Merge branch 'kvm-arm64/for-3.14' into kvm-arm64/next
[linux-2.6-block.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
414fa985 85
9c1b96e3
AK
864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
414fa985 101
9c1b96e3
AK
1024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
e08b9637 107Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
e08b9637
CO
115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
9c1b96e3 120
414fa985 121
9c1b96e3
AK
1224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
2e2602ca
AK
144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
414fa985 148
9c1b96e3
AK
1494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
414fa985 163
9c1b96e3
AK
1644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
414fa985 176
9c1b96e3
AK
1774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
b74a07be 185This ioctl is obsolete and has been removed.
9c1b96e3 186
414fa985 187
68ba6974 1884.7 KVM_CREATE_VCPU
9c1b96e3
AK
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
76d25402
PE
204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
8c3ba334
SL
206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 208
371fefd6
PM
209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
5b1c1493
CO
222For virtual cpus that have been created with S390 user controlled virtual
223machines, the resulting vcpu fd can be memory mapped at page offset
224KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
225cpu's hardware control block.
226
414fa985 227
68ba6974 2284.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
229
230Capability: basic
231Architectures: x86
232Type: vm ioctl
233Parameters: struct kvm_dirty_log (in/out)
234Returns: 0 on success, -1 on error
235
236/* for KVM_GET_DIRTY_LOG */
237struct kvm_dirty_log {
238 __u32 slot;
239 __u32 padding;
240 union {
241 void __user *dirty_bitmap; /* one bit per page */
242 __u64 padding;
243 };
244};
245
246Given a memory slot, return a bitmap containing any pages dirtied
247since the last call to this ioctl. Bit 0 is the first page in the
248memory slot. Ensure the entire structure is cleared to avoid padding
249issues.
250
414fa985 251
68ba6974 2524.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
253
254Capability: basic
255Architectures: x86
256Type: vm ioctl
257Parameters: struct kvm_memory_alias (in)
258Returns: 0 (success), -1 (error)
259
a1f4d395 260This ioctl is obsolete and has been removed.
9c1b96e3 261
414fa985 262
68ba6974 2634.10 KVM_RUN
9c1b96e3
AK
264
265Capability: basic
266Architectures: all
267Type: vcpu ioctl
268Parameters: none
269Returns: 0 on success, -1 on error
270Errors:
271 EINTR: an unmasked signal is pending
272
273This ioctl is used to run a guest virtual cpu. While there are no
274explicit parameters, there is an implicit parameter block that can be
275obtained by mmap()ing the vcpu fd at offset 0, with the size given by
276KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
277kvm_run' (see below).
278
414fa985 279
68ba6974 2804.11 KVM_GET_REGS
9c1b96e3
AK
281
282Capability: basic
379e04c7 283Architectures: all except ARM, arm64
9c1b96e3
AK
284Type: vcpu ioctl
285Parameters: struct kvm_regs (out)
286Returns: 0 on success, -1 on error
287
288Reads the general purpose registers from the vcpu.
289
290/* x86 */
291struct kvm_regs {
292 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
293 __u64 rax, rbx, rcx, rdx;
294 __u64 rsi, rdi, rsp, rbp;
295 __u64 r8, r9, r10, r11;
296 __u64 r12, r13, r14, r15;
297 __u64 rip, rflags;
298};
299
414fa985 300
68ba6974 3014.12 KVM_SET_REGS
9c1b96e3
AK
302
303Capability: basic
379e04c7 304Architectures: all except ARM, arm64
9c1b96e3
AK
305Type: vcpu ioctl
306Parameters: struct kvm_regs (in)
307Returns: 0 on success, -1 on error
308
309Writes the general purpose registers into the vcpu.
310
311See KVM_GET_REGS for the data structure.
312
414fa985 313
68ba6974 3144.13 KVM_GET_SREGS
9c1b96e3
AK
315
316Capability: basic
5ce941ee 317Architectures: x86, ppc
9c1b96e3
AK
318Type: vcpu ioctl
319Parameters: struct kvm_sregs (out)
320Returns: 0 on success, -1 on error
321
322Reads special registers from the vcpu.
323
324/* x86 */
325struct kvm_sregs {
326 struct kvm_segment cs, ds, es, fs, gs, ss;
327 struct kvm_segment tr, ldt;
328 struct kvm_dtable gdt, idt;
329 __u64 cr0, cr2, cr3, cr4, cr8;
330 __u64 efer;
331 __u64 apic_base;
332 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
333};
334
68e2ffed 335/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 336
9c1b96e3
AK
337interrupt_bitmap is a bitmap of pending external interrupts. At most
338one bit may be set. This interrupt has been acknowledged by the APIC
339but not yet injected into the cpu core.
340
414fa985 341
68ba6974 3424.14 KVM_SET_SREGS
9c1b96e3
AK
343
344Capability: basic
5ce941ee 345Architectures: x86, ppc
9c1b96e3
AK
346Type: vcpu ioctl
347Parameters: struct kvm_sregs (in)
348Returns: 0 on success, -1 on error
349
350Writes special registers into the vcpu. See KVM_GET_SREGS for the
351data structures.
352
414fa985 353
68ba6974 3544.15 KVM_TRANSLATE
9c1b96e3
AK
355
356Capability: basic
357Architectures: x86
358Type: vcpu ioctl
359Parameters: struct kvm_translation (in/out)
360Returns: 0 on success, -1 on error
361
362Translates a virtual address according to the vcpu's current address
363translation mode.
364
365struct kvm_translation {
366 /* in */
367 __u64 linear_address;
368
369 /* out */
370 __u64 physical_address;
371 __u8 valid;
372 __u8 writeable;
373 __u8 usermode;
374 __u8 pad[5];
375};
376
414fa985 377
68ba6974 3784.16 KVM_INTERRUPT
9c1b96e3
AK
379
380Capability: basic
6f7a2bd4 381Architectures: x86, ppc
9c1b96e3
AK
382Type: vcpu ioctl
383Parameters: struct kvm_interrupt (in)
384Returns: 0 on success, -1 on error
385
386Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 387useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
388
389/* for KVM_INTERRUPT */
390struct kvm_interrupt {
391 /* in */
392 __u32 irq;
393};
394
6f7a2bd4
AG
395X86:
396
9c1b96e3
AK
397Note 'irq' is an interrupt vector, not an interrupt pin or line.
398
6f7a2bd4
AG
399PPC:
400
401Queues an external interrupt to be injected. This ioctl is overleaded
402with 3 different irq values:
403
404a) KVM_INTERRUPT_SET
405
406 This injects an edge type external interrupt into the guest once it's ready
407 to receive interrupts. When injected, the interrupt is done.
408
409b) KVM_INTERRUPT_UNSET
410
411 This unsets any pending interrupt.
412
413 Only available with KVM_CAP_PPC_UNSET_IRQ.
414
415c) KVM_INTERRUPT_SET_LEVEL
416
417 This injects a level type external interrupt into the guest context. The
418 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
419 is triggered.
420
421 Only available with KVM_CAP_PPC_IRQ_LEVEL.
422
423Note that any value for 'irq' other than the ones stated above is invalid
424and incurs unexpected behavior.
425
414fa985 426
68ba6974 4274.17 KVM_DEBUG_GUEST
9c1b96e3
AK
428
429Capability: basic
430Architectures: none
431Type: vcpu ioctl
432Parameters: none)
433Returns: -1 on error
434
435Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
436
414fa985 437
68ba6974 4384.18 KVM_GET_MSRS
9c1b96e3
AK
439
440Capability: basic
441Architectures: x86
442Type: vcpu ioctl
443Parameters: struct kvm_msrs (in/out)
444Returns: 0 on success, -1 on error
445
446Reads model-specific registers from the vcpu. Supported msr indices can
447be obtained using KVM_GET_MSR_INDEX_LIST.
448
449struct kvm_msrs {
450 __u32 nmsrs; /* number of msrs in entries */
451 __u32 pad;
452
453 struct kvm_msr_entry entries[0];
454};
455
456struct kvm_msr_entry {
457 __u32 index;
458 __u32 reserved;
459 __u64 data;
460};
461
462Application code should set the 'nmsrs' member (which indicates the
463size of the entries array) and the 'index' member of each array entry.
464kvm will fill in the 'data' member.
465
414fa985 466
68ba6974 4674.19 KVM_SET_MSRS
9c1b96e3
AK
468
469Capability: basic
470Architectures: x86
471Type: vcpu ioctl
472Parameters: struct kvm_msrs (in)
473Returns: 0 on success, -1 on error
474
475Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
476data structures.
477
478Application code should set the 'nmsrs' member (which indicates the
479size of the entries array), and the 'index' and 'data' members of each
480array entry.
481
414fa985 482
68ba6974 4834.20 KVM_SET_CPUID
9c1b96e3
AK
484
485Capability: basic
486Architectures: x86
487Type: vcpu ioctl
488Parameters: struct kvm_cpuid (in)
489Returns: 0 on success, -1 on error
490
491Defines the vcpu responses to the cpuid instruction. Applications
492should use the KVM_SET_CPUID2 ioctl if available.
493
494
495struct kvm_cpuid_entry {
496 __u32 function;
497 __u32 eax;
498 __u32 ebx;
499 __u32 ecx;
500 __u32 edx;
501 __u32 padding;
502};
503
504/* for KVM_SET_CPUID */
505struct kvm_cpuid {
506 __u32 nent;
507 __u32 padding;
508 struct kvm_cpuid_entry entries[0];
509};
510
414fa985 511
68ba6974 5124.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
513
514Capability: basic
515Architectures: x86
516Type: vcpu ioctl
517Parameters: struct kvm_signal_mask (in)
518Returns: 0 on success, -1 on error
519
520Defines which signals are blocked during execution of KVM_RUN. This
521signal mask temporarily overrides the threads signal mask. Any
522unblocked signal received (except SIGKILL and SIGSTOP, which retain
523their traditional behaviour) will cause KVM_RUN to return with -EINTR.
524
525Note the signal will only be delivered if not blocked by the original
526signal mask.
527
528/* for KVM_SET_SIGNAL_MASK */
529struct kvm_signal_mask {
530 __u32 len;
531 __u8 sigset[0];
532};
533
414fa985 534
68ba6974 5354.22 KVM_GET_FPU
9c1b96e3
AK
536
537Capability: basic
538Architectures: x86
539Type: vcpu ioctl
540Parameters: struct kvm_fpu (out)
541Returns: 0 on success, -1 on error
542
543Reads the floating point state from the vcpu.
544
545/* for KVM_GET_FPU and KVM_SET_FPU */
546struct kvm_fpu {
547 __u8 fpr[8][16];
548 __u16 fcw;
549 __u16 fsw;
550 __u8 ftwx; /* in fxsave format */
551 __u8 pad1;
552 __u16 last_opcode;
553 __u64 last_ip;
554 __u64 last_dp;
555 __u8 xmm[16][16];
556 __u32 mxcsr;
557 __u32 pad2;
558};
559
414fa985 560
68ba6974 5614.23 KVM_SET_FPU
9c1b96e3
AK
562
563Capability: basic
564Architectures: x86
565Type: vcpu ioctl
566Parameters: struct kvm_fpu (in)
567Returns: 0 on success, -1 on error
568
569Writes the floating point state to the vcpu.
