Merge tag 'hwmon-for-linus-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / arch / arm / mm / fault-armv.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/mm/fault-armv.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
1da177e4
LT
11#include <linux/sched.h>
12#include <linux/kernel.h>
13#include <linux/mm.h>
14#include <linux/bitops.h>
15#include <linux/vmalloc.h>
16#include <linux/init.h>
17#include <linux/pagemap.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4 19
09d9bae0 20#include <asm/bugs.h>
1da177e4 21#include <asm/cacheflush.h>
46097c7d 22#include <asm/cachetype.h>
1da177e4
LT
23#include <asm/pgtable.h>
24#include <asm/tlbflush.h>
25
7b0a1003
RK
26#include "mm.h"
27
f6e3354d 28static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
1da177e4 29
6012191a 30#if __LINUX_ARM_ARCH__ < 6
1da177e4
LT
31/*
32 * We take the easy way out of this problem - we make the
33 * PTE uncacheable. However, we leave the write buffer on.
69b04754
HD
34 *
35 * Note that the pte lock held when calling update_mmu_cache must also
36 * guard the pte (somewhere else in the same mm) that we modify here.
37 * Therefore those configurations which might call adjust_pte (those
38 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
1da177e4 39 */
c26c20b8 40static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
ed42acae 41 unsigned long pfn, pte_t *ptep)
1da177e4 42{
c26c20b8 43 pte_t entry = *ptep;
53cdb27a 44 int ret;
1da177e4 45
53cdb27a
RK
46 /*
47 * If this page is present, it's actually being shared.
48 */
49 ret = pte_present(entry);
50
1da177e4
LT
51 /*
52 * If this page isn't present, or is already setup to
53 * fault (ie, is old), we can safely ignore any issues.
54 */
bb30f36f 55 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
08e445bd
NP
56 flush_cache_page(vma, address, pfn);
57 outer_flush_range((pfn << PAGE_SHIFT),
58 (pfn << PAGE_SHIFT) + PAGE_SIZE);
bb30f36f
RK
59 pte_val(entry) &= ~L_PTE_MT_MASK;
60 pte_val(entry) |= shared_pte_mask;
c26c20b8 61 set_pte_at(vma->vm_mm, address, ptep, entry);
1da177e4 62 flush_tlb_page(vma, address);
1da177e4 63 }
c26c20b8
RK
64
65 return ret;
66}
67
57c1ffce 68#if USE_SPLIT_PTE_PTLOCKS
4e54d93d
MW
69/*
70 * If we are using split PTE locks, then we need to take the page
71 * lock here. Otherwise we are using shared mm->page_table_lock
72 * which is already locked, thus cannot take it.
73 */
74static inline void do_pte_lock(spinlock_t *ptl)
75{
76 /*
77 * Use nested version here to indicate that we are already
78 * holding one similar spinlock.
79 */
80 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
81}
82
83static inline void do_pte_unlock(spinlock_t *ptl)
84{
85 spin_unlock(ptl);
86}
57c1ffce 87#else /* !USE_SPLIT_PTE_PTLOCKS */
4e54d93d
MW
88static inline void do_pte_lock(spinlock_t *ptl) {}
89static inline void do_pte_unlock(spinlock_t *ptl) {}
57c1ffce 90#endif /* USE_SPLIT_PTE_PTLOCKS */
4e54d93d 91
ed42acae
RK
92static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
93 unsigned long pfn)
c26c20b8 94{
56dd4709 95 spinlock_t *ptl;
c26c20b8 96 pgd_t *pgd;
516295e5 97 pud_t *pud;
c26c20b8
RK
98 pmd_t *pmd;
99 pte_t *pte;
100 int ret;
101
102 pgd = pgd_offset(vma->vm_mm, address);
f8a85f11
RK
103 if (pgd_none_or_clear_bad(pgd))
104 return 0;
c26c20b8 105
516295e5
RK
106 pud = pud_offset(pgd, address);
107 if (pud_none_or_clear_bad(pud))
108 return 0;
109
110 pmd = pmd_offset(pud, address);
f8a85f11
RK
111 if (pmd_none_or_clear_bad(pmd))
112 return 0;
c26c20b8 113
56dd4709
RK
114 /*
115 * This is called while another page table is mapped, so we
116 * must use the nested version. This also means we need to
117 * open-code the spin-locking.
