KVM: ARM/arm64: fix broken __percpu annotation
[linux-2.6-block.git] / arch / arm / kvm / coproc.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
5b3e5e5b 19#include <linux/mm.h>
749cf76c 20#include <linux/kvm_host.h>
1138245c 21#include <linux/uaccess.h>
5b3e5e5b
CD
22#include <asm/kvm_arm.h>
23#include <asm/kvm_host.h>
24#include <asm/kvm_emulate.h>
25#include <asm/kvm_coproc.h>
8034699a 26#include <asm/kvm_mmu.h>
5b3e5e5b
CD
27#include <asm/cacheflush.h>
28#include <asm/cputype.h>
29#include <trace/events/kvm.h>
4fe21e4c
RR
30#include <asm/vfp.h>
31#include "../vfp/vfpinstr.h"
749cf76c 32
5b3e5e5b
CD
33#include "trace.h"
34#include "coproc.h"
35
36
37/******************************************************************************
38 * Co-processor emulation
39 *****************************************************************************/
40
c27581ed
CD
41/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
42static u32 cache_levels;
43
44/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
45#define CSSELR_MAX 12
46
73891f72
VK
47/*
48 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
49 * of cp15 registers can be viewed either as couple of two u32 registers
50 * or one u64 register. Current u64 register encoding is that least
51 * significant u32 word is followed by most significant u32 word.
52 */
53static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
54 const struct coproc_reg *r,
55 u64 val)
56{
57 vcpu->arch.cp15[r->reg] = val & 0xffffffff;
58 vcpu->arch.cp15[r->reg + 1] = val >> 32;
59}
60
61static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
62 const struct coproc_reg *r)
63{
64 u64 val;
65
66 val = vcpu->arch.cp15[r->reg + 1];
67 val = val << 32;
68 val = val | vcpu->arch.cp15[r->reg];
69 return val;
70}
71
5b3e5e5b
CD
72int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
73{
74 kvm_inject_undefined(vcpu);
75 return 1;
76}
77
78int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
79{
80 /*
81 * We can get here, if the host has been built without VFPv3 support,
82 * but the guest attempted a floating point operation.
83 */
84 kvm_inject_undefined(vcpu);
85 return 1;
86}
87
88int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
89{
90 kvm_inject_undefined(vcpu);
91 return 1;
92}
93
94int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
95{
96 kvm_inject_undefined(vcpu);
97 return 1;
98}
99
e8c2d99f
JA
100static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
101{
102 /*
2d1d841b
MZ
103 * Compute guest MPIDR. We build a virtual cluster out of the
104 * vcpu_id, but we read the 'U' bit from the underlying
105 * hardware directly.
e8c2d99f 106 */
2d1d841b
MZ
107 vcpu->arch.cp15[c0_MPIDR] = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
108 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
109 (vcpu->vcpu_id & 3));
e8c2d99f
JA
110}
111
112/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
113static bool access_actlr(struct kvm_vcpu *vcpu,
114 const struct coproc_params *p,
115 const struct coproc_reg *r)
116{
117 if (p->is_write)
118 return ignore_write(vcpu, p);
119
120 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c1_ACTLR];
121 return true;
122}
123
124/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
125static bool access_cbar(struct kvm_vcpu *vcpu,
126 const struct coproc_params *p,
127 const struct coproc_reg *r)
128{
129 if (p->is_write)
130 return write_to_read_only(vcpu, p);
131 return read_zero(vcpu, p);
132}
133
134/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
135static bool access_l2ctlr(struct kvm_vcpu *vcpu,
136 const struct coproc_params *p,
137 const struct coproc_reg *r)
138{
139 if (p->is_write)
140 return ignore_write(vcpu, p);
141
142 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.cp15[c9_L2CTLR];
143 return true;
144}
145
146static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
147{
148 u32 l2ctlr, ncores;
149
150 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
151 l2ctlr &= ~(3 << 24);
152 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
9cbb6d96
MZ
153 /* How many cores in the current cluster and the next ones */
154 ncores -= (vcpu->vcpu_id & ~3);
155 /* Cap it to the maximum number of cores in a single cluster */
156 ncores = min(ncores, 3U);
e8c2d99f