570
571/* for KVM_GET_FPU and KVM_SET_FPU */
572struct kvm_fpu {
573 __u8 fpr[8][16];
574 __u16 fcw;
575 __u16 fsw;
576 __u8 ftwx; /* in fxsave format */
577 __u8 pad1;
578 __u16 last_opcode;
579 __u64 last_ip;
580 __u64 last_dp;
581 __u8 xmm[16][16];
582 __u32 mxcsr;
583 __u32 pad2;
584};
585
414fa985 586
68ba6974 5874.24 KVM_CREATE_IRQCHIP
5dadbfd6
AK
588
589Capability: KVM_CAP_IRQCHIP
379e04c7 590Architectures: x86, ia64, ARM, arm64
5dadbfd6
AK
591Type: vm ioctl
592Parameters: none
593Returns: 0 on success, -1 on error
594
595Creates an interrupt controller model in the kernel. On x86, creates a virtual
596ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
597local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
379e04c7 598only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM/arm64, a GIC is
749cf76c 599created.
5dadbfd6 600
414fa985 601
68ba6974 6024.25 KVM_IRQ_LINE
5dadbfd6
AK
603
604Capability: KVM_CAP_IRQCHIP
379e04c7 605Architectures: x86, ia64, arm, arm64
5dadbfd6
AK
606Type: vm ioctl
607Parameters: struct kvm_irq_level
608Returns: 0 on success, -1 on error
609
610Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
611On some architectures it is required that an interrupt controller model has
612been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
613interrupts require the level to be set to 1 and then back to 0.
614
379e04c7
MZ
615ARM/arm64 can signal an interrupt either at the CPU level, or at the
616in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
617use PPIs designated for specific cpus. The irq field is interpreted
618like this:
86ce8535
CD
619
620  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
621 field: | irq_type | vcpu_index | irq_id |
622
623The irq_type field has the following values:
624- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
625- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
626 (the vcpu_index field is ignored)
627- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
628
629(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
630
631In both cases, level is used to raise/lower the line.
5dadbfd6
AK
632
633struct kvm_irq_level {
634 union {
635 __u32 irq; /* GSI */
636 __s32 status; /* not used for KVM_IRQ_LEVEL */
637 };
638 __u32 level; /* 0 or 1 */
639};
640
414fa985 641
68ba6974 6424.26 KVM_GET_IRQCHIP
5dadbfd6
AK
643
644Capability: KVM_CAP_IRQCHIP
645Architectures: x86, ia64
646Type: vm ioctl
647Parameters: struct kvm_irqchip (in/out)
648Returns: 0 on success, -1 on error
649
650Reads the state of a kernel interrupt controller created with
651KVM_CREATE_IRQCHIP into a buffer provided by the caller.
652
653struct kvm_irqchip {
654 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
655 __u32 pad;
656 union {
657 char dummy[512]; /* reserving space */
658 struct kvm_pic_state pic;
659 struct kvm_ioapic_state ioapic;
660 } chip;
661};
662
414fa985 663
68ba6974 6644.27 KVM_SET_IRQCHIP
5dadbfd6
AK
665
666Capability: KVM_CAP_IRQCHIP
667Architectures: x86, ia64
668Type: vm ioctl
669Parameters: struct kvm_irqchip (in)
670Returns: 0 on success, -1 on error
671
672Sets the state of a kernel interrupt controller created with
673KVM_CREATE_IRQCHIP from a buffer provided by the caller.
674
675struct kvm_irqchip {
676 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
677 __u32 pad;
678 union {
679 char dummy[512]; /* reserving space */
680 struct kvm_pic_state pic;
681 struct kvm_ioapic_state ioapic;
682 } chip;
683};
684
414fa985 685
68ba6974 6864.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
687
688Capability: KVM_CAP_XEN_HVM
689Architectures: x86
690Type: vm ioctl
691Parameters: struct kvm_xen_hvm_config (in)
692Returns: 0 on success, -1 on error
693
694Sets the MSR that the Xen HVM guest uses to initialize its hypercall
695page, and provides the starting address and size of the hypercall
696blobs in userspace. When the guest writes the MSR, kvm copies one
697page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
698memory.
699
700struct kvm_xen_hvm_config {
701 __u32 flags;
702 __u32 msr;
703 __u64 blob_addr_32;
704 __u64 blob_addr_64;
705 __u8 blob_size_32;
706 __u8 blob_size_64;
707 __u8 pad2[30];
708};
709
414fa985 710
68ba6974 7114.29 KVM_GET_CLOCK
afbcf7ab
GC
712
713Capability: KVM_CAP_ADJUST_CLOCK
714Architectures: x86
715Type: vm ioctl
716Parameters: struct kvm_clock_data (out)
717Returns: 0 on success, -1 on error
718
719Gets the current timestamp of kvmclock as seen by the current guest. In
720conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
721such as migration.
722
723struct kvm_clock_data {
724 __u64 clock; /* kvmclock current value */
725 __u32 flags;
726 __u32 pad[9];
727};
728
414fa985 729
68ba6974 7304.30 KVM_SET_CLOCK
afbcf7ab
GC
731
732Capability: KVM_CAP_ADJUST_CLOCK
733Architectures: x86
734Type: vm ioctl
735Parameters: struct kvm_clock_data (in)
736Returns: 0 on success, -1 on error
737
2044892d 738Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
739In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
740such as migration.
741
742struct kvm_clock_data {
743 __u64 clock; /* kvmclock current value */
744 __u32 flags;
745 __u32 pad[9];
746};
747
414fa985 748
68ba6974 7494.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
750
751Capability: KVM_CAP_VCPU_EVENTS
48005f64 752Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
753Architectures: x86
754Type: vm ioctl
755Parameters: struct kvm_vcpu_event (out)
756Returns: 0 on success, -1 on error
757
758Gets currently pending exceptions, interrupts, and NMIs as well as related
759states of the vcpu.
760
761struct kvm_vcpu_events {
762 struct {
763 __u8 injected;
764 __u8 nr;
765 __u8 has_error_code;
766 __u8 pad;
767 __u32 error_code;
768 } exception;
769 struct {
770 __u8 injected;
771 __u8 nr;
772 __u8 soft;
48005f64 773 __u8 shadow;
3cfc3092
JK
774 } interrupt;
775 struct {
776 __u8 injected;
777 __u8 pending;
778 __u8 masked;
779 __u8 pad;
780 } nmi;
781 __u32 sipi_vector;
dab4b911 782 __u32 flags;
3cfc3092
JK
783};
784
48005f64
JK
785KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
786interrupt.shadow contains a valid state. Otherwise, this field is undefined.
787
414fa985 788
68ba6974 7894.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
790
791Capability: KVM_CAP_VCPU_EVENTS
48005f64 792Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
793Architectures: x86
794Type: vm ioctl
795Parameters: struct kvm_vcpu_event (in)
796Returns: 0 on success, -1 on error
797
798Set pending exceptions, interrupts, and NMIs as well as related states of the
799vcpu.
800
801See KVM_GET_VCPU_EVENTS for the data structure.
802
dab4b911
JK
803Fields that may be modified asynchronously by running VCPUs can be excluded
804from the update. These fields are nmi.pending and sipi_vector. Keep the
805corresponding bits in the flags field cleared to suppress overwriting the
806current in-kernel state. The bits are:
807
808KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
809KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
810
48005f64
JK
811If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
812the flags field to signal that interrupt.shadow contains a valid state and
813shall be written into the VCPU.
814
414fa985 815
68ba6974 8164.33 KVM_GET_DEBUGREGS
a1efbe77
JK
817
818Capability: KVM_CAP_DEBUGREGS
819Architectures: x86
820Type: vm ioctl
821Parameters: struct kvm_debugregs (out)
822Returns: 0 on success, -1 on error
823
824Reads debug registers from the vcpu.
825
826struct kvm_debugregs {
827 __u64 db[4];
828 __u64 dr6;
829 __u64 dr7;
830 __u64 flags;
831 __u64 reserved[9];
832};
833
414fa985 834
68ba6974 8354.34 KVM_SET_DEBUGREGS
a1efbe77
JK
836
837Capability: KVM_CAP_DEBUGREGS
838Architectures: x86
839Type: vm ioctl
840Parameters: struct kvm_debugregs (in)
841Returns: 0 on success, -1 on error
842
843Writes debug registers into the vcpu.
844
845See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
846yet and must be cleared on entry.
847
414fa985 848
68ba6974 8494.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
850
851Capability: KVM_CAP_USER_MEM
852Architectures: all
853Type: vm ioctl
854Parameters: struct kvm_userspace_memory_region (in)
855Returns: 0 on success, -1 on error
856
857struct kvm_userspace_memory_region {
858 __u32 slot;
859 __u32 flags;
860 __u64 guest_phys_addr;
861 __u64 memory_size; /* bytes */
862 __u64 userspace_addr; /* start of the userspace allocated memory */
863};
864
865/* for kvm_memory_region::flags */
4d8b81ab
XG
866#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
867#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
868
869This ioctl allows the user to create or modify a guest physical memory
870slot. When changing an existing slot, it may be moved in the guest
871physical memory space, or its flags may be modified. It may not be
872resized. Slots may not overlap in guest physical address space.
873
874Memory for the region is taken starting at the address denoted by the
875field userspace_addr, which must point at user addressable memory for
876the entire memory slot size. Any object may back this memory, including
877anonymous memory, ordinary files, and hugetlbfs.
878
879It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
880be identical. This allows large pages in the guest to be backed by large
881pages in the host.
882
75d61fbc
TY
883The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
884KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
885writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
886use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
887to make a new slot read-only. In this case, writes to this memory will be
888posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
889
890When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
891the memory region are automatically reflected into the guest. For example, an
892mmap() that affects the region will be made visible immediately. Another
893example is madvise(MADV_DROP).
0f2d8f4d
AK
894
895It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
896The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
897allocation and is deprecated.
3cfc3092 898
414fa985 899
68ba6974 9004.36 KVM_SET_TSS_ADDR
8a5416db
AK
901
902Capability: KVM_CAP_SET_TSS_ADDR
903Architectures: x86
904Type: vm ioctl
905Parameters: unsigned long tss_address (in)
906Returns: 0 on success, -1 on error
907
908This ioctl defines the physical address of a three-page region in the guest
909physical address space. The region must be within the first 4GB of the
910guest physical address space and must not conflict with any memory slot
911or any mmio address. The guest may malfunction if it accesses this memory
912region.
913
914This ioctl is required on Intel-based hosts. This is needed on Intel hardware
915because of a quirk in the virtualization implementation (see the internals
916documentation when it pops into existence).
917
414fa985 918
68ba6974 9194.37 KVM_ENABLE_CAP
71fbfd5f
AG
920
921Capability: KVM_CAP_ENABLE_CAP
d6712df9 922Architectures: ppc, s390
71fbfd5f
AG
923Type: vcpu ioctl
924Parameters: struct kvm_enable_cap (in)
925Returns: 0 on success; -1 on error
926
927+Not all extensions are enabled by default. Using this ioctl the application
928can enable an extension, making it available to the guest.
929
930On systems that do not support this ioctl, it always fails. On systems that
931do support it, it only works for extensions that are supported for enablement.
932
933To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
934be used.
935
936struct kvm_enable_cap {
937 /* in */
938 __u32 cap;
939
940The capability that is supposed to get enabled.
941
942 __u32 flags;
943
944A bitfield indicating future enhancements. Has to be 0 for now.
945
946 __u64 args[4];
947
948Arguments for enabling a feature. If a feature needs initial values to
949function properly, this is the place to put them.
950
951 __u8 pad[64];
952};
953
414fa985 954
68ba6974 9554.38 KVM_GET_MP_STATE
b843f065
AK
956
957Capability: KVM_CAP_MP_STATE
958Architectures: x86, ia64
959Type: vcpu ioctl
960Parameters: struct kvm_mp_state (out)
961Returns: 0 on success; -1 on error
962
963struct kvm_mp_state {
964 __u32 mp_state;
965};
966
967Returns the vcpu's current "multiprocessing state" (though also valid on
968uniprocessor guests).
