Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-block.git] / arch / arm / kvm / coproc.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
d06a5440
MZ
19
20#include <linux/bsearch.h>
5b3e5e5b 21#include <linux/mm.h>
749cf76c 22#include <linux/kvm_host.h>
1138245c 23#include <linux/uaccess.h>
5b3e5e5b
CD
24#include <asm/kvm_arm.h>
25#include <asm/kvm_host.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_coproc.h>
8034699a 28#include <asm/kvm_mmu.h>
5b3e5e5b
CD
29#include <asm/cacheflush.h>
30#include <asm/cputype.h>
31#include <trace/events/kvm.h>
4fe21e4c
RR
32#include <asm/vfp.h>
33#include "../vfp/vfpinstr.h"
749cf76c 34
01630ab8 35#define CREATE_TRACE_POINTS
5b3e5e5b
CD
36#include "trace.h"
37#include "coproc.h"
38
39
40/******************************************************************************
41 * Co-processor emulation
42 *****************************************************************************/
43
b1d4cb69
MZ
44static bool write_to_read_only(struct kvm_vcpu *vcpu,
45 const struct coproc_params *params)
46{
47 WARN_ONCE(1, "CP15 write to read-only register\n");
48 print_cp_instr(params);
49 kvm_inject_undefined(vcpu);
50 return false;
51}
52
53static bool read_from_write_only(struct kvm_vcpu *vcpu,
54 const struct coproc_params *params)
55{
56 WARN_ONCE(1, "CP15 read to write-only register\n");
57 print_cp_instr(params);
58 kvm_inject_undefined(vcpu);
59 return false;
60}
61
c27581ed
CD
62/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63static u32 cache_levels;
64
65/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66#define CSSELR_MAX 12
67
73891f72
VK
68/*
69 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70 * of cp15 registers can be viewed either as couple of two u32 registers
71 * or one u64 register. Current u64 register encoding is that least
72 * significant u32 word is followed by most significant u32 word.
73 */
74static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75 const struct coproc_reg *r,
76 u64 val)
77{
fb32a52a
MZ
78 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
73891f72
VK
80}
81
82static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83 const struct coproc_reg *r)
84{
85 u64 val;
86
fb32a52a 87 val = vcpu_cp15(vcpu, r->reg + 1);
73891f72 88 val = val << 32;
fb32a52a 89 val = val | vcpu_cp15(vcpu, r->reg);
73891f72
VK
90 return val;
91}
92
5b3e5e5b
CD
93int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94{
95 kvm_inject_undefined(vcpu);
96 return 1;
97}
98
99int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100{
101 /*
102 * We can get here, if the host has been built without VFPv3 support,
103 * but the guest attempted a floating point operation.
104 */
105 kvm_inject_undefined(vcpu);
106 return 1;
107}
108
109int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110{
111 kvm_inject_undefined(vcpu);
112 return 1;
113}
114
e8c2d99f
JA
115static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
116{
117 /*
2d1d841b
MZ
118 * Compute guest MPIDR. We build a virtual cluster out of the
119 * vcpu_id, but we read the 'U' bit from the underlying
120 * hardware directly.
e8c2d99f 121 */
fb32a52a 122 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
2d1d841b
MZ
123 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
124 (vcpu->vcpu_id & 3));
e8c2d99f
JA
125}
126
127/* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
128static bool access_actlr(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
131{
132 if (p->is_write)
133 return ignore_write(vcpu, p);
134
fb32a52a 135 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
e8c2d99f
JA
136 return true;
137}
138
139/* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
140static bool access_cbar(struct kvm_vcpu *vcpu,
141 const struct coproc_params *p,
142 const struct coproc_reg *r)
143{
144 if (p->is_write)
145 return write_to_read_only(vcpu, p);
146 return read_zero(vcpu, p);
147}
148
149/* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
150static bool access_l2ctlr(struct kvm_vcpu *vcpu,
151 const struct coproc_params *p,
152 const struct coproc_reg *r)
153{
154 if (p->is_write)
155 return ignore_write(vcpu, p);
156
fb32a52a 157 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
e8c2d99f
JA
158 return true;
159}
160
161static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
162{
163 u32 l2ctlr, ncores;
164
165 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
166 l2ctlr &= ~(3 << 24);
167 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
9cbb6d96
MZ
168 /* How many cores in the current cluster and the next ones */
169 ncores -= (vcpu->vcpu_id & ~3);
170 /* Cap it to the maximum number of cores in a single cluster */
171 ncores = min(ncores, 3U);
e8c2d99f
JA
172 l2ctlr |= (ncores & 3) << 24;
173
fb32a52a 174 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
e8c2d99f
JA
175}
176
177static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
178{
179 u32 actlr;
180
181 /* ACTLR contains SMP bit: make sure you create all cpus first! */
182 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
183 /* Make the SMP bit consistent with the guest configuration */
184 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
185 actlr |= 1U << 6;
186 else
187 actlr &= ~(1U << 6);
188
fb32a52a 189 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
e8c2d99f
JA
190}
191
192/*
193 * TRM entries: A7:4.3.50, A15:4.3.49
194 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
195 */
196static bool access_l2ectlr(struct kvm_vcpu *vcpu,
197 const struct coproc_params *p,
198 const struct coproc_reg *r)
199{
200 if (p->is_write)
201 return ignore_write(vcpu, p);
202
203 *vcpu_reg(vcpu, p->Rt1) = 0;
204 return true;
205}
206
3c1e7165
MZ
207/*
208 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
209 */
5b3e5e5b
CD
210static bool access_dcsw(struct kvm_vcpu *vcpu,
211 const struct coproc_params *p,
212 const struct coproc_reg *r)
213{
5b3e5e5b
CD
214 if (!p->is_write)
215 return read_from_write_only(vcpu, p);
216
3c1e7165 217 kvm_set_way_flush(vcpu);
5b3e5e5b
CD
218 return true;
219}
220
8034699a
MZ
221/*
222 * Generic accessor for VM registers. Only called as long as HCR_TVM
3c1e7165
MZ
223 * is set. If the guest enables the MMU, we stop trapping the VM
224 * sys_regs and leave it in complete control of the caches.
