Merge branch 'tracing/core' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[linux-2.6-block.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
17
0ba8b9b2 18#include <asm/cputype.h>
d111e8f9 19#include <asm/mach-types.h>
37efe642 20#include <asm/sections.h>
3f973e22 21#include <asm/cachetype.h>
d111e8f9
RK
22#include <asm/setup.h>
23#include <asm/sizes.h>
e616c591 24#include <asm/smp_plat.h>
d111e8f9 25#include <asm/tlb.h>
d73cd428 26#include <asm/highmem.h>
d111e8f9
RK
27
28#include <asm/mach/arch.h>
29#include <asm/mach/map.h>
30
31#include "mm.h"
32
33DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
d111e8f9
RK
35/*
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
38 */
39struct page *empty_zero_page;
3653f3ab 40EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
41
42/*
43 * The pmd table for the upper-most set of pages.
44 */
45pmd_t *top_pmd;
46
ae8f1541
RK
47#define CPOLICY_UNCACHED 0
48#define CPOLICY_BUFFERED 1
49#define CPOLICY_WRITETHROUGH 2
50#define CPOLICY_WRITEBACK 3
51#define CPOLICY_WRITEALLOC 4
52
53static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54static unsigned int ecc_mask __initdata = 0;
44b18693 55pgprot_t pgprot_user;
ae8f1541
RK
56pgprot_t pgprot_kernel;
57
44b18693 58EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
59EXPORT_SYMBOL(pgprot_kernel);
60
61struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 unsigned int pte;
66};
67
68static struct cachepolicy cache_policies[] __initdata = {
69 {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
bb30f36f 73 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
bb30f36f 78 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
bb30f36f 83 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
bb30f36f 88 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
bb30f36f 93 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
94 }
95};
96
97/*
6cbdc8c5 98 * These are useful for identifying cache coherency
ae8f1541
RK
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
102 */
103static void __init early_cachepolicy(char **p)
104{
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
109
110 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
114 *p += len;
115 break;
116 }
117 }
118 if (i == ARRAY_SIZE(cache_policies))
119 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
120 /*
121 * This restriction is partly to do with the way we boot; it is
122 * unpredictable to have memory mapped using two different sets of
123 * memory attributes (shared, type, and cache attribs). We can not
124 * change these attributes once the initial assembly has setup the
125 * page tables.
126 */
11179d8c
CM
127 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 cachepolicy = CPOLICY_WRITEBACK;
130 }
ae8f1541
RK
131 flush_cache_all();
132 set_cr(cr_alignment);
133}
134__early_param("cachepolicy=", early_cachepolicy);
135
136static void __init early_nocache(char **__unused)
137{
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
140 early_cachepolicy(&p);
141}
142__early_param("nocache", early_nocache);
143
144static void __init early_nowrite(char **__unused)
145{
146 char *p = "uncached";
147 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
148 early_cachepolicy(&p);
149}
150__early_param("nowb", early_nowrite);
151
152static void __init early_ecc(char **p)
153{
154 if (memcmp(*p, "on", 2) == 0) {
155 ecc_mask = PMD_PROTECTION;
156 *p += 2;
157 } else if (memcmp(*p, "off", 3) == 0) {
158 ecc_mask = 0;
159 *p += 3;
160 }
161}
162__early_param("ecc=", early_ecc);
163
164static int __init noalign_setup(char *__unused)
165{
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
170}
171__setup("noalign", noalign_setup);
172
255d1f86
RK
173#ifndef CONFIG_SMP
174void adjust_cr(unsigned long mask, unsigned long set)
175{
176 unsigned long flags;
177
178 mask &= ~CR_A;
179
180 set &= mask;
181
182 local_irq_save(flags);
183
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
186
187 set_cr((get_cr() & ~mask) | set);
188
189 local_irq_restore(flags);
190}
191#endif
192
0af92bef 193#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
b1cce6b1 194#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 195
b29e9f5e 196static struct mem_type mem_types[] = {
0af92bef 197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
0af92bef 200 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
202 .domain = DOMAIN_IO,
203 },
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 206 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 207 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
208 .domain = DOMAIN_IO,
209 },
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
215 },
1ad77a87 216 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 218 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 219 .prot_sect = PROT_SECT_DEVICE,
0af92bef 220 .domain = DOMAIN_IO,
ae8f1541 221 },
ebb4c658
RK
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
227 },
ae8f1541 228 [MT_CACHECLEAN] = {
9ef79635 229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
230 .domain = DOMAIN_KERNEL,
231 },
232 [MT_MINICLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_EXEC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
241 },
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_EXEC,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_MEMORY] = {
9ef79635 249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
250 .domain = DOMAIN_KERNEL,
251 },
252 [MT_ROM] = {
9ef79635 253 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
254 .domain = DOMAIN_KERNEL,
255 },
e4707dd3
PW
256 [MT_MEMORY_NONCACHED] = {
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
259 },
ae8f1541
RK
260};
261
b29e9f5e
RK
262const struct mem_type *get_mem_type(unsigned int type)
263{
264 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
265}
69d3a84a 266EXPORT_SYMBOL(get_mem_type);
b29e9f5e 267
ae8f1541
RK
268/*
269 * Adjust the PMD section entries according to the CPU in use.