969
970Possible values are:
971
972 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
973 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
974 which has not yet received an INIT signal
975 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
976 now ready for a SIPI
977 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
978 is waiting for an interrupt
979 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
b595076a 980 accessible via KVM_GET_VCPU_EVENTS)
b843f065
AK
981
982This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
983irqchip, the multiprocessing state must be maintained by userspace.
984
414fa985 985
68ba6974 9864.39 KVM_SET_MP_STATE
b843f065
AK
987
988Capability: KVM_CAP_MP_STATE
989Architectures: x86, ia64
990Type: vcpu ioctl
991Parameters: struct kvm_mp_state (in)
992Returns: 0 on success; -1 on error
993
994Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
995arguments.
996
997This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
998irqchip, the multiprocessing state must be maintained by userspace.
999
414fa985 1000
68ba6974 10014.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1002
1003Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1004Architectures: x86
1005Type: vm ioctl
1006Parameters: unsigned long identity (in)
1007Returns: 0 on success, -1 on error
1008
1009This ioctl defines the physical address of a one-page region in the guest
1010physical address space. The region must be within the first 4GB of the
1011guest physical address space and must not conflict with any memory slot
1012or any mmio address. The guest may malfunction if it accesses this memory
1013region.
1014
1015This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1016because of a quirk in the virtualization implementation (see the internals
1017documentation when it pops into existence).
1018
414fa985 1019
68ba6974 10204.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1021
1022Capability: KVM_CAP_SET_BOOT_CPU_ID
1023Architectures: x86, ia64
1024Type: vm ioctl
1025Parameters: unsigned long vcpu_id
1026Returns: 0 on success, -1 on error
1027
1028Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1029as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1030is vcpu 0.
1031
414fa985 1032
68ba6974 10334.42 KVM_GET_XSAVE
2d5b5a66
SY
1034
1035Capability: KVM_CAP_XSAVE
1036Architectures: x86
1037Type: vcpu ioctl
1038Parameters: struct kvm_xsave (out)
1039Returns: 0 on success, -1 on error
1040
1041struct kvm_xsave {
1042 __u32 region[1024];
1043};
1044
1045This ioctl would copy current vcpu's xsave struct to the userspace.
1046
414fa985 1047
68ba6974 10484.43 KVM_SET_XSAVE
2d5b5a66
SY
1049
1050Capability: KVM_CAP_XSAVE
1051Architectures: x86
1052Type: vcpu ioctl
1053Parameters: struct kvm_xsave (in)
1054Returns: 0 on success, -1 on error
1055
1056struct kvm_xsave {
1057 __u32 region[1024];
1058};
1059
1060This ioctl would copy userspace's xsave struct to the kernel.
1061
414fa985 1062
68ba6974 10634.44 KVM_GET_XCRS
2d5b5a66
SY
1064
1065Capability: KVM_CAP_XCRS
1066Architectures: x86
1067Type: vcpu ioctl
1068Parameters: struct kvm_xcrs (out)
1069Returns: 0 on success, -1 on error
1070
1071struct kvm_xcr {
1072 __u32 xcr;
1073 __u32 reserved;
1074 __u64 value;
1075};
1076
1077struct kvm_xcrs {
1078 __u32 nr_xcrs;
1079 __u32 flags;
1080 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1081 __u64 padding[16];
1082};
1083
1084This ioctl would copy current vcpu's xcrs to the userspace.
1085
414fa985 1086
68ba6974 10874.45 KVM_SET_XCRS
2d5b5a66
SY
1088
1089Capability: KVM_CAP_XCRS
1090Architectures: x86
1091Type: vcpu ioctl
1092Parameters: struct kvm_xcrs (in)
1093Returns: 0 on success, -1 on error
1094
1095struct kvm_xcr {
1096 __u32 xcr;
1097 __u32 reserved;
1098 __u64 value;
1099};
1100
1101struct kvm_xcrs {
1102 __u32 nr_xcrs;
1103 __u32 flags;
1104 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1105 __u64 padding[16];
1106};
1107
1108This ioctl would set vcpu's xcr to the value userspace specified.
1109
414fa985 1110
68ba6974 11114.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1112
1113Capability: KVM_CAP_EXT_CPUID
1114Architectures: x86
1115Type: system ioctl
1116Parameters: struct kvm_cpuid2 (in/out)
1117Returns: 0 on success, -1 on error
1118
1119struct kvm_cpuid2 {
1120 __u32 nent;
1121 __u32 padding;
1122 struct kvm_cpuid_entry2 entries[0];
1123};
1124
9c15bb1d
BP
1125#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1126#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1127#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1128
1129struct kvm_cpuid_entry2 {
1130 __u32 function;
1131 __u32 index;
1132 __u32 flags;
1133 __u32 eax;
1134 __u32 ebx;
1135 __u32 ecx;
1136 __u32 edx;
1137 __u32 padding[3];
1138};
1139
1140This ioctl returns x86 cpuid features which are supported by both the hardware
1141and kvm. Userspace can use the information returned by this ioctl to
1142construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1143hardware, kernel, and userspace capabilities, and with user requirements (for
1144example, the user may wish to constrain cpuid to emulate older hardware,
1145or for feature consistency across a cluster).
1146
1147Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1148with the 'nent' field indicating the number of entries in the variable-size
1149array 'entries'. If the number of entries is too low to describe the cpu
1150capabilities, an error (E2BIG) is returned. If the number is too high,
1151the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1152number is just right, the 'nent' field is adjusted to the number of valid
1153entries in the 'entries' array, which is then filled.
1154
1155The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1156with unknown or unsupported features masked out. Some features (for example,
1157x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1158emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1159
1160 function: the eax value used to obtain the entry
1161 index: the ecx value used to obtain the entry (for entries that are
1162 affected by ecx)
1163 flags: an OR of zero or more of the following:
1164 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1165 if the index field is valid
1166 KVM_CPUID_FLAG_STATEFUL_FUNC:
1167 if cpuid for this function returns different values for successive
1168 invocations; there will be several entries with the same function,
1169 all with this flag set
1170 KVM_CPUID_FLAG_STATE_READ_NEXT:
1171 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1172 the first entry to be read by a cpu
1173 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1174 this function/index combination
1175
4d25a066
JK
1176The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1177as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1178support. Instead it is reported via
1179
1180 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1181
1182if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1183feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1184
414fa985 1185
68ba6974 11864.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1187
1188Capability: KVM_CAP_PPC_GET_PVINFO
1189Architectures: ppc
1190Type: vm ioctl
1191Parameters: struct kvm_ppc_pvinfo (out)
1192Returns: 0 on success, !0 on error
1193
1194struct kvm_ppc_pvinfo {
1195 __u32 flags;
1196 __u32 hcall[4];
1197 __u8 pad[108];
1198};
1199
1200This ioctl fetches PV specific information that need to be passed to the guest
1201using the device tree or other means from vm context.
1202
9202e076 1203The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1204
1205If any additional field gets added to this structure later on, a bit for that
1206additional piece of information will be set in the flags bitmap.
1207
9202e076
LYB
1208The flags bitmap is defined as:
1209
1210 /* the host supports the ePAPR idle hcall
1211 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1212
68ba6974 12134.48 KVM_ASSIGN_PCI_DEVICE
49f48172
JK
1214
1215Capability: KVM_CAP_DEVICE_ASSIGNMENT
1216Architectures: x86 ia64
1217Type: vm ioctl
1218Parameters: struct kvm_assigned_pci_dev (in)
1219Returns: 0 on success, -1 on error
1220
1221Assigns a host PCI device to the VM.
1222
1223struct kvm_assigned_pci_dev {
1224 __u32 assigned_dev_id;
1225 __u32 busnr;
1226 __u32 devfn;
1227 __u32 flags;
1228 __u32 segnr;
1229 union {
1230 __u32 reserved[11];
1231 };
1232};
1233
1234The PCI device is specified by the triple segnr, busnr, and devfn.
1235Identification in succeeding service requests is done via assigned_dev_id. The
1236following flags are specified:
1237
1238/* Depends on KVM_CAP_IOMMU */
1239#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1240/* The following two depend on KVM_CAP_PCI_2_3 */
1241#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1242#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1243
1244If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1245via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1246assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1247guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1248
42387373
AW
1249The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1250isolation of the device. Usages not specifying this flag are deprecated.
1251
3d27e23b
AW
1252Only PCI header type 0 devices with PCI BAR resources are supported by
1253device assignment. The user requesting this ioctl must have read/write
1254access to the PCI sysfs resource files associated with the device.
1255
414fa985 1256
68ba6974 12574.49 KVM_DEASSIGN_PCI_DEVICE
49f48172
JK
1258
1259Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1260Architectures: x86 ia64
1261Type: vm ioctl
1262Parameters: struct kvm_assigned_pci_dev (in)
1263Returns: 0 on success, -1 on error
1264
1265Ends PCI device assignment, releasing all associated resources.
1266
1267See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1268used in kvm_assigned_pci_dev to identify the device.
1269
414fa985 1270
68ba6974 12714.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1272
1273Capability: KVM_CAP_ASSIGN_DEV_IRQ
1274Architectures: x86 ia64
1275Type: vm ioctl
1276Parameters: struct kvm_assigned_irq (in)
1277Returns: 0 on success, -1 on error
1278
1279Assigns an IRQ to a passed-through device.
1280
1281struct kvm_assigned_irq {
1282 __u32 assigned_dev_id;
91e3d71d 1283 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1284 __u32 guest_irq;
1285 __u32 flags;
1286 union {
49f48172
JK
1287 __u32 reserved[12];
1288 };
1289};
1290
1291The following flags are defined:
1292
1293#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1294#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1295#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1296
1297#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1298#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1299#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1300
1301It is not valid to specify multiple types per host or guest IRQ. However, the
1302IRQ type of host and guest can differ or can even be null.
1303
414fa985 1304
68ba6974 13054.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1306
1307Capability: KVM_CAP_ASSIGN_DEV_IRQ
1308Architectures: x86 ia64
1309Type: vm ioctl
1310Parameters: struct kvm_assigned_irq (in)
1311Returns: 0 on success, -1 on error
1312
1313Ends an IRQ assignment to a passed-through device.
1314
1315See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1316by assigned_dev_id, flags must correspond to the IRQ type specified on
1317KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1318
414fa985 1319
68ba6974 13204.52 KVM_SET_GSI_ROUTING
49f48172
JK
1321
1322Capability: KVM_CAP_IRQ_ROUTING
1323Architectures: x86 ia64
1324Type: vm ioctl
1325Parameters: struct kvm_irq_routing (in)
1326Returns: 0 on success, -1 on error
1327
1328Sets the GSI routing table entries, overwriting any previously set entries.
1329
1330struct kvm_irq_routing {
1331 __u32 nr;
1332 __u32 flags;
1333 struct kvm_irq_routing_entry entries[0];
1334};
1335
1336No flags are specified so far, the corresponding field must be set to zero.
1337
1338struct kvm_irq_routing_entry {
1339 __u32 gsi;
1340 __u32 type;
1341 __u32 flags;
1342 __u32 pad;
1343 union {
1344 struct kvm_irq_routing_irqchip irqchip;
1345 struct kvm_irq_routing_msi msi;
1346 __u32 pad[8];
1347 } u;
1348};
1349
1350/* gsi routing entry types */
1351#define KVM_IRQ_ROUTING_IRQCHIP 1
1352#define KVM_IRQ_ROUTING_MSI 2
1353
1354No flags are specified so far, the corresponding field must be set to zero.
