Documentation: Correct duplicate section number in kvm/api.txt
[linux-2.6-block.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
0b1b1dfd
GK
202This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
203The vcpu id is an integer in the range [0, max_vcpu_id).
8c3ba334
SL
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
0b1b1dfd
GK
215The maximum possible value for max_vcpu_id can be retrieved using the
216KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
217
218If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
219is the same as the value returned from KVM_CAP_MAX_VCPUS.
220
371fefd6
PM
221On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
222threads in one or more virtual CPU cores. (This is because the
223hardware requires all the hardware threads in a CPU core to be in the
224same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
225of vcpus per virtual core (vcore). The vcore id is obtained by
226dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
227given vcore will always be in the same physical core as each other
228(though that might be a different physical core from time to time).
229Userspace can control the threading (SMT) mode of the guest by its
230allocation of vcpu ids. For example, if userspace wants
231single-threaded guest vcpus, it should make all vcpu ids be a multiple
232of the number of vcpus per vcore.
233
5b1c1493
CO
234For virtual cpus that have been created with S390 user controlled virtual
235machines, the resulting vcpu fd can be memory mapped at page offset
236KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
237cpu's hardware control block.
238
414fa985 239
68ba6974 2404.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
241
242Capability: basic
243Architectures: x86
244Type: vm ioctl
245Parameters: struct kvm_dirty_log (in/out)
246Returns: 0 on success, -1 on error
247
248/* for KVM_GET_DIRTY_LOG */
249struct kvm_dirty_log {
250 __u32 slot;
251 __u32 padding;
252 union {
253 void __user *dirty_bitmap; /* one bit per page */
254 __u64 padding;
255 };
256};
257
258Given a memory slot, return a bitmap containing any pages dirtied
259since the last call to this ioctl. Bit 0 is the first page in the
260memory slot. Ensure the entire structure is cleared to avoid padding
261issues.
262
f481b069
PB
263If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
264the address space for which you want to return the dirty bitmap.
265They must be less than the value that KVM_CHECK_EXTENSION returns for
266the KVM_CAP_MULTI_ADDRESS_SPACE capability.
267
414fa985 268
68ba6974 2694.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
270
271Capability: basic
272Architectures: x86
273Type: vm ioctl
274Parameters: struct kvm_memory_alias (in)
275Returns: 0 (success), -1 (error)
276
a1f4d395 277This ioctl is obsolete and has been removed.
9c1b96e3 278
414fa985 279
68ba6974 2804.10 KVM_RUN
9c1b96e3
AK
281
282Capability: basic
283Architectures: all
284Type: vcpu ioctl
285Parameters: none
286Returns: 0 on success, -1 on error
287Errors:
288 EINTR: an unmasked signal is pending
289
290This ioctl is used to run a guest virtual cpu. While there are no
291explicit parameters, there is an implicit parameter block that can be
292obtained by mmap()ing the vcpu fd at offset 0, with the size given by
293KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
294kvm_run' (see below).
295
414fa985 296
68ba6974 2974.11 KVM_GET_REGS
9c1b96e3
AK
298
299Capability: basic
379e04c7 300Architectures: all except ARM, arm64
9c1b96e3
AK
301Type: vcpu ioctl
302Parameters: struct kvm_regs (out)
303Returns: 0 on success, -1 on error
304
305Reads the general purpose registers from the vcpu.
306
307/* x86 */
308struct kvm_regs {
309 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
310 __u64 rax, rbx, rcx, rdx;
311 __u64 rsi, rdi, rsp, rbp;
312 __u64 r8, r9, r10, r11;
313 __u64 r12, r13, r14, r15;
314 __u64 rip, rflags;
315};
316
c2d2c21b
JH
317/* mips */
318struct kvm_regs {
319 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
320 __u64 gpr[32];
321 __u64 hi;
322 __u64 lo;
323 __u64 pc;
324};
325
414fa985 326
68ba6974 3274.12 KVM_SET_REGS
9c1b96e3
AK
328
329Capability: basic
379e04c7 330Architectures: all except ARM, arm64
9c1b96e3
AK
331Type: vcpu ioctl
332Parameters: struct kvm_regs (in)
333Returns: 0 on success, -1 on error
334
335Writes the general purpose registers into the vcpu.
336
337See KVM_GET_REGS for the data structure.
338
414fa985 339
68ba6974 3404.13 KVM_GET_SREGS
9c1b96e3
AK
341
342Capability: basic
5ce941ee 343Architectures: x86, ppc
9c1b96e3
AK
344Type: vcpu ioctl
345Parameters: struct kvm_sregs (out)
346Returns: 0 on success, -1 on error
347
348Reads special registers from the vcpu.
349
350/* x86 */
351struct kvm_sregs {
352 struct kvm_segment cs, ds, es, fs, gs, ss;
353 struct kvm_segment tr, ldt;
354 struct kvm_dtable gdt, idt;
355 __u64 cr0, cr2, cr3, cr4, cr8;
356 __u64 efer;
357 __u64 apic_base;
358 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
359};
360
68e2ffed 361/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 362
9c1b96e3
AK
363interrupt_bitmap is a bitmap of pending external interrupts. At most
364one bit may be set. This interrupt has been acknowledged by the APIC
365but not yet injected into the cpu core.
366
414fa985 367
68ba6974 3684.14 KVM_SET_SREGS
9c1b96e3
AK
369
370Capability: basic
5ce941ee 371Architectures: x86, ppc
9c1b96e3
AK
372Type: vcpu ioctl
373Parameters: struct kvm_sregs (in)
374Returns: 0 on success, -1 on error
375
376Writes special registers into the vcpu. See KVM_GET_SREGS for the
377data structures.
378
414fa985 379
68ba6974 3804.15 KVM_TRANSLATE
9c1b96e3
AK
381
382Capability: basic
383Architectures: x86
384Type: vcpu ioctl
385Parameters: struct kvm_translation (in/out)
386Returns: 0 on success, -1 on error
387
388Translates a virtual address according to the vcpu's current address
389translation mode.
390
391struct kvm_translation {
392 /* in */
393 __u64 linear_address;
394
395 /* out */
396 __u64 physical_address;
397 __u8 valid;
398 __u8 writeable;
399 __u8 usermode;
400 __u8 pad[5];
401};
402
414fa985 403
68ba6974 4044.16 KVM_INTERRUPT
9c1b96e3
AK
405
406Capability: basic
c2d2c21b 407Architectures: x86, ppc, mips
9c1b96e3
AK
408Type: vcpu ioctl
409Parameters: struct kvm_interrupt (in)
1c1a9ce9 410Returns: 0 on success, negative on failure.
9c1b96e3 411
1c1a9ce9 412Queues a hardware interrupt vector to be injected.
9c1b96e3
AK
413
414/* for KVM_INTERRUPT */
415struct kvm_interrupt {
416 /* in */
417 __u32 irq;
418};
419
6f7a2bd4
AG
420X86:
421
1c1a9ce9
SR
422Returns: 0 on success,
423 -EEXIST if an interrupt is already enqueued
424 -EINVAL the the irq number is invalid
425 -ENXIO if the PIC is in the kernel
426 -EFAULT if the pointer is invalid
427
428Note 'irq' is an interrupt vector, not an interrupt pin or line. This
429ioctl is useful if the in-kernel PIC is not used.
9c1b96e3 430
6f7a2bd4
AG
431PPC:
432
433Queues an external interrupt to be injected. This ioctl is overleaded
434with 3 different irq values:
435
436a) KVM_INTERRUPT_SET
437
438 This injects an edge type external interrupt into the guest once it's ready
439 to receive interrupts. When injected, the interrupt is done.
440
441b) KVM_INTERRUPT_UNSET
442
443 This unsets any pending interrupt.
444
445 Only available with KVM_CAP_PPC_UNSET_IRQ.
446
447c) KVM_INTERRUPT_SET_LEVEL
448
449 This injects a level type external interrupt into the guest context. The
450 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
451 is triggered.
452
453 Only available with KVM_CAP_PPC_IRQ_LEVEL.
454
455Note that any value for 'irq' other than the ones stated above is invalid
456and incurs unexpected behavior.
457
c2d2c21b
JH
458MIPS:
459
460Queues an external interrupt to be injected into the virtual CPU. A negative
461interrupt number dequeues the interrupt.
462
414fa985 463
68ba6974 4644.17 KVM_DEBUG_GUEST
9c1b96e3
AK
465
466Capability: basic
467Architectures: none
468Type: vcpu ioctl
469Parameters: none)
470Returns: -1 on error
471
472Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
473
414fa985 474
68ba6974 4754.18 KVM_GET_MSRS
9c1b96e3
AK
476
477Capability: basic
478Architectures: x86
479Type: vcpu ioctl
480Parameters: struct kvm_msrs (in/out)
481Returns: 0 on success, -1 on error
482
483Reads model-specific registers from the vcpu. Supported msr indices can
484be obtained using KVM_GET_MSR_INDEX_LIST.