270 */
271static void __init build_mem_type_table(void)
272{
273 struct cachepolicy *cp;
274 unsigned int cr = get_cr();
bb30f36f 275 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
276 int cpu_arch = cpu_architecture();
277 int i;
278
11179d8c 279 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 280#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
281 if (cachepolicy > CPOLICY_BUFFERED)
282 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 283#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
284 if (cachepolicy > CPOLICY_WRITETHROUGH)
285 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 286#endif
11179d8c 287 }
ae8f1541
RK
288 if (cpu_arch < CPU_ARCH_ARMv5) {
289 if (cachepolicy >= CPOLICY_WRITEALLOC)
290 cachepolicy = CPOLICY_WRITEBACK;
291 ecc_mask = 0;
292 }
bb30f36f
RK
293#ifdef CONFIG_SMP
294 cachepolicy = CPOLICY_WRITEALLOC;
295#endif
ae8f1541 296
1ad77a87 297 /*
b1cce6b1
RK
298 * Strip out features not present on earlier architectures.
299 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
300 * without extended page tables don't have the 'Shared' bit.
1ad77a87 301 */
b1cce6b1
RK
302 if (cpu_arch < CPU_ARCH_ARMv5)
303 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
304 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
305 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
307 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
308
309 /*
b1cce6b1
RK
310 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311 * "update-able on write" bit on ARM610). However, Xscale and
312 * Xscale3 require this bit to be cleared.
ae8f1541 313 */
b1cce6b1 314 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 315 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 316 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
317 mem_types[i].prot_l1 &= ~PMD_BIT4;
318 }
319 } else if (cpu_arch < CPU_ARCH_ARMv6) {
320 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
321 if (mem_types[i].prot_l1)
322 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
323 if (mem_types[i].prot_sect)
324 mem_types[i].prot_sect |= PMD_BIT4;
325 }
326 }
ae8f1541 327
b1cce6b1
RK
328 /*
329 * Mark the device areas according to the CPU/architecture.
330 */
331 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
332 if (!cpu_is_xsc3()) {
333 /*
334 * Mark device regions on ARMv6+ as execute-never
335 * to prevent speculative instruction fetches.
336 */
337 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
338 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
339 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
340 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
341 }
342 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
343 /*
344 * For ARMv7 with TEX remapping,
345 * - shared device is SXCB=1100
346 * - nonshared device is SXCB=0100
347 * - write combine device mem is SXCB=0001
348 * (Uncached Normal memory)
349 */
350 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
351 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
352 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
353 } else if (cpu_is_xsc3()) {
354 /*
355 * For Xscale3,
356 * - shared device is TEXCB=00101
357 * - nonshared device is TEXCB=01000
358 * - write combine device mem is TEXCB=00100
359 * (Inner/Outer Uncacheable in xsc3 parlance)
360 */
361 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
362 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
363 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
364 } else {
365 /*
366 * For ARMv6 and ARMv7 without TEX remapping,
367 * - shared device is TEXCB=00001
368 * - nonshared device is TEXCB=01000
369 * - write combine device mem is TEXCB=00100
370 * (Uncached Normal in ARMv6 parlance).