1355
1356struct kvm_irq_routing_irqchip {
1357 __u32 irqchip;
1358 __u32 pin;
1359};
1360
1361struct kvm_irq_routing_msi {
1362 __u32 address_lo;
1363 __u32 address_hi;
1364 __u32 data;
1365 __u32 pad;
1366};
1367
414fa985 1368
68ba6974 13694.53 KVM_ASSIGN_SET_MSIX_NR
49f48172
JK
1370
1371Capability: KVM_CAP_DEVICE_MSIX
1372Architectures: x86 ia64
1373Type: vm ioctl
1374Parameters: struct kvm_assigned_msix_nr (in)
1375Returns: 0 on success, -1 on error
1376
58f0964e
JK
1377Set the number of MSI-X interrupts for an assigned device. The number is
1378reset again by terminating the MSI-X assignment of the device via
1379KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1380point will fail.
49f48172
JK
1381
1382struct kvm_assigned_msix_nr {
1383 __u32 assigned_dev_id;
1384 __u16 entry_nr;
1385 __u16 padding;
1386};
1387
1388#define KVM_MAX_MSIX_PER_DEV 256
1389
414fa985 1390
68ba6974 13914.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172
JK
1392
1393Capability: KVM_CAP_DEVICE_MSIX
1394Architectures: x86 ia64
1395Type: vm ioctl
1396Parameters: struct kvm_assigned_msix_entry (in)
1397Returns: 0 on success, -1 on error
1398
1399Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1400the GSI vector to zero means disabling the interrupt.
1401
1402struct kvm_assigned_msix_entry {
1403 __u32 assigned_dev_id;
1404 __u32 gsi;
1405 __u16 entry; /* The index of entry in the MSI-X table */
1406 __u16 padding[3];
1407};
1408
414fa985
JK
1409
14104.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1411
1412Capability: KVM_CAP_TSC_CONTROL
1413Architectures: x86
1414Type: vcpu ioctl
1415Parameters: virtual tsc_khz
1416Returns: 0 on success, -1 on error
1417
1418Specifies the tsc frequency for the virtual machine. The unit of the
1419frequency is KHz.
1420
414fa985
JK
1421
14224.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1423
1424Capability: KVM_CAP_GET_TSC_KHZ
1425Architectures: x86
1426Type: vcpu ioctl
1427Parameters: none
1428Returns: virtual tsc-khz on success, negative value on error
1429
1430Returns the tsc frequency of the guest. The unit of the return value is
1431KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1432error.
1433
414fa985
JK
1434
14354.57 KVM_GET_LAPIC
e7677933
AK
1436
1437Capability: KVM_CAP_IRQCHIP
1438Architectures: x86
1439Type: vcpu ioctl
1440Parameters: struct kvm_lapic_state (out)
1441Returns: 0 on success, -1 on error
1442
1443#define KVM_APIC_REG_SIZE 0x400
1444struct kvm_lapic_state {
1445 char regs[KVM_APIC_REG_SIZE];
1446};
1447
1448Reads the Local APIC registers and copies them into the input argument. The
1449data format and layout are the same as documented in the architecture manual.
1450
414fa985
JK
1451
14524.58 KVM_SET_LAPIC
e7677933
AK
1453
1454Capability: KVM_CAP_IRQCHIP
1455Architectures: x86
1456Type: vcpu ioctl
1457Parameters: struct kvm_lapic_state (in)
1458Returns: 0 on success, -1 on error
1459
1460#define KVM_APIC_REG_SIZE 0x400
1461struct kvm_lapic_state {
1462 char regs[KVM_APIC_REG_SIZE];
1463};
1464
1465Copies the input argument into the the Local APIC registers. The data format
1466and layout are the same as documented in the architecture manual.
1467
414fa985
JK
1468
14694.59 KVM_IOEVENTFD
55399a02
SL
1470
1471Capability: KVM_CAP_IOEVENTFD
1472Architectures: all
1473Type: vm ioctl
1474Parameters: struct kvm_ioeventfd (in)
1475Returns: 0 on success, !0 on error
1476
1477This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1478within the guest. A guest write in the registered address will signal the
1479provided event instead of triggering an exit.
1480
1481struct kvm_ioeventfd {
1482 __u64 datamatch;
1483 __u64 addr; /* legal pio/mmio address */
1484 __u32 len; /* 1, 2, 4, or 8 bytes */
1485 __s32 fd;
1486 __u32 flags;
1487 __u8 pad[36];
1488};
1489
2b83451b
CH
1490For the special case of virtio-ccw devices on s390, the ioevent is matched
1491to a subchannel/virtqueue tuple instead.
1492
55399a02
SL
1493The following flags are defined:
1494
1495#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1496#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1497#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1498#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1499 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1500
1501If datamatch flag is set, the event will be signaled only if the written value
1502to the registered address is equal to datamatch in struct kvm_ioeventfd.
1503
2b83451b
CH
1504For virtio-ccw devices, addr contains the subchannel id and datamatch the
1505virtqueue index.
1506
414fa985
JK
1507
15084.60 KVM_DIRTY_TLB
dc83b8bc
SW
1509
1510Capability: KVM_CAP_SW_TLB
1511Architectures: ppc
1512Type: vcpu ioctl
1513Parameters: struct kvm_dirty_tlb (in)
1514Returns: 0 on success, -1 on error
1515
1516struct kvm_dirty_tlb {
1517 __u64 bitmap;
1518 __u32 num_dirty;
1519};
1520
1521This must be called whenever userspace has changed an entry in the shared
1522TLB, prior to calling KVM_RUN on the associated vcpu.
1523
1524The "bitmap" field is the userspace address of an array. This array
1525consists of a number of bits, equal to the total number of TLB entries as
1526determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1527nearest multiple of 64.
1528
1529Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1530array.
1531
1532The array is little-endian: the bit 0 is the least significant bit of the
1533first byte, bit 8 is the least significant bit of the second byte, etc.
1534This avoids any complications with differing word sizes.
1535
1536The "num_dirty" field is a performance hint for KVM to determine whether it
1537should skip processing the bitmap and just invalidate everything. It must
1538be set to the number of set bits in the bitmap.
1539
414fa985
JK
1540
15414.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1542
1543Capability: KVM_CAP_PCI_2_3
1544Architectures: x86
1545Type: vm ioctl
1546Parameters: struct kvm_assigned_pci_dev (in)
1547Returns: 0 on success, -1 on error
1548
1549Allows userspace to mask PCI INTx interrupts from the assigned device. The
1550kernel will not deliver INTx interrupts to the guest between setting and
1551clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1552and emulation of PCI 2.3 INTx disable command register behavior.
1553
1554This may be used for both PCI 2.3 devices supporting INTx disable natively and
1555older devices lacking this support. Userspace is responsible for emulating the
1556read value of the INTx disable bit in the guest visible PCI command register.
1557When modifying the INTx disable state, userspace should precede updating the
1558physical device command register by calling this ioctl to inform the kernel of
1559the new intended INTx mask state.
1560
1561Note that the kernel uses the device INTx disable bit to internally manage the
1562device interrupt state for PCI 2.3 devices. Reads of this register may
1563therefore not match the expected value. Writes should always use the guest
1564intended INTx disable value rather than attempting to read-copy-update the
1565current physical device state. Races between user and kernel updates to the
1566INTx disable bit are handled lazily in the kernel. It's possible the device
1567may generate unintended interrupts, but they will not be injected into the
1568guest.
1569
1570See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1571by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1572evaluated.
1573
414fa985 1574
54738c09
DG
15754.62 KVM_CREATE_SPAPR_TCE
1576
1577Capability: KVM_CAP_SPAPR_TCE
1578Architectures: powerpc
1579Type: vm ioctl
1580Parameters: struct kvm_create_spapr_tce (in)
1581Returns: file descriptor for manipulating the created TCE table
1582
1583This creates a virtual TCE (translation control entry) table, which
1584is an IOMMU for PAPR-style virtual I/O. It is used to translate
1585logical addresses used in virtual I/O into guest physical addresses,
1586and provides a scatter/gather capability for PAPR virtual I/O.
1587
1588/* for KVM_CAP_SPAPR_TCE */
1589struct kvm_create_spapr_tce {
1590 __u64 liobn;
1591 __u32 window_size;
1592};
1593
1594The liobn field gives the logical IO bus number for which to create a
1595TCE table. The window_size field specifies the size of the DMA window
1596which this TCE table will translate - the table will contain one 64
1597bit TCE entry for every 4kiB of the DMA window.
1598
1599When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1600table has been created using this ioctl(), the kernel will handle it
1601in real mode, updating the TCE table. H_PUT_TCE calls for other
1602liobns will cause a vm exit and must be handled by userspace.
1603
1604The return value is a file descriptor which can be passed to mmap(2)
1605to map the created TCE table into userspace. This lets userspace read
1606the entries written by kernel-handled H_PUT_TCE calls, and also lets
1607userspace update the TCE table directly which is useful in some
1608circumstances.
1609
414fa985 1610
aa04b4cc
PM
16114.63 KVM_ALLOCATE_RMA
1612
1613Capability: KVM_CAP_PPC_RMA
1614Architectures: powerpc
1615Type: vm ioctl
1616Parameters: struct kvm_allocate_rma (out)
1617Returns: file descriptor for mapping the allocated RMA
1618
1619This allocates a Real Mode Area (RMA) from the pool allocated at boot
1620time by the kernel. An RMA is a physically-contiguous, aligned region
1621of memory used on older POWER processors to provide the memory which
1622will be accessed by real-mode (MMU off) accesses in a KVM guest.
1623POWER processors support a set of sizes for the RMA that usually
1624includes 64MB, 128MB, 256MB and some larger powers of two.
1625
1626/* for KVM_ALLOCATE_RMA */
1627struct kvm_allocate_rma {
1628 __u64 rma_size;
1629};
1630
1631The return value is a file descriptor which can be passed to mmap(2)
1632to map the allocated RMA into userspace. The mapped area can then be
1633passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1634RMA for a virtual machine. The size of the RMA in bytes (which is
1635fixed at host kernel boot time) is returned in the rma_size field of
1636the argument structure.
1637
1638The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1639is supported; 2 if the processor requires all virtual machines to have
1640an RMA, or 1 if the processor can use an RMA but doesn't require it,
1641because it supports the Virtual RMA (VRMA) facility.
1642
414fa985 1643
3f745f1e
AK
16444.64 KVM_NMI
1645
1646Capability: KVM_CAP_USER_NMI
1647Architectures: x86
1648Type: vcpu ioctl
1649Parameters: none
1650Returns: 0 on success, -1 on error
1651
1652Queues an NMI on the thread's vcpu. Note this is well defined only
1653when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1654between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1655has been called, this interface is completely emulated within the kernel.
1656
1657To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1658following algorithm:
1659
1660 - pause the vpcu
1661 - read the local APIC's state (KVM_GET_LAPIC)
1662 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1663 - if so, issue KVM_NMI
1664 - resume the vcpu
1665
1666Some guests configure the LINT1 NMI input to cause a panic, aiding in
1667debugging.
1668
414fa985 1669
e24ed81f 16704.65 KVM_S390_UCAS_MAP
27e0393f
CO
1671
1672Capability: KVM_CAP_S390_UCONTROL
1673Architectures: s390
1674Type: vcpu ioctl
1675Parameters: struct kvm_s390_ucas_mapping (in)
1676Returns: 0 in case of success
1677
1678The parameter is defined like this:
1679 struct kvm_s390_ucas_mapping {
1680 __u64 user_addr;
1681 __u64 vcpu_addr;
1682 __u64 length;
1683 };
1684
1685This ioctl maps the memory at "user_addr" with the length "length" to
1686the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1687be aligned by 1 megabyte.