JA
157 l2ctlr |= (ncores & 3) << 24;
158
159 vcpu->arch.cp15[c9_L2CTLR] = l2ctlr;
160}
161
162static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
163{
164 u32 actlr;
165
166 /* ACTLR contains SMP bit: make sure you create all cpus first! */
167 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
168 /* Make the SMP bit consistent with the guest configuration */
169 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
170 actlr |= 1U << 6;
171 else
172 actlr &= ~(1U << 6);
173
174 vcpu->arch.cp15[c1_ACTLR] = actlr;
175}
176
177/*
178 * TRM entries: A7:4.3.50, A15:4.3.49
179 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
180 */
181static bool access_l2ectlr(struct kvm_vcpu *vcpu,
182 const struct coproc_params *p,
183 const struct coproc_reg *r)
184{
185 if (p->is_write)
186 return ignore_write(vcpu, p);
187
188 *vcpu_reg(vcpu, p->Rt1) = 0;
189 return true;
190}
191
5b3e5e5b
CD
192/* See note at ARM ARM B1.14.4 */
193static bool access_dcsw(struct kvm_vcpu *vcpu,
194 const struct coproc_params *p,
195 const struct coproc_reg *r)
196{
db730d8d 197 unsigned long val;
5b3e5e5b
CD
198 int cpu;
199
5b3e5e5b
CD
200 if (!p->is_write)
201 return read_from_write_only(vcpu, p);
202
15bbc1b2
MZ
203 cpu = get_cpu();
204
5b3e5e5b
CD
205 cpumask_setall(&vcpu->arch.require_dcache_flush);
206 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
207
208 /* If we were already preempted, take the long way around */
209 if (cpu != vcpu->arch.last_pcpu) {
210 flush_cache_all();
211 goto done;
212 }
213
214 val = *vcpu_reg(vcpu, p->Rt1);
215
216 switch (p->CRm) {
217 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
218 case 14: /* DCCISW */
219 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
220 break;
221
222 case 10: /* DCCSW */
223 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
224 break;
225 }
226
227done:
228 put_cpu();
229
230 return true;
231}
232
8034699a
MZ
233/*
234 * Generic accessor for VM registers. Only called as long as HCR_TVM
235 * is set.
236 */
237static bool access_vm_reg(struct kvm_vcpu *vcpu,
238 const struct coproc_params *p,
239 const struct coproc_reg *r)
240{
241 BUG_ON(!p->is_write);
242
243 vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
244 if (p->is_64bit)
245 vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
246
247 return true;
248}
249
250/*
251 * SCTLR accessor. Only called as long as HCR_TVM is set. If the
252 * guest enables the MMU, we stop trapping the VM sys_regs and leave
253 * it in complete control of the caches.
254 *
255 * Used by the cpu-specific code.
256 */
257bool access_sctlr(struct kvm_vcpu *vcpu,
258 const struct coproc_params *p,
259 const struct coproc_reg *r)
260{
261 access_vm_reg(vcpu, p, r);
262
263 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
264 vcpu->arch.hcr &= ~HCR_TVM;
265 stage2_flush_vm(vcpu->kvm);
266 }
267
268 return true;
269}
270
5b3e5e5b
CD
271/*
272 * We could trap ID_DFR0 and tell the guest we don't support performance
273 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
274 * NAKed, so it will read the PMCR anyway.
275 *
276 * Therefore we tell the guest we have 0 counters. Unfortunately, we
277 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
278 * all PM registers, which doesn't crash the guest kernel at least.
279 */
280static bool pm_fake(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
283{
284 if (p->is_write)
285 return ignore_write(vcpu, p);
286 else
287 return read_zero(vcpu, p);
288}
289
290#define access_pmcr pm_fake
291#define access_pmcntenset pm_fake
292#define access_pmcntenclr pm_fake
293#define access_pmovsr pm_fake
294#define access_pmselr pm_fake
295#define access_pmceid0 pm_fake
296#define access_pmceid1 pm_fake
297#define access_pmccntr pm_fake
298#define access_pmxevtyper pm_fake
299#define access_pmxevcntr pm_fake
300#define access_pmuserenr pm_fake
301#define access_pmintenset pm_fake
302#define access_pmintenclr pm_fake
303
304/* Architected CP15 registers.
240e99cb
CD
305 * CRn denotes the primary register number, but is copied to the CRm in the
306 * user space API for 64-bit register access in line with the terminology used
307 * in the ARM ARM.
308 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
309 * registers preceding 32-bit ones.