371 */
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
374 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
375 }
376 } else {
377 /*
378 * On others, write combining is "Uncached/Buffered"
379 */
380 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
381 }
382
383 /*
384 * Now deal with the memory-type mappings
385 */
ae8f1541 386 cp = &cache_policies[cachepolicy];
bb30f36f
RK
387 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
388
389#ifndef CONFIG_SMP
390 /*
391 * Only use write-through for non-SMP systems
392 */
393 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
394 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
395#endif
ae8f1541
RK
396
397 /*
398 * Enable CPU-specific coherency if supported.
399 * (Only available on XSC3 at the moment.)
400 */
b1cce6b1
RK
401 if (arch_is_coherent() && cpu_is_xsc3())
402 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
ae8f1541
RK
403
404 /*
405 * ARMv6 and above have extended page tables.
406 */
407 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
408 /*
409 * Mark cache clean areas and XIP ROM read only
410 * from SVC mode and no access from userspace.
411 */
412 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
413 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415
ae8f1541
RK
416#ifdef CONFIG_SMP
417 /*
418 * Mark memory with the "shared" attribute for SMP systems
419 */
420 user_pgprot |= L_PTE_SHARED;
421 kern_pgprot |= L_PTE_SHARED;
bb30f36f 422 vecs_pgprot |= L_PTE_SHARED;
ae8f1541 423 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
e4707dd3 424 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
ae8f1541
RK
425#endif
426 }
427
e4707dd3
PW
428 /*
429 * Non-cacheable Normal - intended for memory areas that must
430 * not cause dirty cache line writebacks when used
431 */
432 if (cpu_arch >= CPU_ARCH_ARMv6) {
433 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
434 /* Non-cacheable Normal is XCB = 001 */
435 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
436 PMD_SECT_BUFFERED;
437 } else {
438 /* For both ARMv6 and non-TEX-remapping ARMv7 */
439 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
440 PMD_SECT_TEX(1);
441 }
442 } else {
443 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
444 }
445
ae8f1541
RK
446 for (i = 0; i < 16; i++) {
447 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 448 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
449 }
450
bb30f36f
RK
451 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
452 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 453
44b18693 454 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 455 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
6dc995a3 456 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
ae8f1541
RK
457
458 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
459 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
460 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
461 mem_types[MT_ROM].prot_sect |= cp->pmd;
462
463 switch (cp->pmd) {
464 case PMD_SECT_WT:
465 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
466 break;
467 case PMD_SECT_WB:
468 case PMD_SECT_WBWA:
469 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
470 break;
471 }
472 printk("Memory policy: ECC %sabled, Data cache %s\n",
473 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
474
475 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
476 struct mem_type *t = &mem_types[i];
477 if (t->prot_l1)
478 t->prot_l1 |= PMD_DOMAIN(t->domain);
479 if (t->prot_sect)
480 t->prot_sect |= PMD_DOMAIN(t->domain);
481 }
ae8f1541
RK
482}
483
484#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
485
24e6c699
RK
486static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
487 unsigned long end, unsigned long pfn,
488 const struct mem_type *type)
ae8f1541 489{
24e6c699 490 pte_t *pte;
ae8f1541 491
24e6c699
RK
492 if (pmd_none(*pmd)) {
493 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
494 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
495 }
ae8f1541 496
24e6c699
RK
497 pte = pte_offset_kernel(pmd, addr);
498 do {
40d192b6 499 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
500 pfn++;
501 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
502}
503
24e6c699
RK
504static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
505 unsigned long end, unsigned long phys,
506 const struct mem_type *type)
ae8f1541 507{
24e6c699 508 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 509
24e6c699
RK
510 /*
511 * Try a section mapping - end, addr and phys must all be aligned
512 * to a section boundary. Note that PMDs refer to the individual
513 * L1 entries, whereas PGDs refer to a group of L1 entries making
514 * up one logical pointer to an L2 table.
515 */
516 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
517 pmd_t *p = pmd;
ae8f1541 518
24e6c699
RK
519 if (addr & SECTION_SIZE)
520 pmd++;
521
522 do {
523 *pmd = __pmd(phys | type->prot_sect);
524 phys += SECTION_SIZE;
525 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 526
24e6c699
RK
527 flush_pmd_entry(p);
528 } else {
529 /*
530 * No need to loop; pte's aren't interested in the
531 * individual L1 entries.
