mm: remove include/linux/bootmem.h
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
36d0fd21 14#include <linux/genalloc.h>
5a0e3ad6 15#include <linux/gfp.h>
1da177e4
LT
16#include <linux/errno.h>
17#include <linux/list.h>
18#include <linux/init.h>
19#include <linux/device.h>
20#include <linux/dma-mapping.h>
c7909509 21#include <linux/dma-contiguous.h>
39af22a7 22#include <linux/highmem.h>
c7909509 23#include <linux/memblock.h>
99d1717d 24#include <linux/slab.h>
4ce63fcd 25#include <linux/iommu.h>
e9da6e99 26#include <linux/io.h>
4ce63fcd 27#include <linux/vmalloc.h>
158e8bfe 28#include <linux/sizes.h>
a254129e 29#include <linux/cma.h>
1da177e4 30
23759dc6 31#include <asm/memory.h>
43377453 32#include <asm/highmem.h>
1da177e4 33#include <asm/cacheflush.h>
1da177e4 34#include <asm/tlbflush.h>
99d1717d 35#include <asm/mach/arch.h>
4ce63fcd 36#include <asm/dma-iommu.h>
c7909509
MS
37#include <asm/mach/map.h>
38#include <asm/system_info.h>
39#include <asm/dma-contiguous.h>
37134cd5 40
1234e3fd 41#include "dma.h"
022ae537
RK
42#include "mm.h"
43
b4268676
RV
44struct arm_dma_alloc_args {
45 struct device *dev;
46 size_t size;
47 gfp_t gfp;
48 pgprot_t prot;
49 const void *caller;
50 bool want_vaddr;
f1270896 51 int coherent_flag;
b4268676
RV
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
f1270896
GC
62#define NORMAL 0
63#define COHERENT 1
64
b4268676
RV
65struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
69};
70
19e6e5e5
RV
71struct arm_dma_buffer {
72 struct list_head list;
73 void *virt;
b4268676 74 struct arm_dma_allocator *allocator;
19e6e5e5
RV
75};
76
77static LIST_HEAD(arm_dma_bufs);
78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79
80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81{
82 struct arm_dma_buffer *buf, *found = NULL;
83 unsigned long flags;
84
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
88 list_del(&buf->list);
89 found = buf;
90 break;
91 }
92 }
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 return found;
95}
96
15237e1f
MS
97/*
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
102 *
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
107 *
15237e1f 108 */
51fde349 109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 110 size_t, enum dma_data_direction);
51fde349 111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
112 size_t, enum dma_data_direction);
113
2dc6a016
MS
114/**
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
121 *
122 * Ensure that any data held in the cache is appropriately discarded
123 * or written back.
124 *
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
127 */
51fde349 128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016 129 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 130 unsigned long attrs)
2dc6a016 131{
00085f1e 132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
51fde349
MS
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
135}
136
dd37e940
RH
137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 139 unsigned long attrs)
dd37e940
RH
140{
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142}
143
2dc6a016
MS
144/**
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
150 *
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
154 *
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
157 */
51fde349 158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 159 size_t size, enum dma_data_direction dir, unsigned long attrs)
2dc6a016 160{
00085f1e 161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
51fde349
MS
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
164}
165
51fde349 166static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
168{
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 171 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
172}
173
51fde349 174static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
176{
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 179 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
180}
181
9eef8b8c
CH
182static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
183{
184 return dma_addr == ARM_MAPPING_ERROR;
185}
186
5299709d 187const struct dma_map_ops arm_dma_ops = {
f99d6034
MS
188 .alloc = arm_dma_alloc,
189 .free = arm_dma_free,
190 .mmap = arm_dma_mmap,
dc2832e1 191 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
192 .map_page = arm_dma_map_page,
193 .unmap_page = arm_dma_unmap_page,
194 .map_sg = arm_dma_map_sg,
195 .unmap_sg = arm_dma_unmap_sg,
196 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
197 .sync_single_for_device = arm_dma_sync_single_for_device,
198 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
199 .sync_sg_for_device = arm_dma_sync_sg_for_device,
9eef8b8c 200 .mapping_error = arm_dma_mapping_error,
418a7a7e 201 .dma_supported = arm_dma_supported,
2dc6a016
MS
202};
203EXPORT_SYMBOL(arm_dma_ops);
204
dd37e940 205static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
00085f1e 206 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
dd37e940 207static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 208 dma_addr_t handle, unsigned long attrs);
55af8a91
ML
209static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
210 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 211 unsigned long attrs);
dd37e940 212
5299709d 213const struct dma_map_ops arm_coherent_dma_ops = {
dd37e940
RH
214 .alloc = arm_coherent_dma_alloc,
215 .free = arm_coherent_dma_free,
55af8a91 216 .mmap = arm_coherent_dma_mmap,
dd37e940
RH
217 .get_sgtable = arm_dma_get_sgtable,
218 .map_page = arm_coherent_dma_map_page,
219 .map_sg = arm_dma_map_sg,
9eef8b8c 220 .mapping_error = arm_dma_mapping_error,
418a7a7e 221 .dma_supported = arm_dma_supported,
dd37e940
RH
222};
223EXPORT_SYMBOL(arm_coherent_dma_ops);
224
9f28cde0
RK
225static int __dma_supported(struct device *dev, u64 mask, bool warn)
226{
227 unsigned long max_dma_pfn;
228
229 /*
230 * If the mask allows for more memory than we can address,
231 * and we actually have that much memory, then we must
232 * indicate that DMA to this device is not supported.
233 */
234 if (sizeof(mask) != sizeof(dma_addr_t) &&
235 mask > (dma_addr_t)~0 &&
8bf1268f 236 dma_to_pfn(dev, ~0) < max_pfn - 1) {
9f28cde0
RK
237 if (warn) {
238 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
239 mask);
240 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
241 }
242 return 0;
243 }
244
245 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
246
247 /*
248 * Translate the device's DMA mask to a PFN limit. This
249 * PFN number includes the page which we can DMA to.
250 */
251 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
252 if (warn)
253 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
254 mask,
255 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
256 max_dma_pfn + 1);
257 return 0;
258 }
259
260 return 1;
261}
262
ab6494f0
CM
263static u64 get_coherent_dma_mask(struct device *dev)
264{
4dcfa600 265 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
266
267 if (dev) {
268 mask = dev->coherent_dma_mask;
269
270 /*
271 * Sanity check the DMA mask - it must be non-zero, and
272 * must be able to be satisfied by a DMA allocation.
273 */
274 if (mask == 0) {
275 dev_warn(dev, "coherent DMA mask is unset\n");
276 return 0;
277 }
278
9f28cde0 279 if (!__dma_supported(dev, mask, true))
ab6494f0 280 return 0;
ab6494f0 281 }
1da177e4 282
ab6494f0
CM
283 return mask;
284}
285
f1270896 286static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
c7909509 287{
c7909509
MS
288 /*
289 * Ensure that the allocated pages are zeroed, and that any data
290 * lurking in the kernel direct-mapped region is invalidated.
291 */
9848e48f
MS
292 if (PageHighMem(page)) {
293 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
294 phys_addr_t end = base + size;
295 while (size > 0) {
296 void *ptr = kmap_atomic(page);
297 memset(ptr, 0, PAGE_SIZE);
f1270896
GC
298 if (coherent_flag != COHERENT)
299 dmac_flush_range(ptr, ptr + PAGE_SIZE);
9848e48f
MS
300 kunmap_atomic(ptr);
301 page++;
302 size -= PAGE_SIZE;
303 }
f1270896
GC
304 if (coherent_flag != COHERENT)
305 outer_flush_range(base, end);
9848e48f
MS
306 } else {
307 void *ptr = page_address(page);
4ce63fcd 308 memset(ptr, 0, size);
f1270896
GC
309 if (coherent_flag != COHERENT) {
310 dmac_flush_range(ptr, ptr + size);
311 outer_flush_range(__pa(ptr), __pa(ptr) + size);
312 }
4ce63fcd 313 }
c7909509
MS
314}
315
7a9a32a9
RK
316/*
317 * Allocate a DMA buffer for 'dev' of size 'size' using the
318 * specified gfp mask. Note that 'size' must be page aligned.
319 */
f1270896
GC
320static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
321 gfp_t gfp, int coherent_flag)
7a9a32a9
RK
322{
323 unsigned long order = get_order(size);
324 struct page *page, *p, *e;
7a9a32a9
RK
325
326 page = alloc_pages(gfp, order);
327 if (!page)
328 return NULL;
329
330 /*
331 * Now split the huge page and free the excess pages
332 */
333 split_page(page, order);
334 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
335 __free_page(p);
336
f1270896 337 __dma_clear_buffer(page, size, coherent_flag);
7a9a32a9
RK
338
339 return page;
340}
341
342/*
343 * Free a DMA buffer. 'size' must be page aligned.
344 */
345static void __dma_free_buffer(struct page *page, size_t size)
346{
347 struct page *e = page + (size >> PAGE_SHIFT);
348
349 while (page < e) {
350 __free_page(page);
351 page++;
352 }
353}
354
e9da6e99 355static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 356 pgprot_t prot, struct page **ret_page,
f1270896 357 const void *caller, bool want_vaddr,
712c604d 358 int coherent_flag, gfp_t gfp);
99d1717d 359
e9da6e99
MS
360static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
361 pgprot_t prot, struct page **ret_page,
6e8266e3 362 const void *caller, bool want_vaddr);
99d1717d 363
e9da6e99
MS
364static void *
365__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
366 const void *caller)
99d1717d 367{
e9da6e99
MS
368 /*
369 * DMA allocation can be mapped to user space, so lets
370 * set VM_USERMAP flags too.
