lguest: Simplify device initialization.
[linux-2.6-block.git] / Documentation / virtual / lguest / lguest.c
CommitLineData
2e04ef76
RR
1/*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6:*/
8ca47e00
RR
7#define _LARGEFILE64_SOURCE
8#define _GNU_SOURCE
9#include <stdio.h>
10#include <string.h>
11#include <unistd.h>
12#include <err.h>
13#include <stdint.h>
14#include <stdlib.h>
15#include <elf.h>
16#include <sys/mman.h>
6649bb7a 17#include <sys/param.h>
8ca47e00
RR
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <sys/wait.h>
659a0e66 21#include <sys/eventfd.h>
8ca47e00
RR
22#include <fcntl.h>
23#include <stdbool.h>
24#include <errno.h>
25#include <ctype.h>
26#include <sys/socket.h>
27#include <sys/ioctl.h>
28#include <sys/time.h>
29#include <time.h>
30#include <netinet/in.h>
31#include <net/if.h>
32#include <linux/sockios.h>
33#include <linux/if_tun.h>
34#include <sys/uio.h>
35#include <termios.h>
36#include <getopt.h>
17cbca2b
RR
37#include <assert.h>
38#include <sched.h>
a586d4f6
RR
39#include <limits.h>
40#include <stddef.h>
a161883a 41#include <signal.h>
8aeb36e8
PS
42#include <pwd.h>
43#include <grp.h>
44
f846619e
RR
45#include <linux/virtio_config.h>
46#include <linux/virtio_net.h>
47#include <linux/virtio_blk.h>
48#include <linux/virtio_console.h>
49#include <linux/virtio_rng.h>
50#include <linux/virtio_ring.h>
51#include <asm/bootparam.h>
bc805a03 52#include "../../../include/linux/lguest_launcher.h"
2e04ef76 53/*L:110
a91d74a3 54 * We can ignore the 42 include files we need for this program, but I do want
2e04ef76 55 * to draw attention to the use of kernel-style types.
db24e8c2
RR
56 *
57 * As Linus said, "C is a Spartan language, and so should your naming be." I
58 * like these abbreviations, so we define them here. Note that u64 is always
59 * unsigned long long, which works on all Linux systems: this means that we can
2e04ef76
RR
60 * use %llu in printf for any u64.
61 */
db24e8c2
RR
62typedef unsigned long long u64;
63typedef uint32_t u32;
64typedef uint16_t u16;
65typedef uint8_t u8;
dde79789 66/*:*/
8ca47e00
RR
67
68#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
8ca47e00
RR
69#define BRIDGE_PFX "bridge:"
70#ifndef SIOCBRADDIF
71#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
72#endif
3c6b5bfa
RR
73/* We can have up to 256 pages for devices. */
74#define DEVICE_PAGES 256
0f0c4fab
RR
75/* This will occupy 3 pages: it must be a power of 2. */
76#define VIRTQUEUE_NUM 256
8ca47e00 77
2e04ef76
RR
78/*L:120
79 * verbose is both a global flag and a macro. The C preprocessor allows
80 * this, and although I wouldn't recommend it, it works quite nicely here.
81 */
8ca47e00
RR
82static bool verbose;
83#define verbose(args...) \
84 do { if (verbose) printf(args); } while(0)
dde79789
RR
85/*:*/
86
3c6b5bfa
RR
87/* The pointer to the start of guest memory. */
88static void *guest_base;
89/* The maximum guest physical address allowed, and maximum possible. */
90static unsigned long guest_limit, guest_max;
56739c80
RR
91/* The /dev/lguest file descriptor. */
92static int lguest_fd;
8ca47e00 93
e3283fa0
GOC
94/* a per-cpu variable indicating whose vcpu is currently running */
95static unsigned int __thread cpu_id;
96
dde79789 97/* This is our list of devices. */
1842f23c 98struct device_list {
17cbca2b
RR
99 /* Counter to assign interrupt numbers. */
100 unsigned int next_irq;
101
102 /* Counter to print out convenient device numbers. */
103 unsigned int device_num;
104
dde79789 105 /* The descriptor page for the devices. */
17cbca2b
RR
106 u8 *descpage;
107
dde79789 108 /* A single linked list of devices. */
8ca47e00 109 struct device *dev;
2e04ef76 110 /* And a pointer to the last device for easy append. */
a586d4f6 111 struct device *lastdev;
8ca47e00
RR
112};
113
17cbca2b
RR
114/* The list of Guest devices, based on command line arguments. */
115static struct device_list devices;
116
dde79789 117/* The device structure describes a single device. */
1842f23c 118struct device {
dde79789 119 /* The linked-list pointer. */
8ca47e00 120 struct device *next;
17cbca2b 121
713b15b3 122 /* The device's descriptor, as mapped into the Guest. */
8ca47e00 123 struct lguest_device_desc *desc;
17cbca2b 124
713b15b3
RR
125 /* We can't trust desc values once Guest has booted: we use these. */
126 unsigned int feature_len;
127 unsigned int num_vq;
128
17cbca2b
RR
129 /* The name of this device, for --verbose. */
130 const char *name;
8ca47e00 131
17cbca2b
RR
132 /* Any queues attached to this device */
133 struct virtqueue *vq;
8ca47e00 134
659a0e66
RR
135 /* Is it operational */
136 bool running;
a007a751 137
8ca47e00
RR
138 /* Device-specific data. */
139 void *priv;
140};
141
17cbca2b 142/* The virtqueue structure describes a queue attached to a device. */
1842f23c 143struct virtqueue {
17cbca2b
RR
144 struct virtqueue *next;
145
146 /* Which device owns me. */
147 struct device *dev;
148
149 /* The configuration for this queue. */
150 struct lguest_vqconfig config;
151
152 /* The actual ring of buffers. */
153 struct vring vring;
154
155 /* Last available index we saw. */
156 u16 last_avail_idx;
157
95c517c0
RR
158 /* How many are used since we sent last irq? */
159 unsigned int pending_used;
160
659a0e66
RR
161 /* Eventfd where Guest notifications arrive. */
162 int eventfd;
20887611 163
659a0e66
RR
164 /* Function for the thread which is servicing this virtqueue. */
165 void (*service)(struct virtqueue *vq);
166 pid_t thread;
17cbca2b
RR
167};
168
ec04b13f
BR
169/* Remember the arguments to the program so we can "reboot" */
170static char **main_args;
171
659a0e66
RR
172/* The original tty settings to restore on exit. */
173static struct termios orig_term;
174
2e04ef76
RR
175/*
176 * We have to be careful with barriers: our devices are all run in separate
f7027c63 177 * threads and so we need to make sure that changes visible to the Guest happen
2e04ef76
RR
178 * in precise order.
179 */
f7027c63 180#define wmb() __asm__ __volatile__("" : : : "memory")
b60da13f 181#define mb() __asm__ __volatile__("" : : : "memory")
17cbca2b 182
2e04ef76
RR
183/*
184 * Convert an iovec element to the given type.
17cbca2b
RR
185 *
186 * This is a fairly ugly trick: we need to know the size of the type and
187 * alignment requirement to check the pointer is kosher. It's also nice to
188 * have the name of the type in case we report failure.
189 *
190 * Typing those three things all the time is cumbersome and error prone, so we
2e04ef76
RR
191 * have a macro which sets them all up and passes to the real function.
192 */
17cbca2b
RR
193#define convert(iov, type) \
194 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
195
196static void *_convert(struct iovec *iov, size_t size, size_t align,
197 const char *name)
198{
199 if (iov->iov_len != size)
200 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
201 if ((unsigned long)iov->iov_base % align != 0)
202 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
203 return iov->iov_base;
204}
205
b5111790
RR
206/* Wrapper for the last available index. Makes it easier to change. */
207#define lg_last_avail(vq) ((vq)->last_avail_idx)
208
2e04ef76
RR
209/*
210 * The virtio configuration space is defined to be little-endian. x86 is
211 * little-endian too, but it's nice to be explicit so we have these helpers.
212 */
17cbca2b
RR
213#define cpu_to_le16(v16) (v16)
214#define cpu_to_le32(v32) (v32)
215#define cpu_to_le64(v64) (v64)
216#define le16_to_cpu(v16) (v16)
217#define le32_to_cpu(v32) (v32)
a586d4f6 218#define le64_to_cpu(v64) (v64)
17cbca2b 219
28fd6d7f
RR
220/* Is this iovec empty? */
221static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
222{
223 unsigned int i;
224
225 for (i = 0; i < num_iov; i++)
226 if (iov[i].iov_len)
227 return false;
228 return true;
229}
230
231/* Take len bytes from the front of this iovec. */
232static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
233{
234 unsigned int i;
235
236 for (i = 0; i < num_iov; i++) {
237 unsigned int used;
238
239 used = iov[i].iov_len < len ? iov[i].iov_len : len;
240 iov[i].iov_base += used;
241 iov[i].iov_len -= used;
242 len -= used;
243 }
244 assert(len == 0);
245}
246
6e5aa7ef
RR
247/* The device virtqueue descriptors are followed by feature bitmasks. */
248static u8 *get_feature_bits(struct device *dev)
249{
250 return (u8 *)(dev->desc + 1)
713b15b3 251 + dev->num_vq * sizeof(struct lguest_vqconfig);
6e5aa7ef
RR
252}
253
2e04ef76
RR
254/*L:100
255 * The Launcher code itself takes us out into userspace, that scary place where
256 * pointers run wild and free! Unfortunately, like most userspace programs,
257 * it's quite boring (which is why everyone likes to hack on the kernel!).
258 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
259 * you through this section. Or, maybe not.
3c6b5bfa
RR
260 *
261 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
262 * memory and stores it in "guest_base". In other words, Guest physical ==
263 * Launcher virtual with an offset.