532 */
533 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
534 }
ae8f1541
RK
535}
536
4a56c1e4
RK
537static void __init create_36bit_mapping(struct map_desc *md,
538 const struct mem_type *type)
539{
540 unsigned long phys, addr, length, end;
541 pgd_t *pgd;
542
543 addr = md->virtual;
544 phys = (unsigned long)__pfn_to_phys(md->pfn);
545 length = PAGE_ALIGN(md->length);
546
547 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
548 printk(KERN_ERR "MM: CPU does not support supersection "
549 "mapping for 0x%08llx at 0x%08lx\n",
550 __pfn_to_phys((u64)md->pfn), addr);
551 return;
552 }
553
554 /* N.B. ARMv6 supersections are only defined to work with domain 0.
555 * Since domain assignments can in fact be arbitrary, the
556 * 'domain == 0' check below is required to insure that ARMv6
557 * supersections are only allocated for domain 0 regardless
558 * of the actual domain assignments in use.
559 */
560 if (type->domain) {
561 printk(KERN_ERR "MM: invalid domain in supersection "
562 "mapping for 0x%08llx at 0x%08lx\n",
563 __pfn_to_phys((u64)md->pfn), addr);
564 return;
565 }
566
567 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
568 printk(KERN_ERR "MM: cannot create mapping for "
569 "0x%08llx at 0x%08lx invalid alignment\n",
570 __pfn_to_phys((u64)md->pfn), addr);
571 return;
572 }
573
574 /*
575 * Shift bits [35:32] of address into bits [23:20] of PMD
576 * (See ARMv6 spec).
577 */
578 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
579
580 pgd = pgd_offset_k(addr);
581 end = addr + length;
582 do {
583 pmd_t *pmd = pmd_offset(pgd, addr);
584 int i;
585
586 for (i = 0; i < 16; i++)
587 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
588
589 addr += SUPERSECTION_SIZE;
590 phys += SUPERSECTION_SIZE;
591 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
592 } while (addr != end);
593}
594
ae8f1541
RK
595/*
596 * Create the page directory entries and any necessary
597 * page tables for the mapping specified by `md'. We
598 * are able to cope here with varying sizes and address
599 * offsets, and we take full advantage of sections and
600 * supersections.
601 */
602void __init create_mapping(struct map_desc *md)
603{
24e6c699 604 unsigned long phys, addr, length, end;
d5c98176 605 const struct mem_type *type;
24e6c699 606 pgd_t *pgd;
ae8f1541
RK
607
608 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
609 printk(KERN_WARNING "BUG: not creating mapping for "
610 "0x%08llx at 0x%08lx in user region\n",
611 __pfn_to_phys((u64)md->pfn), md->virtual);
612 return;
613 }
614
615 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
616 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
617 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
618 "overlaps vmalloc space\n",
619 __pfn_to_phys((u64)md->pfn), md->virtual);
620 }
621
d5c98176 622 type = &mem_types[md->type];
ae8f1541
RK
623
624 /*
625 * Catch 36-bit addresses
626 */
4a56c1e4
RK
627 if (md->pfn >= 0x100000) {
628 create_36bit_mapping(md, type);
629 return;
ae8f1541
RK
630 }
631
7b9c7b4d 632 addr = md->virtual & PAGE_MASK;
24e6c699 633 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 634 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 635
24e6c699 636 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
637 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
638 "be mapped using pages, ignoring.\n",
24e6c699 639 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
640 return;
641 }
642
24e6c699
RK
643 pgd = pgd_offset_k(addr);
644 end = addr + length;
645 do {
646 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 647
24e6c699 648 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 649
24e6c699
RK
650 phys += next - addr;
651 addr = next;
652 } while (pgd++, addr != end);
ae8f1541
RK
653}
654
655/*
656 * Create the architecture specific mappings
657 */
658void __init iotable_init(struct map_desc *io_desc, int nr)
659{
660 int i;
661
662 for (i = 0; i < nr; i++)
663 create_mapping(io_desc + i);
664}
665
6c5da7ac
RK
666static unsigned long __initdata vmalloc_reserve = SZ_128M;
667
668/*
669 * vmalloc=size forces the vmalloc area to be exactly 'size'
670 * bytes. This can be used to increase (or decrease) the vmalloc
671 * area - the default is 128m.