371 */
513510dd
LA
372 return dma_common_contiguous_remap(page, size,
373 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
374 prot, caller);
99d1717d 375}
1da177e4 376
e9da6e99 377static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 378{
513510dd
LA
379 dma_common_free_remap(cpu_addr, size,
380 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 381}
88c58f3b 382
6e5267aa 383#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
b337e1c4 384static struct gen_pool *atomic_pool __ro_after_init;
6e5267aa 385
b337e1c4 386static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
387
388static int __init early_coherent_pool(char *p)
389{
36d0fd21 390 atomic_pool_size = memparse(p, &p);
c7909509
MS
391 return 0;
392}
393early_param("coherent_pool", early_coherent_pool);
394
395/*
396 * Initialise the coherent pool for atomic allocations.
397 */
e9da6e99 398static int __init atomic_pool_init(void)
c7909509 399{
71b55663 400 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 401 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
402 struct page *page;
403 void *ptr;
c7909509 404
36d0fd21
LA
405 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
406 if (!atomic_pool)
407 goto out;
f1270896
GC
408 /*
409 * The atomic pool is only used for non-coherent allocations
410 * so we must pass NORMAL for coherent_flag.
411 */
e464ef16 412 if (dev_get_cma_area(NULL))
36d0fd21 413 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
712c604d
LS
414 &page, atomic_pool_init, true, NORMAL,
415 GFP_KERNEL);
e9da6e99 416 else
36d0fd21 417 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 418 &page, atomic_pool_init, true);
c7909509 419 if (ptr) {
36d0fd21
LA
420 int ret;
421
422 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
423 page_to_phys(page),
424 atomic_pool_size, -1);
425 if (ret)
426 goto destroy_genpool;
427
428 gen_pool_set_algo(atomic_pool,
429 gen_pool_first_fit_order_align,
acb62448 430 NULL);
bf31c5e0 431 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
36d0fd21 432 atomic_pool_size / 1024);
c7909509
MS
433 return 0;
434 }
ec10665c 435
36d0fd21
LA
436destroy_genpool:
437 gen_pool_destroy(atomic_pool);
438 atomic_pool = NULL;
439out:
bf31c5e0 440 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
36d0fd21 441 atomic_pool_size / 1024);
c7909509
MS
442 return -ENOMEM;
443}
444/*
445 * CMA is activated by core_initcall, so we must be called after it.
446 */
e9da6e99 447postcore_initcall(atomic_pool_init);
c7909509
MS
448
449struct dma_contig_early_reserve {
450 phys_addr_t base;
451 unsigned long size;
452};
453
454static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
455
456static int dma_mmu_remap_num __initdata;
457
458void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
459{
460 dma_mmu_remap[dma_mmu_remap_num].base = base;
461 dma_mmu_remap[dma_mmu_remap_num].size = size;
462 dma_mmu_remap_num++;
463}
464
465void __init dma_contiguous_remap(void)
466{
467 int i;
468 for (i = 0; i < dma_mmu_remap_num; i++) {
469 phys_addr_t start = dma_mmu_remap[i].base;
470 phys_addr_t end = start + dma_mmu_remap[i].size;
471 struct map_desc map;
472 unsigned long addr;
473
474 if (end > arm_lowmem_limit)
475 end = arm_lowmem_limit;
476 if (start >= end)
39f78e70 477 continue;
c7909509
MS
478
479 map.pfn = __phys_to_pfn(start);
480 map.virtual = __phys_to_virt(start);
481 map.length = end - start;
482 map.type = MT_MEMORY_DMA_READY;
483
484 /*
6b076991
RK
485 * Clear previous low-memory mapping to ensure that the
486 * TLB does not see any conflicting entries, then flush
487 * the TLB of the old entries before creating new mappings.
488 *
489 * This ensures that any speculatively loaded TLB entries
490 * (even though they may be rare) can not cause any problems,
491 * and ensures that this code is architecturally compliant.
c7909509
MS
492 */
493 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 494 addr += PMD_SIZE)
c7909509
MS
495 pmd_clear(pmd_off_k(addr));
496
6b076991
RK
497 flush_tlb_kernel_range(__phys_to_virt(start),
498 __phys_to_virt(end));
499
d883c6cf 500 iotable_init(&map, 1);
c7909509
MS
501 }
502}
503
c7909509
MS
504static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
505 void *data)
506{
507 struct page *page = virt_to_page(addr);
508 pgprot_t prot = *(pgprot_t *)data;
509
510 set_pte_ext(pte, mk_pte(page, prot), 0);
511 return 0;
512}
513
514static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
515{
516 unsigned long start = (unsigned long) page_address(page);
517 unsigned end = start + size;
518
519 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
520 flush_tlb_kernel_range(start, end);
521}
522
523static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
524 pgprot_t prot, struct page **ret_page,
6e8266e3 525 const void *caller, bool want_vaddr)
c7909509
MS
526{
527 struct page *page;
6e8266e3 528 void *ptr = NULL;
f1270896
GC
529 /*
530 * __alloc_remap_buffer is only called when the device is
531 * non-coherent
532 */
533 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
c7909509
MS
534 if (!page)
535 return NULL;
6e8266e3
CC
536 if (!want_vaddr)
537 goto out;
c7909509
MS
538
539 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
540 if (!ptr) {
541 __dma_free_buffer(page, size);
542 return NULL;
543 }
544
6e8266e3 545 out:
c7909509
MS
546 *ret_page = page;
547 return ptr;
548}
549
e9da6e99 550static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 551{
36d0fd21 552 unsigned long val;
e9da6e99 553 void *ptr = NULL;
c7909509 554
36d0fd21 555 if (!atomic_pool) {
e9da6e99 556 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
557 return NULL;
558 }
559
36d0fd21
LA
560 val = gen_pool_alloc(atomic_pool, size);
561 if (val) {
562 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
563
564 *ret_page = phys_to_page(phys);
565 ptr = (void *)val;
c7909509 566 }
e9da6e99
MS
567
568 return ptr;
c7909509
MS
569}
570
21d0a759
HD
571static bool __in_atomic_pool(void *start, size_t size)
572{
36d0fd21 573 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
574}
575
e9da6e99 576static int __free_from_pool(void *start, size_t size)
c7909509 577{
21d0a759 578 if (!__in_atomic_pool(start, size))
c7909509
MS
579 return 0;
580
36d0fd21 581 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 582
c7909509
MS
583 return 1;
584}
585
586static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 587 pgprot_t prot, struct page **ret_page,
f1270896 588 const void *caller, bool want_vaddr,
712c604d 589 int coherent_flag, gfp_t gfp)
c7909509
MS
590{
591 unsigned long order = get_order(size);
592 size_t count = size >> PAGE_SHIFT;
593 struct page *page;
6e8266e3 594 void *ptr = NULL;
c7909509 595
d834c5ab 596 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
c7909509
MS
597 if (!page)
598 return NULL;
599
f1270896 600 __dma_clear_buffer(page, size, coherent_flag);
c7909509 601
6e8266e3
CC
602 if (!want_vaddr)
603 goto out;
604
9848e48f
MS
605 if (PageHighMem(page)) {
606 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
607 if (!ptr) {
608 dma_release_from_contiguous(dev, page, count);
609 return NULL;
610 }
611 } else {
612 __dma_remap(page, size, prot);
613 ptr = page_address(page);
614 }
6e8266e3
CC
615
616 out:
c7909509 617 *ret_page = page;
9848e48f 618 return ptr;
c7909509
MS
619}
620
621static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 622 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 623{
6e8266e3
CC
624 if (want_vaddr) {
625 if (PageHighMem(page))
626 __dma_free_remap(cpu_addr, size);
627 else
628 __dma_remap(page, size, PAGE_KERNEL);
629 }
c7909509
MS
630 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
631}
632
00085f1e 633static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
f99d6034 634{
00085f1e
KK
635 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
636 pgprot_writecombine(prot) :
637 pgprot_dmacoherent(prot);
f99d6034
MS
638 return prot;
639}
640
c7909509
MS
641static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
642 struct page **ret_page)
ab6494f0 643{
c7909509 644 struct page *page;
f1270896
GC
645 /* __alloc_simple_buffer is only called when the device is coherent */
646 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
c7909509
MS
647 if (!page)
648 return NULL;
649
650 *ret_page = page;
651 return page_address(page);
652}
653
b4268676
RV
654static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
655 struct page **ret_page)
656{
657 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
658 ret_page);
659}
c7909509 660
b4268676
RV
661static void simple_allocator_free(struct arm_dma_free_args *args)
662{
663 __dma_free_buffer(args->page, args->size);
664}
665
666static struct arm_dma_allocator simple_allocator = {
667 .alloc = simple_allocator_alloc,
668 .free = simple_allocator_free,
669};
670
671static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
672 struct page **ret_page)
673{
674 return __alloc_from_contiguous(args->dev, args->size, args->prot,
675 ret_page, args->caller,
712c604d
LS
676 args->want_vaddr, args->coherent_flag,
677 args->gfp);
b4268676
RV
678}
679
680static void cma_allocator_free(struct arm_dma_free_args *args)
681{
682 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
683 args->size, args->want_vaddr);
684}
685
686static struct arm_dma_allocator cma_allocator = {
687 .alloc = cma_allocator_alloc,
688 .free = cma_allocator_free,
689};
690
691static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