485
486struct kvm_msrs {
487 __u32 nmsrs; /* number of msrs in entries */
488 __u32 pad;
489
490 struct kvm_msr_entry entries[0];
491};
492
493struct kvm_msr_entry {
494 __u32 index;
495 __u32 reserved;
496 __u64 data;
497};
498
499Application code should set the 'nmsrs' member (which indicates the
500size of the entries array) and the 'index' member of each array entry.
501kvm will fill in the 'data' member.
502
414fa985 503
68ba6974 5044.19 KVM_SET_MSRS
9c1b96e3
AK
505
506Capability: basic
507Architectures: x86
508Type: vcpu ioctl
509Parameters: struct kvm_msrs (in)
510Returns: 0 on success, -1 on error
511
512Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
513data structures.
514
515Application code should set the 'nmsrs' member (which indicates the
516size of the entries array), and the 'index' and 'data' members of each
517array entry.
518
414fa985 519
68ba6974 5204.20 KVM_SET_CPUID
9c1b96e3
AK
521
522Capability: basic
523Architectures: x86
524Type: vcpu ioctl
525Parameters: struct kvm_cpuid (in)
526Returns: 0 on success, -1 on error
527
528Defines the vcpu responses to the cpuid instruction. Applications
529should use the KVM_SET_CPUID2 ioctl if available.
530
531
532struct kvm_cpuid_entry {
533 __u32 function;
534 __u32 eax;
535 __u32 ebx;
536 __u32 ecx;
537 __u32 edx;
538 __u32 padding;
539};
540
541/* for KVM_SET_CPUID */
542struct kvm_cpuid {
543 __u32 nent;
544 __u32 padding;
545 struct kvm_cpuid_entry entries[0];
546};
547
414fa985 548
68ba6974 5494.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
550
551Capability: basic
572e0929 552Architectures: all
9c1b96e3
AK
553Type: vcpu ioctl
554Parameters: struct kvm_signal_mask (in)
555Returns: 0 on success, -1 on error
556
557Defines which signals are blocked during execution of KVM_RUN. This
558signal mask temporarily overrides the threads signal mask. Any
559unblocked signal received (except SIGKILL and SIGSTOP, which retain
560their traditional behaviour) will cause KVM_RUN to return with -EINTR.
561
562Note the signal will only be delivered if not blocked by the original
563signal mask.
564
565/* for KVM_SET_SIGNAL_MASK */
566struct kvm_signal_mask {
567 __u32 len;
568 __u8 sigset[0];
569};
570
414fa985 571
68ba6974 5724.22 KVM_GET_FPU
9c1b96e3
AK
573
574Capability: basic
575Architectures: x86
576Type: vcpu ioctl
577Parameters: struct kvm_fpu (out)
578Returns: 0 on success, -1 on error
579
580Reads the floating point state from the vcpu.
581
582/* for KVM_GET_FPU and KVM_SET_FPU */
583struct kvm_fpu {
584 __u8 fpr[8][16];
585 __u16 fcw;
586 __u16 fsw;
587 __u8 ftwx; /* in fxsave format */
588 __u8 pad1;
589 __u16 last_opcode;
590 __u64 last_ip;
591 __u64 last_dp;
592 __u8 xmm[16][16];
593 __u32 mxcsr;
594 __u32 pad2;
595};
596
414fa985 597
68ba6974 5984.23 KVM_SET_FPU
9c1b96e3
AK
599
600Capability: basic
601Architectures: x86
602Type: vcpu ioctl
603Parameters: struct kvm_fpu (in)
604Returns: 0 on success, -1 on error
605
606Writes the floating point state to the vcpu.
607
608/* for KVM_GET_FPU and KVM_SET_FPU */
609struct kvm_fpu {
610 __u8 fpr[8][16];
611 __u16 fcw;
612 __u16 fsw;
613 __u8 ftwx; /* in fxsave format */
614 __u8 pad1;
615 __u16 last_opcode;
616 __u64 last_ip;
617 __u64 last_dp;
618 __u8 xmm[16][16];
619 __u32 mxcsr;
620 __u32 pad2;
621};
622
414fa985 623
68ba6974 6244.24 KVM_CREATE_IRQCHIP
5dadbfd6 625
84223598 626Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
c32a4272 627Architectures: x86, ARM, arm64, s390
5dadbfd6
AK
628Type: vm ioctl
629Parameters: none
630Returns: 0 on success, -1 on error
631
ac3d3735
AP
632Creates an interrupt controller model in the kernel.
633On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
634future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
635PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
636On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
637KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
638KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
639On s390, a dummy irq routing table is created.
84223598
CH
640
641Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
642before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 643
414fa985 644
68ba6974 6454.25 KVM_IRQ_LINE
5dadbfd6
AK
646
647Capability: KVM_CAP_IRQCHIP
c32a4272 648Architectures: x86, arm, arm64
5dadbfd6
AK
649Type: vm ioctl
650Parameters: struct kvm_irq_level
651Returns: 0 on success, -1 on error
652
653Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
654On some architectures it is required that an interrupt controller model has
655been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
656interrupts require the level to be set to 1 and then back to 0.
657
100943c5
GS
658On real hardware, interrupt pins can be active-low or active-high. This
659does not matter for the level field of struct kvm_irq_level: 1 always
660means active (asserted), 0 means inactive (deasserted).
661
662x86 allows the operating system to program the interrupt polarity
663(active-low/active-high) for level-triggered interrupts, and KVM used
664to consider the polarity. However, due to bitrot in the handling of
665active-low interrupts, the above convention is now valid on x86 too.
666This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
667should not present interrupts to the guest as active-low unless this
668capability is present (or unless it is not using the in-kernel irqchip,
669of course).
670
671
379e04c7
MZ
672ARM/arm64 can signal an interrupt either at the CPU level, or at the
673in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
674use PPIs designated for specific cpus. The irq field is interpreted
675like this:
86ce8535
CD
676
677  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
678 field: | irq_type | vcpu_index | irq_id |
679
680The irq_type field has the following values:
681- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
682- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
683 (the vcpu_index field is ignored)
684- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
685
686(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
687
100943c5 688In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
689
690struct kvm_irq_level {
691 union {
692 __u32 irq; /* GSI */
693 __s32 status; /* not used for KVM_IRQ_LEVEL */
694 };
695 __u32 level; /* 0 or 1 */
696};
697
414fa985 698
68ba6974 6994.26 KVM_GET_IRQCHIP
5dadbfd6
AK
700
701Capability: KVM_CAP_IRQCHIP
c32a4272 702Architectures: x86
5dadbfd6
AK
703Type: vm ioctl
704Parameters: struct kvm_irqchip (in/out)
705Returns: 0 on success, -1 on error
706
707Reads the state of a kernel interrupt controller created with
708KVM_CREATE_IRQCHIP into a buffer provided by the caller.
709
710struct kvm_irqchip {
711 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
712 __u32 pad;
713 union {
714 char dummy[512]; /* reserving space */
715 struct kvm_pic_state pic;
716 struct kvm_ioapic_state ioapic;
717 } chip;
718};
719
414fa985 720
68ba6974 7214.27 KVM_SET_IRQCHIP
5dadbfd6
AK
722
723Capability: KVM_CAP_IRQCHIP
c32a4272 724Architectures: x86
5dadbfd6
AK
725Type: vm ioctl
726Parameters: struct kvm_irqchip (in)
727Returns: 0 on success, -1 on error
728
729Sets the state of a kernel interrupt controller created with
730KVM_CREATE_IRQCHIP from a buffer provided by the caller.
731
732struct kvm_irqchip {
733 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
734 __u32 pad;
735 union {
736 char dummy[512]; /* reserving space */
737 struct kvm_pic_state pic;
738 struct kvm_ioapic_state ioapic;
739 } chip;
740};
741
414fa985 742
68ba6974 7434.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
744
745Capability: KVM_CAP_XEN_HVM
746Architectures: x86
747Type: vm ioctl
748Parameters: struct kvm_xen_hvm_config (in)
749Returns: 0 on success, -1 on error
750
751Sets the MSR that the Xen HVM guest uses to initialize its hypercall
752page, and provides the starting address and size of the hypercall
753blobs in userspace. When the guest writes the MSR, kvm copies one
754page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
755memory.
756
757struct kvm_xen_hvm_config {
758 __u32 flags;
759 __u32 msr;
760 __u64 blob_addr_32;
761 __u64 blob_addr_64;
762 __u8 blob_size_32;
763 __u8 blob_size_64;
764 __u8 pad2[30];
765};
766
414fa985 767
68ba6974 7684.29 KVM_GET_CLOCK
afbcf7ab
GC
769
770Capability: KVM_CAP_ADJUST_CLOCK
771Architectures: x86
772Type: vm ioctl
773Parameters: struct kvm_clock_data (out)
774Returns: 0 on success, -1 on error
775
776Gets the current timestamp of kvmclock as seen by the current guest. In
777conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
778such as migration.