5b3e5e5b
CD
310 */
311static const struct coproc_reg cp15_regs[] = {
e8c2d99f
JA
312 /* MPIDR: we use VMPIDR for guest access. */
313 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
314 NULL, reset_mpidr, c0_MPIDR },
315
5b3e5e5b
CD
316 /* CSSELR: swapped by interrupt.S. */
317 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
318 NULL, reset_unknown, c0_CSSELR },
319
e8c2d99f
JA
320 /* ACTLR: trapped by HCR.TAC bit. */
321 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
322 access_actlr, reset_actlr, c1_ACTLR },
323
324 /* CPACR: swapped by interrupt.S. */
325 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
326 NULL, reset_val, c1_CPACR, 0x00000000 },
327
8034699a
MZ
328 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
329 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
330 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
331 access_vm_reg, reset_unknown, c2_TTBR0 },
332 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
333 access_vm_reg, reset_unknown, c2_TTBR1 },
5b3e5e5b 334 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
8034699a
MZ
335 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
336 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
337
5b3e5e5b
CD
338
339 /* DACR: swapped by interrupt.S. */
340 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
8034699a 341 access_vm_reg, reset_unknown, c3_DACR },
5b3e5e5b
CD
342
343 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
344 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
8034699a 345 access_vm_reg, reset_unknown, c5_DFSR },
5b3e5e5b 346 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
8034699a 347 access_vm_reg, reset_unknown, c5_IFSR },
5b3e5e5b 348 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
8034699a 349 access_vm_reg, reset_unknown, c5_ADFSR },
5b3e5e5b 350 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
8034699a 351 access_vm_reg, reset_unknown, c5_AIFSR },
5b3e5e5b
CD
352
353 /* DFAR/IFAR: swapped by interrupt.S. */
354 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
8034699a 355 access_vm_reg, reset_unknown, c6_DFAR },
5b3e5e5b 356 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
8034699a 357 access_vm_reg, reset_unknown, c6_IFAR },
6a077e4a
MZ
358
359 /* PAR swapped by interrupt.S */
240e99cb 360 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
6a077e4a 361
5b3e5e5b
CD
362 /*
363 * DC{C,I,CI}SW operations:
364 */
365 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
366 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
367 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
e8c2d99f
JA
368 /*
369 * L2CTLR access (guest wants to know #CPUs).
370 */
371 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
372 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
373 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
374
5b3e5e5b
CD
375 /*
376 * Dummy performance monitor implementation.
377 */
378 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
379 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
380 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
381 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
382 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
383 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
384 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
385 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
386 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
387 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
388 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
389 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
390 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
391
392 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
393 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
8034699a 394 access_vm_reg, reset_unknown, c10_PRRR},
5b3e5e5b 395 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
8034699a 396 access_vm_reg, reset_unknown, c10_NMRR},
5b3e5e5b 397
af20814e
MZ
398 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
399 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
400 access_vm_reg, reset_unknown, c10_AMAIR0},
401 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
402 access_vm_reg, reset_unknown, c10_AMAIR1},
403
5b3e5e5b
CD
404 /* VBAR: swapped by interrupt.S. */
405 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
406 NULL, reset_val, c12_VBAR, 0x00000000 },
407
408 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
409 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
8034699a 410 access_vm_reg, reset_val, c13_CID, 0x00000000 },
5b3e5e5b
CD
411 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
412 NULL, reset_unknown, c13_TID_URW },
413 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
414 NULL, reset_unknown, c13_TID_URO },
415 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
416 NULL, reset_unknown, c13_TID_PRIV },
c7e3ba64
MZ
417
418 /* CNTKCTL: swapped by interrupt.S. */
419 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
420 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
e8c2d99f
JA
421
422 /* The Configuration Base Address Register. */
423 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
5b3e5e5b
CD
424};
425
426/* Target specific emulation tables */
427static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
428
429void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
430{
e8c2d99f
JA
431 unsigned int i;
432
433 for (i = 1; i < table->num; i++)
434 BUG_ON(cmp_reg(&table->table[i-1],
435 &table->table[i]) >= 0);
436
5b3e5e5b
CD
437 target_tables[table->target] = table;
438}
439
440/* Get specific register table for this target. */
441static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
442{
443 struct kvm_coproc_target_table *table;
444
445 table = target_tables[target];
446 *num = table->num;
447 return table->table;
448}
449