27e0393f 1688
414fa985 1689
e24ed81f 16904.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1691
1692Capability: KVM_CAP_S390_UCONTROL
1693Architectures: s390
1694Type: vcpu ioctl
1695Parameters: struct kvm_s390_ucas_mapping (in)
1696Returns: 0 in case of success
1697
1698The parameter is defined like this:
1699 struct kvm_s390_ucas_mapping {
1700 __u64 user_addr;
1701 __u64 vcpu_addr;
1702 __u64 length;
1703 };
1704
1705This ioctl unmaps the memory in the vcpu's address space starting at
1706"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1707All parameters need to be aligned by 1 megabyte.
27e0393f 1708
414fa985 1709
e24ed81f 17104.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1711
1712Capability: KVM_CAP_S390_UCONTROL
1713Architectures: s390
1714Type: vcpu ioctl
1715Parameters: vcpu absolute address (in)
1716Returns: 0 in case of success
1717
1718This call creates a page table entry on the virtual cpu's address space
1719(for user controlled virtual machines) or the virtual machine's address
1720space (for regular virtual machines). This only works for minor faults,
1721thus it's recommended to access subject memory page via the user page
1722table upfront. This is useful to handle validity intercepts for user
1723controlled virtual machines to fault in the virtual cpu's lowcore pages
1724prior to calling the KVM_RUN ioctl.
1725
414fa985 1726
e24ed81f
AG
17274.68 KVM_SET_ONE_REG
1728
1729Capability: KVM_CAP_ONE_REG
1730Architectures: all
1731Type: vcpu ioctl
1732Parameters: struct kvm_one_reg (in)
1733Returns: 0 on success, negative value on failure
1734
1735struct kvm_one_reg {
1736 __u64 id;
1737 __u64 addr;
1738};
1739
1740Using this ioctl, a single vcpu register can be set to a specific value
1741defined by user space with the passed in struct kvm_one_reg, where id
1742refers to the register identifier as described below and addr is a pointer
1743to a variable with the respective size. There can be architecture agnostic
1744and architecture specific registers. Each have their own range of operation
1745and their own constants and width. To keep track of the implemented
1746registers, find a list below:
1747
1748 Arch | Register | Width (bits)
1749 | |
1022fc3d 1750 PPC | KVM_REG_PPC_HIOR | 64
2e232702
BB
1751 PPC | KVM_REG_PPC_IAC1 | 64
1752 PPC | KVM_REG_PPC_IAC2 | 64
1753 PPC | KVM_REG_PPC_IAC3 | 64
1754 PPC | KVM_REG_PPC_IAC4 | 64
1755 PPC | KVM_REG_PPC_DAC1 | 64
1756 PPC | KVM_REG_PPC_DAC2 | 64
a136a8bd
PM
1757 PPC | KVM_REG_PPC_DABR | 64
1758 PPC | KVM_REG_PPC_DSCR | 64
1759 PPC | KVM_REG_PPC_PURR | 64
1760 PPC | KVM_REG_PPC_SPURR | 64
1761 PPC | KVM_REG_PPC_DAR | 64
1762 PPC | KVM_REG_PPC_DSISR | 32
1763 PPC | KVM_REG_PPC_AMR | 64
1764 PPC | KVM_REG_PPC_UAMOR | 64
1765 PPC | KVM_REG_PPC_MMCR0 | 64
1766 PPC | KVM_REG_PPC_MMCR1 | 64
1767 PPC | KVM_REG_PPC_MMCRA | 64
1768 PPC | KVM_REG_PPC_PMC1 | 32
1769 PPC | KVM_REG_PPC_PMC2 | 32
1770 PPC | KVM_REG_PPC_PMC3 | 32
1771 PPC | KVM_REG_PPC_PMC4 | 32
1772 PPC | KVM_REG_PPC_PMC5 | 32
1773 PPC | KVM_REG_PPC_PMC6 | 32
1774 PPC | KVM_REG_PPC_PMC7 | 32
1775 PPC | KVM_REG_PPC_PMC8 | 32
a8bd19ef
PM
1776 PPC | KVM_REG_PPC_FPR0 | 64
1777 ...
1778 PPC | KVM_REG_PPC_FPR31 | 64
1779 PPC | KVM_REG_PPC_VR0 | 128
1780 ...
1781 PPC | KVM_REG_PPC_VR31 | 128
1782 PPC | KVM_REG_PPC_VSR0 | 128
1783 ...
1784 PPC | KVM_REG_PPC_VSR31 | 128
1785 PPC | KVM_REG_PPC_FPSCR | 64
1786 PPC | KVM_REG_PPC_VSCR | 32
55b665b0
PM
1787 PPC | KVM_REG_PPC_VPA_ADDR | 64
1788 PPC | KVM_REG_PPC_VPA_SLB | 128
1789 PPC | KVM_REG_PPC_VPA_DTL | 128
352df1de 1790 PPC | KVM_REG_PPC_EPCR | 32
324b3e63 1791 PPC | KVM_REG_PPC_EPR | 32
78accda4
BB
1792 PPC | KVM_REG_PPC_TCR | 32
1793 PPC | KVM_REG_PPC_TSR | 32
1794 PPC | KVM_REG_PPC_OR_TSR | 32
1795 PPC | KVM_REG_PPC_CLEAR_TSR | 32
a85d2aa2
MC
1796 PPC | KVM_REG_PPC_MAS0 | 32
1797 PPC | KVM_REG_PPC_MAS1 | 32
1798 PPC | KVM_REG_PPC_MAS2 | 64
1799 PPC | KVM_REG_PPC_MAS7_3 | 64
1800 PPC | KVM_REG_PPC_MAS4 | 32
1801 PPC | KVM_REG_PPC_MAS6 | 32
1802 PPC | KVM_REG_PPC_MMUCFG | 32
1803 PPC | KVM_REG_PPC_TLB0CFG | 32
1804 PPC | KVM_REG_PPC_TLB1CFG | 32
1805 PPC | KVM_REG_PPC_TLB2CFG | 32
1806 PPC | KVM_REG_PPC_TLB3CFG | 32
307d9008
MC
1807 PPC | KVM_REG_PPC_TLB0PS | 32
1808 PPC | KVM_REG_PPC_TLB1PS | 32
1809 PPC | KVM_REG_PPC_TLB2PS | 32
1810 PPC | KVM_REG_PPC_TLB3PS | 32
9a6061d7 1811 PPC | KVM_REG_PPC_EPTCFG | 32
8b78645c 1812 PPC | KVM_REG_PPC_ICP_STATE | 64
93b0f4dc 1813 PPC | KVM_REG_PPC_TB_OFFSET | 64
3b783474
MN
1814 PPC | KVM_REG_PPC_SPMC1 | 32
1815 PPC | KVM_REG_PPC_SPMC2 | 32
1816 PPC | KVM_REG_PPC_IAMR | 64
1817 PPC | KVM_REG_PPC_TFHAR | 64
1818 PPC | KVM_REG_PPC_TFIAR | 64
1819 PPC | KVM_REG_PPC_TEXASR | 64
1820 PPC | KVM_REG_PPC_FSCR | 64
1821 PPC | KVM_REG_PPC_PSPB | 32
1822 PPC | KVM_REG_PPC_EBBHR | 64
1823 PPC | KVM_REG_PPC_EBBRR | 64
1824 PPC | KVM_REG_PPC_BESCR | 64
1825 PPC | KVM_REG_PPC_TAR | 64
1826 PPC | KVM_REG_PPC_DPDES | 64
1827 PPC | KVM_REG_PPC_DAWR | 64
1828 PPC | KVM_REG_PPC_DAWRX | 64
1829 PPC | KVM_REG_PPC_CIABR | 64
1830 PPC | KVM_REG_PPC_IC | 64
1831 PPC | KVM_REG_PPC_VTB | 64
1832 PPC | KVM_REG_PPC_CSIGR | 64
1833 PPC | KVM_REG_PPC_TACR | 64
1834 PPC | KVM_REG_PPC_TCSCR | 64
1835 PPC | KVM_REG_PPC_PID | 64
1836 PPC | KVM_REG_PPC_ACOP | 64
c0867fd5 1837 PPC | KVM_REG_PPC_VRSAVE | 32
a0144e2a 1838 PPC | KVM_REG_PPC_LPCR | 64
4b8473c9 1839 PPC | KVM_REG_PPC_PPR | 64
388cc6e1 1840 PPC | KVM_REG_PPC_ARCH_COMPAT 32
3b783474
MN
1841 PPC | KVM_REG_PPC_TM_GPR0 | 64
1842 ...
1843 PPC | KVM_REG_PPC_TM_GPR31 | 64
1844 PPC | KVM_REG_PPC_TM_VSR0 | 128
1845 ...
1846 PPC | KVM_REG_PPC_TM_VSR63 | 128
1847 PPC | KVM_REG_PPC_TM_CR | 64
1848 PPC | KVM_REG_PPC_TM_LR | 64
1849 PPC | KVM_REG_PPC_TM_CTR | 64
1850 PPC | KVM_REG_PPC_TM_FPSCR | 64
1851 PPC | KVM_REG_PPC_TM_AMR | 64
1852 PPC | KVM_REG_PPC_TM_PPR | 64
1853 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1854 PPC | KVM_REG_PPC_TM_VSCR | 32
1855 PPC | KVM_REG_PPC_TM_DSCR | 64
1856 PPC | KVM_REG_PPC_TM_TAR | 64
414fa985 1857
749cf76c
CD
1858ARM registers are mapped using the lower 32 bits. The upper 16 of that
1859is the register group type, or coprocessor number:
1860
1861ARM core registers have the following id bit patterns:
aa404ddf 1862 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 1863
1138245c 1864ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 1865 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
1866
1867ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 1868 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 1869
c27581ed 1870ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 1871 0x4020 0000 0011 00 <csselr:8>
749cf76c 1872
4fe21e4c 1873ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 1874 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
1875
1876ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 1877 0x4030 0000 0012 0 <regno:12>
4fe21e4c 1878
379e04c7
MZ
1879
1880arm64 registers are mapped using the lower 32 bits. The upper 16 of
1881that is the register group type, or coprocessor number:
1882
1883arm64 core/FP-SIMD registers have the following id bit patterns. Note
1884that the size of the access is variable, as the kvm_regs structure
1885contains elements ranging from 32 to 128 bits. The index is a 32bit
1886value in the kvm_regs structure seen as a 32bit array.
1887 0x60x0 0000 0010 <index into the kvm_regs struct:16>
1888
1889arm64 CCSIDR registers are demultiplexed by CSSELR value:
1890 0x6020 0000 0011 00 <csselr:8>
1891
1892arm64 system registers have the following id bit patterns:
1893 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
1894
e24ed81f
AG
18954.69 KVM_GET_ONE_REG
1896
1897Capability: KVM_CAP_ONE_REG
1898Architectures: all
1899Type: vcpu ioctl
1900Parameters: struct kvm_one_reg (in and out)
1901Returns: 0 on success, negative value on failure
1902
1903This ioctl allows to receive the value of a single register implemented
1904in a vcpu. The register to read is indicated by the "id" field of the
1905kvm_one_reg struct passed in. On success, the register value can be found
1906at the memory location pointed to by "addr".
1907
1908The list of registers accessible using this interface is identical to the
2e232702 1909list in 4.68.
e24ed81f 1910
414fa985 1911
1c0b28c2
EM
19124.70 KVM_KVMCLOCK_CTRL
1913
1914Capability: KVM_CAP_KVMCLOCK_CTRL
1915Architectures: Any that implement pvclocks (currently x86 only)
1916Type: vcpu ioctl
1917Parameters: None
1918Returns: 0 on success, -1 on error
1919
1920This signals to the host kernel that the specified guest is being paused by
1921userspace. The host will set a flag in the pvclock structure that is checked
1922from the soft lockup watchdog. The flag is part of the pvclock structure that
1923is shared between guest and host, specifically the second bit of the flags
1924field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1925the host and read/cleared exclusively by the guest. The guest operation of
1926checking and clearing the flag must an atomic operation so
1927load-link/store-conditional, or equivalent must be used. There are two cases
1928where the guest will clear the flag: when the soft lockup watchdog timer resets
1929itself or when a soft lockup is detected. This ioctl can be called any time
1930after pausing the vcpu, but before it is resumed.