779
e3fd9a93
PB
780When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
781set of bits that KVM can return in struct kvm_clock_data's flag member.
782
783The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
784value is the exact kvmclock value seen by all VCPUs at the instant
785when KVM_GET_CLOCK was called. If clear, the returned value is simply
786CLOCK_MONOTONIC plus a constant offset; the offset can be modified
787with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
788but the exact value read by each VCPU could differ, because the host
789TSC is not stable.
790
afbcf7ab
GC
791struct kvm_clock_data {
792 __u64 clock; /* kvmclock current value */
793 __u32 flags;
794 __u32 pad[9];
795};
796
414fa985 797
68ba6974 7984.30 KVM_SET_CLOCK
afbcf7ab
GC
799
800Capability: KVM_CAP_ADJUST_CLOCK
801Architectures: x86
802Type: vm ioctl
803Parameters: struct kvm_clock_data (in)
804Returns: 0 on success, -1 on error
805
2044892d 806Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
807In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
808such as migration.
809
810struct kvm_clock_data {
811 __u64 clock; /* kvmclock current value */
812 __u32 flags;
813 __u32 pad[9];
814};
815
414fa985 816
68ba6974 8174.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
818
819Capability: KVM_CAP_VCPU_EVENTS
48005f64 820Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
821Architectures: x86
822Type: vm ioctl
823Parameters: struct kvm_vcpu_event (out)
824Returns: 0 on success, -1 on error
825
826Gets currently pending exceptions, interrupts, and NMIs as well as related
827states of the vcpu.
828
829struct kvm_vcpu_events {
830 struct {
831 __u8 injected;
832 __u8 nr;
833 __u8 has_error_code;
834 __u8 pad;
835 __u32 error_code;
836 } exception;
837 struct {
838 __u8 injected;
839 __u8 nr;
840 __u8 soft;
48005f64 841 __u8 shadow;
3cfc3092
JK
842 } interrupt;
843 struct {
844 __u8 injected;
845 __u8 pending;
846 __u8 masked;
847 __u8 pad;
848 } nmi;
849 __u32 sipi_vector;
dab4b911 850 __u32 flags;
f077825a
PB
851 struct {
852 __u8 smm;
853 __u8 pending;
854 __u8 smm_inside_nmi;
855 __u8 latched_init;
856 } smi;
3cfc3092
JK
857};
858
f077825a
PB
859Only two fields are defined in the flags field:
860
861- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
862 interrupt.shadow contains a valid state.
48005f64 863
f077825a
PB
864- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
865 smi contains a valid state.
414fa985 866
68ba6974 8674.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
868
869Capability: KVM_CAP_VCPU_EVENTS
48005f64 870Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
871Architectures: x86
872Type: vm ioctl
873Parameters: struct kvm_vcpu_event (in)
874Returns: 0 on success, -1 on error
875
876Set pending exceptions, interrupts, and NMIs as well as related states of the
877vcpu.
878
879See KVM_GET_VCPU_EVENTS for the data structure.
880
dab4b911 881Fields that may be modified asynchronously by running VCPUs can be excluded
f077825a
PB
882from the update. These fields are nmi.pending, sipi_vector, smi.smm,
883smi.pending. Keep the corresponding bits in the flags field cleared to
884suppress overwriting the current in-kernel state. The bits are:
dab4b911
JK
885
886KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
887KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
f077825a 888KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
dab4b911 889
48005f64
JK
890If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
891the flags field to signal that interrupt.shadow contains a valid state and
892shall be written into the VCPU.
893
f077825a
PB
894KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
895
414fa985 896
68ba6974 8974.33 KVM_GET_DEBUGREGS
a1efbe77
JK
898
899Capability: KVM_CAP_DEBUGREGS
900Architectures: x86
901Type: vm ioctl
902Parameters: struct kvm_debugregs (out)
903Returns: 0 on success, -1 on error
904
905Reads debug registers from the vcpu.
906
907struct kvm_debugregs {
908 __u64 db[4];
909 __u64 dr6;
910 __u64 dr7;
911 __u64 flags;
912 __u64 reserved[9];
913};
914
414fa985 915
68ba6974 9164.34 KVM_SET_DEBUGREGS
a1efbe77
JK
917
918Capability: KVM_CAP_DEBUGREGS
919Architectures: x86
920Type: vm ioctl
921Parameters: struct kvm_debugregs (in)
922Returns: 0 on success, -1 on error
923
924Writes debug registers into the vcpu.
925
926See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
927yet and must be cleared on entry.
928
414fa985 929
68ba6974 9304.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
931
932Capability: KVM_CAP_USER_MEM
933Architectures: all
934Type: vm ioctl
935Parameters: struct kvm_userspace_memory_region (in)
936Returns: 0 on success, -1 on error
937
938struct kvm_userspace_memory_region {
939 __u32 slot;
940 __u32 flags;
941 __u64 guest_phys_addr;
942 __u64 memory_size; /* bytes */
943 __u64 userspace_addr; /* start of the userspace allocated memory */
944};
945
946/* for kvm_memory_region::flags */
4d8b81ab
XG
947#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
948#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
949
950This ioctl allows the user to create or modify a guest physical memory
951slot. When changing an existing slot, it may be moved in the guest
952physical memory space, or its flags may be modified. It may not be
953resized. Slots may not overlap in guest physical address space.
954
f481b069
PB
955If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
956specifies the address space which is being modified. They must be
957less than the value that KVM_CHECK_EXTENSION returns for the
958KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
959are unrelated; the restriction on overlapping slots only applies within
960each address space.
961
0f2d8f4d
AK
962Memory for the region is taken starting at the address denoted by the
963field userspace_addr, which must point at user addressable memory for
964the entire memory slot size. Any object may back this memory, including
965anonymous memory, ordinary files, and hugetlbfs.
966
967It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
968be identical. This allows large pages in the guest to be backed by large
969pages in the host.
970
75d61fbc
TY
971The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
972KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
973writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
974use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
975to make a new slot read-only. In this case, writes to this memory will be
976posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
977
978When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
979the memory region are automatically reflected into the guest. For example, an
980mmap() that affects the region will be made visible immediately. Another
981example is madvise(MADV_DROP).
0f2d8f4d
AK
982
983It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
984The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
985allocation and is deprecated.
3cfc3092 986
414fa985 987
68ba6974 9884.36 KVM_SET_TSS_ADDR
8a5416db
AK
989
990Capability: KVM_CAP_SET_TSS_ADDR
991Architectures: x86
992Type: vm ioctl
993Parameters: unsigned long tss_address (in)
994Returns: 0 on success, -1 on error
995
996This ioctl defines the physical address of a three-page region in the guest
997physical address space. The region must be within the first 4GB of the
998guest physical address space and must not conflict with any memory slot
999or any mmio address. The guest may malfunction if it accesses this memory
1000region.
1001
1002This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1003because of a quirk in the virtualization implementation (see the internals
1004documentation when it pops into existence).
1005
414fa985 1006
68ba6974 10074.37 KVM_ENABLE_CAP
71fbfd5f 1008
d938dc55 1009Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
90de4a18
NA
1010Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1011 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
d938dc55 1012Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
1013Parameters: struct kvm_enable_cap (in)
1014Returns: 0 on success; -1 on error
1015
1016+Not all extensions are enabled by default. Using this ioctl the application
1017can enable an extension, making it available to the guest.
1018
1019On systems that do not support this ioctl, it always fails. On systems that
1020do support it, it only works for extensions that are supported for enablement.
1021
1022To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1023be used.
1024
1025struct kvm_enable_cap {
1026 /* in */
1027 __u32 cap;
1028
1029The capability that is supposed to get enabled.
1030
1031 __u32 flags;
1032
1033A bitfield indicating future enhancements. Has to be 0 for now.
1034
1035 __u64 args[4];
1036
1037Arguments for enabling a feature. If a feature needs initial values to
1038function properly, this is the place to put them.
1039
1040 __u8 pad[64];
1041};
1042
d938dc55
CH
1043The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1044for vm-wide capabilities.
414fa985 1045
68ba6974 10464.38 KVM_GET_MP_STATE
b843f065
AK
1047
1048Capability: KVM_CAP_MP_STATE
ecccf0cc 1049Architectures: x86, s390, arm, arm64
b843f065
AK
1050Type: vcpu ioctl
1051Parameters: struct kvm_mp_state (out)
1052Returns: 0 on success; -1 on error
1053
1054struct kvm_mp_state {
1055 __u32 mp_state;
1056};
1057
1058Returns the vcpu's current "multiprocessing state" (though also valid on
1059uniprocessor guests).