672 */
673static void __init early_vmalloc(char **arg)
674{
675 vmalloc_reserve = memparse(*arg, arg);
676
677 if (vmalloc_reserve < SZ_16M) {
678 vmalloc_reserve = SZ_16M;
679 printk(KERN_WARNING
680 "vmalloc area too small, limiting to %luMB\n",
681 vmalloc_reserve >> 20);
682 }
9210807c
NP
683
684 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
685 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
686 printk(KERN_WARNING
687 "vmalloc area is too big, limiting to %luMB\n",
688 vmalloc_reserve >> 20);
689 }
6c5da7ac
RK
690}
691__early_param("vmalloc=", early_vmalloc);
692
693#define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
694
4b5f32ce 695static void __init sanity_check_meminfo(void)
60296c71 696{
dde5828f 697 int i, j, highmem = 0;
60296c71 698
4b5f32ce 699 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
700 struct membank *bank = &meminfo.bank[j];
701 *bank = meminfo.bank[i];
60296c71 702
a1bbaec0 703#ifdef CONFIG_HIGHMEM
dde5828f
RK
704 if (__va(bank->start) > VMALLOC_MIN ||
705 __va(bank->start) < (void *)PAGE_OFFSET)
706 highmem = 1;
707
708 bank->highmem = highmem;
709
a1bbaec0
NP
710 /*
711 * Split those memory banks which are partially overlapping
712 * the vmalloc area greatly simplifying things later.
713 */
714 if (__va(bank->start) < VMALLOC_MIN &&
715 bank->size > VMALLOC_MIN - __va(bank->start)) {
716 if (meminfo.nr_banks >= NR_BANKS) {
717 printk(KERN_CRIT "NR_BANKS too low, "
718 "ignoring high memory\n");
719 } else {
720 memmove(bank + 1, bank,
721 (meminfo.nr_banks - i) * sizeof(*bank));
722 meminfo.nr_banks++;
723 i++;
724 bank[1].size -= VMALLOC_MIN - __va(bank->start);
725 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
dde5828f 726 bank[1].highmem = highmem = 1;
a1bbaec0
NP
727 j++;
728 }
729 bank->size = VMALLOC_MIN - __va(bank->start);
730 }
731#else
041d785f
RK
732 bank->highmem = highmem;
733
a1bbaec0
NP
734 /*
735 * Check whether this memory bank would entirely overlap
736 * the vmalloc area.
737 */
3fd9825c 738 if (__va(bank->start) >= VMALLOC_MIN ||
f0bba9f9 739 __va(bank->start) < (void *)PAGE_OFFSET) {
a1bbaec0
NP
740 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
741 "(vmalloc region overlap).\n",
742 bank->start, bank->start + bank->size - 1);
743 continue;
744 }
60296c71 745
a1bbaec0
NP
746 /*
747 * Check whether this memory bank would partially overlap
748 * the vmalloc area.
749 */
750 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
751 __va(bank->start + bank->size) < __va(bank->start)) {
752 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
753 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
754 "to -%.8lx (vmalloc region overlap).\n",
755 bank->start, bank->start + bank->size - 1,
756 bank->start + newsize - 1);
757 bank->size = newsize;
758 }
759#endif
760 j++;
60296c71 761 }
e616c591
RK
762#ifdef CONFIG_HIGHMEM
763 if (highmem) {
764 const char *reason = NULL;
765
766 if (cache_is_vipt_aliasing()) {
767 /*
768 * Interactions between kmap and other mappings
769 * make highmem support with aliasing VIPT caches
770 * rather difficult.
771 */
772 reason = "with VIPT aliasing cache";
773#ifdef CONFIG_SMP
774 } else if (tlb_ops_need_broadcast()) {
775 /*
776 * kmap_high needs to occasionally flush TLB entries,
777 * however, if the TLB entries need to be broadcast
778 * we may deadlock:
779 * kmap_high(irqs off)->flush_all_zero_pkmaps->
780 * flush_tlb_kernel_range->smp_call_function_many
781 * (must not be called with irqs off)
782 */
783 reason = "without hardware TLB ops broadcasting";
784#endif
785 }
786 if (reason) {
787 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
788 reason);
789 while (j > 0 && meminfo.bank[j - 1].highmem)
790 j--;
791 }
792 }
793#endif
4b5f32ce 794 meminfo.nr_banks = j;
60296c71
LB
795}
796
4b5f32ce 797static inline void prepare_page_table(void)
d111e8f9
RK
798{
799 unsigned long addr;
800
801 /*
802 * Clear out all the mappings below the kernel image.