450static const struct coproc_reg *find_reg(const struct coproc_params *params,
451 const struct coproc_reg table[],
452 unsigned int num)
453{
454 unsigned int i;
455
456 for (i = 0; i < num; i++) {
457 const struct coproc_reg *r = &table[i];
458
459 if (params->is_64bit != r->is_64)
460 continue;
461 if (params->CRn != r->CRn)
462 continue;
463 if (params->CRm != r->CRm)
464 continue;
465 if (params->Op1 != r->Op1)
466 continue;
467 if (params->Op2 != r->Op2)
468 continue;
469
470 return r;
471 }
472 return NULL;
473}
474
475static int emulate_cp15(struct kvm_vcpu *vcpu,
476 const struct coproc_params *params)
477{
478 size_t num;
479 const struct coproc_reg *table, *r;
480
481 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
482 params->CRm, params->Op2, params->is_write);
483
484 table = get_target_table(vcpu->arch.target, &num);
485
486 /* Search target-specific then generic table. */
487 r = find_reg(params, table, num);
488 if (!r)
489 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
490
491 if (likely(r)) {
492 /* If we don't have an accessor, we should never get here! */
493 BUG_ON(!r->access);
494
495 if (likely(r->access(vcpu, params, r))) {
496 /* Skip instruction, since it was emulated */
23b415d6 497 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
5b3e5e5b
CD
498 return 1;
499 }
500 /* If access function fails, it should complain. */
501 } else {
db730d8d 502 kvm_err("Unsupported guest CP15 access at: %08lx\n",
5b3e5e5b
CD
503 *vcpu_pc(vcpu));
504 print_cp_instr(params);
505 }
506 kvm_inject_undefined(vcpu);
507 return 1;
508}
509
510/**
511 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
512 * @vcpu: The VCPU pointer
513 * @run: The kvm_run struct
514 */
515int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
516{
517 struct coproc_params params;
518
46c214dd 519 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
7393b599
MZ
520 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
521 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
522 params.is_64bit = true;
523
7393b599 524 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
5b3e5e5b 525 params.Op2 = 0;
7393b599 526 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
46c214dd 527 params.CRm = 0;
5b3e5e5b
CD
528
529 return emulate_cp15(vcpu, &params);
530}
531
532static void reset_coproc_regs(struct kvm_vcpu *vcpu,
533 const struct coproc_reg *table, size_t num)
534{
535 unsigned long i;
536
537 for (i = 0; i < num; i++)
538 if (table[i].reset)
539 table[i].reset(vcpu, &table[i]);
540}
541
542/**
543 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
544 * @vcpu: The VCPU pointer
545 * @run: The kvm_run struct
546 */
547int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
548{
549 struct coproc_params params;
550
7393b599
MZ
551 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
552 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
553 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
554 params.is_64bit = false;
555
7393b599
MZ
556 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
557 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
558 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
5b3e5e5b
CD
559 params.Rt2 = 0;
560
561 return emulate_cp15(vcpu, &params);
562}
563
1138245c
CD
564/******************************************************************************
565 * Userspace API
566 *****************************************************************************/
567
568static bool index_to_params(u64 id, struct coproc_params *params)
569{
570 switch (id & KVM_REG_SIZE_MASK) {
571 case KVM_REG_SIZE_U32:
572 /* Any unused index bits means it's not valid. */
573 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
574 | KVM_REG_ARM_COPROC_MASK
575 | KVM_REG_ARM_32_CRN_MASK
576 | KVM_REG_ARM_CRM_MASK
577 | KVM_REG_ARM_OPC1_MASK
578 | KVM_REG_ARM_32_OPC2_MASK))
579 return false;
580
581 params->is_64bit = false;
582 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
583 >> KVM_REG_ARM_32_CRN_SHIFT);
584 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
585 >> KVM_REG_ARM_CRM_SHIFT);
586 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
587 >> KVM_REG_ARM_OPC1_SHIFT);
588 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
589 >> KVM_REG_ARM_32_OPC2_SHIFT);
590 return true;
591 case KVM_REG_SIZE_U64:
592 /* Any unused index bits means it's not valid. */
593 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
594 | KVM_REG_ARM_COPROC_MASK
595 | KVM_REG_ARM_CRM_MASK
596 | KVM_REG_ARM_OPC1_MASK))
597 return false;
598 params->is_64bit = true;
240e99cb
CD
599 /* CRm to CRn: see cp15_to_index for details */
600 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
1138245c
CD
601 >> KVM_REG_ARM_CRM_SHIFT);
602 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
603 >> KVM_REG_ARM_OPC1_SHIFT);
604 params->Op2 = 0;
240e99cb 605 params->CRm = 0;
1138245c
CD
606 return true;
607 default:
608 return false;
609 }
610}
611
612/* Decode an index value, and find the cp15 coproc_reg entry. */
613static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
614 u64 id)
615{
616 size_t num;
617 const struct coproc_reg *table, *r;
618 struct coproc_params params;
619
620 /* We only do cp15 for now. */
621 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
622 return NULL;
623
624 if (!index_to_params(id, &params))
625 return NULL;
626
627 table = get_target_table(vcpu->arch.target, &num);
628 r = find_reg(&params, table, num);
629 if (!r)
630 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
631
632 /* Not saved in the cp15 array? */
633 if (r && !r->reg)
634 r = NULL;
635
636 return r;
637}
638
639/*
640 * These are the invariant cp15 registers: we let the guest see the host
641 * versions of these, so they're part of the guest state.
642 *
643 * A future CPU may provide a mechanism to present different values to
644 * the guest, or a future kvm may trap them.
