 * Get the address of the remap function in the 1:1 identity
1540 * mapping setup by the early page table assembly code. We
1541 * must get this prior to the pv update. The following barrier
1542 * ensures that this is complete before we fixup any P:V offsets.
1543 */
1544 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1545 pa_pgd = __pa(swapper_pg_dir);
1546 boot_data = __va(__atags_pointer);
1547 barrier();
a77e0c7b 1548
39b74fe8
RK
1549 pr_info("Switching physical address space to 0x%08llx\n",
1550 (u64)PHYS_OFFSET + offset);
a77e0c7b 1551
c8ca2b4b
RK
1552 /* Re-set the phys pfn offset, and the pv offset */
1553 __pv_offset += offset;
1554 __pv_phys_pfn_offset += PFN_DOWN(offset);
a77e0c7b
SS
1555
1556 /* Run the patch stub to update the constants */
1557 fixup_pv_table(&__pv_table_begin,
1558 (&__pv_table_end - &__pv_table_begin) << 2);
1559
1560 /*
d8dc7fbd
RK
1561 * We changing not only the virtual to physical mapping, but also
1562 * the physical addresses used to access memory. We need to flush
1563 * all levels of cache in the system with caching disabled to
1564 * ensure that all data is written back, and nothing is prefetched
1565 * into the caches. We also need to prevent the TLB walkers
1566 * allocating into the caches too. Note that this is ARMv7 LPAE
1567 * specific.
3bb70de6 1568 */
d8dc7fbd
RK
1569 cr = get_cr();
1570 set_cr(cr & ~(CR_I | CR_C));
1571 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1572 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1573 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
a77e0c7b 1574 flush_cache_all();
3bb70de6
RK
1575
1576 /*
d8dc7fbd
RK
1577 * Fixup the page tables - this must be in the idmap region as
1578 * we need to disable the MMU to do this safely, and hence it
1579 * needs to be assembly. It's fairly simple, as we're using the
1580 * temporary tables setup by the initial assembly code.
3bb70de6 1581 */
d8dc7fbd 1582 lpae_pgtables_remap(offset, pa_pgd, boot_data);
3bb70de6 1583
d8dc7fbd
RK
1584 /* Re-enable the caches and cacheable TLB walks */
1585 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1586 set_cr(cr);
a77e0c7b
SS
1587}
1588
1589#else
1590
b089c31c 1591static void __init early_paging_init(const struct machine_desc *mdesc)
a77e0c7b 1592{
c8ca2b4b
RK
1593 long long offset;
1594
c0b759d8 1595 if (!mdesc->pv_fixup)
c8ca2b4b
RK
1596 return;
1597
c0b759d8 1598 offset = mdesc->pv_fixup();
c8ca2b4b
RK
1599 if (offset == 0)
1600 return;
1601
1602 pr_crit("Physical address space modification is only to support Keystone2.\n");
1603 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1604 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1605 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
a77e0c7b
SS
1606}
1607
1608#endif
1609
a5f4c561
SA
1610static void __init early_fixmap_shutdown(void)
1611{
1612 int i;
1613 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1614
1615 pte_offset_fixmap = pte_offset_late_fixmap;
1616 pmd_clear(fixmap_pmd(va));
1617 local_flush_tlb_kernel_page(va);
1618
1619 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1620 pte_t *pte;
1621 struct map_desc map;
1622
1623 map.virtual = fix_to_virt(i);
1624 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1625
1626 /* Only i/o device mappings are supported ATM */
1627 if (pte_none(*pte) ||
1628 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1629 continue;
1630
1631 map.pfn = pte_pfn(*pte);
1632 map.type = MT_DEVICE;
1633 map.length = PAGE_SIZE;
1634
1635 create_mapping(&map);
1636 }
1637}
1638
d111e8f9
RK
1639/*
1640 * paging_init() sets up the page tables, initialises the zone memory
1641 * maps, and sets up the zero page, bad page and bad page tables.
1642 */
ff69a4c8 1643void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1644{
1645 void *zero_page;
1646
4b5f32ce 1647 prepare_page_table();
a2227120 1648 map_lowmem();
3de1f52a 1649 memblock_set_current_limit(arm_lowmem_limit);
c7909509 1650 dma_contiguous_remap();
a5f4c561 1651 early_fixmap_shutdown();
d111e8f9 1652 devicemaps_init(mdesc);
d73cd428 1653 kmap_init();
de40614e 1654 tcm_init();
d111e8f9
RK
1655
1656 top_pmd = pmd_off_k(0xffff0000);
1657
3abe9d33
RK
1658 /* allocate the zero page. */
1659 zero_page = early_alloc(PAGE_SIZE);
2778f620 1660
8d717a52 1661 bootmem_init();
2778f620 1662
d111e8f9 1663 empty_zero_page = virt_to_page(zero_page);
421fe93c 1664 __flush_dcache_page(NULL, empty_zero_page);
cf763e4e
MZ
1665
1666 /* Compute the virt/idmap offset, mostly for the sake of KVM */
1667 kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
d111e8f9 1668}
b089c31c
JM
1669
1670void __init early_mm_init(const struct machine_desc *mdesc)
1671{
1672 build_mem_type_table();
1673 early_paging_init(mdesc);
1674}