803 */
ab4f2ee1 804 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
d111e8f9
RK
805 pmd_clear(pmd_off_k(addr));
806
807#ifdef CONFIG_XIP_KERNEL
808 /* The XIP kernel is mapped in the module area -- skip over it */
37efe642 809 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
d111e8f9
RK
810#endif
811 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
812 pmd_clear(pmd_off_k(addr));
813
814 /*
815 * Clear out all the kernel space mappings, except for the first
816 * memory bank, up to the end of the vmalloc region.
817 */
4b5f32ce 818 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
d111e8f9
RK
819 addr < VMALLOC_END; addr += PGDIR_SIZE)
820 pmd_clear(pmd_off_k(addr));
821}
822
823/*
824 * Reserve the various regions of node 0
825 */
826void __init reserve_node_zero(pg_data_t *pgdat)
827{
828 unsigned long res_size = 0;
829
830 /*
831 * Register the kernel text and data with bootmem.
832 * Note that this can only be in node 0.
833 */
834#ifdef CONFIG_XIP_KERNEL
37efe642 835 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
72a7fe39 836 BOOTMEM_DEFAULT);
d111e8f9 837#else
37efe642 838 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
72a7fe39 839 BOOTMEM_DEFAULT);
d111e8f9
RK
840#endif
841
842 /*
843 * Reserve the page tables. These are already in use,
844 * and can only be in node 0.
845 */
846 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
72a7fe39 847 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
d111e8f9
RK
848
849 /*
850 * Hmm... This should go elsewhere, but we really really need to
851 * stop things allocating the low memory; ideally we need a better
852 * implementation of GFP_DMA which does not assume that DMA-able
853 * memory starts at zero.
854 */
855 if (machine_is_integrator() || machine_is_cintegrator())
856 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
857
858 /*
859 * These should likewise go elsewhere. They pre-reserve the
860 * screen memory region at the start of main system memory.
861 */
862 if (machine_is_edb7211())
863 res_size = 0x00020000;
864 if (machine_is_p720t())
865 res_size = 0x00014000;
866
bbf6f280
BD
867 /* H1940 and RX3715 need to reserve this for suspend */
868
869 if (machine_is_h1940() || machine_is_rx3715()) {
72a7fe39
BW
870 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
871 BOOTMEM_DEFAULT);
872 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
873 BOOTMEM_DEFAULT);
9073341c
BD
874 }
875
81854f82
MV
876 if (machine_is_palmld() || machine_is_palmtx()) {
877 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
878 BOOTMEM_EXCLUSIVE);
879 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
880 BOOTMEM_EXCLUSIVE);
881 }
882
d0a92fd3 883 if (machine_is_treo680() || machine_is_centro()) {
e6c3f4b8
TSC
884 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
885 BOOTMEM_EXCLUSIVE);
886 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
887 BOOTMEM_EXCLUSIVE);
888 }
889
81854f82
MV
890 if (machine_is_palmt5())
891 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
892 BOOTMEM_EXCLUSIVE);
893
d98aac75
LW
894 /*
895 * U300 - This platform family can share physical memory
896 * between two ARM cpus, one running Linux and the other
897 * running another OS.
898 */
899 if (machine_is_u300()) {
900#ifdef CONFIG_MACH_U300_SINGLE_RAM
901#if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
902 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
903 res_size = 0x00100000;
904#endif
905#endif
906 }
907
d111e8f9
RK
908#ifdef CONFIG_SA1111
909 /*
910 * Because of the SA1111 DMA bug, we want to preserve our
911 * precious DMA-able memory...
912 */
913 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
914#endif
915 if (res_size)
72a7fe39
BW
916 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
917 BOOTMEM_DEFAULT);
d111e8f9
RK
918}
919
920/*
921 * Set up device the mappings. Since we clear out the page tables for all
922 * mappings above VMALLOC_END, we will remove any debug device mappings.
923 * This means you have to be careful how you debug this function, or any
924 * called function. This means you can't use any function or debugging
925 * method which may touch any device, otherwise the kernel _will_ crash.