1060
1061Possible values are:
1062
ecccf0cc 1063 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
b843f065 1064 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
c32a4272 1065 which has not yet received an INIT signal [x86]
b843f065 1066 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
c32a4272 1067 now ready for a SIPI [x86]
b843f065 1068 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
c32a4272 1069 is waiting for an interrupt [x86]
b843f065 1070 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
c32a4272 1071 accessible via KVM_GET_VCPU_EVENTS) [x86]
ecccf0cc 1072 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
6352e4d2
DH
1073 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1074 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1075 [s390]
1076 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1077 [s390]
b843f065 1078
c32a4272 1079On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1080in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1081these architectures.
b843f065 1082
ecccf0cc
AB
1083For arm/arm64:
1084
1085The only states that are valid are KVM_MP_STATE_STOPPED and
1086KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
414fa985 1087
68ba6974 10884.39 KVM_SET_MP_STATE
b843f065
AK
1089
1090Capability: KVM_CAP_MP_STATE
ecccf0cc 1091Architectures: x86, s390, arm, arm64
b843f065
AK
1092Type: vcpu ioctl
1093Parameters: struct kvm_mp_state (in)
1094Returns: 0 on success; -1 on error
1095
1096Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1097arguments.
1098
c32a4272 1099On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
0b4820d6
DH
1100in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1101these architectures.
b843f065 1102
ecccf0cc
AB
1103For arm/arm64:
1104
1105The only states that are valid are KVM_MP_STATE_STOPPED and
1106KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
414fa985 1107
68ba6974 11084.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1109
1110Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1111Architectures: x86
1112Type: vm ioctl
1113Parameters: unsigned long identity (in)
1114Returns: 0 on success, -1 on error
1115
1116This ioctl defines the physical address of a one-page region in the guest
1117physical address space. The region must be within the first 4GB of the
1118guest physical address space and must not conflict with any memory slot
1119or any mmio address. The guest may malfunction if it accesses this memory
1120region.
1121
1122This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1123because of a quirk in the virtualization implementation (see the internals
1124documentation when it pops into existence).
1125
414fa985 1126
68ba6974 11274.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1128
1129Capability: KVM_CAP_SET_BOOT_CPU_ID
c32a4272 1130Architectures: x86
57bc24cf
AK
1131Type: vm ioctl
1132Parameters: unsigned long vcpu_id
1133Returns: 0 on success, -1 on error
1134
1135Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1136as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1137is vcpu 0.
1138
414fa985 1139
68ba6974 11404.42 KVM_GET_XSAVE
2d5b5a66
SY
1141
1142Capability: KVM_CAP_XSAVE
1143Architectures: x86
1144Type: vcpu ioctl
1145Parameters: struct kvm_xsave (out)
1146Returns: 0 on success, -1 on error
1147
1148struct kvm_xsave {
1149 __u32 region[1024];
1150};
1151
1152This ioctl would copy current vcpu's xsave struct to the userspace.
1153
414fa985 1154
68ba6974 11554.43 KVM_SET_XSAVE
2d5b5a66
SY
1156
1157Capability: KVM_CAP_XSAVE
1158Architectures: x86
1159Type: vcpu ioctl
1160Parameters: struct kvm_xsave (in)
1161Returns: 0 on success, -1 on error
1162
1163struct kvm_xsave {
1164 __u32 region[1024];
1165};
1166
1167This ioctl would copy userspace's xsave struct to the kernel.
1168
414fa985 1169
68ba6974 11704.44 KVM_GET_XCRS
2d5b5a66
SY
1171
1172Capability: KVM_CAP_XCRS
1173Architectures: x86
1174Type: vcpu ioctl
1175Parameters: struct kvm_xcrs (out)
1176Returns: 0 on success, -1 on error
1177
1178struct kvm_xcr {
1179 __u32 xcr;
1180 __u32 reserved;
1181 __u64 value;
1182};
1183
1184struct kvm_xcrs {
1185 __u32 nr_xcrs;
1186 __u32 flags;
1187 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1188 __u64 padding[16];
1189};
1190
1191This ioctl would copy current vcpu's xcrs to the userspace.
1192
414fa985 1193
68ba6974 11944.45 KVM_SET_XCRS
2d5b5a66
SY
1195
1196Capability: KVM_CAP_XCRS
1197Architectures: x86
1198Type: vcpu ioctl
1199Parameters: struct kvm_xcrs (in)
1200Returns: 0 on success, -1 on error
1201
1202struct kvm_xcr {
1203 __u32 xcr;
1204 __u32 reserved;
1205 __u64 value;
1206};
1207
1208struct kvm_xcrs {
1209 __u32 nr_xcrs;
1210 __u32 flags;
1211 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1212 __u64 padding[16];
1213};
1214
1215This ioctl would set vcpu's xcr to the value userspace specified.
1216
414fa985 1217
68ba6974 12184.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1219
1220Capability: KVM_CAP_EXT_CPUID
1221Architectures: x86
1222Type: system ioctl
1223Parameters: struct kvm_cpuid2 (in/out)
1224Returns: 0 on success, -1 on error
1225
1226struct kvm_cpuid2 {
1227 __u32 nent;
1228 __u32 padding;
1229 struct kvm_cpuid_entry2 entries[0];
1230};
1231
9c15bb1d
BP
1232#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1233#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1234#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1235
1236struct kvm_cpuid_entry2 {
1237 __u32 function;
1238 __u32 index;
1239 __u32 flags;
1240 __u32 eax;
1241 __u32 ebx;
1242 __u32 ecx;
1243 __u32 edx;
1244 __u32 padding[3];
1245};
1246
1247This ioctl returns x86 cpuid features which are supported by both the hardware
1248and kvm. Userspace can use the information returned by this ioctl to
1249construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1250hardware, kernel, and userspace capabilities, and with user requirements (for
1251example, the user may wish to constrain cpuid to emulate older hardware,
1252or for feature consistency across a cluster).
1253
1254Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1255with the 'nent' field indicating the number of entries in the variable-size
1256array 'entries'. If the number of entries is too low to describe the cpu
1257capabilities, an error (E2BIG) is returned. If the number is too high,
1258the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1259number is just right, the 'nent' field is adjusted to the number of valid
1260entries in the 'entries' array, which is then filled.
1261
1262The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1263with unknown or unsupported features masked out. Some features (for example,
1264x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1265emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1266
1267 function: the eax value used to obtain the entry
1268 index: the ecx value used to obtain the entry (for entries that are
1269 affected by ecx)
1270 flags: an OR of zero or more of the following:
1271 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1272 if the index field is valid
1273 KVM_CPUID_FLAG_STATEFUL_FUNC:
1274 if cpuid for this function returns different values for successive
1275 invocations; there will be several entries with the same function,
1276 all with this flag set
1277 KVM_CPUID_FLAG_STATE_READ_NEXT:
1278 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1279 the first entry to be read by a cpu
1280 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1281 this function/index combination
1282
4d25a066
JK
1283The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1284as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1285support. Instead it is reported via
1286
1287 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1288
1289if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1290feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1291
414fa985 1292
68ba6974 12934.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1294
1295Capability: KVM_CAP_PPC_GET_PVINFO
1296Architectures: ppc
1297Type: vm ioctl
1298Parameters: struct kvm_ppc_pvinfo (out)
1299Returns: 0 on success, !0 on error
1300
1301struct kvm_ppc_pvinfo {
1302 __u32 flags;
1303 __u32 hcall[4];
1304 __u8 pad[108];
1305};
1306
1307This ioctl fetches PV specific information that need to be passed to the guest
1308using the device tree or other means from vm context.
1309
9202e076 1310The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1311
1312If any additional field gets added to this structure later on, a bit for that
1313additional piece of information will be set in the flags bitmap.
1314
9202e076
LYB
1315The flags bitmap is defined as:
1316
1317 /* the host supports the ePAPR idle hcall
1318 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1319
e80a4a94 13204.48 KVM_ASSIGN_PCI_DEVICE (deprecated)
49f48172 1321
7f05db6a 1322Capability: none
c32a4272 1323Architectures: x86
49f48172
JK
1324Type: vm ioctl
1325Parameters: struct kvm_assigned_pci_dev (in)
1326Returns: 0 on success, -1 on error
1327
1328Assigns a host PCI device to the VM.
1329
1330struct kvm_assigned_pci_dev {
1331 __u32 assigned_dev_id;
1332 __u32 busnr;
1333 __u32 devfn;
1334 __u32 flags;
1335 __u32 segnr;
1336 union {
1337 __u32 reserved[11];
1338 };
1339};
1340
1341The PCI device is specified by the triple segnr, busnr, and devfn.
1342Identification in succeeding service requests is done via assigned_dev_id. The
1343following flags are specified:
1344
1345/* Depends on KVM_CAP_IOMMU */
1346#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1347/* The following two depend on KVM_CAP_PCI_2_3 */
1348#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1349#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1350
1351If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1352via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1353assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1354guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1355
42387373
AW
1356The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1357isolation of the device. Usages not specifying this flag are deprecated.