1931
414fa985 1932
07975ad3
JK
19334.71 KVM_SIGNAL_MSI
1934
1935Capability: KVM_CAP_SIGNAL_MSI
1936Architectures: x86
1937Type: vm ioctl
1938Parameters: struct kvm_msi (in)
1939Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1940
1941Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1942MSI messages.
1943
1944struct kvm_msi {
1945 __u32 address_lo;
1946 __u32 address_hi;
1947 __u32 data;
1948 __u32 flags;
1949 __u8 pad[16];
1950};
1951
1952No flags are defined so far. The corresponding field must be 0.
1953
414fa985 1954
0589ff6c
JK
19554.71 KVM_CREATE_PIT2
1956
1957Capability: KVM_CAP_PIT2
1958Architectures: x86
1959Type: vm ioctl
1960Parameters: struct kvm_pit_config (in)
1961Returns: 0 on success, -1 on error
1962
1963Creates an in-kernel device model for the i8254 PIT. This call is only valid
1964after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
1965parameters have to be passed:
1966
1967struct kvm_pit_config {
1968 __u32 flags;
1969 __u32 pad[15];
1970};
1971
1972Valid flags are:
1973
1974#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
1975
b6ddf05f
JK
1976PIT timer interrupts may use a per-VM kernel thread for injection. If it
1977exists, this thread will have a name of the following pattern:
1978
1979kvm-pit/<owner-process-pid>
1980
1981When running a guest with elevated priorities, the scheduling parameters of
1982this thread may have to be adjusted accordingly.
1983
0589ff6c
JK
1984This IOCTL replaces the obsolete KVM_CREATE_PIT.
1985
1986
19874.72 KVM_GET_PIT2
1988
1989Capability: KVM_CAP_PIT_STATE2
1990Architectures: x86
1991Type: vm ioctl
1992Parameters: struct kvm_pit_state2 (out)
1993Returns: 0 on success, -1 on error
1994
1995Retrieves the state of the in-kernel PIT model. Only valid after
1996KVM_CREATE_PIT2. The state is returned in the following structure:
1997
1998struct kvm_pit_state2 {
1999 struct kvm_pit_channel_state channels[3];
2000 __u32 flags;
2001 __u32 reserved[9];
2002};
2003
2004Valid flags are:
2005
2006/* disable PIT in HPET legacy mode */
2007#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2008
2009This IOCTL replaces the obsolete KVM_GET_PIT.
2010
2011
20124.73 KVM_SET_PIT2
2013
2014Capability: KVM_CAP_PIT_STATE2
2015Architectures: x86
2016Type: vm ioctl
2017Parameters: struct kvm_pit_state2 (in)
2018Returns: 0 on success, -1 on error
2019
2020Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2021See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2022
2023This IOCTL replaces the obsolete KVM_SET_PIT.
2024
2025
5b74716e
BH
20264.74 KVM_PPC_GET_SMMU_INFO
2027
2028Capability: KVM_CAP_PPC_GET_SMMU_INFO
2029Architectures: powerpc
2030Type: vm ioctl
2031Parameters: None
2032Returns: 0 on success, -1 on error
2033
2034This populates and returns a structure describing the features of
2035the "Server" class MMU emulation supported by KVM.
cc22c354 2036This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2037device-tree properties for the guest operating system.
2038
2039The structure contains some global informations, followed by an
2040array of supported segment page sizes:
2041
2042 struct kvm_ppc_smmu_info {
2043 __u64 flags;
2044 __u32 slb_size;
2045 __u32 pad;
2046 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2047 };
2048
2049The supported flags are:
2050
2051 - KVM_PPC_PAGE_SIZES_REAL:
2052 When that flag is set, guest page sizes must "fit" the backing
2053 store page sizes. When not set, any page size in the list can
2054 be used regardless of how they are backed by userspace.
2055
2056 - KVM_PPC_1T_SEGMENTS
2057 The emulated MMU supports 1T segments in addition to the
2058 standard 256M ones.
2059
2060The "slb_size" field indicates how many SLB entries are supported
2061
2062The "sps" array contains 8 entries indicating the supported base
2063page sizes for a segment in increasing order. Each entry is defined
2064as follow:
2065
2066 struct kvm_ppc_one_seg_page_size {
2067 __u32 page_shift; /* Base page shift of segment (or 0) */
2068 __u32 slb_enc; /* SLB encoding for BookS */
2069 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2070 };
2071
2072An entry with a "page_shift" of 0 is unused. Because the array is
2073organized in increasing order, a lookup can stop when encoutering
2074such an entry.
2075
2076The "slb_enc" field provides the encoding to use in the SLB for the
2077page size. The bits are in positions such as the value can directly
2078be OR'ed into the "vsid" argument of the slbmte instruction.
2079
2080The "enc" array is a list which for each of those segment base page
2081size provides the list of supported actual page sizes (which can be
2082only larger or equal to the base page size), along with the
f884ab15 2083corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
20848 entries sorted by increasing sizes and an entry with a "0" shift
2085is an empty entry and a terminator:
2086
2087 struct kvm_ppc_one_page_size {
2088 __u32 page_shift; /* Page shift (or 0) */
2089 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2090 };
2091
2092The "pte_enc" field provides a value that can OR'ed into the hash
2093PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2094into the hash PTE second double word).
2095
f36992e3
AW
20964.75 KVM_IRQFD
2097
2098Capability: KVM_CAP_IRQFD
2099Architectures: x86
2100Type: vm ioctl
2101Parameters: struct kvm_irqfd (in)
2102Returns: 0 on success, -1 on error
2103
2104Allows setting an eventfd to directly trigger a guest interrupt.
2105kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2106kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
2107an event is tiggered on the eventfd, an interrupt is injected into
2108the guest using the specified gsi pin. The irqfd is removed using
2109the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2110and kvm_irqfd.gsi.
2111
7a84428a
AW
2112With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2113mechanism allowing emulation of level-triggered, irqfd-based
2114interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2115additional eventfd in the kvm_irqfd.resamplefd field. When operating
2116in resample mode, posting of an interrupt through kvm_irq.fd asserts
2117the specified gsi in the irqchip. When the irqchip is resampled, such
2118as from an EOI, the gsi is de-asserted and the user is notifed via
2119kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2120the interrupt if the device making use of it still requires service.
2121Note that closing the resamplefd is not sufficient to disable the
2122irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2123and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2124
5fecc9d8 21254.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2126
2127Capability: KVM_CAP_PPC_ALLOC_HTAB
2128Architectures: powerpc
2129Type: vm ioctl
2130Parameters: Pointer to u32 containing hash table order (in/out)
2131Returns: 0 on success, -1 on error
2132
2133This requests the host kernel to allocate an MMU hash table for a
2134guest using the PAPR paravirtualization interface. This only does
2135anything if the kernel is configured to use the Book 3S HV style of
2136virtualization. Otherwise the capability doesn't exist and the ioctl
2137returns an ENOTTY error. The rest of this description assumes Book 3S
2138HV.
2139
2140There must be no vcpus running when this ioctl is called; if there
2141are, it will do nothing and return an EBUSY error.
2142
2143The parameter is a pointer to a 32-bit unsigned integer variable
2144containing the order (log base 2) of the desired size of the hash
2145table, which must be between 18 and 46. On successful return from the
2146ioctl, it will have been updated with the order of the hash table that
2147was allocated.
2148
2149If no hash table has been allocated when any vcpu is asked to run
2150(with the KVM_RUN ioctl), the host kernel will allocate a
2151default-sized hash table (16 MB).
2152
2153If this ioctl is called when a hash table has already been allocated,
2154the kernel will clear out the existing hash table (zero all HPTEs) and
2155return the hash table order in the parameter. (If the guest is using
2156the virtualized real-mode area (VRMA) facility, the kernel will
2157re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2158
416ad65f
CH
21594.77 KVM_S390_INTERRUPT
2160
2161Capability: basic
2162Architectures: s390
2163Type: vm ioctl, vcpu ioctl
2164Parameters: struct kvm_s390_interrupt (in)
2165Returns: 0 on success, -1 on error
2166
2167Allows to inject an interrupt to the guest. Interrupts can be floating
2168(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2169
2170Interrupt parameters are passed via kvm_s390_interrupt:
2171
2172struct kvm_s390_interrupt {
2173 __u32 type;
2174 __u32 parm;
2175 __u64 parm64;
2176};
2177
2178type can be one of the following:
2179
2180KVM_S390_SIGP_STOP (vcpu) - sigp restart
2181KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2182KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2183KVM_S390_RESTART (vcpu) - restart
2184KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2185 parameters in parm and parm64
2186KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2187KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2188KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2189KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2190 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2191 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2192 interruption subclass)
48a3e950
CH
2193KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2194 machine check interrupt code in parm64 (note that
2195 machine checks needing further payload are not
2196 supported by this ioctl)
416ad65f
CH
2197
2198Note that the vcpu ioctl is asynchronous to vcpu execution.
2199
a2932923
PM
22004.78 KVM_PPC_GET_HTAB_FD
2201
2202Capability: KVM_CAP_PPC_HTAB_FD
2203Architectures: powerpc
2204Type: vm ioctl
2205Parameters: Pointer to struct kvm_get_htab_fd (in)
2206Returns: file descriptor number (>= 0) on success, -1 on error
2207
2208This returns a file descriptor that can be used either to read out the
2209entries in the guest's hashed page table (HPT), or to write entries to
2210initialize the HPT. The returned fd can only be written to if the
2211KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2212can only be read if that bit is clear. The argument struct looks like
2213this:
2214
2215/* For KVM_PPC_GET_HTAB_FD */
2216struct kvm_get_htab_fd {
2217 __u64 flags;
2218 __u64 start_index;
2219 __u64 reserved[2];
2220};
2221
2222/* Values for kvm_get_htab_fd.flags */
2223#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2224#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2225
2226The `start_index' field gives the index in the HPT of the entry at
2227which to start reading. It is ignored when writing.
2228
2229Reads on the fd will initially supply information about all
2230"interesting" HPT entries. Interesting entries are those with the
2231bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2232all entries. When the end of the HPT is reached, the read() will
2233return. If read() is called again on the fd, it will start again from
2234the beginning of the HPT, but will only return HPT entries that have
2235changed since they were last read.
2236
2237Data read or written is structured as a header (8 bytes) followed by a
2238series of valid HPT entries (16 bytes) each. The header indicates how
2239many valid HPT entries there are and how many invalid entries follow
2240the valid entries. The invalid entries are not represented explicitly
2241in the stream. The header format is:
2242
2243struct kvm_get_htab_header {
2244 __u32 index;
2245 __u16 n_valid;
2246 __u16 n_invalid;
2247};
2248
2249Writes to the fd create HPT entries starting at the index given in the
2250header; first `n_valid' valid entries with contents from the data
2251written, then `n_invalid' invalid entries, invalidating any previously
2252valid entries found.
2253
852b6d57
SW
22544.79 KVM_CREATE_DEVICE
2255
2256Capability: KVM_CAP_DEVICE_CTRL
2257Type: vm ioctl
2258Parameters: struct kvm_create_device (in/out)
2259Returns: 0 on success, -1 on error
2260Errors:
2261 ENODEV: The device type is unknown or unsupported
2262 EEXIST: Device already created, and this type of device may not
2263 be instantiated multiple times
2264
2265 Other error conditions may be defined by individual device types or
2266 have their standard meanings.