264 *
265 * This can be tough to get your head around, but usually it just means that we
a33f3224 266 * use these trivial conversion functions when the Guest gives us its
2e04ef76
RR
267 * "physical" addresses:
268 */
3c6b5bfa
RR
269static void *from_guest_phys(unsigned long addr)
270{
271 return guest_base + addr;
272}
273
274static unsigned long to_guest_phys(const void *addr)
275{
276 return (addr - guest_base);
277}
278
dde79789
RR
279/*L:130
280 * Loading the Kernel.
281 *
282 * We start with couple of simple helper routines. open_or_die() avoids
2e04ef76
RR
283 * error-checking code cluttering the callers:
284 */
8ca47e00
RR
285static int open_or_die(const char *name, int flags)
286{
287 int fd = open(name, flags);
288 if (fd < 0)
289 err(1, "Failed to open %s", name);
290 return fd;
291}
292
3c6b5bfa
RR
293/* map_zeroed_pages() takes a number of pages. */
294static void *map_zeroed_pages(unsigned int num)
8ca47e00 295{
3c6b5bfa
RR
296 int fd = open_or_die("/dev/zero", O_RDONLY);
297 void *addr;
8ca47e00 298
2e04ef76
RR
299 /*
300 * We use a private mapping (ie. if we write to the page, it will be
5230ff0c
PS
301 * copied). We allocate an extra two pages PROT_NONE to act as guard
302 * pages against read/write attempts that exceed allocated space.
2e04ef76 303 */
5230ff0c
PS
304 addr = mmap(NULL, getpagesize() * (num+2),
305 PROT_NONE, MAP_PRIVATE, fd, 0);
306
3c6b5bfa 307 if (addr == MAP_FAILED)
af901ca1 308 err(1, "Mmapping %u pages of /dev/zero", num);
a91d74a3 309
5230ff0c
PS
310 if (mprotect(addr + getpagesize(), getpagesize() * num,
311 PROT_READ|PROT_WRITE) == -1)
312 err(1, "mprotect rw %u pages failed", num);
313
a91d74a3
RR
314 /*
315 * One neat mmap feature is that you can close the fd, and it
316 * stays mapped.
317 */
34bdaab4 318 close(fd);
3c6b5bfa 319
5230ff0c
PS
320 /* Return address after PROT_NONE page */
321 return addr + getpagesize();
3c6b5bfa
RR
322}
323
324/* Get some more pages for a device. */
325static void *get_pages(unsigned int num)
326{
327 void *addr = from_guest_phys(guest_limit);
328
329 guest_limit += num * getpagesize();
330 if (guest_limit > guest_max)
331 errx(1, "Not enough memory for devices");
332 return addr;
8ca47e00
RR
333}
334
2e04ef76
RR
335/*
336 * This routine is used to load the kernel or initrd. It tries mmap, but if
6649bb7a 337 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
2e04ef76
RR
338 * it falls back to reading the memory in.
339 */
6649bb7a
RM
340static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
341{
342 ssize_t r;
343
2e04ef76
RR
344 /*
345 * We map writable even though for some segments are marked read-only.
6649bb7a
RM
346 * The kernel really wants to be writable: it patches its own
347 * instructions.
348 *
349 * MAP_PRIVATE means that the page won't be copied until a write is
350 * done to it. This allows us to share untouched memory between
2e04ef76
RR
351 * Guests.
352 */
5230ff0c 353 if (mmap(addr, len, PROT_READ|PROT_WRITE,
6649bb7a
RM
354 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
355 return;
356
357 /* pread does a seek and a read in one shot: saves a few lines. */
358 r = pread(fd, addr, len, offset);
359 if (r != len)
360 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
361}
362
2e04ef76
RR
363/*
364 * This routine takes an open vmlinux image, which is in ELF, and maps it into
dde79789
RR
365 * the Guest memory. ELF = Embedded Linking Format, which is the format used
366 * by all modern binaries on Linux including the kernel.
367 *
368 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
369 * address. We use the physical address; the Guest will map itself to the
370 * virtual address.
dde79789 371 *
2e04ef76
RR
372 * We return the starting address.
373 */
47436aa4 374static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 375{
8ca47e00
RR
376 Elf32_Phdr phdr[ehdr->e_phnum];
377 unsigned int i;
8ca47e00 378
2e04ef76
RR
379 /*
380 * Sanity checks on the main ELF header: an x86 executable with a
381 * reasonable number of correctly-sized program headers.
382 */
8ca47e00
RR
383 if (ehdr->e_type != ET_EXEC
384 || ehdr->e_machine != EM_386
385 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
386 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
387 errx(1, "Malformed elf header");
388
2e04ef76
RR
389 /*
390 * An ELF executable contains an ELF header and a number of "program"
dde79789 391 * headers which indicate which parts ("segments") of the program to
2e04ef76
RR
392 * load where.
393 */
dde79789
RR
394
395 /* We read in all the program headers at once: */
8ca47e00
RR
396 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
397 err(1, "Seeking to program headers");
398 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
399 err(1, "Reading program headers");
400
2e04ef76
RR
401 /*
402 * Try all the headers: there are usually only three. A read-only one,
403 * a read-write one, and a "note" section which we don't load.
404 */
8ca47e00 405 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 406 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
407 if (phdr[i].p_type != PT_LOAD)
408 continue;
409
410 verbose("Section %i: size %i addr %p\n",
411 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
412
6649bb7a 413 /* We map this section of the file at its physical address. */
3c6b5bfa 414 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 415 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
416 }
417
814a0e5c
RR
418 /* The entry point is given in the ELF header. */
419 return ehdr->e_entry;
8ca47e00
RR
420}
421
2e04ef76
RR
422/*L:150
423 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
424 * to jump into it and it will unpack itself. We used to have to perform some
425 * hairy magic because the unpacking code scared me.
dde79789 426 *
5bbf89fc
RR
427 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
428 * a small patch to jump over the tricky bits in the Guest, so now we just read
2e04ef76
RR
429 * the funky header so we know where in the file to load, and away we go!
430 */
47436aa4 431static unsigned long load_bzimage(int fd)
8ca47e00 432{
43d33b21 433 struct boot_params boot;
5bbf89fc
RR
434 int r;
435 /* Modern bzImages get loaded at 1M. */
436 void *p = from_guest_phys(0x100000);
437
2e04ef76
RR
438 /*
439 * Go back to the start of the file and read the header. It should be
440 * a Linux boot header (see Documentation/x86/i386/boot.txt)
441 */
5bbf89fc 442 lseek(fd, 0, SEEK_SET);
43d33b21 443 read(fd, &boot, sizeof(boot));
5bbf89fc 444
43d33b21
RR
445 /* Inside the setup_hdr, we expect the magic "HdrS" */
446 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
447 errx(1, "This doesn't look like a bzImage to me");
448
43d33b21
RR
449 /* Skip over the extra sectors of the header. */
450 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
451
452 /* Now read everything into memory. in nice big chunks. */
453 while ((r = read(fd, p, 65536)) > 0)
454 p += r;
455
43d33b21
RR
456 /* Finally, code32_start tells us where to enter the kernel. */
457 return boot.hdr.code32_start;
8ca47e00
RR
458}
459
2e04ef76
RR
460/*L:140
461 * Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965 462 * come wrapped up in the self-decompressing "bzImage" format. With a little
2e04ef76
RR
463 * work, we can load those, too.
464 */
47436aa4 465static unsigned long load_kernel(int fd)
8ca47e00
RR
466{
467 Elf32_Ehdr hdr;
468
dde79789 469 /* Read in the first few bytes. */
8ca47e00
RR
470 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
471 err(1, "Reading kernel");
472
dde79789 473 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 474 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 475 return map_elf(fd, &hdr);
8ca47e00 476
a6bd8e13 477 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 478 return load_bzimage(fd);
8ca47e00
RR
479}
480
2e04ef76
RR
481/*
482 * This is a trivial little helper to align pages. Andi Kleen hated it because
dde79789
RR
483 * it calls getpagesize() twice: "it's dumb code."
484 *
485 * Kernel guys get really het up about optimization, even when it's not
2e04ef76
RR
486 * necessary. I leave this code as a reaction against that.
487 */
8ca47e00
RR
488static inline unsigned long page_align(unsigned long addr)
489{
dde79789 490 /* Add upwards and truncate downwards. */
8ca47e00
RR
491 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
492}
493
2e04ef76
RR
494/*L:180
495 * An "initial ram disk" is a disk image loaded into memory along with the
496 * kernel which the kernel can use to boot from without needing any drivers.
497 * Most distributions now use this as standard: the initrd contains the code to
498 * load the appropriate driver modules for the current machine.
dde79789
RR
499 *
500 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
2e04ef76
RR
501 * kernels. He sent me this (and tells me when I break it).
502 */
8ca47e00
RR
503static unsigned long load_initrd(const char *name, unsigned long mem)
504{
505 int ifd;
506 struct stat st;
507 unsigned long len;
8ca47e00
RR
508
509 ifd = open_or_die(name, O_RDONLY);
dde79789 510 /* fstat() is needed to get the file size. */
8ca47e00
RR
511 if (fstat(ifd, &st) < 0)
512 err(1, "fstat() on initrd '%s'", name);
513
2e04ef76
RR
514 /*
515 * We map the initrd at the top of memory, but mmap wants it to be
516 * page-aligned, so we round the size up for that.
517 */
8ca47e00 518 len = page_align(st.st_size);
3c6b5bfa 519 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
2e04ef76
RR
520 /*
521 * Once a file is mapped, you can close the file descriptor. It's a
522 * little odd, but quite useful.
523 */
8ca47e00 524 close(ifd);
6649bb7a 525 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
526
527 /* We return the initrd size. */
8ca47e00
RR
528 return len;
529}
e1e72965 530/*:*/
8ca47e00 531
2e04ef76
RR
532/*
533 * Simple routine to roll all the commandline arguments together with spaces
534 * between them.