1358
3d27e23b
AW
1359Only PCI header type 0 devices with PCI BAR resources are supported by
1360device assignment. The user requesting this ioctl must have read/write
1361access to the PCI sysfs resource files associated with the device.
1362
7f05db6a
MT
1363Errors:
1364 ENOTTY: kernel does not support this ioctl
1365
1366 Other error conditions may be defined by individual device types or
1367 have their standard meanings.
1368
414fa985 1369
e80a4a94 13704.49 KVM_DEASSIGN_PCI_DEVICE (deprecated)
49f48172 1371
7f05db6a 1372Capability: none
c32a4272 1373Architectures: x86
49f48172
JK
1374Type: vm ioctl
1375Parameters: struct kvm_assigned_pci_dev (in)
1376Returns: 0 on success, -1 on error
1377
1378Ends PCI device assignment, releasing all associated resources.
1379
7f05db6a 1380See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1381used in kvm_assigned_pci_dev to identify the device.
1382
7f05db6a
MT
1383Errors:
1384 ENOTTY: kernel does not support this ioctl
1385
1386 Other error conditions may be defined by individual device types or
1387 have their standard meanings.
414fa985 1388
e80a4a94 13894.50 KVM_ASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1390
1391Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1392Architectures: x86
49f48172
JK
1393Type: vm ioctl
1394Parameters: struct kvm_assigned_irq (in)
1395Returns: 0 on success, -1 on error
1396
1397Assigns an IRQ to a passed-through device.
1398
1399struct kvm_assigned_irq {
1400 __u32 assigned_dev_id;
91e3d71d 1401 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1402 __u32 guest_irq;
1403 __u32 flags;
1404 union {
49f48172
JK
1405 __u32 reserved[12];
1406 };
1407};
1408
1409The following flags are defined:
1410
1411#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1412#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1413#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1414
1415#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1416#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1417#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1418
1419It is not valid to specify multiple types per host or guest IRQ. However, the
1420IRQ type of host and guest can differ or can even be null.
1421
7f05db6a
MT
1422Errors:
1423 ENOTTY: kernel does not support this ioctl
1424
1425 Other error conditions may be defined by individual device types or
1426 have their standard meanings.
1427
414fa985 1428
e80a4a94 14294.51 KVM_DEASSIGN_DEV_IRQ (deprecated)
49f48172
JK
1430
1431Capability: KVM_CAP_ASSIGN_DEV_IRQ
c32a4272 1432Architectures: x86
49f48172
JK
1433Type: vm ioctl
1434Parameters: struct kvm_assigned_irq (in)
1435Returns: 0 on success, -1 on error
1436
1437Ends an IRQ assignment to a passed-through device.
1438
1439See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1440by assigned_dev_id, flags must correspond to the IRQ type specified on
1441KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1442
414fa985 1443
68ba6974 14444.52 KVM_SET_GSI_ROUTING
49f48172
JK
1445
1446Capability: KVM_CAP_IRQ_ROUTING
180ae7b1 1447Architectures: x86 s390 arm arm64
49f48172
JK
1448Type: vm ioctl
1449Parameters: struct kvm_irq_routing (in)
1450Returns: 0 on success, -1 on error
1451
1452Sets the GSI routing table entries, overwriting any previously set entries.
1453
180ae7b1
EA
1454On arm/arm64, GSI routing has the following limitation:
1455- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1456
49f48172
JK
1457struct kvm_irq_routing {
1458 __u32 nr;
1459 __u32 flags;
1460 struct kvm_irq_routing_entry entries[0];
1461};
1462
1463No flags are specified so far, the corresponding field must be set to zero.
1464
1465struct kvm_irq_routing_entry {
1466 __u32 gsi;
1467 __u32 type;
1468 __u32 flags;
1469 __u32 pad;
1470 union {
1471 struct kvm_irq_routing_irqchip irqchip;
1472 struct kvm_irq_routing_msi msi;
84223598 1473 struct kvm_irq_routing_s390_adapter adapter;
5c919412 1474 struct kvm_irq_routing_hv_sint hv_sint;
49f48172
JK
1475 __u32 pad[8];
1476 } u;
1477};
1478
1479/* gsi routing entry types */
1480#define KVM_IRQ_ROUTING_IRQCHIP 1
1481#define KVM_IRQ_ROUTING_MSI 2
84223598 1482#define KVM_IRQ_ROUTING_S390_ADAPTER 3
5c919412 1483#define KVM_IRQ_ROUTING_HV_SINT 4
49f48172 1484
76a10b86 1485flags:
6f49b2f3
PB
1486- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1487 type, specifies that the devid field contains a valid value. The per-VM
1488 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1489 the device ID. If this capability is not available, userspace should
1490 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
76a10b86 1491- zero otherwise
49f48172
JK
1492
1493struct kvm_irq_routing_irqchip {
1494 __u32 irqchip;
1495 __u32 pin;
1496};
1497
1498struct kvm_irq_routing_msi {
1499 __u32 address_lo;
1500 __u32 address_hi;
1501 __u32 data;
76a10b86
EA
1502 union {
1503 __u32 pad;
1504 __u32 devid;
1505 };
49f48172
JK
1506};
1507
6f49b2f3
PB
1508If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1509for the device that wrote the MSI message. For PCI, this is usually a
1510BFD identifier in the lower 16 bits.
76a10b86 1511
37131313
RK
1512On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1513feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1514address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1515address_hi must be zero.
1516
84223598
CH
1517struct kvm_irq_routing_s390_adapter {
1518 __u64 ind_addr;
1519 __u64 summary_addr;
1520 __u64 ind_offset;
1521 __u32 summary_offset;
1522 __u32 adapter_id;
1523};
1524
5c919412
AS
1525struct kvm_irq_routing_hv_sint {
1526 __u32 vcpu;
1527 __u32 sint;
1528};
414fa985 1529
e80a4a94 15304.53 KVM_ASSIGN_SET_MSIX_NR (deprecated)
49f48172 1531
7f05db6a 1532Capability: none
c32a4272 1533Architectures: x86
49f48172
JK
1534Type: vm ioctl
1535Parameters: struct kvm_assigned_msix_nr (in)
1536Returns: 0 on success, -1 on error
1537
58f0964e
JK
1538Set the number of MSI-X interrupts for an assigned device. The number is
1539reset again by terminating the MSI-X assignment of the device via
1540KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1541point will fail.
49f48172
JK
1542
1543struct kvm_assigned_msix_nr {
1544 __u32 assigned_dev_id;
1545 __u16 entry_nr;
1546 __u16 padding;
1547};
1548
1549#define KVM_MAX_MSIX_PER_DEV 256
1550
414fa985 1551
e80a4a94 15524.54 KVM_ASSIGN_SET_MSIX_ENTRY (deprecated)
49f48172 1553
7f05db6a 1554Capability: none
c32a4272 1555Architectures: x86
49f48172
JK
1556Type: vm ioctl
1557Parameters: struct kvm_assigned_msix_entry (in)
1558Returns: 0 on success, -1 on error
1559
1560Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1561the GSI vector to zero means disabling the interrupt.
1562
1563struct kvm_assigned_msix_entry {
1564 __u32 assigned_dev_id;
1565 __u32 gsi;
1566 __u16 entry; /* The index of entry in the MSI-X table */
1567 __u16 padding[3];
1568};
1569
7f05db6a
MT
1570Errors:
1571 ENOTTY: kernel does not support this ioctl
1572
1573 Other error conditions may be defined by individual device types or
1574 have their standard meanings.
1575
414fa985
JK
1576
15774.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1578
1579Capability: KVM_CAP_TSC_CONTROL
1580Architectures: x86
1581Type: vcpu ioctl
1582Parameters: virtual tsc_khz
1583Returns: 0 on success, -1 on error
1584
1585Specifies the tsc frequency for the virtual machine. The unit of the
1586frequency is KHz.
1587
414fa985
JK
1588
15894.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1590
1591Capability: KVM_CAP_GET_TSC_KHZ
1592Architectures: x86
1593Type: vcpu ioctl
1594Parameters: none
1595Returns: virtual tsc-khz on success, negative value on error
1596
1597Returns the tsc frequency of the guest. The unit of the return value is
1598KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1599error.
1600
414fa985
JK
1601
16024.57 KVM_GET_LAPIC
e7677933
AK
1603
1604Capability: KVM_CAP_IRQCHIP
1605Architectures: x86
1606Type: vcpu ioctl
1607Parameters: struct kvm_lapic_state (out)
1608Returns: 0 on success, -1 on error
1609
1610#define KVM_APIC_REG_SIZE 0x400
1611struct kvm_lapic_state {
1612 char regs[KVM_APIC_REG_SIZE];
1613};
1614
1615Reads the Local APIC registers and copies them into the input argument. The
1616data format and layout are the same as documented in the architecture manual.