225 *
226 * Used by the cpu-specific code.
8034699a 227 */
3c1e7165
MZ
228bool access_vm_reg(struct kvm_vcpu *vcpu,
229 const struct coproc_params *p,
230 const struct coproc_reg *r)
8034699a 231{
3c1e7165
MZ
232 bool was_enabled = vcpu_has_cache_enabled(vcpu);
233
8034699a
MZ
234 BUG_ON(!p->is_write);
235
fb32a52a 236 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
8034699a 237 if (p->is_64bit)
fb32a52a 238 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
8034699a 239
3c1e7165 240 kvm_toggle_cache(vcpu, was_enabled);
8034699a
MZ
241 return true;
242}
243
acda5430
VM
244static bool access_gic_sgi(struct kvm_vcpu *vcpu,
245 const struct coproc_params *p,
246 const struct coproc_reg *r)
247{
248 u64 reg;
3e8a8a50 249 bool g1;
acda5430
VM
250
251 if (!p->is_write)
252 return read_from_write_only(vcpu, p);
253
254 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
255 reg |= *vcpu_reg(vcpu, p->Rt1) ;
256
3e8a8a50
MZ
257 /*
258 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
259 * Group0 SGIs only, while ICC_SGI1R can generate either group,
260 * depending on the SGI configuration. ICC_ASGI1R is effectively
261 * equivalent to ICC_SGI0R, as there is no "alternative" secure
262 * group.
263 */
264 switch (p->Op1) {
265 default: /* Keep GCC quiet */
266 case 0: /* ICC_SGI1R */
267 g1 = true;
268 break;
269 case 1: /* ICC_ASGI1R */
270 case 2: /* ICC_SGI0R */
271 g1 = false;
272 break;
273 }
274
275 vgic_v3_dispatch_sgi(vcpu, reg, g1);
acda5430
VM
276
277 return true;
278}
279
280static bool access_gic_sre(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
283{
284 if (p->is_write)
285 return ignore_write(vcpu, p);
286
287 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
288
289 return true;
290}
291
b9fb1739
JF
292static bool access_cntp_tval(struct kvm_vcpu *vcpu,
293 const struct coproc_params *p,
294 const struct coproc_reg *r)
295{
84135d3d 296 u32 val;
b9fb1739
JF
297
298 if (p->is_write) {
299 val = *vcpu_reg(vcpu, p->Rt1);
84135d3d
AP
300 kvm_arm_timer_write_sysreg(vcpu,
301 TIMER_PTIMER, TIMER_REG_TVAL, val);
b9fb1739 302 } else {
84135d3d
AP
303 val = kvm_arm_timer_read_sysreg(vcpu,
304 TIMER_PTIMER, TIMER_REG_TVAL);
305 *vcpu_reg(vcpu, p->Rt1) = val;
b9fb1739
JF
306 }
307
308 return true;
309}
310
311static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
312 const struct coproc_params *p,
313 const struct coproc_reg *r)
314{
315 u32 val;
316
317 if (p->is_write) {
318 val = *vcpu_reg(vcpu, p->Rt1);
84135d3d
AP
319 kvm_arm_timer_write_sysreg(vcpu,
320 TIMER_PTIMER, TIMER_REG_CTL, val);
b9fb1739 321 } else {
84135d3d
AP
322 val = kvm_arm_timer_read_sysreg(vcpu,
323 TIMER_PTIMER, TIMER_REG_CTL);
b9fb1739
JF
324 *vcpu_reg(vcpu, p->Rt1) = val;
325 }
326
327 return true;
328}
329
330static bool access_cntp_cval(struct kvm_vcpu *vcpu,
331 const struct coproc_params *p,
332 const struct coproc_reg *r)
333{
334 u64 val;
335
336 if (p->is_write) {
337 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
338 val |= *vcpu_reg(vcpu, p->Rt1);
84135d3d
AP
339 kvm_arm_timer_write_sysreg(vcpu,
340 TIMER_PTIMER, TIMER_REG_CVAL, val);
b9fb1739 341 } else {
84135d3d
AP
342 val = kvm_arm_timer_read_sysreg(vcpu,
343 TIMER_PTIMER, TIMER_REG_CVAL);
b9fb1739
JF
344 *vcpu_reg(vcpu, p->Rt1) = val;
345 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
346 }
347
348 return true;
349}
350
5b3e5e5b
CD
351/*
352 * We could trap ID_DFR0 and tell the guest we don't support performance
353 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
354 * NAKed, so it will read the PMCR anyway.
355 *
356 * Therefore we tell the guest we have 0 counters. Unfortunately, we
357 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
358 * all PM registers, which doesn't crash the guest kernel at least.