2267
2268Creates an emulated device in the kernel. The file descriptor returned
2269in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2270
2271If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2272device type is supported (not necessarily whether it can be created
2273in the current vm).
2274
2275Individual devices should not define flags. Attributes should be used
2276for specifying any behavior that is not implied by the device type
2277number.
2278
2279struct kvm_create_device {
2280 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2281 __u32 fd; /* out: device handle */
2282 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2283};
2284
22854.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2286
2287Capability: KVM_CAP_DEVICE_CTRL
2288Type: device ioctl
2289Parameters: struct kvm_device_attr
2290Returns: 0 on success, -1 on error
2291Errors:
2292 ENXIO: The group or attribute is unknown/unsupported for this device
2293 EPERM: The attribute cannot (currently) be accessed this way
2294 (e.g. read-only attribute, or attribute that only makes
2295 sense when the device is in a different state)
2296
2297 Other error conditions may be defined by individual device types.
2298
2299Gets/sets a specified piece of device configuration and/or state. The
2300semantics are device-specific. See individual device documentation in
2301the "devices" directory. As with ONE_REG, the size of the data
2302transferred is defined by the particular attribute.
2303
2304struct kvm_device_attr {
2305 __u32 flags; /* no flags currently defined */
2306 __u32 group; /* device-defined */
2307 __u64 attr; /* group-defined */
2308 __u64 addr; /* userspace address of attr data */
2309};
2310
23114.81 KVM_HAS_DEVICE_ATTR
2312
2313Capability: KVM_CAP_DEVICE_CTRL
2314Type: device ioctl
2315Parameters: struct kvm_device_attr
2316Returns: 0 on success, -1 on error
2317Errors:
2318 ENXIO: The group or attribute is unknown/unsupported for this device
2319
2320Tests whether a device supports a particular attribute. A successful
2321return indicates the attribute is implemented. It does not necessarily
2322indicate that the attribute can be read or written in the device's
2323current state. "addr" is ignored.
f36992e3 2324
d8968f1f 23254.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2326
2327Capability: basic
379e04c7 2328Architectures: arm, arm64
749cf76c
CD
2329Type: vcpu ioctl
2330Parameters: struct struct kvm_vcpu_init (in)
2331Returns: 0 on success; -1 on error
2332Errors:
2333  EINVAL:    the target is unknown, or the combination of features is invalid.
2334  ENOENT:    a features bit specified is unknown.
2335
2336This tells KVM what type of CPU to present to the guest, and what
2337optional features it should have.  This will cause a reset of the cpu
2338registers to their initial values.  If this is not called, KVM_RUN will
2339return ENOEXEC for that vcpu.
2340
2341Note that because some registers reflect machine topology, all vcpus
2342should be created before this ioctl is invoked.
2343
aa024c2f
MZ
2344Possible features:
2345 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
2346 Depends on KVM_CAP_ARM_PSCI.
379e04c7
MZ
2347 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2348 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
aa024c2f 2349
749cf76c 2350
740edfc0
AP
23514.83 KVM_ARM_PREFERRED_TARGET
2352
2353Capability: basic
2354Architectures: arm, arm64
2355Type: vm ioctl
2356Parameters: struct struct kvm_vcpu_init (out)
2357Returns: 0 on success; -1 on error
2358Errors:
a7265fb1 2359 ENODEV: no preferred target available for the host
740edfc0
AP
2360
2361This queries KVM for preferred CPU target type which can be emulated
2362by KVM on underlying host.
2363
2364The ioctl returns struct kvm_vcpu_init instance containing information
2365about preferred CPU target type and recommended features for it. The
2366kvm_vcpu_init->features bitmap returned will have feature bits set if
2367the preferred target recommends setting these features, but this is
2368not mandatory.
2369
2370The information returned by this ioctl can be used to prepare an instance
2371of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2372in VCPU matching underlying host.
2373
2374
23754.84 KVM_GET_REG_LIST
749cf76c
CD
2376
2377Capability: basic
379e04c7 2378Architectures: arm, arm64
749cf76c
CD
2379Type: vcpu ioctl
2380Parameters: struct kvm_reg_list (in/out)
2381Returns: 0 on success; -1 on error
2382Errors:
2383  E2BIG:     the reg index list is too big to fit in the array specified by
2384             the user (the number required will be written into n).
2385
2386struct kvm_reg_list {
2387 __u64 n; /* number of registers in reg[] */
2388 __u64 reg[0];
2389};
2390
2391This ioctl returns the guest registers that are supported for the
2392KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2393
ce01e4e8
CD
2394
23954.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2396
2397Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2398Architectures: arm, arm64
3401d546
CD
2399Type: vm ioctl
2400Parameters: struct kvm_arm_device_address (in)
2401Returns: 0 on success, -1 on error
2402Errors:
2403 ENODEV: The device id is unknown
2404 ENXIO: Device not supported on current system
2405 EEXIST: Address already set
2406 E2BIG: Address outside guest physical address space
330690cd 2407 EBUSY: Address overlaps with other device range
3401d546
CD
2408
2409struct kvm_arm_device_addr {
2410 __u64 id;
2411 __u64 addr;
2412};
2413
2414Specify a device address in the guest's physical address space where guests
2415can access emulated or directly exposed devices, which the host kernel needs
2416to know about. The id field is an architecture specific identifier for a
2417specific device.
2418
379e04c7
MZ
2419ARM/arm64 divides the id field into two parts, a device id and an
2420address type id specific to the individual device.
3401d546
CD
2421
2422  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2423 field: | 0x00000000 | device id | addr type id |
2424
379e04c7
MZ
2425ARM/arm64 currently only require this when using the in-kernel GIC
2426support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2427as the device id. When setting the base address for the guest's
2428mapping of the VGIC virtual CPU and distributor interface, the ioctl
2429must be called after calling KVM_CREATE_IRQCHIP, but before calling
2430KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2431base addresses will return -EEXIST.
3401d546 2432
ce01e4e8
CD
2433Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2434should be used instead.
2435
2436
740edfc0 24374.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2438
2439Capability: KVM_CAP_PPC_RTAS
2440Architectures: ppc
2441Type: vm ioctl
2442Parameters: struct kvm_rtas_token_args
2443Returns: 0 on success, -1 on error
2444
2445Defines a token value for a RTAS (Run Time Abstraction Services)
2446service in order to allow it to be handled in the kernel. The
2447argument struct gives the name of the service, which must be the name
2448of a service that has a kernel-side implementation. If the token
2449value is non-zero, it will be associated with that service, and
2450subsequent RTAS calls by the guest specifying that token will be
2451handled by the kernel. If the token value is 0, then any token
2452associated with the service will be forgotten, and subsequent RTAS
2453calls by the guest for that service will be passed to userspace to be
2454handled.
2455
3401d546 2456
9c1b96e3 24575. The kvm_run structure
414fa985 2458------------------------
9c1b96e3
AK
2459
2460Application code obtains a pointer to the kvm_run structure by
2461mmap()ing a vcpu fd. From that point, application code can control
2462execution by changing fields in kvm_run prior to calling the KVM_RUN
2463ioctl, and obtain information about the reason KVM_RUN returned by
2464looking up structure members.
2465
2466struct kvm_run {
2467 /* in */
2468 __u8 request_interrupt_window;
2469
2470Request that KVM_RUN return when it becomes possible to inject external
2471interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2472
2473 __u8 padding1[7];
2474
2475 /* out */
2476 __u32 exit_reason;
2477
2478When KVM_RUN has returned successfully (return value 0), this informs
2479application code why KVM_RUN has returned. Allowable values for this
2480field are detailed below.
2481
2482 __u8 ready_for_interrupt_injection;
2483
2484If request_interrupt_window has been specified, this field indicates
2485an interrupt can be injected now with KVM_INTERRUPT.
2486
2487 __u8 if_flag;
2488
2489The value of the current interrupt flag. Only valid if in-kernel
2490local APIC is not used.
2491
2492 __u8 padding2[2];
2493
2494 /* in (pre_kvm_run), out (post_kvm_run) */
2495 __u64 cr8;
2496
2497The value of the cr8 register. Only valid if in-kernel local APIC is
2498not used. Both input and output.
2499
2500 __u64 apic_base;
2501
2502The value of the APIC BASE msr. Only valid if in-kernel local
2503APIC is not used. Both input and output.
2504
2505 union {
2506 /* KVM_EXIT_UNKNOWN */
2507 struct {
2508 __u64 hardware_exit_reason;
2509 } hw;
2510
2511If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2512reasons. Further architecture-specific information is available in
2513hardware_exit_reason.
2514
2515 /* KVM_EXIT_FAIL_ENTRY */
2516 struct {
2517 __u64 hardware_entry_failure_reason;
2518 } fail_entry;
2519
2520If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2521to unknown reasons. Further architecture-specific information is
2522available in hardware_entry_failure_reason.
2523
2524 /* KVM_EXIT_EXCEPTION */
2525 struct {
2526 __u32 exception;
2527 __u32 error_code;
2528 } ex;
2529
2530Unused.
2531
2532 /* KVM_EXIT_IO */
2533 struct {
2534#define KVM_EXIT_IO_IN 0
2535#define KVM_EXIT_IO_OUT 1
2536 __u8 direction;
2537 __u8 size; /* bytes */
2538 __u16 port;
2539 __u32 count;
2540 __u64 data_offset; /* relative to kvm_run start */
2541 } io;
2542
2044892d 2543If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2544executed a port I/O instruction which could not be satisfied by kvm.
2545data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2546where kvm expects application code to place the data for the next
2044892d 2547KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2548
2549 struct {
2550 struct kvm_debug_exit_arch arch;
2551 } debug;
2552
2553Unused.
2554
2555 /* KVM_EXIT_MMIO */
2556 struct {
2557 __u64 phys_addr;
2558 __u8 data[8];
2559 __u32 len;
2560 __u8 is_write;
2561 } mmio;
2562
2044892d 2563If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2564executed a memory-mapped I/O instruction which could not be satisfied
2565by kvm. The 'data' member contains the written data if 'is_write' is
2566true, and should be filled by application code otherwise.
2567
1c810636
AG
2568NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR,
2569 KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding
ad0a048b
AG
2570operations are complete (and guest state is consistent) only after userspace
2571has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2572incomplete operations and then check for pending signals. Userspace
2573can re-enter the guest with an unmasked signal pending to complete
2574pending operations.
2575
9c1b96e3
AK
2576 /* KVM_EXIT_HYPERCALL */
2577 struct {
2578 __u64 nr;
2579 __u64 args[6];
2580 __u64 ret;
2581 __u32 longmode;
2582 __u32 pad;
2583 } hypercall;
2584
647dc49e
AK
2585Unused. This was once used for 'hypercall to userspace'. To implement
2586such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2587Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2588
2589 /* KVM_EXIT_TPR_ACCESS */
2590 struct {
2591 __u64 rip;
2592 __u32 is_write;
2593 __u32 pad;
2594 } tpr_access;
2595
2596To be documented (KVM_TPR_ACCESS_REPORTING).
2597
2598 /* KVM_EXIT_S390_SIEIC */
2599 struct {
2600 __u8 icptcode;
2601 __u64 mask; /* psw upper half */
2602 __u64 addr; /* psw lower half */
2603 __u16 ipa;
2604 __u32 ipb;
2605 } s390_sieic;
2606
2607s390 specific.