535 */
8ca47e00
RR
536static void concat(char *dst, char *args[])
537{
538 unsigned int i, len = 0;
539
540 for (i = 0; args[i]; i++) {
1ef36fa6
PB
541 if (i) {
542 strcat(dst+len, " ");
543 len++;
544 }
8ca47e00 545 strcpy(dst+len, args[i]);
1ef36fa6 546 len += strlen(args[i]);
8ca47e00
RR
547 }
548 /* In case it's empty. */
549 dst[len] = '\0';
550}
551
2e04ef76
RR
552/*L:185
553 * This is where we actually tell the kernel to initialize the Guest. We
e1e72965 554 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566 555 * the base of Guest "physical" memory, the top physical page to allow and the
2e04ef76
RR
556 * entry point for the Guest.
557 */
56739c80 558static void tell_kernel(unsigned long start)
8ca47e00 559{
511801dc
JS
560 unsigned long args[] = { LHREQ_INITIALIZE,
561 (unsigned long)guest_base,
58a24566 562 guest_limit / getpagesize(), start };
3c6b5bfa
RR
563 verbose("Guest: %p - %p (%#lx)\n",
564 guest_base, guest_base + guest_limit, guest_limit);
56739c80
RR
565 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
566 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 567 err(1, "Writing to /dev/lguest");
8ca47e00 568}
dde79789 569/*:*/
8ca47e00 570
a91d74a3 571/*L:200
dde79789
RR
572 * Device Handling.
573 *
e1e72965 574 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 575 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 576 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
577 * if something funny is going on:
578 */
8ca47e00
RR
579static void *_check_pointer(unsigned long addr, unsigned int size,
580 unsigned int line)
581{
2e04ef76 582 /*
5230ff0c
PS
583 * Check if the requested address and size exceeds the allocated memory,
584 * or addr + size wraps around.
2e04ef76 585 */
5230ff0c 586 if ((addr + size) > guest_limit || (addr + size) < addr)
17cbca2b 587 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
2e04ef76
RR
588 /*
589 * We return a pointer for the caller's convenience, now we know it's
590 * safe to use.
591 */
3c6b5bfa 592 return from_guest_phys(addr);
8ca47e00 593}
dde79789 594/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
595#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
596
2e04ef76
RR
597/*
598 * Each buffer in the virtqueues is actually a chain of descriptors. This
e1e72965 599 * function returns the next descriptor in the chain, or vq->vring.num if we're
2e04ef76
RR
600 * at the end.
601 */
d1f0132e
MM
602static unsigned next_desc(struct vring_desc *desc,
603 unsigned int i, unsigned int max)
17cbca2b
RR
604{
605 unsigned int next;
606
607 /* If this descriptor says it doesn't chain, we're done. */
d1f0132e
MM
608 if (!(desc[i].flags & VRING_DESC_F_NEXT))
609 return max;
17cbca2b
RR
610
611 /* Check they're not leading us off end of descriptors. */
d1f0132e 612 next = desc[i].next;
17cbca2b
RR
613 /* Make sure compiler knows to grab that: we don't want it changing! */
614 wmb();
615
d1f0132e 616 if (next >= max)
17cbca2b
RR
617 errx(1, "Desc next is %u", next);
618
619 return next;
620}
621
a91d74a3
RR
622/*
623 * This actually sends the interrupt for this virtqueue, if we've used a
624 * buffer.
625 */
38bc2b8c
RR
626static void trigger_irq(struct virtqueue *vq)
627{
628 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
629
95c517c0
RR
630 /* Don't inform them if nothing used. */
631 if (!vq->pending_used)
632 return;
633 vq->pending_used = 0;
634
ca60a42c
RR
635 /* If they don't want an interrupt, don't send one... */
636 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
990c91f0 637 return;
ca60a42c 638 }
38bc2b8c
RR
639
640 /* Send the Guest an interrupt tell them we used something up. */
641 if (write(lguest_fd, buf, sizeof(buf)) != 0)
642 err(1, "Triggering irq %i", vq->config.irq);
643}
644
2e04ef76 645/*
a91d74a3 646 * This looks in the virtqueue for the first available buffer, and converts
17cbca2b
RR
647 * it to an iovec for convenient access. Since descriptors consist of some
648 * number of output then some number of input descriptors, it's actually two
649 * iovecs, but we pack them into one and note how many of each there were.
650 *
a91d74a3 651 * This function waits if necessary, and returns the descriptor number found.
2e04ef76 652 */
659a0e66
RR
653static unsigned wait_for_vq_desc(struct virtqueue *vq,
654 struct iovec iov[],
655 unsigned int *out_num, unsigned int *in_num)
17cbca2b 656{
d1f0132e
MM
657 unsigned int i, head, max;
658 struct vring_desc *desc;
659a0e66
RR
659 u16 last_avail = lg_last_avail(vq);
660
a91d74a3 661 /* There's nothing available? */
659a0e66
RR
662 while (last_avail == vq->vring.avail->idx) {
663 u64 event;
664
a91d74a3
RR
665 /*
666 * Since we're about to sleep, now is a good time to tell the
667 * Guest about what we've used up to now.
668 */
38bc2b8c
RR
669 trigger_irq(vq);
670
b60da13f
RR
671 /* OK, now we need to know about added descriptors. */
672 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
673
2e04ef76
RR
674 /*
675 * They could have slipped one in as we were doing that: make
676 * sure it's written, then check again.
677 */
b60da13f
RR
678 mb();
679 if (last_avail != vq->vring.avail->idx) {
680 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
681 break;
682 }
683
659a0e66
RR
684 /* Nothing new? Wait for eventfd to tell us they refilled. */
685 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
686 errx(1, "Event read failed?");
b60da13f
RR
687
688 /* We don't need to be notified again. */
689 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
659a0e66 690 }
17cbca2b
RR
691
692 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790 693 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 694 errx(1, "Guest moved used index from %u to %u",
b5111790 695 last_avail, vq->vring.avail->idx);
17cbca2b 696
2e04ef76
RR
697 /*
698 * Grab the next descriptor number they're advertising, and increment
699 * the index we've seen.
700 */
b5111790
RR
701 head = vq->vring.avail->ring[last_avail % vq->vring.num];
702 lg_last_avail(vq)++;
17cbca2b
RR
703
704 /* If their number is silly, that's a fatal mistake. */
705 if (head >= vq->vring.num)
706 errx(1, "Guest says index %u is available", head);
707
708 /* When we start there are none of either input nor output. */
709 *out_num = *in_num = 0;
710
d1f0132e
MM
711 max = vq->vring.num;
712 desc = vq->vring.desc;
17cbca2b 713 i = head;
d1f0132e 714
2e04ef76
RR
715 /*
716 * If this is an indirect entry, then this buffer contains a descriptor
717 * table which we handle as if it's any normal descriptor chain.
718 */
d1f0132e
MM
719 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
720 if (desc[i].len % sizeof(struct vring_desc))
721 errx(1, "Invalid size for indirect buffer table");
722
723 max = desc[i].len / sizeof(struct vring_desc);
724 desc = check_pointer(desc[i].addr, desc[i].len);
725 i = 0;
726 }
727
17cbca2b
RR
728 do {
729 /* Grab the first descriptor, and check it's OK. */
d1f0132e 730 iov[*out_num + *in_num].iov_len = desc[i].len;
17cbca2b 731 iov[*out_num + *in_num].iov_base
d1f0132e 732 = check_pointer(desc[i].addr, desc[i].len);
17cbca2b 733 /* If this is an input descriptor, increment that count. */
d1f0132e 734 if (desc[i].flags & VRING_DESC_F_WRITE)
17cbca2b
RR
735 (*in_num)++;
736 else {
2e04ef76
RR
737 /*
738 * If it's an output descriptor, they're all supposed
739 * to come before any input descriptors.
740 */
17cbca2b
RR
741 if (*in_num)
742 errx(1, "Descriptor has out after in");
743 (*out_num)++;
744 }
745
746 /* If we've got too many, that implies a descriptor loop. */
d1f0132e 747 if (*out_num + *in_num > max)
17cbca2b 748 errx(1, "Looped descriptor");
d1f0132e 749 } while ((i = next_desc(desc, i, max)) != max);
dde79789 750
17cbca2b 751 return head;
8ca47e00
RR
752}
753
2e04ef76 754/*
a91d74a3
RR
755 * After we've used one of their buffers, we tell the Guest about it. Sometime
756 * later we'll want to send them an interrupt using trigger_irq(); note that
757 * wait_for_vq_desc() does that for us if it has to wait.
2e04ef76 758 */
17cbca2b 759static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 760{
17cbca2b
RR
761 struct vring_used_elem *used;
762
2e04ef76
RR
763 /*
764 * The virtqueue contains a ring of used buffers. Get a pointer to the
765 * next entry in that used ring.
766 */
17cbca2b
RR
767 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
768 used->id = head;
769 used->len = len;
770 /* Make sure buffer is written before we update index. */
771 wmb();
772 vq->vring.used->idx++;
95c517c0 773 vq->pending_used++;
8ca47e00
RR
774}
775
17cbca2b 776/* And here's the combo meal deal. Supersize me! */
56739c80 777static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 778{
17cbca2b 779 add_used(vq, head, len);
56739c80 780 trigger_irq(vq);
8ca47e00
RR
781}
782
e1e72965
RR
783/*
784 * The Console
785 *
2e04ef76
RR
786 * We associate some data with the console for our exit hack.