359 */
9b619a8f 360static bool trap_raz_wi(struct kvm_vcpu *vcpu,
5b3e5e5b
CD
361 const struct coproc_params *p,
362 const struct coproc_reg *r)
363{
364 if (p->is_write)
365 return ignore_write(vcpu, p);
366 else
367 return read_zero(vcpu, p);
368}
369
9b619a8f
ZH
370#define access_pmcr trap_raz_wi
371#define access_pmcntenset trap_raz_wi
372#define access_pmcntenclr trap_raz_wi
373#define access_pmovsr trap_raz_wi
374#define access_pmselr trap_raz_wi
375#define access_pmceid0 trap_raz_wi
376#define access_pmceid1 trap_raz_wi
377#define access_pmccntr trap_raz_wi
378#define access_pmxevtyper trap_raz_wi
379#define access_pmxevcntr trap_raz_wi
380#define access_pmuserenr trap_raz_wi
381#define access_pmintenset trap_raz_wi
382#define access_pmintenclr trap_raz_wi
5b3e5e5b
CD
383
384/* Architected CP15 registers.
240e99cb
CD
385 * CRn denotes the primary register number, but is copied to the CRm in the
386 * user space API for 64-bit register access in line with the terminology used
387 * in the ARM ARM.
388 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
389 * registers preceding 32-bit ones.
5b3e5e5b
CD
390 */
391static const struct coproc_reg cp15_regs[] = {
e8c2d99f
JA
392 /* MPIDR: we use VMPIDR for guest access. */
393 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
394 NULL, reset_mpidr, c0_MPIDR },
395
5b3e5e5b
CD
396 /* CSSELR: swapped by interrupt.S. */
397 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
398 NULL, reset_unknown, c0_CSSELR },
399
e8c2d99f
JA
400 /* ACTLR: trapped by HCR.TAC bit. */
401 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
402 access_actlr, reset_actlr, c1_ACTLR },
403
404 /* CPACR: swapped by interrupt.S. */
405 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
406 NULL, reset_val, c1_CPACR, 0x00000000 },
407
8034699a
MZ
408 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
409 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
410 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
411 access_vm_reg, reset_unknown, c2_TTBR0 },
412 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
413 access_vm_reg, reset_unknown, c2_TTBR1 },
5b3e5e5b 414 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
8034699a
MZ
415 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
416 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
417
5b3e5e5b
CD
418
419 /* DACR: swapped by interrupt.S. */
420 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
8034699a 421 access_vm_reg, reset_unknown, c3_DACR },
5b3e5e5b
CD
422
423 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
424 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
8034699a 425 access_vm_reg, reset_unknown, c5_DFSR },
5b3e5e5b 426 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
8034699a 427 access_vm_reg, reset_unknown, c5_IFSR },
5b3e5e5b 428 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
8034699a 429 access_vm_reg, reset_unknown, c5_ADFSR },
5b3e5e5b 430 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
8034699a 431 access_vm_reg, reset_unknown, c5_AIFSR },
5b3e5e5b
CD
432
433 /* DFAR/IFAR: swapped by interrupt.S. */
434 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
8034699a 435 access_vm_reg, reset_unknown, c6_DFAR },
5b3e5e5b 436 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
8034699a 437 access_vm_reg, reset_unknown, c6_IFAR },
6a077e4a
MZ
438
439 /* PAR swapped by interrupt.S */
240e99cb 440 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
6a077e4a 441
5b3e5e5b
CD
442 /*
443 * DC{C,I,CI}SW operations:
444 */
445 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
446 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
447 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
e8c2d99f
JA
448 /*
449 * L2CTLR access (guest wants to know #CPUs).
450 */
451 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
452 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
453 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
454
5b3e5e5b
CD
455 /*
456 * Dummy performance monitor implementation.
457 */
458 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
459 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
460 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
461 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
462 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
463 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
464 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
465 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
466 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
467 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
468 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
469 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
470 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
471
472 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
473 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
8034699a 474 access_vm_reg, reset_unknown, c10_PRRR},
5b3e5e5b 475 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
8034699a 476 access_vm_reg, reset_unknown, c10_NMRR},
5b3e5e5b 477
af20814e
MZ
478 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
479 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
480 access_vm_reg, reset_unknown, c10_AMAIR0},
481 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
482 access_vm_reg, reset_unknown, c10_AMAIR1},
483
acda5430
VM
484 /* ICC_SGI1R */
485 { CRm64(12), Op1( 0), is64, access_gic_sgi},
486
5b3e5e5b
CD
487 /* VBAR: swapped by interrupt.S. */
488 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
489 NULL, reset_val, c12_VBAR, 0x00000000 },
490
ec876f4b
MZ
491 /* ICC_ASGI1R */
492 { CRm64(12), Op1( 1), is64, access_gic_sgi},
493 /* ICC_SGI0R */
494 { CRm64(12), Op1( 2), is64, access_gic_sgi},
acda5430
VM
495 /* ICC_SRE */
496 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
497
5b3e5e5b
CD
498 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
499 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
8034699a 500 access_vm_reg, reset_val, c13_CID, 0x00000000 },
5b3e5e5b
CD
501 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
502 NULL, reset_unknown, c13_TID_URW },
503 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
504 NULL, reset_unknown, c13_TID_URO },
505 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