692 struct page **ret_page)
693{
694 return __alloc_from_pool(args->size, ret_page);
695}
696
697static void pool_allocator_free(struct arm_dma_free_args *args)
698{
699 __free_from_pool(args->cpu_addr, args->size);
700}
701
702static struct arm_dma_allocator pool_allocator = {
703 .alloc = pool_allocator_alloc,
704 .free = pool_allocator_free,
705};
706
707static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
708 struct page **ret_page)
709{
710 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
711 args->prot, ret_page, args->caller,
712 args->want_vaddr);
713}
714
715static void remap_allocator_free(struct arm_dma_free_args *args)
716{
717 if (args->want_vaddr)
718 __dma_free_remap(args->cpu_addr, args->size);
719
720 __dma_free_buffer(args->page, args->size);
721}
722
723static struct arm_dma_allocator remap_allocator = {
724 .alloc = remap_allocator_alloc,
725 .free = remap_allocator_free,
726};
c7909509
MS
727
728static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3 729 gfp_t gfp, pgprot_t prot, bool is_coherent,
00085f1e 730 unsigned long attrs, const void *caller)
c7909509
MS
731{
732 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 733 struct page *page = NULL;
31ebf944 734 void *addr;
b4268676 735 bool allowblock, cma;
19e6e5e5 736 struct arm_dma_buffer *buf;
b4268676
RV
737 struct arm_dma_alloc_args args = {
738 .dev = dev,
739 .size = PAGE_ALIGN(size),
740 .gfp = gfp,
741 .prot = prot,
742 .caller = caller,
00085f1e 743 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
f1270896 744 .coherent_flag = is_coherent ? COHERENT : NORMAL,
b4268676 745 };
ab6494f0 746
c7909509
MS
747#ifdef CONFIG_DMA_API_DEBUG
748 u64 limit = (mask + 1) & ~mask;
749 if (limit && size >= limit) {
750 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
751 size, mask);
752 return NULL;
753 }
754#endif
755
756 if (!mask)
757 return NULL;
758
9c18fcf7
AC
759 buf = kzalloc(sizeof(*buf),
760 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
19e6e5e5
RV
761 if (!buf)
762 return NULL;
763
c7909509
MS
764 if (mask < 0xffffffffULL)
765 gfp |= GFP_DMA;
766
ea2e7057
SB
767 /*
768 * Following is a work-around (a.k.a. hack) to prevent pages
769 * with __GFP_COMP being passed to split_page() which cannot
770 * handle them. The real problem is that this flag probably
771 * should be 0 on ARM as it is not supported on this
772 * platform; see CONFIG_HUGETLBFS.
773 */
774 gfp &= ~(__GFP_COMP);
b4268676 775 args.gfp = gfp;
ea2e7057 776
9eef8b8c 777 *handle = ARM_MAPPING_ERROR;
b4268676
RV
778 allowblock = gfpflags_allow_blocking(gfp);
779 cma = allowblock ? dev_get_cma_area(dev) : false;
780
781 if (cma)
782 buf->allocator = &cma_allocator;
1655cf88 783 else if (is_coherent)
b4268676
RV
784 buf->allocator = &simple_allocator;
785 else if (allowblock)
786 buf->allocator = &remap_allocator;
31ebf944 787 else
b4268676
RV
788 buf->allocator = &pool_allocator;
789
790 addr = buf->allocator->alloc(&args, &page);
695ae0af 791
19e6e5e5
RV
792 if (page) {
793 unsigned long flags;
794
9eedd963 795 *handle = pfn_to_dma(dev, page_to_pfn(page));
b4268676 796 buf->virt = args.want_vaddr ? addr : page;
19e6e5e5
RV
797
798 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
799 list_add(&buf->list, &arm_dma_bufs);
800 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
801 } else {
802 kfree(buf);
803 }
695ae0af 804
b4268676 805 return args.want_vaddr ? addr : page;
31ebf944 806}
1da177e4
LT
807
808/*
809 * Allocate DMA-coherent memory space and return both the kernel remapped
810 * virtual and bus address for that space.
811 */
f99d6034 812void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
00085f1e 813 gfp_t gfp, unsigned long attrs)
1da177e4 814{
0ea1ec71 815 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268 816
dd37e940 817 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 818 attrs, __builtin_return_address(0));
dd37e940
RH
819}
820
821static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
00085f1e 822 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
dd37e940 823{
21caf3a7 824 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
6e8266e3 825 attrs, __builtin_return_address(0));
1da177e4 826}
1da177e4 827
55af8a91 828static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
f99d6034 829 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 830 unsigned long attrs)
1da177e4 831{
1655cf88 832 int ret;
a70c3ee3 833 unsigned long nr_vma_pages = vma_pages(vma);
50262a4b 834 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 835 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
836 unsigned long off = vma->vm_pgoff;
837
43fc509c 838 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
47142f07
MS
839 return ret;
840
50262a4b
MS
841 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
842 ret = remap_pfn_range(vma, vma->vm_start,
843 pfn + off,
844 vma->vm_end - vma->vm_start,
845 vma->vm_page_prot);
846 }
1da177e4
LT
847
848 return ret;
849}
850
55af8a91
ML
851/*
852 * Create userspace mapping for the DMA-coherent memory.
853 */
854static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
855 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 856 unsigned long attrs)
55af8a91
ML
857{
858 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
859}
860
861int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
862 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 863 unsigned long attrs)
55af8a91 864{
55af8a91 865 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
55af8a91
ML
866 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
867}
868
1da177e4 869/*
c7909509 870 * Free a buffer as defined by the above mapping.
1da177e4 871 */
dd37e940 872static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 873 dma_addr_t handle, unsigned long attrs,
dd37e940 874 bool is_coherent)
1da177e4 875{
c7909509 876 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
19e6e5e5 877 struct arm_dma_buffer *buf;
b4268676
RV
878 struct arm_dma_free_args args = {
879 .dev = dev,
880 .size = PAGE_ALIGN(size),
881 .cpu_addr = cpu_addr,
882 .page = page,
00085f1e 883 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
b4268676 884 };
19e6e5e5
RV
885
886 buf = arm_dma_buffer_find(cpu_addr);
887 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
888 return;
5edf71ae 889
b4268676 890 buf->allocator->free(&args);
19e6e5e5 891 kfree(buf);
1da177e4 892}
afd1a321 893
dd37e940 894void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 895 dma_addr_t handle, unsigned long attrs)
dd37e940
RH
896{
897 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
898}
899
900static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
00085f1e 901 dma_addr_t handle, unsigned long attrs)
dd37e940
RH
902{
903 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
904}
905
916a008b
RK
906/*
907 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
908 * that the intention is to allow exporting memory allocated via the
909 * coherent DMA APIs through the dma_buf API, which only accepts a
910 * scattertable. This presents a couple of problems:
911 * 1. Not all memory allocated via the coherent DMA APIs is backed by
912 * a struct page
913 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
914 * as we will try to flush the memory through a different alias to that
915 * actually being used (and the flushes are redundant.)
916 */
dc2832e1
MS
917int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
918 void *cpu_addr, dma_addr_t handle, size_t size,
00085f1e 919 unsigned long attrs)
dc2832e1 920{
916a008b
RK
921 unsigned long pfn = dma_to_pfn(dev, handle);
922 struct page *page;
dc2832e1
MS
923 int ret;
924
916a008b
RK
925 /* If the PFN is not valid, we do not have a struct page */
926 if (!pfn_valid(pfn))
927 return -ENXIO;
928
929 page = pfn_to_page(pfn);
930
dc2832e1
MS
931 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
932 if (unlikely(ret))
933 return ret;
934
935 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
936 return 0;
937}
938
4ea0d737 939static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
940 size_t size, enum dma_data_direction dir,
941 void (*op)(const void *, size_t, int))
43377453 942{
15653371
RK
943 unsigned long pfn;
944 size_t left = size;
945
946 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
947 offset %= PAGE_SIZE;
948
43377453
NP
949 /*
950 * A single sg entry may refer to multiple physically contiguous
951 * pages. But we still need to process highmem pages individually.
952 * If highmem is not configured then the bulk of this loop gets
953 * optimized out.
954 */
43377453
NP
955 do {
956 size_t len = left;
93f1d629
RK
957 void *vaddr;
958
15653371
RK
959 page = pfn_to_page(pfn);
960
93f1d629 961 if (PageHighMem(page)) {
15653371 962 if (len + offset > PAGE_SIZE)
93f1d629 963 len = PAGE_SIZE - offset;
dd0f67f4
JK
964
965 if (cache_is_vipt_nonaliasing()) {
39af22a7 966 vaddr = kmap_atomic(page);
7e5a69e8 967 op(vaddr + offset, len, dir);
39af22a7 968 kunmap_atomic(vaddr);
dd0f67f4
JK
969 } else {
970 vaddr = kmap_high_get(page);
971 if (vaddr) {
972 op(vaddr + offset, len, dir);
973 kunmap_high(page);
974 }
43377453 975 }
93f1d629
RK
976 } else {
977 vaddr = page_address(page) + offset;
a9c9147e 978 op(vaddr, len, dir);
43377453 979 }
43377453 980 offset = 0;
15653371 981 pfn++;
43377453
NP
982 left -= len;
983 } while (left);
984}
4ea0d737 985
51fde349
MS
986/*
987 * Make an area consistent for devices.