645 */
646/* Unfortunately, there's no register-argument for mrc, so generate. */
647#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
648 static void get_##name(struct kvm_vcpu *v, \
649 const struct coproc_reg *r) \
650 { \
651 u32 val; \
652 \
653 asm volatile("mrc p15, " __stringify(op1) \
654 ", %0, c" __stringify(crn) \
655 ", c" __stringify(crm) \
656 ", " __stringify(op2) "\n" : "=r" (val)); \
657 ((struct coproc_reg *)r)->val = val; \
658 }
659
660FUNCTION_FOR32(0, 0, 0, 0, MIDR)
661FUNCTION_FOR32(0, 0, 0, 1, CTR)
662FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
663FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
664FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
665FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
666FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
667FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
668FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
669FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
670FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
671FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
672FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
673FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
674FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
675FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
676FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
677FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
678FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
679FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
680FUNCTION_FOR32(0, 0, 1, 7, AIDR)
681
682/* ->val is filled in by kvm_invariant_coproc_table_init() */
683static struct coproc_reg invariant_cp15[] = {
684 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
685 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
686 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
687 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
688 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
689
690 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
691 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
692 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
693 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
694 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
695 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
696 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
697 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
698
699 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
700 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
701 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
702 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
703 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
704 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
705
706 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
707 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
708};
709
73891f72
VK
710/*
711 * Reads a register value from a userspace address to a kernel
712 * variable. Make sure that register size matches sizeof(*__val).
713 */
1138245c
CD
714static int reg_from_user(void *val, const void __user *uaddr, u64 id)
715{
1138245c
CD
716 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
717 return -EFAULT;
718 return 0;
719}
720
73891f72
VK
721/*
722 * Writes a register value to a userspace address from a kernel variable.
723 * Make sure that register size matches sizeof(*__val).
724 */
1138245c
CD
725static int reg_to_user(void __user *uaddr, const void *val, u64 id)
726{
1138245c
CD
727 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
728 return -EFAULT;
729 return 0;
730}
731
732static int get_invariant_cp15(u64 id, void __user *uaddr)
733{
734 struct coproc_params params;
735 const struct coproc_reg *r;
73891f72 736 int ret;
1138245c
CD
737
738 if (!index_to_params(id, &params))
739 return -ENOENT;
740
741 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
742 if (!r)
743 return -ENOENT;
744
73891f72
VK
745 ret = -ENOENT;
746 if (KVM_REG_SIZE(id) == 4) {
747 u32 val = r->val;
748
749 ret = reg_to_user(uaddr, &val, id);
750 } else if (KVM_REG_SIZE(id) == 8) {
751 ret = reg_to_user(uaddr, &r->val, id);
752 }
753 return ret;
1138245c
CD
754}
755
756static int set_invariant_cp15(u64 id, void __user *uaddr)
757{
758 struct coproc_params params;
759 const struct coproc_reg *r;
760 int err;
73891f72 761 u64 val;
1138245c
CD
762
763 if (!index_to_params(id, &params))
764 return -ENOENT;
765 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
766 if (!r)
767 return -ENOENT;
768
73891f72
VK
769 err = -ENOENT;
770 if (KVM_REG_SIZE(id) == 4) {
771 u32 val32;
772
773 err = reg_from_user(&val32, uaddr, id);
774 if (!err)
775 val = val32;
776 } else if (KVM_REG_SIZE(id) == 8) {
777 err = reg_from_user(&val, uaddr, id);
778 }
1138245c
CD
779 if (err)
780 return err;
781
782 /* This is what we mean by invariant: you can't change it. */