506 NULL, reset_unknown, c13_TID_PRIV },
c7e3ba64 507
b9fb1739
JF
508 /* CNTP */
509 { CRm64(14), Op1( 2), is64, access_cntp_cval},
510
c7e3ba64
MZ
511 /* CNTKCTL: swapped by interrupt.S. */
512 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
513 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
e8c2d99f 514
b9fb1739
JF
515 /* CNTP */
516 { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
517 { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
518
e8c2d99f
JA
519 /* The Configuration Base Address Register. */
520 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
5b3e5e5b
CD
521};
522
b613f59d
MZ
523static int check_reg_table(const struct coproc_reg *table, unsigned int n)
524{
525 unsigned int i;
526
527 for (i = 1; i < n; i++) {
528 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
529 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
530 return 1;
531 }
532 }
533
534 return 0;
535}
536
5b3e5e5b
CD
537/* Target specific emulation tables */
538static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
539
540void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
541{
b613f59d 542 BUG_ON(check_reg_table(table->table, table->num));
5b3e5e5b
CD
543 target_tables[table->target] = table;
544}
545
546/* Get specific register table for this target. */
547static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
548{
549 struct kvm_coproc_target_table *table;
550
551 table = target_tables[target];
552 *num = table->num;
553 return table->table;
554}
555
d06a5440
MZ
556#define reg_to_match_value(x) \
557 ({ \
558 unsigned long val; \
559 val = (x)->CRn << 11; \
560 val |= (x)->CRm << 7; \
561 val |= (x)->Op1 << 4; \
562 val |= (x)->Op2 << 1; \
563 val |= !(x)->is_64bit; \
564 val; \
565 })
566
567static int match_reg(const void *key, const void *elt)
568{
569 const unsigned long pval = (unsigned long)key;
570 const struct coproc_reg *r = elt;
571
572 return pval - reg_to_match_value(r);
573}
574
5b3e5e5b
CD
575static const struct coproc_reg *find_reg(const struct coproc_params *params,
576 const struct coproc_reg table[],
577 unsigned int num)
578{
d06a5440 579 unsigned long pval = reg_to_match_value(params);
5b3e5e5b 580
d06a5440 581 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
5b3e5e5b
CD
582}
583
584static int emulate_cp15(struct kvm_vcpu *vcpu,
585 const struct coproc_params *params)
586{
587 size_t num;
588 const struct coproc_reg *table, *r;
589
590 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
591 params->CRm, params->Op2, params->is_write);
592
593 table = get_target_table(vcpu->arch.target, &num);
594
595 /* Search target-specific then generic table. */
596 r = find_reg(params, table, num);
597 if (!r)
598 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
599
600 if (likely(r)) {
601 /* If we don't have an accessor, we should never get here! */
602 BUG_ON(!r->access);
603
604 if (likely(r->access(vcpu, params, r))) {
605 /* Skip instruction, since it was emulated */
23b415d6 606 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
5b3e5e5b 607 }
5b3e5e5b 608 } else {
9d0d4d34 609 /* If access function fails, it should complain. */
d1878af3
MR
610 kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
611 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
5b3e5e5b 612 print_cp_instr(params);
9d0d4d34 613 kvm_inject_undefined(vcpu);
5b3e5e5b 614 }
9d0d4d34 615
5b3e5e5b
CD
616 return 1;
617}
618
661e6b02 619static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
5b3e5e5b
CD
620{
621 struct coproc_params params;
622
46c214dd 623 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
7393b599
MZ
624 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
625 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
626 params.is_64bit = true;
627
7393b599 628 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
5b3e5e5b 629 params.Op2 = 0;
7393b599 630 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
46c214dd 631 params.CRm = 0;
5b3e5e5b 632
661e6b02
ZH
633 return params;
634}
635
636/**
637 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
638 * @vcpu: The VCPU pointer
639 * @run: The kvm_run struct
640 */
641int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
642{
643 struct coproc_params params = decode_64bit_hsr(vcpu);
644
5b3e5e5b
CD
645 return emulate_cp15(vcpu, &params);
646}
647
661e6b02
ZH
648/**
649 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
650 * @vcpu: The VCPU pointer
651 * @run: The kvm_run struct
652 */
653int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
654{
655 struct coproc_params params = decode_64bit_hsr(vcpu);
656
657 /* raz_wi cp14 */
9b619a8f 658 trap_raz_wi(vcpu, &params, NULL);
661e6b02
ZH
659
660 /* handled */
661 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
662 return 1;
663}
664
5b3e5e5b
CD
665static void reset_coproc_regs(struct kvm_vcpu *vcpu,
666 const struct coproc_reg *table, size_t num)
667{
668 unsigned long i;
669
670 for (i = 0; i < num; i++)
671 if (table[i].reset)
672 table[i].reset(vcpu, &table[i]);
673}
674
661e6b02 675static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
5b3e5e5b
CD
676{
677 struct coproc_params params;
678
7393b599
MZ
679 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
680 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
681 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
5b3e5e5b
CD
682 params.is_64bit = false;
683
7393b599
MZ
684 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
685 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
686 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
5b3e5e5b
CD
687 params.Rt2 = 0;
688
661e6b02
ZH
689 return params;
690}
691
692/**
693 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
694 * @vcpu: The VCPU pointer
695 * @run: The kvm_run struct
696 */
697int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
698{
699 struct coproc_params params = decode_32bit_hsr(vcpu);
5b3e5e5b
CD
700 return emulate_cp15(vcpu, &params);
701}
702
661e6b02
ZH
703/**
704 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
705 * @vcpu: The VCPU pointer
706 * @run: The kvm_run struct
707 */
708int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
709{
710 struct coproc_params params = decode_32bit_hsr(vcpu);
711
712 /* raz_wi cp14 */