988 * Note: Drivers should NOT use this function directly, as it will break
989 * platforms with CONFIG_DMABOUNCE.
990 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
991 */
992static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
993 size_t size, enum dma_data_direction dir)
994{
2161c248 995 phys_addr_t paddr;
65af191a 996
a9c9147e 997 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
998
999 paddr = page_to_phys(page) + off;
2ffe2da3
RK
1000 if (dir == DMA_FROM_DEVICE) {
1001 outer_inv_range(paddr, paddr + size);
1002 } else {
1003 outer_clean_range(paddr, paddr + size);
1004 }
1005 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 1006}
4ea0d737 1007
51fde349 1008static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
1009 size_t size, enum dma_data_direction dir)
1010{
2161c248 1011 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
1012
1013 /* FIXME: non-speculating: not required */
deace4a6
RK
1014 /* in any case, don't bother invalidating if DMA to device */
1015 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
1016 outer_inv_range(paddr, paddr + size);
1017
deace4a6
RK
1018 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1019 }
c0177800
CM
1020
1021 /*
b2a234ed 1022 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 1023 */
b2a234ed
ML
1024 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1025 unsigned long pfn;
1026 size_t left = size;
1027
1028 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1029 off %= PAGE_SIZE;
1030 if (off) {
1031 pfn++;
1032 left -= PAGE_SIZE - off;
1033 }
1034 while (left >= PAGE_SIZE) {
1035 page = pfn_to_page(pfn++);
1036 set_bit(PG_dcache_clean, &page->flags);
1037 left -= PAGE_SIZE;
1038 }
1039 }
4ea0d737 1040}
43377453 1041
afd1a321 1042/**
2a550e73 1043 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
1044 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1045 * @sg: list of buffers
1046 * @nents: number of buffers to map
1047 * @dir: DMA transfer direction
1048 *
1049 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1050 * This is the scatter-gather version of the dma_map_single interface.
1051 * Here the scatter gather list elements are each tagged with the
1052 * appropriate dma address and length. They are obtained via
1053 * sg_dma_{address,length}.
1054 *
1055 * Device ownership issues as mentioned for dma_map_single are the same
1056 * here.
1057 */
2dc6a016 1058int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1059 enum dma_data_direction dir, unsigned long attrs)
afd1a321 1060{
5299709d 1061 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 1062 struct scatterlist *s;
01135d92 1063 int i, j;
afd1a321
RK
1064
1065 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
1066#ifdef CONFIG_NEED_SG_DMA_LENGTH
1067 s->dma_length = s->length;
1068#endif
2a550e73
MS
1069 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1070 s->length, dir, attrs);
01135d92
RK
1071 if (dma_mapping_error(dev, s->dma_address))
1072 goto bad_mapping;
afd1a321 1073 }
afd1a321 1074 return nents;
01135d92
RK
1075
1076 bad_mapping:
1077 for_each_sg(sg, s, i, j)
2a550e73 1078 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 1079 return 0;
afd1a321 1080}
afd1a321
RK
1081
1082/**
2a550e73 1083 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
1084 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1085 * @sg: list of buffers
0adfca6f 1086 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
1087 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1088 *
1089 * Unmap a set of streaming mode DMA translations. Again, CPU access
1090 * rules concerning calls here are the same as for dma_unmap_single().
1091 */
2dc6a016 1092void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1093 enum dma_data_direction dir, unsigned long attrs)
afd1a321 1094{
5299709d 1095 const struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 1096 struct scatterlist *s;
01135d92 1097
01135d92 1098 int i;
24056f52 1099
01135d92 1100 for_each_sg(sg, s, nents, i)
2a550e73 1101 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 1102}
afd1a321
RK
1103
1104/**
2a550e73 1105 * arm_dma_sync_sg_for_cpu
afd1a321
RK
1106 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1107 * @sg: list of buffers
1108 * @nents: number of buffers to map (returned from dma_map_sg)
1109 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1110 */
2dc6a016 1111void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1112 int nents, enum dma_data_direction dir)
1113{
5299709d 1114 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1115 struct scatterlist *s;
1116 int i;
1117
2a550e73
MS
1118 for_each_sg(sg, s, nents, i)
1119 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1120 dir);
afd1a321 1121}
afd1a321
RK
1122
1123/**
2a550e73 1124 * arm_dma_sync_sg_for_device
afd1a321
RK
1125 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1126 * @sg: list of buffers
1127 * @nents: number of buffers to map (returned from dma_map_sg)
1128 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1129 */
2dc6a016 1130void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1131 int nents, enum dma_data_direction dir)
1132{
5299709d 1133 const struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1134 struct scatterlist *s;
1135 int i;
1136
2a550e73
MS
1137 for_each_sg(sg, s, nents, i)
1138 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1139 dir);
afd1a321 1140}
24056f52 1141
022ae537
RK
1142/*
1143 * Return whether the given device DMA address mask can be supported
1144 * properly. For example, if your device can only drive the low 24-bits
1145 * during bus mastering, then you would pass 0x00ffffff as the mask
1146 * to this function.
1147 */
418a7a7e 1148int arm_dma_supported(struct device *dev, u64 mask)
022ae537 1149{
9f28cde0 1150 return __dma_supported(dev, mask, false);
022ae537 1151}
022ae537 1152
1874619a
TR
1153static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1154{
1155 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1156}
1157
4ce63fcd
MS
1158#ifdef CONFIG_ARM_DMA_USE_IOMMU
1159
7d2822df
S
1160static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1161{
1162 int prot = 0;
1163
1164 if (attrs & DMA_ATTR_PRIVILEGED)
1165 prot |= IOMMU_PRIV;
1166
1167 switch (dir) {
1168 case DMA_BIDIRECTIONAL:
1169 return prot | IOMMU_READ | IOMMU_WRITE;
1170 case DMA_TO_DEVICE:
1171 return prot | IOMMU_READ;
1172 case DMA_FROM_DEVICE:
1173 return prot | IOMMU_WRITE;
1174 default:
1175 return prot;
1176 }
1177}
1178
4ce63fcd
MS
1179/* IOMMU */
1180
4d852ef8
AH
1181static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1182
4ce63fcd
MS
1183static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1184 size_t size)
1185{
1186 unsigned int order = get_order(size);
1187 unsigned int align = 0;
1188 unsigned int count, start;
006f841d 1189 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1190 unsigned long flags;
4d852ef8
AH
1191 dma_addr_t iova;
1192 int i;
4ce63fcd 1193
60460abf
SWK
1194 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1195 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1196
68efd7d2
MS
1197 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1198 align = (1 << order) - 1;
4ce63fcd
MS
1199
1200 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1201 for (i = 0; i < mapping->nr_bitmaps; i++) {
1202 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1203 mapping->bits, 0, count, align);
1204
1205 if (start > mapping->bits)
1206 continue;
1207
1208 bitmap_set(mapping->bitmaps[i], start, count);
1209 break;
4ce63fcd
MS
1210 }
1211
4d852ef8
AH
1212 /*
1213 * No unused range found. Try to extend the existing mapping
1214 * and perform a second attempt to reserve an IO virtual
1215 * address range of size bytes.
1216 */
1217 if (i == mapping->nr_bitmaps) {
1218 if (extend_iommu_mapping(mapping)) {
1219 spin_unlock_irqrestore(&mapping->lock, flags);
9eef8b8c 1220 return ARM_MAPPING_ERROR;
4d852ef8
AH
1221 }
1222
1223 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1224 mapping->bits, 0, count, align);
1225
1226 if (start > mapping->bits) {
1227 spin_unlock_irqrestore(&mapping->lock, flags);
9eef8b8c 1228 return ARM_MAPPING_ERROR;
4d852ef8
AH
1229 }
1230
1231 bitmap_set(mapping->bitmaps[i], start, count);
1232 }
4ce63fcd
MS
1233 spin_unlock_irqrestore(&mapping->lock, flags);
1234
006f841d 1235 iova = mapping->base + (mapping_size * i);
68efd7d2 1236 iova += start << PAGE_SHIFT;
4d852ef8
AH
1237
1238 return iova;
4ce63fcd
MS
1239}
1240
1241static inline void __free_iova(struct dma_iommu_mapping *mapping,
1242 dma_addr_t addr, size_t size)
1243{
4d852ef8 1244 unsigned int start, count;
006f841d 1245 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1246 unsigned long flags;
4d852ef8
AH
1247 dma_addr_t bitmap_base;
1248 u32 bitmap_index;
1249
1250 if (!size)
1251 return;
1252
006f841d 1253 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1254 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1255
006f841d 1256 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1257
68efd7d2 1258 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1259
006f841d 1260 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1261 /*
1262 * The address range to be freed reaches into the iova
1263 * range of the next bitmap. This should not happen as
1264 * we don't allow this in __alloc_iova (at the
1265 * moment).