1617
37131313
RK
1618If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1619enabled, then the format of APIC_ID register depends on the APIC mode
1620(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1621the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1622which is stored in bits 31-24 of the APIC register, or equivalently in
1623byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1624be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1625
1626If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1627always uses xAPIC format.
1628
414fa985
JK
1629
16304.58 KVM_SET_LAPIC
e7677933
AK
1631
1632Capability: KVM_CAP_IRQCHIP
1633Architectures: x86
1634Type: vcpu ioctl
1635Parameters: struct kvm_lapic_state (in)
1636Returns: 0 on success, -1 on error
1637
1638#define KVM_APIC_REG_SIZE 0x400
1639struct kvm_lapic_state {
1640 char regs[KVM_APIC_REG_SIZE];
1641};
1642
df5cbb27 1643Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1644and layout are the same as documented in the architecture manual.
1645
37131313
RK
1646The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1647regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1648See the note in KVM_GET_LAPIC.
1649
414fa985
JK
1650
16514.59 KVM_IOEVENTFD
55399a02
SL
1652
1653Capability: KVM_CAP_IOEVENTFD
1654Architectures: all
1655Type: vm ioctl
1656Parameters: struct kvm_ioeventfd (in)
1657Returns: 0 on success, !0 on error
1658
1659This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1660within the guest. A guest write in the registered address will signal the
1661provided event instead of triggering an exit.
1662
1663struct kvm_ioeventfd {
1664 __u64 datamatch;
1665 __u64 addr; /* legal pio/mmio address */
e9ea5069 1666 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
55399a02
SL
1667 __s32 fd;
1668 __u32 flags;
1669 __u8 pad[36];
1670};
1671
2b83451b
CH
1672For the special case of virtio-ccw devices on s390, the ioevent is matched
1673to a subchannel/virtqueue tuple instead.
1674
55399a02
SL
1675The following flags are defined:
1676
1677#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1678#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1679#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1680#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1681 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1682
1683If datamatch flag is set, the event will be signaled only if the written value
1684to the registered address is equal to datamatch in struct kvm_ioeventfd.
1685
2b83451b
CH
1686For virtio-ccw devices, addr contains the subchannel id and datamatch the
1687virtqueue index.
1688
e9ea5069
JW
1689With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1690the kernel will ignore the length of guest write and may get a faster vmexit.
1691The speedup may only apply to specific architectures, but the ioeventfd will
1692work anyway.
414fa985
JK
1693
16944.60 KVM_DIRTY_TLB
dc83b8bc
SW
1695
1696Capability: KVM_CAP_SW_TLB
1697Architectures: ppc
1698Type: vcpu ioctl
1699Parameters: struct kvm_dirty_tlb (in)
1700Returns: 0 on success, -1 on error
1701
1702struct kvm_dirty_tlb {
1703 __u64 bitmap;
1704 __u32 num_dirty;
1705};
1706
1707This must be called whenever userspace has changed an entry in the shared
1708TLB, prior to calling KVM_RUN on the associated vcpu.
1709
1710The "bitmap" field is the userspace address of an array. This array
1711consists of a number of bits, equal to the total number of TLB entries as
1712determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1713nearest multiple of 64.
1714
1715Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1716array.
1717
1718The array is little-endian: the bit 0 is the least significant bit of the
1719first byte, bit 8 is the least significant bit of the second byte, etc.
1720This avoids any complications with differing word sizes.
1721
1722The "num_dirty" field is a performance hint for KVM to determine whether it
1723should skip processing the bitmap and just invalidate everything. It must
1724be set to the number of set bits in the bitmap.
1725
414fa985 1726
e80a4a94 17274.61 KVM_ASSIGN_SET_INTX_MASK (deprecated)
07700a94
JK
1728
1729Capability: KVM_CAP_PCI_2_3
1730Architectures: x86
1731Type: vm ioctl
1732Parameters: struct kvm_assigned_pci_dev (in)
1733Returns: 0 on success, -1 on error
1734
1735Allows userspace to mask PCI INTx interrupts from the assigned device. The
1736kernel will not deliver INTx interrupts to the guest between setting and
1737clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1738and emulation of PCI 2.3 INTx disable command register behavior.
1739
1740This may be used for both PCI 2.3 devices supporting INTx disable natively and
1741older devices lacking this support. Userspace is responsible for emulating the
1742read value of the INTx disable bit in the guest visible PCI command register.
1743When modifying the INTx disable state, userspace should precede updating the
1744physical device command register by calling this ioctl to inform the kernel of
1745the new intended INTx mask state.
1746
1747Note that the kernel uses the device INTx disable bit to internally manage the
1748device interrupt state for PCI 2.3 devices. Reads of this register may
1749therefore not match the expected value. Writes should always use the guest
1750intended INTx disable value rather than attempting to read-copy-update the
1751current physical device state. Races between user and kernel updates to the
1752INTx disable bit are handled lazily in the kernel. It's possible the device
1753may generate unintended interrupts, but they will not be injected into the
1754guest.
1755
1756See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1757by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1758evaluated.
1759
414fa985 1760
54738c09
DG
17614.62 KVM_CREATE_SPAPR_TCE
1762
1763Capability: KVM_CAP_SPAPR_TCE
1764Architectures: powerpc
1765Type: vm ioctl
1766Parameters: struct kvm_create_spapr_tce (in)
1767Returns: file descriptor for manipulating the created TCE table
1768
1769This creates a virtual TCE (translation control entry) table, which
1770is an IOMMU for PAPR-style virtual I/O. It is used to translate
1771logical addresses used in virtual I/O into guest physical addresses,
1772and provides a scatter/gather capability for PAPR virtual I/O.
1773
1774/* for KVM_CAP_SPAPR_TCE */
1775struct kvm_create_spapr_tce {
1776 __u64 liobn;
1777 __u32 window_size;
1778};
1779
1780The liobn field gives the logical IO bus number for which to create a
1781TCE table. The window_size field specifies the size of the DMA window
1782which this TCE table will translate - the table will contain one 64
1783bit TCE entry for every 4kiB of the DMA window.
1784
1785When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1786table has been created using this ioctl(), the kernel will handle it
1787in real mode, updating the TCE table. H_PUT_TCE calls for other
1788liobns will cause a vm exit and must be handled by userspace.
1789
1790The return value is a file descriptor which can be passed to mmap(2)
1791to map the created TCE table into userspace. This lets userspace read
1792the entries written by kernel-handled H_PUT_TCE calls, and also lets
1793userspace update the TCE table directly which is useful in some
1794circumstances.
1795
414fa985 1796
aa04b4cc
PM
17974.63 KVM_ALLOCATE_RMA
1798
1799Capability: KVM_CAP_PPC_RMA
1800Architectures: powerpc
1801Type: vm ioctl
1802Parameters: struct kvm_allocate_rma (out)
1803Returns: file descriptor for mapping the allocated RMA
1804
1805This allocates a Real Mode Area (RMA) from the pool allocated at boot
1806time by the kernel. An RMA is a physically-contiguous, aligned region
1807of memory used on older POWER processors to provide the memory which
1808will be accessed by real-mode (MMU off) accesses in a KVM guest.
1809POWER processors support a set of sizes for the RMA that usually
1810includes 64MB, 128MB, 256MB and some larger powers of two.
1811
1812/* for KVM_ALLOCATE_RMA */
1813struct kvm_allocate_rma {
1814 __u64 rma_size;
1815};
1816
1817The return value is a file descriptor which can be passed to mmap(2)
1818to map the allocated RMA into userspace. The mapped area can then be
1819passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1820RMA for a virtual machine. The size of the RMA in bytes (which is
1821fixed at host kernel boot time) is returned in the rma_size field of
1822the argument structure.
1823
1824The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1825is supported; 2 if the processor requires all virtual machines to have
1826an RMA, or 1 if the processor can use an RMA but doesn't require it,
1827because it supports the Virtual RMA (VRMA) facility.
1828
414fa985 1829
3f745f1e
AK
18304.64 KVM_NMI
1831
1832Capability: KVM_CAP_USER_NMI
1833Architectures: x86
1834Type: vcpu ioctl
1835Parameters: none
1836Returns: 0 on success, -1 on error
1837
1838Queues an NMI on the thread's vcpu. Note this is well defined only
1839when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1840between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1841has been called, this interface is completely emulated within the kernel.
1842
1843To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1844following algorithm:
1845
5d4f6f3d 1846 - pause the vcpu
3f745f1e
AK
1847 - read the local APIC's state (KVM_GET_LAPIC)
1848 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1849 - if so, issue KVM_NMI
1850 - resume the vcpu
1851
1852Some guests configure the LINT1 NMI input to cause a panic, aiding in
1853debugging.