118 */
119 ptl = pte_lockptr(vma->vm_mm, pmd);
ece0e2b6 120 pte = pte_offset_map(pmd, address);
4e54d93d 121 do_pte_lock(ptl);
c26c20b8 122
ed42acae 123 ret = do_adjust_pte(vma, address, pfn, pte);
c26c20b8 124
4e54d93d 125 do_pte_unlock(ptl);
ece0e2b6 126 pte_unmap(pte);
c26c20b8 127
1da177e4 128 return ret;
1da177e4
LT
129}
130
131static void
ae140202
RK
132make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
133 unsigned long addr, pte_t *ptep, unsigned long pfn)
1da177e4 134{
1da177e4
LT
135 struct mm_struct *mm = vma->vm_mm;
136 struct vm_area_struct *mpnt;
1da177e4
LT
137 unsigned long offset;
138 pgoff_t pgoff;
139 int aliases = 0;
140
1da177e4
LT
141 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
142
143 /*
144 * If we have any shared mappings that are in the same mm
145 * space, then we need to handle them specially to maintain
146 * cache coherency.
147 */
148 flush_dcache_mmap_lock(mapping);
6b2dbba8 149 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
1da177e4
LT
150 /*
151 * If this VMA is not in our MM, we can ignore it.
152 * Note that we intentionally mask out the VMA
153 * that we are fixing up.
154 */
155 if (mpnt->vm_mm != mm || mpnt == vma)
156 continue;
157 if (!(mpnt->vm_flags & VM_MAYSHARE))
158 continue;
159 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
ed42acae 160 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
1da177e4
LT
161 }
162 flush_dcache_mmap_unlock(mapping);
163 if (aliases)
ae140202 164 do_adjust_pte(vma, addr, pfn, ptep);
1da177e4
LT
165}
166
167/*
168 * Take care of architecture specific things when placing a new PTE into
169 * a page table, or changing an existing PTE. Basically, there are two
170 * things that we need to take care of:
171 *
c0177800 172 * 1. If PG_dcache_clean is not set for the page, we need to ensure
1da177e4
LT
173 * that any cache entries for the kernels virtual memory
174 * range are written back to the page.
175 * 2. If we have multiple shared mappings of the same space in
176 * an object, we need to deal with the cache aliasing issues.
177 *
69b04754 178 * Note that the pte lock will be held.
1da177e4 179 */
4b3073e1
RK
180void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
181 pte_t *ptep)
1da177e4 182{
4b3073e1 183 unsigned long pfn = pte_pfn(*ptep);
8830f04a 184 struct address_space *mapping;
1da177e4
LT
185 struct page *page;
186
187 if (!pfn_valid(pfn))
188 return;
8830f04a 189
421fe93c
RK
190 /*
191 * The zero page is never written to, so never has any dirty
192 * cache lines, and therefore never needs to be flushed.
193 */
1da177e4 194 page = pfn_to_page(pfn);
421fe93c
RK
195 if (page == ZERO_PAGE(0))
196 return;
197
8830f04a 198 mapping = page_mapping(page);
c0177800 199 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
787b2faa 200 __flush_dcache_page(mapping, page);
787b2faa 201 if (mapping) {
1da177e4 202 if (cache_is_vivt())
ae140202 203 make_coherent(mapping, vma, addr, ptep, pfn);
826cbdaf
CM
204 else if (vma->vm_flags & VM_EXEC)
205 __flush_icache_all();
1da177e4
LT
206 }
207}
6012191a 208#endif /* __LINUX_ARM_ARCH__ < 6 */
1da177e4
LT
209
210/*
211 * Check whether the write buffer has physical address aliasing
212 * issues. If it has, we need to avoid them for the case where
213 * we have several shared mappings of the same object in user
214 * space.
215 */
216static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
217{
218 register unsigned long zero = 0, one = 1, val;
219
220 local_irq_disable();
221 mb();
222 *p1 = one;
223 mb();
224 *p2 = zero;
225 mb();
226 val = *p1;
227 mb();
228 local_irq_enable();
229 return val != zero;
230}
231
232void __init check_writebuffer_bugs(void)
233{
234 struct page *page;
235 const char *reason;
236 unsigned long v = 1;
237
4ed89f22 238 pr_info("CPU: Testing write buffer coherency: ");
1da177e4
LT
239
240 page = alloc_page(GFP_KERNEL);
241 if (page) {
242 unsigned long *p1, *p2;
52e8bfd8
RK
243 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
244 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
1da177e4
LT
245
246 p1 = vmap(&page, 1, VM_IOREMAP, prot);
247 p2 = vmap(&page, 1, VM_IOREMAP, prot);
248
249 if (p1 && p2) {
250 v = check_writebuffer(p1, p2);
251 reason = "enabling work-around";
252 } else {
253 reason = "unable to map memory\n";
254 }
255
256 vunmap(p1);
257 vunmap(p2);
258 put_page(page);
259 } else {
260 reason = "unable to grab page\n";
261 }
262
263 if (v) {
4ed89f22 264 pr_cont("failed, %s\n", reason);
bb30f36f 265 shared_pte_mask = L_PTE_MT_UNCACHED;
1da177e4 266 } else {
4ed89f22 267 pr_cont("ok\n");
1da177e4
LT
268 }
269}