783 if (r->val != val)
784 return -EINVAL;
785
786 return 0;
787}
788
c27581ed
CD
789static bool is_valid_cache(u32 val)
790{
791 u32 level, ctype;
792
793 if (val >= CSSELR_MAX)
794 return -ENOENT;
795
796 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
797 level = (val >> 1);
798 ctype = (cache_levels >> (level * 3)) & 7;
799
800 switch (ctype) {
801 case 0: /* No cache */
802 return false;
803 case 1: /* Instruction cache only */
804 return (val & 1);
805 case 2: /* Data cache only */
806 case 4: /* Unified cache */
807 return !(val & 1);
808 case 3: /* Separate instruction and data caches */
809 return true;
810 default: /* Reserved: we can't know instruction or data. */
811 return false;
812 }
813}
814
815/* Which cache CCSIDR represents depends on CSSELR value. */
816static u32 get_ccsidr(u32 csselr)
817{
818 u32 ccsidr;
819
820 /* Make sure noone else changes CSSELR during this! */
821 local_irq_disable();
822 /* Put value into CSSELR */
823 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
824 isb();
825 /* Read result out of CCSIDR */
826 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
827 local_irq_enable();
828
829 return ccsidr;
830}
831
832static int demux_c15_get(u64 id, void __user *uaddr)
833{
834 u32 val;
835 u32 __user *uval = uaddr;
836
837 /* Fail if we have unknown bits set. */
838 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
839 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
840 return -ENOENT;
841
842 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
843 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
844 if (KVM_REG_SIZE(id) != 4)
845 return -ENOENT;
846 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
847 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
848 if (!is_valid_cache(val))
849 return -ENOENT;
850
851 return put_user(get_ccsidr(val), uval);
852 default:
853 return -ENOENT;
854 }
855}
856
857static int demux_c15_set(u64 id, void __user *uaddr)
858{
859 u32 val, newval;
860 u32 __user *uval = uaddr;
861
862 /* Fail if we have unknown bits set. */
863 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
864 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
865 return -ENOENT;
866
867 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
868 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
869 if (KVM_REG_SIZE(id) != 4)
870 return -ENOENT;
871 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
872 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
873 if (!is_valid_cache(val))
874 return -ENOENT;
875
876 if (get_user(newval, uval))
877 return -EFAULT;
878
879 /* This is also invariant: you can't change it. */
880 if (newval != get_ccsidr(val))
881 return -EINVAL;
882 return 0;
883 default:
884 return -ENOENT;
885 }
886}
887
4fe21e4c
RR
888#ifdef CONFIG_VFPv3
889static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
890 KVM_REG_ARM_VFP_FPSCR,
891 KVM_REG_ARM_VFP_FPINST,
892 KVM_REG_ARM_VFP_FPINST2,
893 KVM_REG_ARM_VFP_MVFR0,
894 KVM_REG_ARM_VFP_MVFR1,
895 KVM_REG_ARM_VFP_FPSID };
896
897static unsigned int num_fp_regs(void)
898{
899 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
900 return 32;
901 else
902 return 16;
903}
904
905static unsigned int num_vfp_regs(void)
906{
907 /* Normal FP regs + control regs. */
908 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
909}
910
911static int copy_vfp_regids(u64 __user *uindices)
912{
913 unsigned int i;
914 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
915 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
916
917 for (i = 0; i < num_fp_regs(); i++) {
918 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
919 uindices))
920 return -EFAULT;
921 uindices++;
922 }
923
924 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
925 if (put_user(u32reg | vfp_sysregs[i], uindices))
926 return -EFAULT;
927 uindices++;
928 }
929
930 return num_vfp_regs();
931}
932
933static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
934{
935 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
936 u32 val;
937
938 /* Fail if we have unknown bits set. */
939 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
940 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
941 return -ENOENT;
942
943 if (vfpid < num_fp_regs()) {
944 if (KVM_REG_SIZE(id) != 8)
945 return -ENOENT;
946 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
947 id);
948 }
949
950 /* FP control registers are all 32 bit. */
951 if (KVM_REG_SIZE(id) != 4)
952 return -ENOENT;
953
954 switch (vfpid) {
955 case KVM_REG_ARM_VFP_FPEXC:
956 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
957 case KVM_REG_ARM_VFP_FPSCR:
958 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
959 case KVM_REG_ARM_VFP_FPINST:
960 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
961 case KVM_REG_ARM_VFP_FPINST2:
962 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
963 case KVM_REG_ARM_VFP_MVFR0:
964 val = fmrx(MVFR0);
965 return reg_to_user(uaddr, &val, id);