1266 */
1267 BUG();
1268 } else
68efd7d2 1269 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1270
1271 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1272 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1273 spin_unlock_irqrestore(&mapping->lock, flags);
1274}
1275
33298ef6
DA
1276/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1277static const int iommu_order_array[] = { 9, 8, 4, 0 };
1278
549a17e4 1279static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
00085f1e 1280 gfp_t gfp, unsigned long attrs,
f1270896 1281 int coherent_flag)
4ce63fcd
MS
1282{
1283 struct page **pages;
1284 int count = size >> PAGE_SHIFT;
1285 int array_size = count * sizeof(struct page *);
1286 int i = 0;
33298ef6 1287 int order_idx = 0;
4ce63fcd
MS
1288
1289 if (array_size <= PAGE_SIZE)
23be7fda 1290 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1291 else
1292 pages = vzalloc(array_size);
1293 if (!pages)
1294 return NULL;
1295
00085f1e 1296 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
549a17e4
MS
1297 {
1298 unsigned long order = get_order(size);
1299 struct page *page;
1300
d834c5ab
MS
1301 page = dma_alloc_from_contiguous(dev, count, order,
1302 gfp & __GFP_NOWARN);
549a17e4
MS
1303 if (!page)
1304 goto error;
1305
f1270896 1306 __dma_clear_buffer(page, size, coherent_flag);
549a17e4
MS
1307
1308 for (i = 0; i < count; i++)
1309 pages[i] = page + i;
1310
1311 return pages;
1312 }
1313
14d3ae2e 1314 /* Go straight to 4K chunks if caller says it's OK. */
00085f1e 1315 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
14d3ae2e
DA
1316 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1317
f8669bef
MS
1318 /*
1319 * IOMMU can map any pages, so himem can also be used here
1320 */
1321 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1322
4ce63fcd 1323 while (count) {
49f28aa6
TF
1324 int j, order;
1325
33298ef6
DA
1326 order = iommu_order_array[order_idx];
1327
1328 /* Drop down when we get small */
1329 if (__fls(count) < order) {
1330 order_idx++;
1331 continue;
49f28aa6 1332 }
4ce63fcd 1333
33298ef6
DA
1334 if (order) {
1335 /* See if it's easy to allocate a high-order chunk */
1336 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1337
1338 /* Go down a notch at first sign of pressure */
1339 if (!pages[i]) {
1340 order_idx++;
1341 continue;
1342 }
1343 } else {
49f28aa6
TF
1344 pages[i] = alloc_pages(gfp, 0);
1345 if (!pages[i])
1346 goto error;
1347 }
4ce63fcd 1348
5a796eeb 1349 if (order) {
4ce63fcd 1350 split_page(pages[i], order);
5a796eeb
HD
1351 j = 1 << order;
1352 while (--j)
1353 pages[i + j] = pages[i] + j;
1354 }
4ce63fcd 1355
f1270896 1356 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
4ce63fcd
MS
1357 i += 1 << order;
1358 count -= 1 << order;
1359 }
1360
1361 return pages;
1362error:
9fa8af91 1363 while (i--)
4ce63fcd
MS
1364 if (pages[i])
1365 __free_pages(pages[i], 0);
1d5cfdb0 1366 kvfree(pages);
4ce63fcd
MS
1367 return NULL;
1368}
1369
549a17e4 1370static int __iommu_free_buffer(struct device *dev, struct page **pages,
00085f1e 1371 size_t size, unsigned long attrs)
4ce63fcd
MS
1372{
1373 int count = size >> PAGE_SHIFT;
4ce63fcd 1374 int i;
549a17e4 1375
00085f1e 1376 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
549a17e4
MS
1377 dma_release_from_contiguous(dev, pages[0], count);
1378 } else {
1379 for (i = 0; i < count; i++)
1380 if (pages[i])
1381 __free_pages(pages[i], 0);
1382 }
1383
1d5cfdb0 1384 kvfree(pages);
4ce63fcd
MS
1385 return 0;
1386}
1387
1388/*
1389 * Create a CPU mapping for a specified pages
1390 */
1391static void *
e9da6e99
MS
1392__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1393 const void *caller)
4ce63fcd 1394{
513510dd
LA
1395 return dma_common_pages_remap(pages, size,
1396 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1397}
1398
1399/*
1400 * Create a mapping in device IO address space for specified pages
1401 */
1402static dma_addr_t
7d2822df
S
1403__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1404 unsigned long attrs)
4ce63fcd 1405{
89cfdb19 1406 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1407 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1408 dma_addr_t dma_addr, iova;
90cde558 1409 int i;
4ce63fcd
MS
1410
1411 dma_addr = __alloc_iova(mapping, size);
9eef8b8c 1412 if (dma_addr == ARM_MAPPING_ERROR)
4ce63fcd
MS
1413 return dma_addr;
1414
1415 iova = dma_addr;
1416 for (i = 0; i < count; ) {
90cde558
AP
1417 int ret;
1418
4ce63fcd
MS
1419 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1420 phys_addr_t phys = page_to_phys(pages[i]);
1421 unsigned int len, j;
1422
1423 for (j = i + 1; j < count; j++, next_pfn++)
1424 if (page_to_pfn(pages[j]) != next_pfn)
1425 break;
1426
1427 len = (j - i) << PAGE_SHIFT;
c9b24996 1428 ret = iommu_map(mapping->domain, iova, phys, len,
7d2822df 1429 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
4ce63fcd
MS
1430 if (ret < 0)
1431 goto fail;
1432 iova += len;
1433 i = j;
1434 }
1435 return dma_addr;
1436fail:
1437 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1438 __free_iova(mapping, dma_addr, size);
9eef8b8c 1439 return ARM_MAPPING_ERROR;
4ce63fcd
MS
1440}
1441
1442static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1443{
89cfdb19 1444 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1445
1446 /*
1447 * add optional in-page offset from iova to size and align
1448 * result to page size
1449 */
1450 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1451 iova &= PAGE_MASK;
1452
1453 iommu_unmap(mapping->domain, iova, size);
1454 __free_iova(mapping, iova, size);
1455 return 0;
1456}
1457
665bad7b
HD
1458static struct page **__atomic_get_pages(void *addr)
1459{
36d0fd21
LA
1460 struct page *page;
1461 phys_addr_t phys;
1462
1463 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1464 page = phys_to_page(phys);
665bad7b 1465
36d0fd21 1466 return (struct page **)page;
665bad7b
HD
1467}
1468
00085f1e 1469static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
e9da6e99
MS
1470{
1471 struct vm_struct *area;
1472
665bad7b
HD
1473 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1474 return __atomic_get_pages(cpu_addr);
1475
00085f1e 1476 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
955c757e
MS
1477 return cpu_addr;
1478
e9da6e99
MS
1479 area = find_vm_area(cpu_addr);
1480 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1481 return area->pages;
1482 return NULL;
1483}
1484
56506822 1485static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
7d2822df
S
1486 dma_addr_t *handle, int coherent_flag,
1487 unsigned long attrs)
479ed93a
HD
1488{
1489 struct page *page;
1490 void *addr;
1491
56506822
GC
1492 if (coherent_flag == COHERENT)
1493 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1494 else
1495 addr = __alloc_from_pool(size, &page);
479ed93a
HD
1496 if (!addr)
1497 return NULL;
1498
7d2822df 1499 *handle = __iommu_create_mapping(dev, &page, size, attrs);
9eef8b8c 1500 if (*handle == ARM_MAPPING_ERROR)
479ed93a
HD
1501 goto err_mapping;
1502
1503 return addr;
1504
1505err_mapping:
1506 __free_from_pool(addr, size);
1507 return NULL;
1508}
1509
d5898291 1510static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
56506822 1511 dma_addr_t handle, size_t size, int coherent_flag)
479ed93a
HD
1512{
1513 __iommu_remove_mapping(dev, handle, size);
56506822
GC
1514 if (coherent_flag == COHERENT)
1515 __dma_free_buffer(virt_to_page(cpu_addr), size);
1516 else
1517 __free_from_pool(cpu_addr, size);
479ed93a
HD
1518}
1519
56506822 1520static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1521 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
56506822 1522 int coherent_flag)
4ce63fcd 1523{
71b55663 1524 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1525 struct page **pages;
1526 void *addr = NULL;
1527
9eef8b8c 1528 *handle = ARM_MAPPING_ERROR;
4ce63fcd
MS
1529 size = PAGE_ALIGN(size);
1530
56506822
GC
1531 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1532 return __iommu_alloc_simple(dev, size, gfp, handle,
7d2822df 1533 coherent_flag, attrs);
479ed93a 1534
5b91a98c
RZ
1535 /*
1536 * Following is a work-around (a.k.a. hack) to prevent pages
1537 * with __GFP_COMP being passed to split_page() which cannot
1538 * handle them. The real problem is that this flag probably
1539 * should be 0 on ARM as it is not supported on this
1540 * platform; see CONFIG_HUGETLBFS.