9b619a8f 713 trap_raz_wi(vcpu, &params, NULL);
661e6b02
ZH
714
715 /* handled */
716 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
717 return 1;
718}
719
1138245c
CD
720/******************************************************************************
721 * Userspace API
722 *****************************************************************************/
723
724static bool index_to_params(u64 id, struct coproc_params *params)
725{
726 switch (id & KVM_REG_SIZE_MASK) {
727 case KVM_REG_SIZE_U32:
728 /* Any unused index bits means it's not valid. */
729 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
730 | KVM_REG_ARM_COPROC_MASK
731 | KVM_REG_ARM_32_CRN_MASK
732 | KVM_REG_ARM_CRM_MASK
733 | KVM_REG_ARM_OPC1_MASK
734 | KVM_REG_ARM_32_OPC2_MASK))
735 return false;
736
737 params->is_64bit = false;
738 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
739 >> KVM_REG_ARM_32_CRN_SHIFT);
740 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
741 >> KVM_REG_ARM_CRM_SHIFT);
742 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
743 >> KVM_REG_ARM_OPC1_SHIFT);
744 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
745 >> KVM_REG_ARM_32_OPC2_SHIFT);
746 return true;
747 case KVM_REG_SIZE_U64:
748 /* Any unused index bits means it's not valid. */
749 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
750 | KVM_REG_ARM_COPROC_MASK
751 | KVM_REG_ARM_CRM_MASK
752 | KVM_REG_ARM_OPC1_MASK))
753 return false;
754 params->is_64bit = true;
240e99cb
CD
755 /* CRm to CRn: see cp15_to_index for details */
756 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
1138245c
CD
757 >> KVM_REG_ARM_CRM_SHIFT);
758 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
759 >> KVM_REG_ARM_OPC1_SHIFT);
760 params->Op2 = 0;
240e99cb 761 params->CRm = 0;
1138245c
CD
762 return true;
763 default:
764 return false;
765 }
766}
767
768/* Decode an index value, and find the cp15 coproc_reg entry. */
769static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
770 u64 id)
771{
772 size_t num;
773 const struct coproc_reg *table, *r;
774 struct coproc_params params;
775
776 /* We only do cp15 for now. */
777 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
778 return NULL;
779
780 if (!index_to_params(id, &params))
781 return NULL;
782
783 table = get_target_table(vcpu->arch.target, &num);
784 r = find_reg(&params, table, num);
785 if (!r)
786 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
787
788 /* Not saved in the cp15 array? */
789 if (r && !r->reg)
790 r = NULL;
791
792 return r;
793}
794
795/*
796 * These are the invariant cp15 registers: we let the guest see the host
797 * versions of these, so they're part of the guest state.
798 *
799 * A future CPU may provide a mechanism to present different values to
800 * the guest, or a future kvm may trap them.
801 */
802/* Unfortunately, there's no register-argument for mrc, so generate. */
803#define FUNCTION_FOR32(crn, crm, op1, op2, name) \
804 static void get_##name(struct kvm_vcpu *v, \
805 const struct coproc_reg *r) \
806 { \
807 u32 val; \
808 \
809 asm volatile("mrc p15, " __stringify(op1) \
810 ", %0, c" __stringify(crn) \
811 ", c" __stringify(crm) \
812 ", " __stringify(op2) "\n" : "=r" (val)); \
813 ((struct coproc_reg *)r)->val = val; \
814 }
815
816FUNCTION_FOR32(0, 0, 0, 0, MIDR)
817FUNCTION_FOR32(0, 0, 0, 1, CTR)
818FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
819FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
820FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
821FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
822FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
823FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
824FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
825FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
826FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
827FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
828FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
829FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
830FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
831FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
832FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
833FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
834FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
835FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
836FUNCTION_FOR32(0, 0, 1, 7, AIDR)
837
838/* ->val is filled in by kvm_invariant_coproc_table_init() */
839static struct coproc_reg invariant_cp15[] = {
840 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
841 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
842 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
843 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
844 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
845
504bfce1
MZ
846 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
847 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
848
1138245c
CD
849 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
850 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
851 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
852 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
853 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
854 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
855 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
856 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
857
858 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
859 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
860 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
861 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
862 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
863 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
1138245c
CD
864};
865
73891f72
VK
866/*
867 * Reads a register value from a userspace address to a kernel
868 * variable. Make sure that register size matches sizeof(*__val).
869 */
1138245c
CD
870static int reg_from_user(void *val, const void __user *uaddr, u64 id)
871{
1138245c
CD
872 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
873 return -EFAULT;
874 return 0;
875}
876
73891f72
VK
877/*
878 * Writes a register value to a userspace address from a kernel variable.
879 * Make sure that register size matches sizeof(*__val).