966 case KVM_REG_ARM_VFP_MVFR1:
967 val = fmrx(MVFR1);
968 return reg_to_user(uaddr, &val, id);
969 case KVM_REG_ARM_VFP_FPSID:
970 val = fmrx(FPSID);
971 return reg_to_user(uaddr, &val, id);
972 default:
973 return -ENOENT;
974 }
975}
976
977static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
978{
979 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
980 u32 val;
981
982 /* Fail if we have unknown bits set. */
983 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
984 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
985 return -ENOENT;
986
987 if (vfpid < num_fp_regs()) {
988 if (KVM_REG_SIZE(id) != 8)
989 return -ENOENT;
990 return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
991 uaddr, id);
992 }
993
994 /* FP control registers are all 32 bit. */
995 if (KVM_REG_SIZE(id) != 4)
996 return -ENOENT;
997
998 switch (vfpid) {
999 case KVM_REG_ARM_VFP_FPEXC:
1000 return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
1001 case KVM_REG_ARM_VFP_FPSCR:
1002 return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
1003 case KVM_REG_ARM_VFP_FPINST:
1004 return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
1005 case KVM_REG_ARM_VFP_FPINST2:
1006 return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
1007 /* These are invariant. */
1008 case KVM_REG_ARM_VFP_MVFR0:
1009 if (reg_from_user(&val, uaddr, id))
1010 return -EFAULT;
1011 if (val != fmrx(MVFR0))
1012 return -EINVAL;
1013 return 0;
1014 case KVM_REG_ARM_VFP_MVFR1:
1015 if (reg_from_user(&val, uaddr, id))
1016 return -EFAULT;
1017 if (val != fmrx(MVFR1))
1018 return -EINVAL;
1019 return 0;
1020 case KVM_REG_ARM_VFP_FPSID:
1021 if (reg_from_user(&val, uaddr, id))
1022 return -EFAULT;
1023 if (val != fmrx(FPSID))
1024 return -EINVAL;
1025 return 0;
1026 default:
1027 return -ENOENT;
1028 }
1029}
1030#else /* !CONFIG_VFPv3 */
1031static unsigned int num_vfp_regs(void)
1032{
1033 return 0;
1034}
1035
1036static int copy_vfp_regids(u64 __user *uindices)
1037{
1038 return 0;
1039}
1040
1041static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1042{
1043 return -ENOENT;
1044}
1045
1046static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1047{
1048 return -ENOENT;
1049}
1050#endif /* !CONFIG_VFPv3 */
1051
1138245c
CD
1052int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1053{
1054 const struct coproc_reg *r;
1055 void __user *uaddr = (void __user *)(long)reg->addr;
73891f72 1056 int ret;
1138245c 1057
c27581ed
CD
1058 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1059 return demux_c15_get(reg->id, uaddr);
1060
4fe21e4c
RR
1061 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1062 return vfp_get_reg(vcpu, reg->id, uaddr);
1063
1138245c
CD
1064 r = index_to_coproc_reg(vcpu, reg->id);
1065 if (!r)
1066 return get_invariant_cp15(reg->id, uaddr);
1067
73891f72
VK
1068 ret = -ENOENT;
1069 if (KVM_REG_SIZE(reg->id) == 8) {
1070 u64 val;
1071
1072 val = vcpu_cp15_reg64_get(vcpu, r);
1073 ret = reg_to_user(uaddr, &val, reg->id);
1074 } else if (KVM_REG_SIZE(reg->id) == 4) {
1075 ret = reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
1076 }
1077
1078 return ret;
1138245c
CD
1079}
1080
1081int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1082{
1083 const struct coproc_reg *r;
1084 void __user *uaddr = (void __user *)(long)reg->addr;
73891f72 1085 int ret;
1138245c 1086
c27581ed
CD
1087 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1088 return demux_c15_set(reg->id, uaddr);
1089
4fe21e4c
RR
1090 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1091 return vfp_set_reg(vcpu, reg->id, uaddr);
1092
1138245c
CD
1093 r = index_to_coproc_reg(vcpu, reg->id);
1094 if (!r)
1095 return set_invariant_cp15(reg->id, uaddr);
1096
73891f72
VK
1097 ret = -ENOENT;
1098 if (KVM_REG_SIZE(reg->id) == 8) {
1099 u64 val;
1100
1101 ret = reg_from_user(&val, uaddr, reg->id);
1102 if (!ret)
1103 vcpu_cp15_reg64_set(vcpu, r, val);
1104 } else if (KVM_REG_SIZE(reg->id) == 4) {
1105 ret = reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
1106 }
1107
1108 return ret;
1138245c
CD
1109}
1110
c27581ed
CD
1111static unsigned int num_demux_regs(void)
1112{
1113 unsigned int i, count = 0;
1114
1115 for (i = 0; i < CSSELR_MAX; i++)
1116 if (is_valid_cache(i))
1117 count++;
1118
1119 return count;
1120}
1121
1122static int write_demux_regids(u64 __user *uindices)
1123{
1124 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1125 unsigned int i;
1126
1127 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1128 for (i = 0; i < CSSELR_MAX; i++) {
1129 if (!is_valid_cache(i))
1130 continue;
1131 if (put_user(val | i, uindices))
1132 return -EFAULT;
1133 uindices++;
1134 }
1135 return 0;
1136}
1137
1138245c
CD
1138static u64 cp15_to_index(const struct coproc_reg *reg)
1139{
1140 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1141 if (reg->is_64) {
1142 val |= KVM_REG_SIZE_U64;
1143 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
240e99cb
CD
1144 /*