2608
2609 /* KVM_EXIT_S390_RESET */
2610#define KVM_S390_RESET_POR 1
2611#define KVM_S390_RESET_CLEAR 2
2612#define KVM_S390_RESET_SUBSYSTEM 4
2613#define KVM_S390_RESET_CPU_INIT 8
2614#define KVM_S390_RESET_IPL 16
2615 __u64 s390_reset_flags;
2616
2617s390 specific.
2618
e168bf8d
CO
2619 /* KVM_EXIT_S390_UCONTROL */
2620 struct {
2621 __u64 trans_exc_code;
2622 __u32 pgm_code;
2623 } s390_ucontrol;
2624
2625s390 specific. A page fault has occurred for a user controlled virtual
2626machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2627resolved by the kernel.
2628The program code and the translation exception code that were placed
2629in the cpu's lowcore are presented here as defined by the z Architecture
2630Principles of Operation Book in the Chapter for Dynamic Address Translation
2631(DAT)
2632
9c1b96e3
AK
2633 /* KVM_EXIT_DCR */
2634 struct {
2635 __u32 dcrn;
2636 __u32 data;
2637 __u8 is_write;
2638 } dcr;
2639
2640powerpc specific.
2641
ad0a048b
AG
2642 /* KVM_EXIT_OSI */
2643 struct {
2644 __u64 gprs[32];
2645 } osi;
2646
2647MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2648hypercalls and exit with this exit struct that contains all the guest gprs.
2649
2650If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2651Userspace can now handle the hypercall and when it's done modify the gprs as
2652necessary. Upon guest entry all guest GPRs will then be replaced by the values
2653in this struct.
2654
de56a948
PM
2655 /* KVM_EXIT_PAPR_HCALL */
2656 struct {
2657 __u64 nr;
2658 __u64 ret;
2659 __u64 args[9];
2660 } papr_hcall;
2661
2662This is used on 64-bit PowerPC when emulating a pSeries partition,
2663e.g. with the 'pseries' machine type in qemu. It occurs when the
2664guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2665contains the hypercall number (from the guest R3), and 'args' contains
2666the arguments (from the guest R4 - R12). Userspace should put the
2667return code in 'ret' and any extra returned values in args[].
2668The possible hypercalls are defined in the Power Architecture Platform
2669Requirements (PAPR) document available from www.power.org (free
2670developer registration required to access it).
2671
fa6b7fe9
CH
2672 /* KVM_EXIT_S390_TSCH */
2673 struct {
2674 __u16 subchannel_id;
2675 __u16 subchannel_nr;
2676 __u32 io_int_parm;
2677 __u32 io_int_word;
2678 __u32 ipb;
2679 __u8 dequeued;
2680 } s390_tsch;
2681
2682s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
2683and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
2684interrupt for the target subchannel has been dequeued and subchannel_id,
2685subchannel_nr, io_int_parm and io_int_word contain the parameters for that
2686interrupt. ipb is needed for instruction parameter decoding.
2687
1c810636
AG
2688 /* KVM_EXIT_EPR */
2689 struct {
2690 __u32 epr;
2691 } epr;
2692
2693On FSL BookE PowerPC chips, the interrupt controller has a fast patch
2694interrupt acknowledge path to the core. When the core successfully
2695delivers an interrupt, it automatically populates the EPR register with
2696the interrupt vector number and acknowledges the interrupt inside
2697the interrupt controller.
2698
2699In case the interrupt controller lives in user space, we need to do
2700the interrupt acknowledge cycle through it to fetch the next to be
2701delivered interrupt vector using this exit.
2702
2703It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
2704external interrupt has just been delivered into the guest. User space
2705should put the acknowledged interrupt vector into the 'epr' field.
2706
9c1b96e3
AK
2707 /* Fix the size of the union. */
2708 char padding[256];
2709 };
b9e5dc8d
CB
2710
2711 /*
2712 * shared registers between kvm and userspace.
2713 * kvm_valid_regs specifies the register classes set by the host
2714 * kvm_dirty_regs specified the register classes dirtied by userspace
2715 * struct kvm_sync_regs is architecture specific, as well as the
2716 * bits for kvm_valid_regs and kvm_dirty_regs
2717 */
2718 __u64 kvm_valid_regs;
2719 __u64 kvm_dirty_regs;
2720 union {
2721 struct kvm_sync_regs regs;
2722 char padding[1024];
2723 } s;
2724
2725If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2726certain guest registers without having to call SET/GET_*REGS. Thus we can
2727avoid some system call overhead if userspace has to handle the exit.
2728Userspace can query the validity of the structure by checking
2729kvm_valid_regs for specific bits. These bits are architecture specific
2730and usually define the validity of a groups of registers. (e.g. one bit
2731 for general purpose registers)
2732
9c1b96e3 2733};
821246a5 2734
414fa985 2735
9c15bb1d
BP
27364.81 KVM_GET_EMULATED_CPUID
2737
2738Capability: KVM_CAP_EXT_EMUL_CPUID
2739Architectures: x86
2740Type: system ioctl
2741Parameters: struct kvm_cpuid2 (in/out)
2742Returns: 0 on success, -1 on error
2743
2744struct kvm_cpuid2 {
2745 __u32 nent;
2746 __u32 flags;
2747 struct kvm_cpuid_entry2 entries[0];
2748};
2749
2750The member 'flags' is used for passing flags from userspace.
2751
2752#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2753#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2754#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2755
2756struct kvm_cpuid_entry2 {
2757 __u32 function;
2758 __u32 index;
2759 __u32 flags;
2760 __u32 eax;
2761 __u32 ebx;
2762 __u32 ecx;
2763 __u32 edx;
2764 __u32 padding[3];
2765};
2766
2767This ioctl returns x86 cpuid features which are emulated by
2768kvm.Userspace can use the information returned by this ioctl to query
2769which features are emulated by kvm instead of being present natively.
2770
2771Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2772structure with the 'nent' field indicating the number of entries in
2773the variable-size array 'entries'. If the number of entries is too low
2774to describe the cpu capabilities, an error (E2BIG) is returned. If the
2775number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2776is returned. If the number is just right, the 'nent' field is adjusted
2777to the number of valid entries in the 'entries' array, which is then
2778filled.
2779
2780The entries returned are the set CPUID bits of the respective features
2781which kvm emulates, as returned by the CPUID instruction, with unknown
2782or unsupported feature bits cleared.
2783
2784Features like x2apic, for example, may not be present in the host cpu
2785but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2786emulated efficiently and thus not included here.
2787
2788The fields in each entry are defined as follows:
2789
2790 function: the eax value used to obtain the entry
2791 index: the ecx value used to obtain the entry (for entries that are
2792 affected by ecx)
2793 flags: an OR of zero or more of the following:
2794 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2795 if the index field is valid
2796 KVM_CPUID_FLAG_STATEFUL_FUNC:
2797 if cpuid for this function returns different values for successive
2798 invocations; there will be several entries with the same function,
2799 all with this flag set
2800 KVM_CPUID_FLAG_STATE_READ_NEXT:
2801 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2802 the first entry to be read by a cpu
2803 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2804 this function/index combination
2805
2806
821246a5 28076. Capabilities that can be enabled
414fa985 2808-----------------------------------
821246a5
AG
2809
2810There are certain capabilities that change the behavior of the virtual CPU when
2811enabled. To enable them, please see section 4.37. Below you can find a list of
2812capabilities and what their effect on the vCPU is when enabling them.
2813
2814The following information is provided along with the description:
2815
2816 Architectures: which instruction set architectures provide this ioctl.
2817 x86 includes both i386 and x86_64.
2818
2819 Parameters: what parameters are accepted by the capability.
2820
2821 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2822 are not detailed, but errors with specific meanings are.
2823
414fa985 2824
821246a5
AG
28256.1 KVM_CAP_PPC_OSI
2826
2827Architectures: ppc
2828Parameters: none
2829Returns: 0 on success; -1 on error
2830
2831This capability enables interception of OSI hypercalls that otherwise would
2832be treated as normal system calls to be injected into the guest. OSI hypercalls
2833were invented by Mac-on-Linux to have a standardized communication mechanism
2834between the guest and the host.
2835
2836When this capability is enabled, KVM_EXIT_OSI can occur.
2837
414fa985 2838
821246a5
AG
28396.2 KVM_CAP_PPC_PAPR
2840
2841Architectures: ppc
2842Parameters: none
2843Returns: 0 on success; -1 on error
2844
2845This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2846done using the hypercall instruction "sc 1".
2847
2848It also sets the guest privilege level to "supervisor" mode. Usually the guest
2849runs in "hypervisor" privilege mode with a few missing features.
2850
2851In addition to the above, it changes the semantics of SDR1. In this mode, the
2852HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2853HTAB invisible to the guest.
2854
2855When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 2856
414fa985 2857
dc83b8bc
SW
28586.3 KVM_CAP_SW_TLB
2859
2860Architectures: ppc
2861Parameters: args[0] is the address of a struct kvm_config_tlb
2862Returns: 0 on success; -1 on error
2863
2864struct kvm_config_tlb {
2865 __u64 params;
2866 __u64 array;
2867 __u32 mmu_type;
2868 __u32 array_len;
2869};
2870
2871Configures the virtual CPU's TLB array, establishing a shared memory area
2872between userspace and KVM. The "params" and "array" fields are userspace
2873addresses of mmu-type-specific data structures. The "array_len" field is an
2874safety mechanism, and should be set to the size in bytes of the memory that
2875userspace has reserved for the array. It must be at least the size dictated
2876by "mmu_type" and "params".
2877
2878While KVM_RUN is active, the shared region is under control of KVM. Its
2879contents are undefined, and any modification by userspace results in
2880boundedly undefined behavior.
2881
2882On return from KVM_RUN, the shared region will reflect the current state of
2883the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2884to tell KVM which entries have been changed, prior to calling KVM_RUN again
2885on this vcpu.
2886
2887For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2888 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2889 - The "array" field points to an array of type "struct
2890 kvm_book3e_206_tlb_entry".
2891 - The array consists of all entries in the first TLB, followed by all
2892 entries in the second TLB.
2893 - Within a TLB, entries are ordered first by increasing set number. Within a
2894 set, entries are ordered by way (increasing ESEL).
2895 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2896 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2897 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2898 hardware ignores this value for TLB0.
fa6b7fe9
CH
2899
29006.4 KVM_CAP_S390_CSS_SUPPORT
2901
2902Architectures: s390
2903Parameters: none
2904Returns: 0 on success; -1 on error
2905
2906This capability enables support for handling of channel I/O instructions.
2907
2908TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
2909handled in-kernel, while the other I/O instructions are passed to userspace.
2910
2911When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
2912SUBCHANNEL intercepts.
1c810636
AG
2913
29146.5 KVM_CAP_PPC_EPR
2915
2916Architectures: ppc
2917Parameters: args[0] defines whether the proxy facility is active
2918Returns: 0 on success; -1 on error
2919
2920This capability enables or disables the delivery of interrupts through the
2921external proxy facility.
2922
2923When enabled (args[0] != 0), every time the guest gets an external interrupt
2924delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
2925to receive the topmost interrupt vector.
2926
2927When disabled (args[0] == 0), behavior is as if this facility is unsupported.
2928
2929When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
2930
29316.6 KVM_CAP_IRQ_MPIC
2932
2933Architectures: ppc
2934Parameters: args[0] is the MPIC device fd
2935 args[1] is the MPIC CPU number for this vcpu
2936
2937This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
2938
29396.7 KVM_CAP_IRQ_XICS
2940
2941Architectures: ppc
2942Parameters: args[0] is the XICS device fd
2943 args[1] is the XICS CPU number (server ID) for this vcpu
2944
2945This capability connects the vcpu to an in-kernel XICS device.