[ARM] cputype: separate definitions, use them
[linux-2.6-block.git] / arch / arm / mm / fault-armv.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/mm/fault-armv.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/sched.h>
13#include <linux/kernel.h>
14#include <linux/mm.h>
15#include <linux/bitops.h>
16#include <linux/vmalloc.h>
17#include <linux/init.h>
18#include <linux/pagemap.h>
19
20#include <asm/cacheflush.h>
21#include <asm/pgtable.h>
22#include <asm/tlbflush.h>
23
24static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
25
26/*
27 * We take the easy way out of this problem - we make the
28 * PTE uncacheable. However, we leave the write buffer on.
69b04754
HD
29 *
30 * Note that the pte lock held when calling update_mmu_cache must also
31 * guard the pte (somewhere else in the same mm) that we modify here.
32 * Therefore those configurations which might call adjust_pte (those
33 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
1da177e4
LT
34 */
35static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
36{
37 pgd_t *pgd;
38 pmd_t *pmd;
39 pte_t *pte, entry;
53cdb27a 40 int ret;
1da177e4
LT
41
42 pgd = pgd_offset(vma->vm_mm, address);
43 if (pgd_none(*pgd))
44 goto no_pgd;
45 if (pgd_bad(*pgd))
46 goto bad_pgd;
47
48 pmd = pmd_offset(pgd, address);
49 if (pmd_none(*pmd))
50 goto no_pmd;
51 if (pmd_bad(*pmd))
52 goto bad_pmd;
53
54 pte = pte_offset_map(pmd, address);
55 entry = *pte;
56
53cdb27a
RK
57 /*
58 * If this page is present, it's actually being shared.
59 */
60 ret = pte_present(entry);
61
1da177e4
LT
62 /*
63 * If this page isn't present, or is already setup to
64 * fault (ie, is old), we can safely ignore any issues.
65 */
53cdb27a 66 if (ret && pte_val(entry) & shared_pte_mask) {
1da177e4
LT
67 flush_cache_page(vma, address, pte_pfn(entry));
68 pte_val(entry) &= ~shared_pte_mask;
ad1ae2fe 69 set_pte_at(vma->vm_mm, address, pte, entry);
1da177e4 70 flush_tlb_page(vma, address);
1da177e4
LT
71 }
72 pte_unmap(pte);
73 return ret;
74
75bad_pgd:
76 pgd_ERROR(*pgd);
77 pgd_clear(pgd);
78no_pgd:
79 return 0;
80
81bad_pmd:
82 pmd_ERROR(*pmd);
83 pmd_clear(pmd);
84no_pmd:
85 return 0;
86}
87
88static void
8830f04a 89make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
1da177e4 90{
1da177e4
LT
91 struct mm_struct *mm = vma->vm_mm;
92 struct vm_area_struct *mpnt;
93 struct prio_tree_iter iter;
94 unsigned long offset;
95 pgoff_t pgoff;
96 int aliases = 0;
97
1da177e4
LT
98 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
99
100 /*
101 * If we have any shared mappings that are in the same mm
102 * space, then we need to handle them specially to maintain
103 * cache coherency.
104 */
105 flush_dcache_mmap_lock(mapping);
106 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
107 /*
108 * If this VMA is not in our MM, we can ignore it.
109 * Note that we intentionally mask out the VMA
110 * that we are fixing up.
111 */
112 if (mpnt->vm_mm != mm || mpnt == vma)
113 continue;
114 if (!(mpnt->vm_flags & VM_MAYSHARE))
115 continue;
116 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
117 aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
118 }
119 flush_dcache_mmap_unlock(mapping);
120 if (aliases)
121 adjust_pte(vma, addr);
122 else
8830f04a 123 flush_cache_page(vma, addr, pfn);
1da177e4
LT
124}
125
126/*
127 * Take care of architecture specific things when placing a new PTE into
128 * a page table, or changing an existing PTE. Basically, there are two
129 * things that we need to take care of:
130 *
131 * 1. If PG_dcache_dirty is set for the page, we need to ensure
132 * that any cache entries for the kernels virtual memory
133 * range are written back to the page.
134 * 2. If we have multiple shared mappings of the same space in
135 * an object, we need to deal with the cache aliasing issues.
136 *
69b04754 137 * Note that the pte lock will be held.
1da177e4
LT
138 */
139void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
140{
141 unsigned long pfn = pte_pfn(pte);
8830f04a 142 struct address_space *mapping;
1da177e4
LT
143 struct page *page;
144
145 if (!pfn_valid(pfn))
146 return;
8830f04a 147
1da177e4 148 page = pfn_to_page(pfn);
8830f04a
RK
149 mapping = page_mapping(page);
150 if (mapping) {
826cbdaf 151#ifndef CONFIG_SMP
1da177e4
LT
152 int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
153
8830f04a
RK
154 if (dirty)
155 __flush_dcache_page(mapping, page);
826cbdaf 156#endif
1da177e4
LT
157
158 if (cache_is_vivt())
8830f04a 159 make_coherent(mapping, vma, addr, pfn);
826cbdaf
CM
160 else if (vma->vm_flags & VM_EXEC)
161 __flush_icache_all();
1da177e4
LT
162 }
163}
164
165/*
166 * Check whether the write buffer has physical address aliasing
167 * issues. If it has, we need to avoid them for the case where
168 * we have several shared mappings of the same object in user
169 * space.
170 */
171static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
172{
173 register unsigned long zero = 0, one = 1, val;
174
175 local_irq_disable();
176 mb();
177 *p1 = one;
178 mb();
179 *p2 = zero;
180 mb();
181 val = *p1;
182 mb();
183 local_irq_enable();
184 return val != zero;
185}
186
187void __init check_writebuffer_bugs(void)
188{
189 struct page *page;
190 const char *reason;
191 unsigned long v = 1;
192
193 printk(KERN_INFO "CPU: Testing write buffer coherency: ");
194
195 page = alloc_page(GFP_KERNEL);
196 if (page) {
197 unsigned long *p1, *p2;
198 pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
199 L_PTE_DIRTY|L_PTE_WRITE|
200 L_PTE_BUFFERABLE);
201
202 p1 = vmap(&page, 1, VM_IOREMAP, prot);
203 p2 = vmap(&page, 1, VM_IOREMAP, prot);
204
205 if (p1 && p2) {
206 v = check_writebuffer(p1, p2);
207 reason = "enabling work-around";
208 } else {
209 reason = "unable to map memory\n";
210 }
211
212 vunmap(p1);
213 vunmap(p2);
214 put_page(page);
215 } else {
216 reason = "unable to grab page\n";
217 }
218
219 if (v) {
220 printk("failed, %s\n", reason);
221 shared_pte_mask |= L_PTE_BUFFERABLE;
222 } else {
223 printk("ok\n");
224 }
225}