1145 * CRn always denotes the primary coproc. reg. nr. for the
1146 * in-kernel representation, but the user space API uses the
1147 * CRm for the encoding, because it is modelled after the
1148 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1149 * B3-1445
1150 */
1151 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1138245c
CD
1152 } else {
1153 val |= KVM_REG_SIZE_U32;
1154 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1155 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1156 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1157 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1158 }
1159 return val;
1160}
1161
1162static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1163{
1164 if (!*uind)
1165 return true;
1166
1167 if (put_user(cp15_to_index(reg), *uind))
1168 return false;
1169
1170 (*uind)++;
1171 return true;
1172}
1173
1174/* Assumed ordered tables, see kvm_coproc_table_init. */
1175static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1176{
1177 const struct coproc_reg *i1, *i2, *end1, *end2;
1178 unsigned int total = 0;
1179 size_t num;
1180
1181 /* We check for duplicates here, to allow arch-specific overrides. */
1182 i1 = get_target_table(vcpu->arch.target, &num);
1183 end1 = i1 + num;
1184 i2 = cp15_regs;
1185 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1186
1187 BUG_ON(i1 == end1 || i2 == end2);
1188
1189 /* Walk carefully, as both tables may refer to the same register. */
1190 while (i1 || i2) {
1191 int cmp = cmp_reg(i1, i2);
1192 /* target-specific overrides generic entry. */
1193 if (cmp <= 0) {
1194 /* Ignore registers we trap but don't save. */
1195 if (i1->reg) {
1196 if (!copy_reg_to_user(i1, &uind))
1197 return -EFAULT;
1198 total++;
1199 }
1200 } else {
1201 /* Ignore registers we trap but don't save. */
1202 if (i2->reg) {
1203 if (!copy_reg_to_user(i2, &uind))
1204 return -EFAULT;
1205 total++;
1206 }
1207 }
1208
1209 if (cmp <= 0 && ++i1 == end1)
1210 i1 = NULL;
1211 if (cmp >= 0 && ++i2 == end2)
1212 i2 = NULL;
1213 }
1214 return total;
1215}
1216
1217unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1218{
1219 return ARRAY_SIZE(invariant_cp15)
c27581ed 1220 + num_demux_regs()
4fe21e4c 1221 + num_vfp_regs()
1138245c
CD
1222 + walk_cp15(vcpu, (u64 __user *)NULL);
1223}
1224
1225int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1226{
1227 unsigned int i;
1228 int err;
1229
1230 /* Then give them all the invariant registers' indices. */
1231 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1232 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1233 return -EFAULT;
1234 uindices++;
1235 }
1236
1237 err = walk_cp15(vcpu, uindices);
c27581ed
CD
1238 if (err < 0)
1239 return err;
1240 uindices += err;
1241
4fe21e4c
RR
1242 err = copy_vfp_regids(uindices);
1243 if (err < 0)
1244 return err;
1245 uindices += err;
1246
c27581ed 1247 return write_demux_regids(uindices);
1138245c
CD
1248}
1249
5b3e5e5b
CD
1250void kvm_coproc_table_init(void)
1251{
1252 unsigned int i;
1253
1254 /* Make sure tables are unique and in order. */
1255 for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1256 BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1138245c
CD
1257
1258 /* We abuse the reset function to overwrite the table itself. */
1259 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1260 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
c27581ed
CD
1261
1262 /*
1263 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1264 *
1265 * If software reads the Cache Type fields from Ctype1
1266 * upwards, once it has seen a value of 0b000, no caches
1267 * exist at further-out levels of the hierarchy. So, for
1268 * example, if Ctype3 is the first Cache Type field with a
1269 * value of 0b000, the values of Ctype4 to Ctype7 must be
1270 * ignored.
1271 */
1272 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1273 for (i = 0; i < 7; i++)
1274 if (((cache_levels >> (i*3)) & 7) == 0)
1275 break;
1276 /* Clear all higher bits. */
1277 cache_levels &= (1 << (i*3))-1;
5b3e5e5b
CD
1278}
1279
1280/**
1281 * kvm_reset_coprocs - sets cp15 registers to reset value
1282 * @vcpu: The VCPU pointer
1283 *
1284 * This function finds the right table above and sets the registers on the
1285 * virtual CPU struct to their architecturally defined reset values.
1286 */
749cf76c
CD
1287void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1288{
5b3e5e5b
CD
1289 size_t num;
1290 const struct coproc_reg *table;
1291
1292 /* Catch someone adding a register without putting in reset entry. */
1293 memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1294
1295 /* Generic chip reset first (so target could override). */
1296 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1297
1298 table = get_target_table(vcpu->arch.target, &num);
1299 reset_coproc_regs(vcpu, table, num);
1300
1301 for (num = 1; num < NR_CP15_REGS; num++)
1302 if (vcpu->arch.cp15[num] == 0x42424242)
1303 panic("Didn't reset vcpu->arch.cp15[%zi]", num);
749cf76c 1304}