787 */
1842f23c 788struct console_abort {
dde79789 789 /* How many times have they hit ^C? */
8ca47e00 790 int count;
dde79789 791 /* When did they start? */
8ca47e00
RR
792 struct timeval start;
793};
794
dde79789 795/* This is the routine which handles console input (ie. stdin). */
659a0e66 796static void console_input(struct virtqueue *vq)
8ca47e00 797{
8ca47e00 798 int len;
17cbca2b 799 unsigned int head, in_num, out_num;
659a0e66
RR
800 struct console_abort *abort = vq->dev->priv;
801 struct iovec iov[vq->vring.num];
56ae43df 802
a91d74a3 803 /* Make sure there's a descriptor available. */
659a0e66 804 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
56ae43df 805 if (out_num)
17cbca2b 806 errx(1, "Output buffers in console in queue?");
8ca47e00 807
a91d74a3 808 /* Read into it. This is where we usually wait. */
659a0e66 809 len = readv(STDIN_FILENO, iov, in_num);
8ca47e00 810 if (len <= 0) {
659a0e66 811 /* Ran out of input? */
8ca47e00 812 warnx("Failed to get console input, ignoring console.");
2e04ef76
RR
813 /*
814 * For simplicity, dying threads kill the whole Launcher. So
815 * just nap here.
816 */
659a0e66
RR
817 for (;;)
818 pause();
8ca47e00
RR
819 }
820
a91d74a3 821 /* Tell the Guest we used a buffer. */
659a0e66 822 add_used_and_trigger(vq, head, len);
8ca47e00 823
2e04ef76
RR
824 /*
825 * Three ^C within one second? Exit.
dde79789 826 *
659a0e66
RR
827 * This is such a hack, but works surprisingly well. Each ^C has to
828 * be in a buffer by itself, so they can't be too fast. But we check
829 * that we get three within about a second, so they can't be too
2e04ef76
RR
830 * slow.
831 */
659a0e66 832 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
8ca47e00 833 abort->count = 0;
659a0e66
RR
834 return;
835 }
8ca47e00 836
659a0e66
RR
837 abort->count++;
838 if (abort->count == 1)
839 gettimeofday(&abort->start, NULL);
840 else if (abort->count == 3) {
841 struct timeval now;
842 gettimeofday(&now, NULL);
843 /* Kill all Launcher processes with SIGINT, like normal ^C */
844 if (now.tv_sec <= abort->start.tv_sec+1)
845 kill(0, SIGINT);
846 abort->count = 0;
847 }
8ca47e00
RR
848}
849
659a0e66
RR
850/* This is the routine which handles console output (ie. stdout). */
851static void console_output(struct virtqueue *vq)
8ca47e00 852{
17cbca2b 853 unsigned int head, out, in;
17cbca2b
RR
854 struct iovec iov[vq->vring.num];
855
a91d74a3 856 /* We usually wait in here, for the Guest to give us something. */
659a0e66
RR
857 head = wait_for_vq_desc(vq, iov, &out, &in);
858 if (in)
859 errx(1, "Input buffers in console output queue?");
a91d74a3
RR
860
861 /* writev can return a partial write, so we loop here. */
659a0e66
RR
862 while (!iov_empty(iov, out)) {
863 int len = writev(STDOUT_FILENO, iov, out);
e0377e25
SA
864 if (len <= 0) {
865 warn("Write to stdout gave %i (%d)", len, errno);
866 break;
867 }
659a0e66 868 iov_consume(iov, out, len);
17cbca2b 869 }
a91d74a3
RR
870
871 /*
872 * We're finished with that buffer: if we're going to sleep,
873 * wait_for_vq_desc() will prod the Guest with an interrupt.
874 */
38bc2b8c 875 add_used(vq, head, 0);
a161883a
RR
876}
877
e1e72965
RR
878/*
879 * The Network
880 *
881 * Handling output for network is also simple: we get all the output buffers
659a0e66 882 * and write them to /dev/net/tun.
a6bd8e13 883 */
659a0e66
RR
884struct net_info {
885 int tunfd;
886};
887
888static void net_output(struct virtqueue *vq)
8ca47e00 889{
659a0e66
RR
890 struct net_info *net_info = vq->dev->priv;
891 unsigned int head, out, in;
17cbca2b 892 struct iovec iov[vq->vring.num];
a161883a 893
a91d74a3 894 /* We usually wait in here for the Guest to give us a packet. */
659a0e66
RR
895 head = wait_for_vq_desc(vq, iov, &out, &in);
896 if (in)
897 errx(1, "Input buffers in net output queue?");
a91d74a3
RR
898 /*
899 * Send the whole thing through to /dev/net/tun. It expects the exact
900 * same format: what a coincidence!
901 */
659a0e66 902 if (writev(net_info->tunfd, iov, out) < 0)
e0377e25 903 warnx("Write to tun failed (%d)?", errno);
a91d74a3
RR
904
905 /*
906 * Done with that one; wait_for_vq_desc() will send the interrupt if
907 * all packets are processed.
908 */
38bc2b8c 909 add_used(vq, head, 0);
8ca47e00
RR
910}
911
a91d74a3
RR
912/*
913 * Handling network input is a bit trickier, because I've tried to optimize it.
914 *
915 * First we have a helper routine which tells is if from this file descriptor
916 * (ie. the /dev/net/tun device) will block:
917 */
4a8962e2
RR
918static bool will_block(int fd)
919{
920 fd_set fdset;
921 struct timeval zero = { 0, 0 };
922 FD_ZERO(&fdset);
923 FD_SET(fd, &fdset);
924 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
925}
926
a91d74a3
RR
927/*
928 * This handles packets coming in from the tun device to our Guest. Like all
929 * service routines, it gets called again as soon as it returns, so you don't
930 * see a while(1) loop here.
931 */
659a0e66 932static void net_input(struct virtqueue *vq)
8ca47e00 933{
8ca47e00 934 int len;
659a0e66
RR
935 unsigned int head, out, in;
936 struct iovec iov[vq->vring.num];
937 struct net_info *net_info = vq->dev->priv;
938
a91d74a3
RR
939 /*
940 * Get a descriptor to write an incoming packet into. This will also
941 * send an interrupt if they're out of descriptors.
942 */
659a0e66
RR
943 head = wait_for_vq_desc(vq, iov, &out, &in);
944 if (out)
945 errx(1, "Output buffers in net input queue?");
4a8962e2 946
a91d74a3
RR
947 /*
948 * If it looks like we'll block reading from the tun device, send them
949 * an interrupt.
950 */
4a8962e2
RR
951 if (vq->pending_used && will_block(net_info->tunfd))
952 trigger_irq(vq);
953
a91d74a3
RR
954 /*
955 * Read in the packet. This is where we normally wait (when there's no
956 * incoming network traffic).
957 */
659a0e66 958 len = readv(net_info->tunfd, iov, in);
8ca47e00 959 if (len <= 0)
e0377e25 960 warn("Failed to read from tun (%d).", errno);
a91d74a3
RR
961
962 /*
963 * Mark that packet buffer as used, but don't interrupt here. We want
964 * to wait until we've done as much work as we can.
965 */
4a8962e2 966 add_used(vq, head, len);
659a0e66 967}
a91d74a3 968/*:*/
dde79789 969
a91d74a3 970/* This is the helper to create threads: run the service routine in a loop. */
659a0e66
RR
971static int do_thread(void *_vq)
972{
973 struct virtqueue *vq = _vq;
17cbca2b 974
659a0e66
RR
975 for (;;)
976 vq->service(vq);
977 return 0;
978}
17cbca2b 979
2e04ef76
RR
980/*
981 * When a child dies, we kill our entire process group with SIGTERM. This
982 * also has the side effect that the shell restores the console for us!
983 */
659a0e66
RR
984static void kill_launcher(int signal)
985{
986 kill(0, SIGTERM);
8ca47e00
RR
987}
988
659a0e66 989static void reset_device(struct device *dev)
56ae43df 990{
659a0e66
RR
991 struct virtqueue *vq;
992
993 verbose("Resetting device %s\n", dev->name);
994
995 /* Clear any features they've acked. */
996 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
997
998 /* We're going to be explicitly killing threads, so ignore them. */
999 signal(SIGCHLD, SIG_IGN);
1000
1001 /* Zero out the virtqueues, get rid of their threads */
1002 for (vq = dev->vq; vq; vq = vq->next) {
1003 if (vq->thread != (pid_t)-1) {
1004 kill(vq->thread, SIGTERM);
1005 waitpid(vq->thread, NULL, 0);
1006 vq->thread = (pid_t)-1;
1007 }
1008 memset(vq->vring.desc, 0,
1009 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1010 lg_last_avail(vq) = 0;
1011 }
1012 dev->running = false;
1013
1014 /* Now we care if threads die. */
1015 signal(SIGCHLD, (void *)kill_launcher);
56ae43df
RR
1016}
1017
a91d74a3
RR
1018/*L:216
1019 * This actually creates the thread which services the virtqueue for a device.
1020 */
659a0e66 1021static void create_thread(struct virtqueue *vq)
5dae785a 1022{
2e04ef76 1023 /*
a91d74a3
RR
1024 * Create stack for thread. Since the stack grows upwards, we point
1025 * the stack pointer to the end of this region.
2e04ef76 1026 */
659a0e66
RR
1027 char *stack = malloc(32768);
1028 unsigned long args[] = { LHREQ_EVENTFD,
1029 vq->config.pfn*getpagesize(), 0 };
1030
1031 /* Create a zero-initialized eventfd. */
1032 vq->eventfd = eventfd(0, 0);
1033 if (vq->eventfd < 0)
1034 err(1, "Creating eventfd");
1035 args[2] = vq->eventfd;
1036
a91d74a3
RR
1037 /*
1038 * Attach an eventfd to this virtqueue: it will go off when the Guest
1039 * does an LHCALL_NOTIFY for this vq.
1040 */
659a0e66
RR
1041 if (write(lguest_fd, &args, sizeof(args)) != 0)
1042 err(1, "Attaching eventfd");
1043
a91d74a3
RR
1044 /*
1045 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1046 * we get a signal if it dies.