1854
414fa985 1855
e24ed81f 18564.65 KVM_S390_UCAS_MAP
27e0393f
CO
1857
1858Capability: KVM_CAP_S390_UCONTROL
1859Architectures: s390
1860Type: vcpu ioctl
1861Parameters: struct kvm_s390_ucas_mapping (in)
1862Returns: 0 in case of success
1863
1864The parameter is defined like this:
1865 struct kvm_s390_ucas_mapping {
1866 __u64 user_addr;
1867 __u64 vcpu_addr;
1868 __u64 length;
1869 };
1870
1871This ioctl maps the memory at "user_addr" with the length "length" to
1872the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1873be aligned by 1 megabyte.
27e0393f 1874
414fa985 1875
e24ed81f 18764.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1877
1878Capability: KVM_CAP_S390_UCONTROL
1879Architectures: s390
1880Type: vcpu ioctl
1881Parameters: struct kvm_s390_ucas_mapping (in)
1882Returns: 0 in case of success
1883
1884The parameter is defined like this:
1885 struct kvm_s390_ucas_mapping {
1886 __u64 user_addr;
1887 __u64 vcpu_addr;
1888 __u64 length;
1889 };
1890
1891This ioctl unmaps the memory in the vcpu's address space starting at
1892"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1893All parameters need to be aligned by 1 megabyte.
27e0393f 1894
414fa985 1895
e24ed81f 18964.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1897
1898Capability: KVM_CAP_S390_UCONTROL
1899Architectures: s390
1900Type: vcpu ioctl
1901Parameters: vcpu absolute address (in)
1902Returns: 0 in case of success
1903
1904This call creates a page table entry on the virtual cpu's address space
1905(for user controlled virtual machines) or the virtual machine's address
1906space (for regular virtual machines). This only works for minor faults,
1907thus it's recommended to access subject memory page via the user page
1908table upfront. This is useful to handle validity intercepts for user
1909controlled virtual machines to fault in the virtual cpu's lowcore pages
1910prior to calling the KVM_RUN ioctl.
1911
414fa985 1912
e24ed81f
AG
19134.68 KVM_SET_ONE_REG
1914
1915Capability: KVM_CAP_ONE_REG
1916Architectures: all
1917Type: vcpu ioctl
1918Parameters: struct kvm_one_reg (in)
1919Returns: 0 on success, negative value on failure
1920
1921struct kvm_one_reg {
1922 __u64 id;
1923 __u64 addr;
1924};
1925
1926Using this ioctl, a single vcpu register can be set to a specific value
1927defined by user space with the passed in struct kvm_one_reg, where id
1928refers to the register identifier as described below and addr is a pointer
1929to a variable with the respective size. There can be architecture agnostic
1930and architecture specific registers. Each have their own range of operation
1931and their own constants and width. To keep track of the implemented
1932registers, find a list below:
1933
bf5590f3
JH
1934 Arch | Register | Width (bits)
1935 | |
1936 PPC | KVM_REG_PPC_HIOR | 64
1937 PPC | KVM_REG_PPC_IAC1 | 64
1938 PPC | KVM_REG_PPC_IAC2 | 64
1939 PPC | KVM_REG_PPC_IAC3 | 64
1940 PPC | KVM_REG_PPC_IAC4 | 64
1941 PPC | KVM_REG_PPC_DAC1 | 64
1942 PPC | KVM_REG_PPC_DAC2 | 64
1943 PPC | KVM_REG_PPC_DABR | 64
1944 PPC | KVM_REG_PPC_DSCR | 64
1945 PPC | KVM_REG_PPC_PURR | 64
1946 PPC | KVM_REG_PPC_SPURR | 64
1947 PPC | KVM_REG_PPC_DAR | 64
1948 PPC | KVM_REG_PPC_DSISR | 32
1949 PPC | KVM_REG_PPC_AMR | 64
1950 PPC | KVM_REG_PPC_UAMOR | 64
1951 PPC | KVM_REG_PPC_MMCR0 | 64
1952 PPC | KVM_REG_PPC_MMCR1 | 64
1953 PPC | KVM_REG_PPC_MMCRA | 64
1954 PPC | KVM_REG_PPC_MMCR2 | 64
1955 PPC | KVM_REG_PPC_MMCRS | 64
1956 PPC | KVM_REG_PPC_SIAR | 64
1957 PPC | KVM_REG_PPC_SDAR | 64
1958 PPC | KVM_REG_PPC_SIER | 64
1959 PPC | KVM_REG_PPC_PMC1 | 32
1960 PPC | KVM_REG_PPC_PMC2 | 32
1961 PPC | KVM_REG_PPC_PMC3 | 32
1962 PPC | KVM_REG_PPC_PMC4 | 32
1963 PPC | KVM_REG_PPC_PMC5 | 32
1964 PPC | KVM_REG_PPC_PMC6 | 32
1965 PPC | KVM_REG_PPC_PMC7 | 32
1966 PPC | KVM_REG_PPC_PMC8 | 32
1967 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1968 ...
bf5590f3
JH
1969 PPC | KVM_REG_PPC_FPR31 | 64
1970 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1971 ...
bf5590f3
JH
1972 PPC | KVM_REG_PPC_VR31 | 128
1973 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1974 ...
bf5590f3
JH
1975 PPC | KVM_REG_PPC_VSR31 | 128
1976 PPC | KVM_REG_PPC_FPSCR | 64
1977 PPC | KVM_REG_PPC_VSCR | 32
1978 PPC | KVM_REG_PPC_VPA_ADDR | 64
1979 PPC | KVM_REG_PPC_VPA_SLB | 128
1980 PPC | KVM_REG_PPC_VPA_DTL | 128
1981 PPC | KVM_REG_PPC_EPCR | 32
1982 PPC | KVM_REG_PPC_EPR | 32
1983 PPC | KVM_REG_PPC_TCR | 32
1984 PPC | KVM_REG_PPC_TSR | 32
1985 PPC | KVM_REG_PPC_OR_TSR | 32
1986 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1987 PPC | KVM_REG_PPC_MAS0 | 32
1988 PPC | KVM_REG_PPC_MAS1 | 32
1989 PPC | KVM_REG_PPC_MAS2 | 64
1990 PPC | KVM_REG_PPC_MAS7_3 | 64
1991 PPC | KVM_REG_PPC_MAS4 | 32
1992 PPC | KVM_REG_PPC_MAS6 | 32
1993 PPC | KVM_REG_PPC_MMUCFG | 32
1994 PPC | KVM_REG_PPC_TLB0CFG | 32
1995 PPC | KVM_REG_PPC_TLB1CFG | 32
1996 PPC | KVM_REG_PPC_TLB2CFG | 32
1997 PPC | KVM_REG_PPC_TLB3CFG | 32
1998 PPC | KVM_REG_PPC_TLB0PS | 32
1999 PPC | KVM_REG_PPC_TLB1PS | 32
2000 PPC | KVM_REG_PPC_TLB2PS | 32
2001 PPC | KVM_REG_PPC_TLB3PS | 32
2002 PPC | KVM_REG_PPC_EPTCFG | 32
2003 PPC | KVM_REG_PPC_ICP_STATE | 64
2004 PPC | KVM_REG_PPC_TB_OFFSET | 64
2005 PPC | KVM_REG_PPC_SPMC1 | 32
2006 PPC | KVM_REG_PPC_SPMC2 | 32
2007 PPC | KVM_REG_PPC_IAMR | 64
2008 PPC | KVM_REG_PPC_TFHAR | 64
2009 PPC | KVM_REG_PPC_TFIAR | 64
2010 PPC | KVM_REG_PPC_TEXASR | 64
2011 PPC | KVM_REG_PPC_FSCR | 64
2012 PPC | KVM_REG_PPC_PSPB | 32
2013 PPC | KVM_REG_PPC_EBBHR | 64
2014 PPC | KVM_REG_PPC_EBBRR | 64
2015 PPC | KVM_REG_PPC_BESCR | 64
2016 PPC | KVM_REG_PPC_TAR | 64
2017 PPC | KVM_REG_PPC_DPDES | 64
2018 PPC | KVM_REG_PPC_DAWR | 64
2019 PPC | KVM_REG_PPC_DAWRX | 64
2020 PPC | KVM_REG_PPC_CIABR | 64
2021 PPC | KVM_REG_PPC_IC | 64
2022 PPC | KVM_REG_PPC_VTB | 64
2023 PPC | KVM_REG_PPC_CSIGR | 64
2024 PPC | KVM_REG_PPC_TACR | 64
2025 PPC | KVM_REG_PPC_TCSCR | 64
2026 PPC | KVM_REG_PPC_PID | 64
2027 PPC | KVM_REG_PPC_ACOP | 64
2028 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
2029 PPC | KVM_REG_PPC_LPCR | 32
2030 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
2031 PPC | KVM_REG_PPC_PPR | 64
2032 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
2033 PPC | KVM_REG_PPC_DABRX | 32
2034 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
2035 PPC | KVM_REG_PPC_SPRG9 | 64
2036 PPC | KVM_REG_PPC_DBSR | 32
e9cf1e08
PM
2037 PPC | KVM_REG_PPC_TIDR | 64
2038 PPC | KVM_REG_PPC_PSSCR | 64
bf5590f3 2039 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 2040 ...