1541 */
1542 gfp &= ~(__GFP_COMP);
1543
56506822 1544 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
4ce63fcd
MS
1545 if (!pages)
1546 return NULL;
1547
7d2822df 1548 *handle = __iommu_create_mapping(dev, pages, size, attrs);
9eef8b8c 1549 if (*handle == ARM_MAPPING_ERROR)
4ce63fcd
MS
1550 goto err_buffer;
1551
00085f1e 1552 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
955c757e
MS
1553 return pages;
1554
e9da6e99
MS
1555 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1556 __builtin_return_address(0));
4ce63fcd
MS
1557 if (!addr)
1558 goto err_mapping;
1559
1560 return addr;
1561
1562err_mapping:
1563 __iommu_remove_mapping(dev, *handle, size);
1564err_buffer:
549a17e4 1565 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1566 return NULL;
1567}
1568
56506822 1569static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1570 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
56506822
GC
1571{
1572 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1573}
1574
1575static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
00085f1e 1576 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
56506822
GC
1577{
1578 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1579}
1580
1581static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
4ce63fcd 1582 void *cpu_addr, dma_addr_t dma_addr, size_t size,
00085f1e 1583 unsigned long attrs)
4ce63fcd 1584{
e9da6e99
MS
1585 unsigned long uaddr = vma->vm_start;
1586 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1587 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
371f0f08
MS
1588 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1589 unsigned long off = vma->vm_pgoff;
4ce63fcd 1590
e9da6e99
MS
1591 if (!pages)
1592 return -ENXIO;
4ce63fcd 1593
371f0f08
MS
1594 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1595 return -ENXIO;
1596
7e312103
MS
1597 pages += off;
1598
e9da6e99
MS
1599 do {
1600 int ret = vm_insert_page(vma, uaddr, *pages++);
1601 if (ret) {
1602 pr_err("Remapping memory failed: %d\n", ret);
1603 return ret;
1604 }
1605 uaddr += PAGE_SIZE;
1606 usize -= PAGE_SIZE;
1607 } while (usize > 0);
4ce63fcd 1608
4ce63fcd
MS
1609 return 0;
1610}
56506822
GC
1611static int arm_iommu_mmap_attrs(struct device *dev,
1612 struct vm_area_struct *vma, void *cpu_addr,
00085f1e 1613 dma_addr_t dma_addr, size_t size, unsigned long attrs)
56506822
GC
1614{
1615 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1616
1617 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1618}
1619
1620static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1621 struct vm_area_struct *vma, void *cpu_addr,
00085f1e 1622 dma_addr_t dma_addr, size_t size, unsigned long attrs)
56506822
GC
1623{
1624 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1625}
4ce63fcd
MS
1626
1627/*
1628 * free a page as defined by the above mapping.
1629 * Must not be called with IRQs disabled.
1630 */
56506822 1631void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
00085f1e 1632 dma_addr_t handle, unsigned long attrs, int coherent_flag)
4ce63fcd 1633{
836bfa0d 1634 struct page **pages;
4ce63fcd
MS
1635 size = PAGE_ALIGN(size);
1636
56506822
GC
1637 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1638 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
e9da6e99 1639 return;
4ce63fcd 1640 }
e9da6e99 1641
836bfa0d
YC
1642 pages = __iommu_get_pages(cpu_addr, attrs);
1643 if (!pages) {
1644 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1645 return;
1646 }
1647
00085f1e 1648 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
513510dd
LA
1649 dma_common_free_remap(cpu_addr, size,
1650 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1651 }
e9da6e99
MS
1652
1653 __iommu_remove_mapping(dev, handle, size);
549a17e4 1654 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1655}
1656
56506822 1657void arm_iommu_free_attrs(struct device *dev, size_t size,
00085f1e 1658 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
56506822
GC
1659{
1660 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1661}
1662
1663void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
00085f1e 1664 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
56506822
GC
1665{
1666 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1667}
1668
dc2832e1
MS
1669static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1670 void *cpu_addr, dma_addr_t dma_addr,
00085f1e 1671 size_t size, unsigned long attrs)
dc2832e1
MS
1672{
1673 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1674 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1675
1676 if (!pages)
1677 return -ENXIO;
1678
1679 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1680 GFP_KERNEL);
4ce63fcd
MS
1681}
1682
1683/*
1684 * Map a part of the scatter-gather list into contiguous io address space
1685 */
1686static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1687 size_t size, dma_addr_t *handle,
00085f1e 1688 enum dma_data_direction dir, unsigned long attrs,
0fa478df 1689 bool is_coherent)
4ce63fcd 1690{
89cfdb19 1691 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1692 dma_addr_t iova, iova_base;
1693 int ret = 0;
1694 unsigned int count;
1695 struct scatterlist *s;
c9b24996 1696 int prot;
4ce63fcd
MS
1697
1698 size = PAGE_ALIGN(size);
9eef8b8c 1699 *handle = ARM_MAPPING_ERROR;
4ce63fcd
MS
1700
1701 iova_base = iova = __alloc_iova(mapping, size);
9eef8b8c 1702 if (iova == ARM_MAPPING_ERROR)
4ce63fcd
MS
1703 return -ENOMEM;
1704
1705 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
3e6110fd 1706 phys_addr_t phys = page_to_phys(sg_page(s));
4ce63fcd
MS
1707 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1708
00085f1e 1709 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
1710 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1711
7d2822df 1712 prot = __dma_info_to_prot(dir, attrs);
c9b24996
AH
1713
1714 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1715 if (ret < 0)
1716 goto fail;
1717 count += len >> PAGE_SHIFT;
1718 iova += len;
1719 }
1720 *handle = iova_base;
1721
1722 return 0;
1723fail:
1724 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1725 __free_iova(mapping, iova_base, size);
1726 return ret;
1727}
1728
0fa478df 1729static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e 1730 enum dma_data_direction dir, unsigned long attrs,
0fa478df 1731 bool is_coherent)
4ce63fcd
MS
1732{
1733 struct scatterlist *s = sg, *dma = sg, *start = sg;
1734 int i, count = 0;
1735 unsigned int offset = s->offset;
1736 unsigned int size = s->offset + s->length;
1737 unsigned int max = dma_get_max_seg_size(dev);
1738
1739 for (i = 1; i < nents; i++) {
1740 s = sg_next(s);
1741
9eef8b8c 1742 s->dma_address = ARM_MAPPING_ERROR;
4ce63fcd
MS
1743 s->dma_length = 0;
1744
1745 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1746 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1747 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1748 goto bad_mapping;
1749
1750 dma->dma_address += offset;
1751 dma->dma_length = size - offset;
1752
1753 size = offset = s->offset;
1754 start = s;
1755 dma = sg_next(dma);
1756 count += 1;
1757 }
1758 size += s->length;
1759 }
0fa478df
RH
1760 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1761 is_coherent) < 0)
4ce63fcd
MS
1762 goto bad_mapping;
1763
1764 dma->dma_address += offset;
1765 dma->dma_length = size - offset;
1766
1767 return count+1;
1768
1769bad_mapping:
1770 for_each_sg(sg, s, count, i)
1771 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1772 return 0;
1773}
1774
1775/**
0fa478df 1776 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1777 * @dev: valid struct device pointer
1778 * @sg: list of buffers
0fa478df
RH
1779 * @nents: number of buffers to map
1780 * @dir: DMA transfer direction
4ce63fcd 1781 *
0fa478df
RH
1782 * Map a set of i/o coherent buffers described by scatterlist in streaming
1783 * mode for DMA. The scatter gather list elements are merged together (if
1784 * possible) and tagged with the appropriate dma address and length. They are
1785 * obtained via sg_dma_{address,length}.
4ce63fcd 1786 */
0fa478df 1787int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
00085f1e 1788 int nents, enum dma_data_direction dir, unsigned long attrs)
0fa478df
RH
1789{
1790 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1791}
1792
1793/**
1794 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1795 * @dev: valid struct device pointer
1796 * @sg: list of buffers
1797 * @nents: number of buffers to map
1798 * @dir: DMA transfer direction
1799 *
1800 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1801 * The scatter gather list elements are merged together (if possible) and
1802 * tagged with the appropriate dma address and length. They are obtained via
1803 * sg_dma_{address,length}.
1804 */
1805int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
00085f1e 1806 int nents, enum dma_data_direction dir, unsigned long attrs)
0fa478df
RH
1807{
1808 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1809}
1810
1811static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
00085f1e
KK
1812 int nents, enum dma_data_direction dir,
1813 unsigned long attrs, bool is_coherent)
4ce63fcd
MS
1814{
1815 struct scatterlist *s;
1816 int i;
1817
1818 for_each_sg(sg, s, nents, i) {
1819 if (sg_dma_len(s))
1820 __iommu_remove_mapping(dev, sg_dma_address(s),
1821 sg_dma_len(s));
00085f1e 1822 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
1823 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1824 s->length, dir);
1825 }
1826}
1827
0fa478df
RH
1828/**
1829 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1830 * @dev: valid struct device pointer
1831 * @sg: list of buffers
1832 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1833 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1834 *
1835 * Unmap a set of streaming mode DMA translations. Again, CPU access
1836 * rules concerning calls here are the same as for dma_unmap_single().
1837 */
1838void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
00085f1e
KK
1839 int nents, enum dma_data_direction dir,
1840 unsigned long attrs)
0fa478df
RH
1841{
1842 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1843}
1844
1845/**
1846 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1847 * @dev: valid struct device pointer
1848 * @sg: list of buffers
1849 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1850 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1851 *
1852 * Unmap a set of streaming mode DMA translations. Again, CPU access
1853 * rules concerning calls here are the same as for dma_unmap_single().