926 */
927static void __init devicemaps_init(struct machine_desc *mdesc)
928{
929 struct map_desc map;
930 unsigned long addr;
931 void *vectors;
932
933 /*
934 * Allocate the vector page early.
935 */
936 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9
RK
937
938 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
939 pmd_clear(pmd_off_k(addr));
940
941 /*
942 * Map the kernel if it is XIP.
943 * It is always first in the modulearea.
944 */
945#ifdef CONFIG_XIP_KERNEL
946 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 947 map.virtual = MODULES_VADDR;
37efe642 948 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
949 map.type = MT_ROM;
950 create_mapping(&map);
951#endif
952
953 /*
954 * Map the cache flushing regions.
955 */
956#ifdef FLUSH_BASE
957 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
958 map.virtual = FLUSH_BASE;
959 map.length = SZ_1M;
960 map.type = MT_CACHECLEAN;
961 create_mapping(&map);
962#endif
963#ifdef FLUSH_BASE_MINICACHE
964 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
965 map.virtual = FLUSH_BASE_MINICACHE;
966 map.length = SZ_1M;
967 map.type = MT_MINICLEAN;
968 create_mapping(&map);
969#endif
970
971 /*
972 * Create a mapping for the machine vectors at the high-vectors
973 * location (0xffff0000). If we aren't using high-vectors, also
974 * create a mapping at the low-vectors virtual address.
975 */
976 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
977 map.virtual = 0xffff0000;
978 map.length = PAGE_SIZE;
979 map.type = MT_HIGH_VECTORS;
980 create_mapping(&map);
981
982 if (!vectors_high()) {
983 map.virtual = 0;
984 map.type = MT_LOW_VECTORS;
985 create_mapping(&map);
986 }
987
988 /*
989 * Ask the machine support to map in the statically mapped devices.
990 */
991 if (mdesc->map_io)
992 mdesc->map_io();
993
994 /*
995 * Finally flush the caches and tlb to ensure that we're in a
996 * consistent state wrt the writebuffer. This also ensures that
997 * any write-allocated cache lines in the vector page are written
998 * back. After this point, we can start to touch devices again.
999 */
1000 local_flush_tlb_all();
1001 flush_cache_all();
1002}
1003
d73cd428
NP
1004static void __init kmap_init(void)
1005{
1006#ifdef CONFIG_HIGHMEM
1007 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1008 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1009 BUG_ON(!pmd_none(*pmd) || !pte);
1010 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1011 pkmap_page_table = pte + PTRS_PER_PTE;
1012#endif
1013}
1014
d111e8f9
RK
1015/*
1016 * paging_init() sets up the page tables, initialises the zone memory
1017 * maps, and sets up the zero page, bad page and bad page tables.
1018 */
4b5f32ce 1019void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1020{
1021 void *zero_page;
1022
1023 build_mem_type_table();
4b5f32ce
NP
1024 sanity_check_meminfo();
1025 prepare_page_table();
1026 bootmem_init();
d111e8f9 1027 devicemaps_init(mdesc);
d73cd428 1028 kmap_init();
d111e8f9
RK
1029
1030 top_pmd = pmd_off_k(0xffff0000);
1031
1032 /*
6ce1b871
JL
1033 * allocate the zero page. Note that this always succeeds and
1034 * returns a zeroed result.
d111e8f9
RK
1035 */
1036 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9 1037 empty_zero_page = virt_to_page(zero_page);
421fe93c 1038 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1039}
ae8f1541
RK
1040
1041/*
1042 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1043 * the user-mode pages. This will then ensure that we have predictable
1044 * results when turning the mmu off
1045 */
1046void setup_mm_for_reboot(char mode)
1047{
1048 unsigned long base_pmdval;
1049 pgd_t *pgd;
1050 int i;
1051
1052 if (current->mm && current->mm->pgd)
1053 pgd = current->mm->pgd;
1054 else
1055 pgd = init_mm.pgd;
1056
1057 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1058 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1059 base_pmdval |= PMD_BIT4;
1060
1061 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1062 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1063 pmd_t *pmd;
1064
1065 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1066 pmd[0] = __pmd(pmdval);
1067 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1068 flush_pmd_entry(pmd);
1069 }
ad3e6c0b
TL
1070
1071 local_flush_tlb_all();
ae8f1541 1072}