1047 */
659a0e66
RR
1048 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1049 if (vq->thread == (pid_t)-1)
1050 err(1, "Creating clone");
a91d74a3
RR
1051
1052 /* We close our local copy now the child has it. */
659a0e66 1053 close(vq->eventfd);
5dae785a
RR
1054}
1055
659a0e66 1056static void start_device(struct device *dev)
6e5aa7ef 1057{
659a0e66 1058 unsigned int i;
6e5aa7ef
RR
1059 struct virtqueue *vq;
1060
659a0e66
RR
1061 verbose("Device %s OK: offered", dev->name);
1062 for (i = 0; i < dev->feature_len; i++)
1063 verbose(" %02x", get_feature_bits(dev)[i]);
1064 verbose(", accepted");
1065 for (i = 0; i < dev->feature_len; i++)
1066 verbose(" %02x", get_feature_bits(dev)
1067 [dev->feature_len+i]);
1068
1069 for (vq = dev->vq; vq; vq = vq->next) {
1070 if (vq->service)
1071 create_thread(vq);
1072 }
1073 dev->running = true;
1074}
1075
1076static void cleanup_devices(void)
1077{
1078 struct device *dev;
1079
1080 for (dev = devices.dev; dev; dev = dev->next)
1081 reset_device(dev);
6e5aa7ef 1082
659a0e66
RR
1083 /* If we saved off the original terminal settings, restore them now. */
1084 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1085 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1086}
6e5aa7ef 1087
659a0e66
RR
1088/* When the Guest tells us they updated the status field, we handle it. */
1089static void update_device_status(struct device *dev)
1090{
1091 /* A zero status is a reset, otherwise it's a set of flags. */
1092 if (dev->desc->status == 0)
1093 reset_device(dev);
1094 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
a007a751 1095 warnx("Device %s configuration FAILED", dev->name);
659a0e66
RR
1096 if (dev->running)
1097 reset_device(dev);
3c3ed482
RR
1098 } else {
1099 if (dev->running)
1100 err(1, "Device %s features finalized twice", dev->name);
1101 start_device(dev);
6e5aa7ef
RR
1102 }
1103}
1104
a91d74a3
RR
1105/*L:215
1106 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
1107 * particular, it's used to notify us of device status changes during boot.
1108 */
56739c80 1109static void handle_output(unsigned long addr)
8ca47e00
RR
1110{
1111 struct device *i;
17cbca2b 1112
659a0e66 1113 /* Check each device. */
17cbca2b 1114 for (i = devices.dev; i; i = i->next) {
659a0e66
RR
1115 struct virtqueue *vq;
1116
a91d74a3
RR
1117 /*
1118 * Notifications to device descriptors mean they updated the
1119 * device status.
1120 */
6e5aa7ef 1121 if (from_guest_phys(addr) == i->desc) {
a007a751 1122 update_device_status(i);
6e5aa7ef
RR
1123 return;
1124 }
1125
3c3ed482 1126 /* Devices should not be used before features are finalized. */
17cbca2b 1127 for (vq = i->vq; vq; vq = vq->next) {
659a0e66 1128 if (addr != vq->config.pfn*getpagesize())
6e5aa7ef 1129 continue;
3c3ed482 1130 errx(1, "Notification on %s before setup!", i->name);
8ca47e00
RR
1131 }
1132 }
dde79789 1133
2e04ef76
RR
1134 /*
1135 * Early console write is done using notify on a nul-terminated string
1136 * in Guest memory. It's also great for hacking debugging messages
1137 * into a Guest.
1138 */
17cbca2b
RR
1139 if (addr >= guest_limit)
1140 errx(1, "Bad NOTIFY %#lx", addr);
1141
1142 write(STDOUT_FILENO, from_guest_phys(addr),
1143 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
1144}
1145
dde79789
RR
1146/*L:190
1147 * Device Setup
1148 *
1149 * All devices need a descriptor so the Guest knows it exists, and a "struct
1150 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1151 * routines to allocate and manage them.
1152 */
8ca47e00 1153
2e04ef76
RR
1154/*
1155 * The layout of the device page is a "struct lguest_device_desc" followed by a
a586d4f6
RR
1156 * number of virtqueue descriptors, then two sets of feature bits, then an
1157 * array of configuration bytes. This routine returns the configuration
2e04ef76
RR
1158 * pointer.
1159 */
a586d4f6
RR
1160static u8 *device_config(const struct device *dev)
1161{
1162 return (void *)(dev->desc + 1)
713b15b3
RR
1163 + dev->num_vq * sizeof(struct lguest_vqconfig)
1164 + dev->feature_len * 2;
17cbca2b
RR
1165}
1166
2e04ef76
RR
1167/*
1168 * This routine allocates a new "struct lguest_device_desc" from descriptor
a586d4f6 1169 * table page just above the Guest's normal memory. It returns a pointer to
2e04ef76
RR
1170 * that descriptor.
1171 */
a586d4f6 1172static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 1173{
a586d4f6
RR
1174 struct lguest_device_desc d = { .type = type };
1175 void *p;
17cbca2b 1176
a586d4f6
RR
1177 /* Figure out where the next device config is, based on the last one. */
1178 if (devices.lastdev)
1179 p = device_config(devices.lastdev)
1180 + devices.lastdev->desc->config_len;
1181 else
1182 p = devices.descpage;
17cbca2b 1183
a586d4f6
RR
1184 /* We only have one page for all the descriptors. */
1185 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1186 errx(1, "Too many devices");
17cbca2b 1187
a586d4f6
RR
1188 /* p might not be aligned, so we memcpy in. */
1189 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
1190}
1191
2e04ef76
RR
1192/*
1193 * Each device descriptor is followed by the description of its virtqueues. We
1194 * specify how many descriptors the virtqueue is to have.
1195 */
17cbca2b 1196static void add_virtqueue(struct device *dev, unsigned int num_descs,
659a0e66 1197 void (*service)(struct virtqueue *))
17cbca2b
RR
1198{
1199 unsigned int pages;
1200 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1201 void *p;
1202
a6bd8e13 1203 /* First we need some memory for this virtqueue. */
2966af73 1204 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
42b36cc0 1205 / getpagesize();
17cbca2b
RR
1206 p = get_pages(pages);
1207
d1c856e0
RR
1208 /* Initialize the virtqueue */
1209 vq->next = NULL;
1210 vq->last_avail_idx = 0;
1211 vq->dev = dev;
a91d74a3
RR
1212
1213 /*
1214 * This is the routine the service thread will run, and its Process ID
1215 * once it's running.
1216 */
659a0e66
RR
1217 vq->service = service;
1218 vq->thread = (pid_t)-1;
d1c856e0 1219
17cbca2b
RR
1220 /* Initialize the configuration. */
1221 vq->config.num = num_descs;
1222 vq->config.irq = devices.next_irq++;
1223 vq->config.pfn = to_guest_phys(p) / getpagesize();
1224
1225 /* Initialize the vring. */
2966af73 1226 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
17cbca2b 1227
2e04ef76
RR
1228 /*
1229 * Append virtqueue to this device's descriptor. We use
a586d4f6
RR
1230 * device_config() to get the end of the device's current virtqueues;
1231 * we check that we haven't added any config or feature information
2e04ef76
RR
1232 * yet, otherwise we'd be overwriting them.
1233 */
a586d4f6
RR
1234 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1235 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
713b15b3 1236 dev->num_vq++;
a586d4f6
RR
1237 dev->desc->num_vq++;
1238
1239 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b 1240
2e04ef76
RR
1241 /*
1242 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1243 * second.
1244 */
17cbca2b
RR
1245 for (i = &dev->vq; *i; i = &(*i)->next);
1246 *i = vq;
8ca47e00
RR
1247}
1248
2e04ef76
RR
1249/*
1250 * The first half of the feature bitmask is for us to advertise features. The
1251 * second half is for the Guest to accept features.
1252 */
a586d4f6
RR
1253static void add_feature(struct device *dev, unsigned bit)
1254{
6e5aa7ef 1255 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1256
1257 /* We can't extend the feature bits once we've added config bytes */
1258 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1259 assert(dev->desc->config_len == 0);
713b15b3 1260 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
a586d4f6
RR
1261 }
1262
a586d4f6
RR
1263 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1264}
1265
2e04ef76
RR
1266/*
1267 * This routine sets the configuration fields for an existing device's
a586d4f6 1268 * descriptor. It only works for the last device, but that's OK because that's
2e04ef76
RR
1269 * how we use it.
1270 */
a586d4f6
RR
1271static void set_config(struct device *dev, unsigned len, const void *conf)
1272{
1273 /* Check we haven't overflowed our single page. */
1274 if (device_config(dev) + len > devices.descpage + getpagesize())
1275 errx(1, "Too many devices");
1276
1277 /* Copy in the config information, and store the length. */
1278 memcpy(device_config(dev), conf, len);
1279 dev->desc->config_len = len;
8ef562d1
RR
1280
1281 /* Size must fit in config_len field (8 bits)! */
1282 assert(dev->desc->config_len == len);
a586d4f6
RR
1283}
1284
2e04ef76
RR
1285/*
1286 * This routine does all the creation and setup of a new device, including
a91d74a3
RR
1287 * calling new_dev_desc() to allocate the descriptor and device memory. We
1288 * don't actually start the service threads until later.
a6bd8e13 1289 *
2e04ef76
RR
1290 * See what I mean about userspace being boring?