1854 */
1855void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
00085f1e
KK
1856 enum dma_data_direction dir,
1857 unsigned long attrs)
0fa478df
RH
1858{
1859 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1860}
1861
4ce63fcd
MS
1862/**
1863 * arm_iommu_sync_sg_for_cpu
1864 * @dev: valid struct device pointer
1865 * @sg: list of buffers
1866 * @nents: number of buffers to map (returned from dma_map_sg)
1867 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1868 */
1869void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1870 int nents, enum dma_data_direction dir)
1871{
1872 struct scatterlist *s;
1873 int i;
1874
1875 for_each_sg(sg, s, nents, i)
0fa478df 1876 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1877
1878}
1879
1880/**
1881 * arm_iommu_sync_sg_for_device
1882 * @dev: valid struct device pointer
1883 * @sg: list of buffers
1884 * @nents: number of buffers to map (returned from dma_map_sg)
1885 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1886 */
1887void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1888 int nents, enum dma_data_direction dir)
1889{
1890 struct scatterlist *s;
1891 int i;
1892
1893 for_each_sg(sg, s, nents, i)
0fa478df 1894 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1895}
1896
1897
1898/**
0fa478df 1899 * arm_coherent_iommu_map_page
4ce63fcd
MS
1900 * @dev: valid struct device pointer
1901 * @page: page that buffer resides in
1902 * @offset: offset into page for start of buffer
1903 * @size: size of buffer to map
1904 * @dir: DMA transfer direction
1905 *
0fa478df 1906 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1907 */
0fa478df 1908static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd 1909 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 1910 unsigned long attrs)
4ce63fcd 1911{
89cfdb19 1912 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1913 dma_addr_t dma_addr;
13987d68 1914 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1915
4ce63fcd 1916 dma_addr = __alloc_iova(mapping, len);
9eef8b8c 1917 if (dma_addr == ARM_MAPPING_ERROR)
4ce63fcd
MS
1918 return dma_addr;
1919
7d2822df 1920 prot = __dma_info_to_prot(dir, attrs);
13987d68
WD
1921
1922 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1923 if (ret < 0)
1924 goto fail;
1925
1926 return dma_addr + offset;
1927fail:
1928 __free_iova(mapping, dma_addr, len);
9eef8b8c 1929 return ARM_MAPPING_ERROR;
4ce63fcd
MS
1930}
1931
0fa478df
RH
1932/**
1933 * arm_iommu_map_page
1934 * @dev: valid struct device pointer
1935 * @page: page that buffer resides in
1936 * @offset: offset into page for start of buffer
1937 * @size: size of buffer to map
1938 * @dir: DMA transfer direction
1939 *
1940 * IOMMU aware version of arm_dma_map_page()
1941 */
1942static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1943 unsigned long offset, size_t size, enum dma_data_direction dir,
00085f1e 1944 unsigned long attrs)
0fa478df 1945{
00085f1e 1946 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
0fa478df
RH
1947 __dma_page_cpu_to_dev(page, offset, size, dir);
1948
1949 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1950}
1951
1952/**
1953 * arm_coherent_iommu_unmap_page
1954 * @dev: valid struct device pointer
1955 * @handle: DMA address of buffer
1956 * @size: size of buffer (same as passed to dma_map_page)
1957 * @dir: DMA transfer direction (same as passed to dma_map_page)
1958 *
1959 * Coherent IOMMU aware version of arm_dma_unmap_page()
1960 */
1961static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 1962 size_t size, enum dma_data_direction dir, unsigned long attrs)
0fa478df 1963{
89cfdb19 1964 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
0fa478df 1965 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1966 int offset = handle & ~PAGE_MASK;
1967 int len = PAGE_ALIGN(size + offset);
1968
1969 if (!iova)
1970 return;
1971
1972 iommu_unmap(mapping->domain, iova, len);
1973 __free_iova(mapping, iova, len);
1974}
1975
4ce63fcd
MS
1976/**
1977 * arm_iommu_unmap_page
1978 * @dev: valid struct device pointer
1979 * @handle: DMA address of buffer
1980 * @size: size of buffer (same as passed to dma_map_page)
1981 * @dir: DMA transfer direction (same as passed to dma_map_page)
1982 *
1983 * IOMMU aware version of arm_dma_unmap_page()
1984 */
1985static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
00085f1e 1986 size_t size, enum dma_data_direction dir, unsigned long attrs)
4ce63fcd 1987{
89cfdb19 1988 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1989 dma_addr_t iova = handle & PAGE_MASK;
1990 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1991 int offset = handle & ~PAGE_MASK;
1992 int len = PAGE_ALIGN(size + offset);
1993
1994 if (!iova)
1995 return;
1996
00085f1e 1997 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
4ce63fcd
MS
1998 __dma_page_dev_to_cpu(page, offset, size, dir);
1999
2000 iommu_unmap(mapping->domain, iova, len);
2001 __free_iova(mapping, iova, len);
2002}
2003
24ed5d2c
NS
2004/**
2005 * arm_iommu_map_resource - map a device resource for DMA
2006 * @dev: valid struct device pointer
2007 * @phys_addr: physical address of resource
2008 * @size: size of resource to map
2009 * @dir: DMA transfer direction
2010 */
2011static dma_addr_t arm_iommu_map_resource(struct device *dev,
2012 phys_addr_t phys_addr, size_t size,
2013 enum dma_data_direction dir, unsigned long attrs)
2014{
2015 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2016 dma_addr_t dma_addr;
2017 int ret, prot;
2018 phys_addr_t addr = phys_addr & PAGE_MASK;
2019 unsigned int offset = phys_addr & ~PAGE_MASK;
2020 size_t len = PAGE_ALIGN(size + offset);
2021
2022 dma_addr = __alloc_iova(mapping, len);
9eef8b8c 2023 if (dma_addr == ARM_MAPPING_ERROR)
24ed5d2c
NS
2024 return dma_addr;
2025
7d2822df 2026 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
24ed5d2c
NS
2027
2028 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2029 if (ret < 0)
2030 goto fail;
2031
2032 return dma_addr + offset;
2033fail:
2034 __free_iova(mapping, dma_addr, len);
9eef8b8c 2035 return ARM_MAPPING_ERROR;
24ed5d2c
NS
2036}
2037
2038/**
2039 * arm_iommu_unmap_resource - unmap a device DMA resource
2040 * @dev: valid struct device pointer
2041 * @dma_handle: DMA address to resource
2042 * @size: size of resource to map
2043 * @dir: DMA transfer direction
2044 */
2045static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2046 size_t size, enum dma_data_direction dir,
2047 unsigned long attrs)
2048{
2049 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2050 dma_addr_t iova = dma_handle & PAGE_MASK;
2051 unsigned int offset = dma_handle & ~PAGE_MASK;
2052 size_t len = PAGE_ALIGN(size + offset);
2053
2054 if (!iova)
2055 return;
2056
2057 iommu_unmap(mapping->domain, iova, len);
2058 __free_iova(mapping, iova, len);
2059}
2060
4ce63fcd
MS
2061static void arm_iommu_sync_single_for_cpu(struct device *dev,
2062 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2063{
89cfdb19 2064 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
2065 dma_addr_t iova = handle & PAGE_MASK;
2066 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2067 unsigned int offset = handle & ~PAGE_MASK;
2068
2069 if (!iova)
2070 return;
2071
0fa478df 2072 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
2073}
2074
2075static void arm_iommu_sync_single_for_device(struct device *dev,
2076 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2077{
89cfdb19 2078 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
2079 dma_addr_t iova = handle & PAGE_MASK;
2080 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2081 unsigned int offset = handle & ~PAGE_MASK;
2082
2083 if (!iova)
2084 return;
2085
2086 __dma_page_cpu_to_dev(page, offset, size, dir);
2087}
2088
5299709d 2089const struct dma_map_ops iommu_ops = {
4ce63fcd
MS
2090 .alloc = arm_iommu_alloc_attrs,
2091 .free = arm_iommu_free_attrs,
2092 .mmap = arm_iommu_mmap_attrs,
dc2832e1 2093 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
2094
2095 .map_page = arm_iommu_map_page,
2096 .unmap_page = arm_iommu_unmap_page,
2097 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2098 .sync_single_for_device = arm_iommu_sync_single_for_device,
2099
2100 .map_sg = arm_iommu_map_sg,
2101 .unmap_sg = arm_iommu_unmap_sg,
2102 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2103 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
24ed5d2c
NS
2104
2105 .map_resource = arm_iommu_map_resource,
2106 .unmap_resource = arm_iommu_unmap_resource,
9eef8b8c
CH
2107
2108 .mapping_error = arm_dma_mapping_error,
418a7a7e 2109 .dma_supported = arm_dma_supported,
4ce63fcd
MS
2110};
2111
5299709d 2112const struct dma_map_ops iommu_coherent_ops = {
56506822
GC
2113 .alloc = arm_coherent_iommu_alloc_attrs,
2114 .free = arm_coherent_iommu_free_attrs,
2115 .mmap = arm_coherent_iommu_mmap_attrs,
0fa478df
RH
2116 .get_sgtable = arm_iommu_get_sgtable,
2117
2118 .map_page = arm_coherent_iommu_map_page,
2119 .unmap_page = arm_coherent_iommu_unmap_page,
2120
2121 .map_sg = arm_coherent_iommu_map_sg,
2122 .unmap_sg = arm_coherent_iommu_unmap_sg,
24ed5d2c
NS
2123
2124 .map_resource = arm_iommu_map_resource,
2125 .unmap_resource = arm_iommu_unmap_resource,
9eef8b8c
CH
2126
2127 .mapping_error = arm_dma_mapping_error,
418a7a7e 2128 .dma_supported = arm_dma_supported,
0fa478df
RH
2129};
2130
4ce63fcd
MS
2131/**
2132 * arm_iommu_create_mapping
2133 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2134 * @base: start address of the valid IO address space
68efd7d2 2135 * @size: maximum size of the valid IO address space
4ce63fcd
MS
2136 *
2137 * Creates a mapping structure which holds information about used/unused
2138 * IO address ranges, which is required to perform memory allocation and
2139 * mapping with IOMMU aware functions.