880 */
1138245c
CD
881static int reg_to_user(void __user *uaddr, const void *val, u64 id)
882{
1138245c
CD
883 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
884 return -EFAULT;
885 return 0;
886}
887
888static int get_invariant_cp15(u64 id, void __user *uaddr)
889{
890 struct coproc_params params;
891 const struct coproc_reg *r;
73891f72 892 int ret;
1138245c
CD
893
894 if (!index_to_params(id, &params))
895 return -ENOENT;
896
897 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
898 if (!r)
899 return -ENOENT;
900
73891f72
VK
901 ret = -ENOENT;
902 if (KVM_REG_SIZE(id) == 4) {
903 u32 val = r->val;
904
905 ret = reg_to_user(uaddr, &val, id);
906 } else if (KVM_REG_SIZE(id) == 8) {
907 ret = reg_to_user(uaddr, &r->val, id);
908 }
909 return ret;
1138245c
CD
910}
911
912static int set_invariant_cp15(u64 id, void __user *uaddr)
913{
914 struct coproc_params params;
915 const struct coproc_reg *r;
916 int err;
73891f72 917 u64 val;
1138245c
CD
918
919 if (!index_to_params(id, &params))
920 return -ENOENT;
921 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
922 if (!r)
923 return -ENOENT;
924
73891f72
VK
925 err = -ENOENT;
926 if (KVM_REG_SIZE(id) == 4) {
927 u32 val32;
928
929 err = reg_from_user(&val32, uaddr, id);
930 if (!err)
931 val = val32;
932 } else if (KVM_REG_SIZE(id) == 8) {
933 err = reg_from_user(&val, uaddr, id);
934 }
1138245c
CD
935 if (err)
936 return err;
937
938 /* This is what we mean by invariant: you can't change it. */
939 if (r->val != val)
940 return -EINVAL;
941
942 return 0;
943}
944
c27581ed
CD
945static bool is_valid_cache(u32 val)
946{
947 u32 level, ctype;
948
949 if (val >= CSSELR_MAX)
18d45766 950 return false;
c27581ed
CD
951
952 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
953 level = (val >> 1);
954 ctype = (cache_levels >> (level * 3)) & 7;
955
956 switch (ctype) {
957 case 0: /* No cache */
958 return false;
959 case 1: /* Instruction cache only */
960 return (val & 1);
961 case 2: /* Data cache only */
962 case 4: /* Unified cache */
963 return !(val & 1);
964 case 3: /* Separate instruction and data caches */
965 return true;
966 default: /* Reserved: we can't know instruction or data. */
967 return false;
968 }
969}
970
971/* Which cache CCSIDR represents depends on CSSELR value. */
972static u32 get_ccsidr(u32 csselr)
973{
974 u32 ccsidr;
975
976 /* Make sure noone else changes CSSELR during this! */
977 local_irq_disable();
978 /* Put value into CSSELR */
979 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
980 isb();
981 /* Read result out of CCSIDR */
982 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
983 local_irq_enable();
984
985 return ccsidr;
986}
987
988static int demux_c15_get(u64 id, void __user *uaddr)
989{
990 u32 val;
991 u32 __user *uval = uaddr;
992
993 /* Fail if we have unknown bits set. */
994 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
995 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
996 return -ENOENT;
997
998 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
999 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1000 if (KVM_REG_SIZE(id) != 4)
1001 return -ENOENT;
1002 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1003 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1004 if (!is_valid_cache(val))
1005 return -ENOENT;
1006
1007 return put_user(get_ccsidr(val), uval);
1008 default:
1009 return -ENOENT;
1010 }
1011}
1012
1013static int demux_c15_set(u64 id, void __user *uaddr)
1014{
1015 u32 val, newval;
1016 u32 __user *uval = uaddr;
1017
1018 /* Fail if we have unknown bits set. */
1019 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1020 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1021 return -ENOENT;
1022
1023 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1024 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1025 if (KVM_REG_SIZE(id) != 4)
1026 return -ENOENT;
1027 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1028 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1029 if (!is_valid_cache(val))
1030 return -ENOENT;
1031
1032 if (get_user(newval, uval))
1033 return -EFAULT;
1034
1035 /* This is also invariant: you can't change it. */
1036 if (newval != get_ccsidr(val))
1037 return -EINVAL;
1038 return 0;
1039 default:
1040 return -ENOENT;
1041 }
1042}
1043
4fe21e4c
RR
1044#ifdef CONFIG_VFPv3
1045static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1046 KVM_REG_ARM_VFP_FPSCR,
1047 KVM_REG_ARM_VFP_FPINST,
1048 KVM_REG_ARM_VFP_FPINST2,
1049 KVM_REG_ARM_VFP_MVFR0,
1050 KVM_REG_ARM_VFP_MVFR1,
1051 KVM_REG_ARM_VFP_FPSID };
1052
1053static unsigned int num_fp_regs(void)
1054{
1055 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1056 return 32;
1057 else
1058 return 16;
1059}
1060
1061static unsigned int num_vfp_regs(void)
1062{
1063 /* Normal FP regs + control regs. */
1064 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1065}
1066
1067static int copy_vfp_regids(u64 __user *uindices)
1068{
1069 unsigned int i;
1070 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1071 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1072
1073 for (i = 0; i < num_fp_regs(); i++) {
1074 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1075 uindices))
1076 return -EFAULT;
1077 uindices++;
1078 }
1079
1080 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1081 if (put_user(u32reg | vfp_sysregs[i], uindices))
1082 return -EFAULT;
1083 uindices++;
1084 }
1085
1086 return num_vfp_regs();
1087}
1088
1089static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1090{
1091 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1092 u32 val;