1291 */
659a0e66 1292static struct device *new_device(const char *name, u16 type)
8ca47e00
RR
1293{
1294 struct device *dev = malloc(sizeof(*dev));
1295
dde79789 1296 /* Now we populate the fields one at a time. */
17cbca2b 1297 dev->desc = new_dev_desc(type);
17cbca2b 1298 dev->name = name;
d1c856e0 1299 dev->vq = NULL;
713b15b3
RR
1300 dev->feature_len = 0;
1301 dev->num_vq = 0;
659a0e66 1302 dev->running = false;
a586d4f6 1303
2e04ef76
RR
1304 /*
1305 * Append to device list. Prepending to a single-linked list is
a586d4f6
RR
1306 * easier, but the user expects the devices to be arranged on the bus
1307 * in command-line order. The first network device on the command line
2e04ef76
RR
1308 * is eth0, the first block device /dev/vda, etc.
1309 */
a586d4f6
RR
1310 if (devices.lastdev)
1311 devices.lastdev->next = dev;
1312 else
1313 devices.dev = dev;
1314 devices.lastdev = dev;
1315
8ca47e00
RR
1316 return dev;
1317}
1318
2e04ef76
RR
1319/*
1320 * Our first setup routine is the console. It's a fairly simple device, but
1321 * UNIX tty handling makes it uglier than it could be.
1322 */
17cbca2b 1323static void setup_console(void)
8ca47e00
RR
1324{
1325 struct device *dev;
1326
dde79789 1327 /* If we can save the initial standard input settings... */
8ca47e00
RR
1328 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1329 struct termios term = orig_term;
2e04ef76
RR
1330 /*
1331 * Then we turn off echo, line buffering and ^C etc: We want a
1332 * raw input stream to the Guest.
1333 */
8ca47e00
RR
1334 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1335 tcsetattr(STDIN_FILENO, TCSANOW, &term);
8ca47e00
RR
1336 }
1337
659a0e66
RR
1338 dev = new_device("console", VIRTIO_ID_CONSOLE);
1339
dde79789 1340 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1341 dev->priv = malloc(sizeof(struct console_abort));
1342 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1343
2e04ef76
RR
1344 /*
1345 * The console needs two virtqueues: the input then the output. When
56ae43df
RR
1346 * they put something the input queue, we make sure we're listening to
1347 * stdin. When they put something in the output queue, we write it to
2e04ef76
RR
1348 * stdout.
1349 */
659a0e66
RR
1350 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1351 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
17cbca2b 1352
659a0e66 1353 verbose("device %u: console\n", ++devices.device_num);
8ca47e00 1354}
17cbca2b 1355/*:*/
8ca47e00 1356
2e04ef76
RR
1357/*M:010
1358 * Inter-guest networking is an interesting area. Simplest is to have a
17cbca2b
RR
1359 * --sharenet=<name> option which opens or creates a named pipe. This can be
1360 * used to send packets to another guest in a 1:1 manner.
dde79789 1361 *
17cbca2b
RR
1362 * More sopisticated is to use one of the tools developed for project like UML
1363 * to do networking.
dde79789 1364 *
17cbca2b
RR
1365 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1366 * completely generic ("here's my vring, attach to your vring") and would work
1367 * for any traffic. Of course, namespace and permissions issues need to be
1368 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1369 * multiple inter-guest channels behind one interface, although it would
1370 * require some manner of hotplugging new virtio channels.
1371 *
2e04ef76
RR
1372 * Finally, we could implement a virtio network switch in the kernel.
1373:*/
8ca47e00
RR
1374
1375static u32 str2ip(const char *ipaddr)
1376{
dec6a2be 1377 unsigned int b[4];
8ca47e00 1378
dec6a2be
MM
1379 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1380 errx(1, "Failed to parse IP address '%s'", ipaddr);
1381 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1382}
1383
1384static void str2mac(const char *macaddr, unsigned char mac[6])
1385{
1386 unsigned int m[6];
1387 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1388 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1389 errx(1, "Failed to parse mac address '%s'", macaddr);
1390 mac[0] = m[0];
1391 mac[1] = m[1];
1392 mac[2] = m[2];
1393 mac[3] = m[3];
1394 mac[4] = m[4];
1395 mac[5] = m[5];
8ca47e00
RR
1396}
1397
2e04ef76
RR
1398/*
1399 * This code is "adapted" from libbridge: it attaches the Host end of the
dde79789
RR
1400 * network device to the bridge device specified by the command line.
1401 *
1402 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2e04ef76
RR
1403 * dislike bridging), and I just try not to break it.
1404 */
8ca47e00
RR
1405static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1406{
1407 int ifidx;
1408 struct ifreq ifr;
1409
1410 if (!*br_name)
1411 errx(1, "must specify bridge name");
1412
1413 ifidx = if_nametoindex(if_name);
1414 if (!ifidx)
1415 errx(1, "interface %s does not exist!", if_name);
1416
1417 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1418 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1419 ifr.ifr_ifindex = ifidx;
1420 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1421 err(1, "can't add %s to bridge %s", if_name, br_name);
1422}
1423
2e04ef76
RR
1424/*
1425 * This sets up the Host end of the network device with an IP address, brings
dde79789 1426 * it up so packets will flow, the copies the MAC address into the hwaddr
2e04ef76
RR
1427 * pointer.
1428 */
dec6a2be 1429static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1430{
1431 struct ifreq ifr;
f846619e 1432 struct sockaddr_in sin;
8ca47e00
RR
1433
1434 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1435 strcpy(ifr.ifr_name, tapif);
1436
1437 /* Don't read these incantations. Just cut & paste them like I did! */
f846619e
RR
1438 sin.sin_family = AF_INET;
1439 sin.sin_addr.s_addr = htonl(ipaddr);
1440 memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
8ca47e00 1441 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1442 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1443 ifr.ifr_flags = IFF_UP;
1444 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1445 err(1, "Bringing interface %s up", tapif);
1446}
1447
dec6a2be 1448static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1449{
8ca47e00 1450 struct ifreq ifr;
dec6a2be
MM
1451 int netfd;
1452
1453 /* Start with this zeroed. Messy but sure. */
1454 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1455
2e04ef76
RR
1456 /*
1457 * We open the /dev/net/tun device and tell it we want a tap device. A
dde79789
RR
1458 * tap device is like a tun device, only somehow different. To tell
1459 * the truth, I completely blundered my way through this code, but it
2e04ef76
RR
1460 * works now!
1461 */
8ca47e00 1462 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 1463 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
1464 strcpy(ifr.ifr_name, "tap%d");
1465 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1466 err(1, "configuring /dev/net/tun");
dec6a2be 1467
398f187d
RR
1468 if (ioctl(netfd, TUNSETOFFLOAD,
1469 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1470 err(1, "Could not set features for tun device");
1471
2e04ef76
RR
1472 /*
1473 * We don't need checksums calculated for packets coming in this
1474 * device: trust us!
1475 */
8ca47e00
RR
1476 ioctl(netfd, TUNSETNOCSUM, 1);
1477
dec6a2be
MM
1478 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1479 return netfd;
1480}
1481
2e04ef76
RR
1482/*L:195
1483 * Our network is a Host<->Guest network. This can either use bridging or
dec6a2be
MM
1484 * routing, but the principle is the same: it uses the "tun" device to inject
1485 * packets into the Host as if they came in from a normal network card. We
2e04ef76
RR
1486 * just shunt packets between the Guest and the tun device.
1487 */
dec6a2be
MM
1488static void setup_tun_net(char *arg)
1489{
1490 struct device *dev;
659a0e66
RR
1491 struct net_info *net_info = malloc(sizeof(*net_info));
1492 int ipfd;
dec6a2be
MM
1493 u32 ip = INADDR_ANY;
1494 bool bridging = false;
1495 char tapif[IFNAMSIZ], *p;
1496 struct virtio_net_config conf;
1497
659a0e66 1498 net_info->tunfd = get_tun_device(tapif);
dec6a2be 1499
17cbca2b 1500 /* First we create a new network device. */
659a0e66
RR
1501 dev = new_device("net", VIRTIO_ID_NET);
1502 dev->priv = net_info;
dde79789 1503
2e04ef76 1504 /* Network devices need a recv and a send queue, just like console. */
659a0e66
RR
1505 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1506 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
8ca47e00 1507
2e04ef76
RR
1508 /*
1509 * We need a socket to perform the magic network ioctls to bring up the
1510 * tap interface, connect to the bridge etc. Any socket will do!
1511 */
8ca47e00
RR
1512 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1513 if (ipfd < 0)
1514 err(1, "opening IP socket");
1515
dde79789 1516 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1517 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1518 arg += strlen(BRIDGE_PFX);
1519 bridging = true;
1520 }
1521
1522 /* A mac address may follow the bridge name or IP address */
1523 p = strchr(arg, ':');
1524 if (p) {
1525 str2mac(p+1, conf.mac);
40c42076 1526 add_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 1527 *p = '\0';
dec6a2be
MM
1528 }
1529
1530 /* arg is now either an IP address or a bridge name */
1531 if (bridging)
1532 add_to_bridge(ipfd, tapif, arg);
1533 else
8ca47e00
RR
1534 ip = str2ip(arg);
1535
dec6a2be
MM
1536 /* Set up the tun device. */
1537 configure_device(ipfd, tapif, ip);
8ca47e00 1538
398f187d
RR
1539 /* Expect Guest to handle everything except UFO */
1540 add_feature(dev, VIRTIO_NET_F_CSUM);
1541 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
398f187d
RR
1542 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1543 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1544 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1545 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1546 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1547 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
d1f0132e
MM
1548 /* We handle indirect ring entries */
1549 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
a586d4f6 1550 set_config(dev, sizeof(conf), &conf);
8ca47e00 1551
a586d4f6 1552 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1553 close(ipfd);
1554
dec6a2be
MM
1555 devices.device_num++;
1556
1557 if (bridging)
1558 verbose("device %u: tun %s attached to bridge: %s\n",
1559 devices.device_num, tapif, arg);
1560 else
1561 verbose("device %u: tun %s: %s\n",
1562 devices.device_num, tapif, arg);
8ca47e00 1563}
a91d74a3 1564/*:*/
17cbca2b 1565
e1e72965 1566/* This hangs off device->priv. */
1842f23c 1567struct vblk_info {
17cbca2b
RR
1568 /* The size of the file. */
1569 off64_t len;
1570
1571 /* The file descriptor for the file. */
1572 int fd;
1573
17cbca2b
RR
1574};
1575
e1e72965
RR
1576/*L:210
1577 * The Disk
1578 *
a91d74a3
RR
1579 * The disk only has one virtqueue, so it only has one thread. It is really
1580 * simple: the Guest asks for a block number and we read or write that position
1581 * in the file.