2140 *
2141 * The client device need to be attached to the mapping with
2142 * arm_iommu_attach_device function.
2143 */
2144struct dma_iommu_mapping *
1424532b 2145arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 2146{
68efd7d2
MS
2147 unsigned int bits = size >> PAGE_SHIFT;
2148 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 2149 struct dma_iommu_mapping *mapping;
68efd7d2 2150 int extensions = 1;
4ce63fcd
MS
2151 int err = -ENOMEM;
2152
1424532b
MS
2153 /* currently only 32-bit DMA address space is supported */
2154 if (size > DMA_BIT_MASK(32) + 1)
2155 return ERR_PTR(-ERANGE);
2156
68efd7d2 2157 if (!bitmap_size)
4ce63fcd
MS
2158 return ERR_PTR(-EINVAL);
2159
68efd7d2
MS
2160 if (bitmap_size > PAGE_SIZE) {
2161 extensions = bitmap_size / PAGE_SIZE;
2162 bitmap_size = PAGE_SIZE;
2163 }
2164
4ce63fcd
MS
2165 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2166 if (!mapping)
2167 goto err;
2168
68efd7d2 2169 mapping->bitmap_size = bitmap_size;
6396bb22
KC
2170 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2171 GFP_KERNEL);
4d852ef8 2172 if (!mapping->bitmaps)
4ce63fcd
MS
2173 goto err2;
2174
68efd7d2 2175 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
2176 if (!mapping->bitmaps[0])
2177 goto err3;
2178
2179 mapping->nr_bitmaps = 1;
2180 mapping->extensions = extensions;
4ce63fcd 2181 mapping->base = base;
68efd7d2 2182 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 2183
4ce63fcd
MS
2184 spin_lock_init(&mapping->lock);
2185
2186 mapping->domain = iommu_domain_alloc(bus);
2187 if (!mapping->domain)
4d852ef8 2188 goto err4;
4ce63fcd
MS
2189
2190 kref_init(&mapping->kref);
2191 return mapping;
4d852ef8
AH
2192err4:
2193 kfree(mapping->bitmaps[0]);
4ce63fcd 2194err3:
4d852ef8 2195 kfree(mapping->bitmaps);
4ce63fcd
MS
2196err2:
2197 kfree(mapping);
2198err:
2199 return ERR_PTR(err);
2200}
18177d12 2201EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
2202
2203static void release_iommu_mapping(struct kref *kref)
2204{
4d852ef8 2205 int i;
4ce63fcd
MS
2206 struct dma_iommu_mapping *mapping =
2207 container_of(kref, struct dma_iommu_mapping, kref);
2208
2209 iommu_domain_free(mapping->domain);
4d852ef8
AH
2210 for (i = 0; i < mapping->nr_bitmaps; i++)
2211 kfree(mapping->bitmaps[i]);
2212 kfree(mapping->bitmaps);
4ce63fcd
MS
2213 kfree(mapping);
2214}
2215
4d852ef8
AH
2216static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2217{
2218 int next_bitmap;
2219
462859aa 2220 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
2221 return -EINVAL;
2222
2223 next_bitmap = mapping->nr_bitmaps;
2224 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2225 GFP_ATOMIC);
2226 if (!mapping->bitmaps[next_bitmap])
2227 return -ENOMEM;
2228
2229 mapping->nr_bitmaps++;
2230
2231 return 0;
2232}
2233
4ce63fcd
MS
2234void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2235{
2236 if (mapping)
2237 kref_put(&mapping->kref, release_iommu_mapping);
2238}
18177d12 2239EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 2240
eab8d653
LP
2241static int __arm_iommu_attach_device(struct device *dev,
2242 struct dma_iommu_mapping *mapping)
2243{
2244 int err;
2245
2246 err = iommu_attach_device(mapping->domain, dev);
2247 if (err)
2248 return err;
2249
2250 kref_get(&mapping->kref);
89cfdb19 2251 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
2252
2253 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2254 return 0;
2255}
2256
4ce63fcd
MS
2257/**
2258 * arm_iommu_attach_device
2259 * @dev: valid struct device pointer
2260 * @mapping: io address space mapping structure (returned from
2261 * arm_iommu_create_mapping)
2262 *
eab8d653
LP
2263 * Attaches specified io address space mapping to the provided device.
2264 * This replaces the dma operations (dma_map_ops pointer) with the
2265 * IOMMU aware version.
2266 *
4bb25789
WD
2267 * More than one client might be attached to the same io address space
2268 * mapping.
4ce63fcd
MS
2269 */
2270int arm_iommu_attach_device(struct device *dev,
2271 struct dma_iommu_mapping *mapping)
2272{
2273 int err;
2274
eab8d653 2275 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
2276 if (err)
2277 return err;
2278
eab8d653 2279 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
2280 return 0;
2281}
18177d12 2282EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2283
d3e01c51
S
2284/**
2285 * arm_iommu_detach_device
2286 * @dev: valid struct device pointer
2287 *
2288 * Detaches the provided device from a previously attached map.
2289 * This voids the dma operations (dma_map_ops pointer)
2290 */
2291void arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2292{
2293 struct dma_iommu_mapping *mapping;
2294
2295 mapping = to_dma_iommu_mapping(dev);
2296 if (!mapping) {
2297 dev_warn(dev, "Not attached\n");
2298 return;
2299 }
2300
2301 iommu_detach_device(mapping->domain, dev);
2302 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 2303 to_dma_iommu_mapping(dev) = NULL;
1874619a 2304 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
6fe36758
HD
2305
2306 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2307}
18177d12 2308EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2309
5299709d 2310static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
4bb25789
WD
2311{
2312 return coherent ? &iommu_coherent_ops : &iommu_ops;
2313}
2314
2315static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2316 const struct iommu_ops *iommu)
4bb25789
WD
2317{
2318 struct dma_iommu_mapping *mapping;
2319
2320 if (!iommu)
2321 return false;
2322
2323 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2324 if (IS_ERR(mapping)) {
2325 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2326 size, dev_name(dev));
2327 return false;
2328 }
2329
eab8d653 2330 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2331 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2332 dev_name(dev));
2333 arm_iommu_release_mapping(mapping);
2334 return false;
2335 }
2336
2337 return true;
2338}
2339
2340static void arm_teardown_iommu_dma_ops(struct device *dev)
2341{
89cfdb19 2342 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 2343
c2273a18
WD
2344 if (!mapping)
2345 return;
2346
d3e01c51 2347 arm_iommu_detach_device(dev);
4bb25789
WD
2348 arm_iommu_release_mapping(mapping);
2349}
2350
2351#else
2352
2353static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2354 const struct iommu_ops *iommu)
4bb25789
WD
2355{
2356 return false;
2357}
2358
2359static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2360
2361#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2362
2363#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2364
4bb25789 2365void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
53c92d79 2366 const struct iommu_ops *iommu, bool coherent)
4bb25789 2367{
5299709d 2368 const struct dma_map_ops *dma_ops;
4bb25789 2369
6f51ee70 2370 dev->archdata.dma_coherent = coherent;
26b37b94
LP
2371
2372 /*
2373 * Don't override the dma_ops if they have already been set. Ideally
2374 * this should be the only location where dma_ops are set, remove this
2375 * check when all other callers of set_dma_ops will have disappeared.
2376 */
2377 if (dev->dma_ops)
2378 return;
2379
4bb25789
WD
2380 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2381 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2382 else
2383 dma_ops = arm_get_dma_map_ops(coherent);
2384
2385 set_dma_ops(dev, dma_ops);
e0586326
SS
2386
2387#ifdef CONFIG_XEN
2388 if (xen_initial_domain()) {
2389 dev->archdata.dev_dma_ops = dev->dma_ops;
2390 dev->dma_ops = xen_dma_ops;
2391 }
2392#endif
a93a121a 2393 dev->archdata.dma_ops_setup = true;
4bb25789
WD
2394}
2395
2396void arch_teardown_dma_ops(struct device *dev)
2397{
a93a121a
LP
2398 if (!dev->archdata.dma_ops_setup)
2399 return;
2400
4bb25789
WD
2401 arm_teardown_iommu_dma_ops(dev);
2402}