1093
1094 /* Fail if we have unknown bits set. */
1095 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1096 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1097 return -ENOENT;
1098
1099 if (vfpid < num_fp_regs()) {
1100 if (KVM_REG_SIZE(id) != 8)
1101 return -ENOENT;
0ca5565d 1102 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
4fe21e4c
RR
1103 id);
1104 }
1105
1106 /* FP control registers are all 32 bit. */
1107 if (KVM_REG_SIZE(id) != 4)
1108 return -ENOENT;
1109
1110 switch (vfpid) {
1111 case KVM_REG_ARM_VFP_FPEXC:
0ca5565d 1112 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
4fe21e4c 1113 case KVM_REG_ARM_VFP_FPSCR:
0ca5565d 1114 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
4fe21e4c 1115 case KVM_REG_ARM_VFP_FPINST:
0ca5565d 1116 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
4fe21e4c 1117 case KVM_REG_ARM_VFP_FPINST2:
0ca5565d 1118 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
4fe21e4c
RR
1119 case KVM_REG_ARM_VFP_MVFR0:
1120 val = fmrx(MVFR0);
1121 return reg_to_user(uaddr, &val, id);
1122 case KVM_REG_ARM_VFP_MVFR1:
1123 val = fmrx(MVFR1);
1124 return reg_to_user(uaddr, &val, id);
1125 case KVM_REG_ARM_VFP_FPSID:
1126 val = fmrx(FPSID);
1127 return reg_to_user(uaddr, &val, id);
1128 default:
1129 return -ENOENT;
1130 }
1131}
1132
1133static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1134{
1135 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1136 u32 val;
1137
1138 /* Fail if we have unknown bits set. */
1139 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1140 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1141 return -ENOENT;
1142
1143 if (vfpid < num_fp_regs()) {
1144 if (KVM_REG_SIZE(id) != 8)
1145 return -ENOENT;
0ca5565d 1146 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
4fe21e4c
RR
1147 uaddr, id);
1148 }
1149
1150 /* FP control registers are all 32 bit. */
1151 if (KVM_REG_SIZE(id) != 4)
1152 return -ENOENT;
1153
1154 switch (vfpid) {
1155 case KVM_REG_ARM_VFP_FPEXC:
0ca5565d 1156 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
4fe21e4c 1157 case KVM_REG_ARM_VFP_FPSCR:
0ca5565d 1158 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
4fe21e4c 1159 case KVM_REG_ARM_VFP_FPINST:
0ca5565d 1160 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
4fe21e4c 1161 case KVM_REG_ARM_VFP_FPINST2:
0ca5565d 1162 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
4fe21e4c
RR
1163 /* These are invariant. */
1164 case KVM_REG_ARM_VFP_MVFR0:
1165 if (reg_from_user(&val, uaddr, id))
1166 return -EFAULT;
1167 if (val != fmrx(MVFR0))
1168 return -EINVAL;
1169 return 0;
1170 case KVM_REG_ARM_VFP_MVFR1:
1171 if (reg_from_user(&val, uaddr, id))
1172 return -EFAULT;
1173 if (val != fmrx(MVFR1))
1174 return -EINVAL;
1175 return 0;
1176 case KVM_REG_ARM_VFP_FPSID:
1177 if (reg_from_user(&val, uaddr, id))
1178 return -EFAULT;
1179 if (val != fmrx(FPSID))
1180 return -EINVAL;
1181 return 0;
1182 default:
1183 return -ENOENT;
1184 }
1185}
1186#else /* !CONFIG_VFPv3 */
1187static unsigned int num_vfp_regs(void)
1188{
1189 return 0;
1190}
1191
1192static int copy_vfp_regids(u64 __user *uindices)
1193{
1194 return 0;
1195}
1196
1197static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1198{
1199 return -ENOENT;
1200}
1201
1202static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1203{
1204 return -ENOENT;
1205}
1206#endif /* !CONFIG_VFPv3 */
1207
1138245c
CD
1208int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1209{
1210 const struct coproc_reg *r;
1211 void __user *uaddr = (void __user *)(long)reg->addr;
73891f72 1212 int ret;
1138245c 1213
c27581ed
CD
1214 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1215 return demux_c15_get(reg->id, uaddr);
1216
4fe21e4c
RR
1217 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1218 return vfp_get_reg(vcpu, reg->id, uaddr);
1219
1138245c
CD
1220 r = index_to_coproc_reg(vcpu, reg->id);
1221 if (!r)
1222 return get_invariant_cp15(reg->id, uaddr);
1223
73891f72
VK
1224 ret = -ENOENT;
1225 if (KVM_REG_SIZE(reg->id) == 8) {
1226 u64 val;
1227
1228 val = vcpu_cp15_reg64_get(vcpu, r);
1229 ret = reg_to_user(uaddr, &val, reg->id);
1230 } else if (KVM_REG_SIZE(reg->id) == 4) {
fb32a52a 1231 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
73891f72
VK
1232 }
1233
1234 return ret;
1138245c
CD
1235}
1236
1237int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1238{
1239 const struct coproc_reg *r;
1240 void __user *uaddr = (void __user *)(long)reg->addr;
73891f72 1241 int ret;
1138245c 1242
c27581ed
CD
1243 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1244 return demux_c15_set(reg->id, uaddr);
1245
4fe21e4c
RR
1246 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1247 return vfp_set_reg(vcpu, reg->id, uaddr);
1248
1138245c
CD
1249 r = index_to_coproc_reg(vcpu, reg->id);
1250 if (!r)
1251 return set_invariant_cp15(reg->id, uaddr);
1252
73891f72
VK
1253 ret = -ENOENT;
1254 if (KVM_REG_SIZE(reg->id) == 8) {
1255 u64 val;
1256
1257 ret = reg_from_user(&val, uaddr, reg->id);
1258 if (!ret)
1259 vcpu_cp15_reg64_set(vcpu, r, val);
1260 } else if (KVM_REG_SIZE(reg->id) == 4) {
fb32a52a 1261 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
73891f72
VK
1262 }
1263
1264 return ret;
1138245c
CD
1265}
1266
c27581ed
CD
1267static unsigned int num_demux_regs(void)
1268{
1269 unsigned int i, count = 0;
1270
1271 for (i = 0; i < CSSELR_MAX; i++)
1272 if (is_valid_cache(i))
1273 count++;
1274
1275 return count;
1276}
1277
1278static int write_demux_regids(u64 __user *uindices)
1279{
1280 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1281 unsigned int i;