1582 *
1583 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1584 * slow: the Guest waits until the read is finished before running anything
1585 * else, even if it could have been doing useful work.
1586 *
1587 * We could have used async I/O, except it's reputed to suck so hard that
1588 * characters actually go missing from your code when you try to use it.
e1e72965 1589 */
659a0e66 1590static void blk_request(struct virtqueue *vq)
17cbca2b 1591{
659a0e66 1592 struct vblk_info *vblk = vq->dev->priv;
17cbca2b
RR
1593 unsigned int head, out_num, in_num, wlen;
1594 int ret;
cb38fa23 1595 u8 *in;
17cbca2b 1596 struct virtio_blk_outhdr *out;
659a0e66 1597 struct iovec iov[vq->vring.num];
17cbca2b
RR
1598 off64_t off;
1599
a91d74a3
RR
1600 /*
1601 * Get the next request, where we normally wait. It triggers the
1602 * interrupt to acknowledge previously serviced requests (if any).
1603 */
659a0e66 1604 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
17cbca2b 1605
2e04ef76
RR
1606 /*
1607 * Every block request should contain at least one output buffer
e1e72965 1608 * (detailing the location on disk and the type of request) and one
2e04ef76
RR
1609 * input buffer (to hold the result).
1610 */
17cbca2b
RR
1611 if (out_num == 0 || in_num == 0)
1612 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1613 head, out_num, in_num);
1614
1615 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1616 in = convert(&iov[out_num+in_num-1], u8);
a91d74a3
RR
1617 /*
1618 * For historical reasons, block operations are expressed in 512 byte
1619 * "sectors".
1620 */
17cbca2b
RR
1621 off = out->sector * 512;
1622
2e04ef76
RR
1623 /*
1624 * In general the virtio block driver is allowed to try SCSI commands.
1625 * It'd be nice if we supported eject, for example, but we don't.
1626 */
17cbca2b
RR
1627 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1628 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1629 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1630 wlen = sizeof(*in);
17cbca2b 1631 } else if (out->type & VIRTIO_BLK_T_OUT) {
2e04ef76
RR
1632 /*
1633 * Write
1634 *
1635 * Move to the right location in the block file. This can fail
1636 * if they try to write past end.
1637 */
17cbca2b
RR
1638 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1639 err(1, "Bad seek to sector %llu", out->sector);
1640
1641 ret = writev(vblk->fd, iov+1, out_num-1);
1642 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1643
2e04ef76
RR
1644 /*
1645 * Grr... Now we know how long the descriptor they sent was, we
17cbca2b 1646 * make sure they didn't try to write over the end of the block
2e04ef76
RR
1647 * file (possibly extending it).
1648 */
17cbca2b
RR
1649 if (ret > 0 && off + ret > vblk->len) {
1650 /* Trim it back to the correct length */
1651 ftruncate64(vblk->fd, vblk->len);
1652 /* Die, bad Guest, die. */
1653 errx(1, "Write past end %llu+%u", off, ret);
1654 }
7bc9fdda
TH
1655
1656 wlen = sizeof(*in);
1657 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1658 } else if (out->type & VIRTIO_BLK_T_FLUSH) {
1659 /* Flush */
1660 ret = fdatasync(vblk->fd);
1661 verbose("FLUSH fdatasync: %i\n", ret);
1200e646 1662 wlen = sizeof(*in);
cb38fa23 1663 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b 1664 } else {
2e04ef76
RR
1665 /*
1666 * Read
1667 *
1668 * Move to the right location in the block file. This can fail
1669 * if they try to read past end.
1670 */
17cbca2b
RR
1671 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1672 err(1, "Bad seek to sector %llu", out->sector);
1673
1674 ret = readv(vblk->fd, iov+1, in_num-1);
1675 verbose("READ from sector %llu: %i\n", out->sector, ret);
1676 if (ret >= 0) {
1200e646 1677 wlen = sizeof(*in) + ret;
cb38fa23 1678 *in = VIRTIO_BLK_S_OK;
17cbca2b 1679 } else {
1200e646 1680 wlen = sizeof(*in);
cb38fa23 1681 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1682 }
1683 }
1684
a91d74a3 1685 /* Finished that request. */
38bc2b8c 1686 add_used(vq, head, wlen);
17cbca2b
RR
1687}
1688
e1e72965 1689/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1690static void setup_block_file(const char *filename)
1691{
17cbca2b
RR
1692 struct device *dev;
1693 struct vblk_info *vblk;
a586d4f6 1694 struct virtio_blk_config conf;
17cbca2b 1695
2e04ef76 1696 /* Creat the device. */
659a0e66 1697 dev = new_device("block", VIRTIO_ID_BLOCK);
17cbca2b 1698
e1e72965 1699 /* The device has one virtqueue, where the Guest places requests. */
659a0e66 1700 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
17cbca2b
RR
1701
1702 /* Allocate the room for our own bookkeeping */
1703 vblk = dev->priv = malloc(sizeof(*vblk));
1704
1705 /* First we open the file and store the length. */
1706 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1707 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1708
7bc9fdda
TH
1709 /* We support FLUSH. */
1710 add_feature(dev, VIRTIO_BLK_F_FLUSH);
a586d4f6 1711
17cbca2b 1712 /* Tell Guest how many sectors this device has. */
a586d4f6 1713 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b 1714
2e04ef76
RR
1715 /*
1716 * Tell Guest not to put in too many descriptors at once: two are used
1717 * for the in and out elements.
1718 */
a586d4f6
RR
1719 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1720 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1721
8ef562d1
RR
1722 /* Don't try to put whole struct: we have 8 bit limit. */
1723 set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
17cbca2b 1724
17cbca2b 1725 verbose("device %u: virtblock %llu sectors\n",
659a0e66 1726 ++devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1727}
28fd6d7f 1728
2e04ef76
RR
1729/*L:211
1730 * Our random number generator device reads from /dev/random into the Guest's
28fd6d7f
RR
1731 * input buffers. The usual case is that the Guest doesn't want random numbers
1732 * and so has no buffers although /dev/random is still readable, whereas
1733 * console is the reverse.
1734 *
2e04ef76
RR
1735 * The same logic applies, however.
1736 */
1737struct rng_info {
1738 int rfd;
1739};
1740
659a0e66 1741static void rng_input(struct virtqueue *vq)
28fd6d7f
RR
1742{
1743 int len;
1744 unsigned int head, in_num, out_num, totlen = 0;
659a0e66
RR
1745 struct rng_info *rng_info = vq->dev->priv;
1746 struct iovec iov[vq->vring.num];
28fd6d7f
RR
1747
1748 /* First we need a buffer from the Guests's virtqueue. */
659a0e66 1749 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
28fd6d7f
RR
1750 if (out_num)
1751 errx(1, "Output buffers in rng?");
1752
2e04ef76 1753 /*
a91d74a3
RR
1754 * Just like the console write, we loop to cover the whole iovec.
1755 * In this case, short reads actually happen quite a bit.
2e04ef76 1756 */
28fd6d7f 1757 while (!iov_empty(iov, in_num)) {
659a0e66 1758 len = readv(rng_info->rfd, iov, in_num);
28fd6d7f
RR
1759 if (len <= 0)
1760 err(1, "Read from /dev/random gave %i", len);
1761 iov_consume(iov, in_num, len);
1762 totlen += len;
1763 }
1764
1765 /* Tell the Guest about the new input. */
38bc2b8c 1766 add_used(vq, head, totlen);
28fd6d7f
RR
1767}
1768
2e04ef76
RR
1769/*L:199
1770 * This creates a "hardware" random number device for the Guest.
1771 */
28fd6d7f
RR
1772static void setup_rng(void)
1773{
1774 struct device *dev;
659a0e66 1775 struct rng_info *rng_info = malloc(sizeof(*rng_info));
28fd6d7f 1776
2e04ef76 1777 /* Our device's privat info simply contains the /dev/random fd. */
659a0e66 1778 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
28fd6d7f 1779
2e04ef76 1780 /* Create the new device. */
659a0e66
RR
1781 dev = new_device("rng", VIRTIO_ID_RNG);
1782 dev->priv = rng_info;
28fd6d7f
RR
1783
1784 /* The device has one virtqueue, where the Guest places inbufs. */
659a0e66 1785 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
28fd6d7f
RR
1786
1787 verbose("device %u: rng\n", devices.device_num++);
1788}
a6bd8e13 1789/* That's the end of device setup. */
ec04b13f 1790
a6bd8e13 1791/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1792static void __attribute__((noreturn)) restart_guest(void)
1793{
1794 unsigned int i;
1795
2e04ef76
RR
1796 /*
1797 * Since we don't track all open fds, we simply close everything beyond
1798 * stderr.
1799 */
ec04b13f
BR
1800 for (i = 3; i < FD_SETSIZE; i++)
1801 close(i);
8c79873d 1802
659a0e66
RR
1803 /* Reset all the devices (kills all threads). */
1804 cleanup_devices();
1805
ec04b13f
BR
1806 execv(main_args[0], main_args);
1807 err(1, "Could not exec %s", main_args[0]);
1808}
8ca47e00 1809
2e04ef76
RR
1810/*L:220
1811 * Finally we reach the core of the Launcher which runs the Guest, serves
1812 * its input and output, and finally, lays it to rest.
1813 */
56739c80 1814static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
1815{
1816 for (;;) {
17cbca2b 1817 unsigned long notify_addr;
8ca47e00
RR
1818 int readval;
1819
1820 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1821 readval = pread(lguest_fd, &notify_addr,
1822 sizeof(notify_addr), cpu_id);
8ca47e00 1823
17cbca2b
RR
1824 /* One unsigned long means the Guest did HCALL_NOTIFY */
1825 if (readval == sizeof(notify_addr)) {
1826 verbose("Notify on address %#lx\n", notify_addr);
56739c80 1827 handle_output(notify_addr);
dde79789 1828 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1829 } else if (errno == ENOENT) {
1830 char reason[1024] = { 0 };
e3283fa0 1831 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1832 errx(1, "%s", reason);
ec04b13f
BR
1833 /* ERESTART means that we need to reboot the guest */
1834 } else if (errno == ERESTART) {
1835 restart_guest();
659a0e66
RR
1836 /* Anything else means a bug or incompatible change. */
1837 } else
8ca47e00 1838 err(1, "Running guest failed");
8ca47e00
RR
1839 }
1840}
a6bd8e13 1841/*L:240
e1e72965
RR
1842 * This is the end of the Launcher. The good news: we are over halfway
1843 * through! The bad news: the most fiendish part of the code still lies ahead
1844 * of us.
dde79789 1845 *
e1e72965
RR
1846 * Are you ready? Take a deep breath and join me in the core of the Host, in
1847 * "make Host".
2e04ef76 1848:*/
8ca47e00
RR
1849
1850static struct option opts[] = {
1851 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1852 { "tunnet", 1, NULL, 't' },
1853 { "block", 1, NULL, 'b' },
28fd6d7f 1854 { "rng", 0, NULL, 'r' },
8ca47e00 1855 { "initrd", 1, NULL, 'i' },
8aeb36e8
PS
1856 { "username", 1, NULL, 'u' },
1857 { "chroot", 1, NULL, 'c' },
8ca47e00
RR
1858 { NULL },
1859};
1860static void usage(void)
1861{
1862 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1863 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1864 "|--block=<filename>|--initrd=<filename>]...\n"
1865 "<mem-in-mb> vmlinux [args...]");
1866}
1867
3c6b5bfa 1868/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1869int main(int argc, char *argv[])
1870{
2e04ef76 1871 /* Memory, code startpoint and size of the (optional) initrd. */
58a24566 1872 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
1873 /* Two temporaries. */
1874 int i, c;
3c6b5bfa 1875 /* The boot information for the Guest. */
43d33b21 1876 struct boot_params *boot;
dde79789 1877 /* If they specify an initrd file to load. */
8ca47e00
RR
1878 const char *initrd_name = NULL;
1879
8aeb36e8
PS
1880 /* Password structure for initgroups/setres[gu]id */
1881 struct passwd *user_details = NULL;
1882
1883 /* Directory to chroot to */
1884 char *chroot_path = NULL;
1885
ec04b13f
BR
1886 /* Save the args: we "reboot" by execing ourselves again. */
1887 main_args = argv;
ec04b13f 1888
2e04ef76
RR
1889 /*
1890 * First we initialize the device list. We keep a pointer to the last
659a0e66 1891 * device, and the next interrupt number to use for devices (1:
2e04ef76
RR
1892 * remember that 0 is used by the timer).
1893 */
a586d4f6 1894 devices.lastdev = NULL;
17cbca2b 1895 devices.next_irq = 1;
8ca47e00 1896
a91d74a3 1897 /* We're CPU 0. In fact, that's the only CPU possible right now. */
e3283fa0 1898 cpu_id = 0;
a91d74a3 1899
2e04ef76
RR
1900 /*
1901 * We need to know how much memory so we can set up the device
dde79789
RR
1902 * descriptor and memory pages for the devices as we parse the command
1903 * line. So we quickly look through the arguments to find the amount
2e04ef76
RR
1904 * of memory now.
1905 */
6570c459
RR
1906 for (i = 1; i < argc; i++) {
1907 if (argv[i][0] != '-') {
3c6b5bfa 1908 mem = atoi(argv[i]) * 1024 * 1024;
2e04ef76
RR
1909 /*
1910 * We start by mapping anonymous pages over all of
3c6b5bfa
RR
1911 * guest-physical memory range. This fills it with 0,
1912 * and ensures that the Guest won't be killed when it
2e04ef76
RR
1913 * tries to access it.
1914 */
3c6b5bfa
RR
1915 guest_base = map_zeroed_pages(mem / getpagesize()
1916 + DEVICE_PAGES);
1917 guest_limit = mem;
1918 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1919 devices.descpage = get_pages(1);
6570c459
RR
1920 break;
1921 }
1922 }
dde79789
RR
1923
1924 /* The options are fairly straight-forward */
8ca47e00
RR
1925 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1926 switch (c) {
1927 case 'v':
1928 verbose = true;
1929 break;
8ca47e00 1930 case 't':
17cbca2b 1931 setup_tun_net(optarg);
8ca47e00
RR
1932 break;
1933 case 'b':
17cbca2b 1934 setup_block_file(optarg);
8ca47e00 1935 break;
28fd6d7f
RR
1936 case 'r':
1937 setup_rng();
1938 break;
8ca47e00
RR
1939 case 'i':
1940 initrd_name = optarg;
1941 break;
8aeb36e8
PS
1942 case 'u':
1943 user_details = getpwnam(optarg);
1944 if (!user_details)
1945 err(1, "getpwnam failed, incorrect username?");
1946 break;
1947 case 'c':
1948 chroot_path = optarg;
1949 break;
8ca47e00
RR
1950 default:
1951 warnx("Unknown argument %s", argv[optind]);
1952 usage();
1953 }
1954 }
2e04ef76
RR
1955 /*
1956 * After the other arguments we expect memory and kernel image name,
1957 * followed by command line arguments for the kernel.
1958 */
8ca47e00
RR
1959 if (optind + 2 > argc)
1960 usage();
1961
3c6b5bfa
RR
1962 verbose("Guest base is at %p\n", guest_base);
1963
dde79789 1964 /* We always have a console device */
17cbca2b 1965 setup_console();
8ca47e00 1966
8ca47e00 1967 /* Now we load the kernel */
47436aa4 1968 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 1969
3c6b5bfa
RR
1970 /* Boot information is stashed at physical address 0 */
1971 boot = from_guest_phys(0);
1972
dde79789 1973 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
1974 if (initrd_name) {
1975 initrd_size = load_initrd(initrd_name, mem);
2e04ef76
RR
1976 /*
1977 * These are the location in the Linux boot header where the
1978 * start and size of the initrd are expected to be found.
1979 */
43d33b21
RR
1980 boot->hdr.ramdisk_image = mem - initrd_size;
1981 boot->hdr.ramdisk_size = initrd_size;
dde79789 1982 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 1983 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
1984 }
1985
2e04ef76
RR
1986 /*
1987 * The Linux boot header contains an "E820" memory map: ours is a
1988 * simple, single region.
1989 */
43d33b21
RR
1990 boot->e820_entries = 1;
1991 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2e04ef76
RR
1992 /*
1993 * The boot header contains a command line pointer: we put the command
1994 * line after the boot header.
1995 */
43d33b21 1996 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 1997 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 1998 concat((char *)(boot + 1), argv+optind+2);
dde79789 1999
814a0e5c 2000 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 2001 boot->hdr.version = 0x207;
814a0e5c
RR
2002
2003 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 2004 boot->hdr.hardware_subarch = 1;
814a0e5c 2005
43d33b21
RR
2006 /* Tell the entry path not to try to reload segment registers. */
2007 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 2008
2e04ef76
RR
2009 /*
2010 * We tell the kernel to initialize the Guest: this returns the open
2011 * /dev/lguest file descriptor.
2012 */
56739c80 2013 tell_kernel(start);
dde79789 2014
a91d74a3 2015 /* Ensure that we terminate if a device-servicing child dies. */
659a0e66
RR
2016 signal(SIGCHLD, kill_launcher);
2017
2018 /* If we exit via err(), this kills all the threads, restores tty. */
2019 atexit(cleanup_devices);
8ca47e00 2020
8aeb36e8
PS
2021 /* If requested, chroot to a directory */
2022 if (chroot_path) {
2023 if (chroot(chroot_path) != 0)
2024 err(1, "chroot(\"%s\") failed", chroot_path);
2025
2026 if (chdir("/") != 0)
2027 err(1, "chdir(\"/\") failed");
2028
2029 verbose("chroot done\n");
2030 }
2031
2032 /* If requested, drop privileges */
2033 if (user_details) {
2034 uid_t u;
2035 gid_t g;
2036
2037 u = user_details->pw_uid;
2038 g = user_details->pw_gid;
2039
2040 if (initgroups(user_details->pw_name, g) != 0)
2041 err(1, "initgroups failed");
2042
2043 if (setresgid(g, g, g) != 0)
2044 err(1, "setresgid failed");
2045
2046 if (setresuid(u, u, u) != 0)
2047 err(1, "setresuid failed");
2048
2049 verbose("Dropping privileges completed\n");
2050 }
2051
dde79789 2052 /* Finally, run the Guest. This doesn't return. */
56739c80 2053 run_guest();
8ca47e00 2054}
f56a384e
RR
2055/*:*/
2056
2057/*M:999
2058 * Mastery is done: you now know everything I do.
2059 *
2060 * But surely you have seen code, features and bugs in your wanderings which
2061 * you now yearn to attack? That is the real game, and I look forward to you
2062 * patching and forking lguest into the Your-Name-Here-visor.
2063 *
2064 * Farewell, and good coding!
2065 * Rusty Russell.
2066 */