1282
1283 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1284 for (i = 0; i < CSSELR_MAX; i++) {
1285 if (!is_valid_cache(i))
1286 continue;
1287 if (put_user(val | i, uindices))
1288 return -EFAULT;
1289 uindices++;
1290 }
1291 return 0;
1292}
1293
1138245c
CD
1294static u64 cp15_to_index(const struct coproc_reg *reg)
1295{
1296 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
f1d67d4a 1297 if (reg->is_64bit) {
1138245c
CD
1298 val |= KVM_REG_SIZE_U64;
1299 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
240e99cb
CD
1300 /*
1301 * CRn always denotes the primary coproc. reg. nr. for the
1302 * in-kernel representation, but the user space API uses the
1303 * CRm for the encoding, because it is modelled after the
1304 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1305 * B3-1445
1306 */
1307 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1138245c
CD
1308 } else {
1309 val |= KVM_REG_SIZE_U32;
1310 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1311 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1312 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1313 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1314 }
1315 return val;
1316}
1317
1318static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1319{
1320 if (!*uind)
1321 return true;
1322
1323 if (put_user(cp15_to_index(reg), *uind))
1324 return false;
1325
1326 (*uind)++;
1327 return true;
1328}
1329
1330/* Assumed ordered tables, see kvm_coproc_table_init. */
1331static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1332{
1333 const struct coproc_reg *i1, *i2, *end1, *end2;
1334 unsigned int total = 0;
1335 size_t num;
1336
1337 /* We check for duplicates here, to allow arch-specific overrides. */
1338 i1 = get_target_table(vcpu->arch.target, &num);
1339 end1 = i1 + num;
1340 i2 = cp15_regs;
1341 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1342
1343 BUG_ON(i1 == end1 || i2 == end2);
1344
1345 /* Walk carefully, as both tables may refer to the same register. */
1346 while (i1 || i2) {
1347 int cmp = cmp_reg(i1, i2);
1348 /* target-specific overrides generic entry. */
1349 if (cmp <= 0) {
1350 /* Ignore registers we trap but don't save. */
1351 if (i1->reg) {
1352 if (!copy_reg_to_user(i1, &uind))
1353 return -EFAULT;
1354 total++;
1355 }
1356 } else {
1357 /* Ignore registers we trap but don't save. */
1358 if (i2->reg) {
1359 if (!copy_reg_to_user(i2, &uind))
1360 return -EFAULT;
1361 total++;
1362 }
1363 }
1364
1365 if (cmp <= 0 && ++i1 == end1)
1366 i1 = NULL;
1367 if (cmp >= 0 && ++i2 == end2)
1368 i2 = NULL;
1369 }
1370 return total;
1371}
1372
1373unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1374{
1375 return ARRAY_SIZE(invariant_cp15)
c27581ed 1376 + num_demux_regs()
4fe21e4c 1377 + num_vfp_regs()
1138245c
CD
1378 + walk_cp15(vcpu, (u64 __user *)NULL);
1379}
1380
1381int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1382{
1383 unsigned int i;
1384 int err;
1385
1386 /* Then give them all the invariant registers' indices. */
1387 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1388 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1389 return -EFAULT;
1390 uindices++;
1391 }
1392
1393 err = walk_cp15(vcpu, uindices);
c27581ed
CD
1394 if (err < 0)
1395 return err;
1396 uindices += err;
1397
4fe21e4c
RR
1398 err = copy_vfp_regids(uindices);
1399 if (err < 0)
1400 return err;
1401 uindices += err;
1402
c27581ed 1403 return write_demux_regids(uindices);
1138245c
CD
1404}
1405
5b3e5e5b
CD
1406void kvm_coproc_table_init(void)
1407{
1408 unsigned int i;
1409
1410 /* Make sure tables are unique and in order. */
b613f59d
MZ
1411 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1412 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1138245c
CD
1413
1414 /* We abuse the reset function to overwrite the table itself. */
1415 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1416 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
c27581ed
CD
1417
1418 /*
1419 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1420 *
1421 * If software reads the Cache Type fields from Ctype1
1422 * upwards, once it has seen a value of 0b000, no caches
1423 * exist at further-out levels of the hierarchy. So, for
1424 * example, if Ctype3 is the first Cache Type field with a
1425 * value of 0b000, the values of Ctype4 to Ctype7 must be
1426 * ignored.
1427 */
1428 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1429 for (i = 0; i < 7; i++)
1430 if (((cache_levels >> (i*3)) & 7) == 0)
1431 break;
1432 /* Clear all higher bits. */
1433 cache_levels &= (1 << (i*3))-1;
5b3e5e5b
CD
1434}
1435
1436/**
1437 * kvm_reset_coprocs - sets cp15 registers to reset value
1438 * @vcpu: The VCPU pointer
1439 *
1440 * This function finds the right table above and sets the registers on the
1441 * virtual CPU struct to their architecturally defined reset values.
1442 */
749cf76c
CD
1443void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1444{
5b3e5e5b
CD
1445 size_t num;
1446 const struct coproc_reg *table;
1447
1448 /* Catch someone adding a register without putting in reset entry. */
fb32a52a 1449 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
5b3e5e5b
CD
1450
1451 /* Generic chip reset first (so target could override). */
1452 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1453
1454 table = get_target_table(vcpu->arch.target, &num);
1455 reset_coproc_regs(vcpu, table, num);
1456
1457 for (num = 1; num < NR_CP15_REGS; num++)
20589c8c
MZ
1458 WARN(vcpu_cp15(vcpu, num) == 0x42424242,
1459 "Didn't reset vcpu_cp15(vcpu, %zi)", num);
749cf76c 1460}