bf5590f3
JH
2041 PPC | KVM_REG_PPC_TM_GPR31 | 64
2042 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 2043 ...
bf5590f3
JH
2044 PPC | KVM_REG_PPC_TM_VSR63 | 128
2045 PPC | KVM_REG_PPC_TM_CR | 64
2046 PPC | KVM_REG_PPC_TM_LR | 64
2047 PPC | KVM_REG_PPC_TM_CTR | 64
2048 PPC | KVM_REG_PPC_TM_FPSCR | 64
2049 PPC | KVM_REG_PPC_TM_AMR | 64
2050 PPC | KVM_REG_PPC_TM_PPR | 64
2051 PPC | KVM_REG_PPC_TM_VRSAVE | 64
2052 PPC | KVM_REG_PPC_TM_VSCR | 32
2053 PPC | KVM_REG_PPC_TM_DSCR | 64
2054 PPC | KVM_REG_PPC_TM_TAR | 64
0d808df0 2055 PPC | KVM_REG_PPC_TM_XER | 64
c2d2c21b
JH
2056 | |
2057 MIPS | KVM_REG_MIPS_R0 | 64
2058 ...
2059 MIPS | KVM_REG_MIPS_R31 | 64
2060 MIPS | KVM_REG_MIPS_HI | 64
2061 MIPS | KVM_REG_MIPS_LO | 64
2062 MIPS | KVM_REG_MIPS_PC | 64
2063 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
2064 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
2065 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
2066 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
2067 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
2068 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
2069 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
2070 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
2071 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
2072 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
2073 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
2074 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
2075 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1068eaaf 2076 MIPS | KVM_REG_MIPS_CP0_PRID | 32
c2d2c21b
JH
2077 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
2078 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
2079 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
2080 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
c771607a
JH
2081 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
2082 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
c2d2c21b
JH
2083 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
2084 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
05108709
JH
2085 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
2086 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
2087 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
2088 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
2089 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
2090 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
c2d2c21b
JH
2091 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
2092 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
2093 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
379245cd
JH
2094 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
2095 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
ab86bd60 2096 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
379245cd
JH
2097 MIPS | KVM_REG_MIPS_FCR_IR | 32
2098 MIPS | KVM_REG_MIPS_FCR_CSR | 32
ab86bd60
JH
2099 MIPS | KVM_REG_MIPS_MSA_IR | 32
2100 MIPS | KVM_REG_MIPS_MSA_CSR | 32
414fa985 2101
749cf76c
CD
2102ARM registers are mapped using the lower 32 bits. The upper 16 of that
2103is the register group type, or coprocessor number:
2104
2105ARM core registers have the following id bit patterns:
aa404ddf 2106 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 2107
1138245c 2108ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 2109 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
2110
2111ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 2112 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 2113
c27581ed 2114ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 2115 0x4020 0000 0011 00 <csselr:8>
749cf76c 2116
4fe21e4c 2117ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 2118 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
2119
2120ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 2121 0x4030 0000 0012 0 <regno:12>
4fe21e4c 2122
379e04c7
MZ
2123
2124arm64 registers are mapped using the lower 32 bits. The upper 16 of
2125that is the register group type, or coprocessor number:
2126
2127arm64 core/FP-SIMD registers have the following id bit patterns. Note
2128that the size of the access is variable, as the kvm_regs structure
2129contains elements ranging from 32 to 128 bits. The index is a 32bit
2130value in the kvm_regs structure seen as a 32bit array.
2131 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2132
2133arm64 CCSIDR registers are demultiplexed by CSSELR value:
2134 0x6020 0000 0011 00 <csselr:8>
2135
2136arm64 system registers have the following id bit patterns:
2137 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2138
c2d2c21b
JH
2139
2140MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2141the register group type:
2142
2143MIPS core registers (see above) have the following id bit patterns:
2144 0x7030 0000 0000 <reg:16>
2145
2146MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2147patterns depending on whether they're 32-bit or 64-bit registers:
2148 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2149 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2150
2151MIPS KVM control registers (see above) have the following id bit patterns:
2152 0x7030 0000 0002 <reg:16>
2153
379245cd
JH
2154MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
2155id bit patterns depending on the size of the register being accessed. They are
2156always accessed according to the current guest FPU mode (Status.FR and
2157Config5.FRE), i.e. as the guest would see them, and they become unpredictable
ab86bd60
JH
2158if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
2159registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
2160overlap the FPU registers:
379245cd
JH
2161 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
2162 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
ab86bd60 2163 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
379245cd
JH
2164
2165MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
2166following id bit patterns:
2167 0x7020 0000 0003 01 <0:3> <reg:5>
2168
ab86bd60
JH
2169MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2170following id bit patterns:
2171 0x7020 0000 0003 02 <0:3> <reg:5>
2172
c2d2c21b 2173
e24ed81f
AG
21744.69 KVM_GET_ONE_REG
2175
2176Capability: KVM_CAP_ONE_REG
2177Architectures: all
2178Type: vcpu ioctl
2179Parameters: struct kvm_one_reg (in and out)
2180Returns: 0 on success, negative value on failure
2181
2182This ioctl allows to receive the value of a single register implemented
2183in a vcpu. The register to read is indicated by the "id" field of the
2184kvm_one_reg struct passed in. On success, the register value can be found
2185at the memory location pointed to by "addr".
2186
2187The list of registers accessible using this interface is identical to the
2e232702 2188list in 4.68.
e24ed81f 2189
414fa985 2190
1c0b28c2
EM
21914.70 KVM_KVMCLOCK_CTRL
2192
2193Capability: KVM_CAP_KVMCLOCK_CTRL
2194Architectures: Any that implement pvclocks (currently x86 only)
2195Type: vcpu ioctl
2196Parameters: None
2197Returns: 0 on success, -1 on error
2198
2199This signals to the host kernel that the specified guest is being paused by
2200userspace. The host will set a flag in the pvclock structure that is checked
2201from the soft lockup watchdog. The flag is part of the pvclock structure that
2202is shared between guest and host, specifically the second bit of the flags
2203field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2204the host and read/cleared exclusively by the guest. The guest operation of
2205checking and clearing the flag must an atomic operation so
2206load-link/store-conditional, or equivalent must be used. There are two cases
2207where the guest will clear the flag: when the soft lockup watchdog timer resets
2208itself or when a soft lockup is detected. This ioctl can be called any time
2209after pausing the vcpu, but before it is resumed.
2210
414fa985 2211
07975ad3
JK
22124.71 KVM_SIGNAL_MSI
2213
2214Capability: KVM_CAP_SIGNAL_MSI
2988509d 2215Architectures: x86 arm arm64
07975ad3
JK
2216Type: vm ioctl
2217Parameters: struct kvm_msi (in)
2218Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2219
2220Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2221MSI messages.
2222
2223struct kvm_msi {
2224 __u32 address_lo;
2225 __u32 address_hi;
2226 __u32 data;
2227 __u32 flags;
2b8ddd93
AP
2228 __u32 devid;
2229 __u8 pad[12];
07975ad3
JK
2230};
2231
6f49b2f3
PB
2232flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
2233 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2234 the device ID. If this capability is not available, userspace
2235 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
2b8ddd93 2236
6f49b2f3
PB
2237If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2238for the device that wrote the MSI message. For PCI, this is usually a
2239BFD identifier in the lower 16 bits.
07975ad3 2240
055b6ae9
PB
2241On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2242feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2243address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2244address_hi must be zero.
37131313 2245
414fa985 2246
0589ff6c
JK
22474.71 KVM_CREATE_PIT2
2248
2249Capability: KVM_CAP_PIT2
2250Architectures: x86
2251Type: vm ioctl
2252Parameters: struct kvm_pit_config (in)
2253Returns: 0 on success, -1 on error
2254
2255Creates an in-kernel device model for the i8254 PIT. This call is only valid
2256after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2257parameters have to be passed:
2258
2259struct kvm_pit_config {
2260 __u32 flags;
2261 __u32 pad[15];
2262};
2263
2264Valid flags are:
2265
2266#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2267
b6ddf05f
JK
2268PIT timer interrupts may use a per-VM kernel thread for injection. If it
2269exists, this thread will have a name of the following pattern:
2270
2271kvm-pit/<owner-process-pid>
2272
2273When running a guest with elevated priorities, the scheduling parameters of
2274this thread may have to be adjusted accordingly.
2275
0589ff6c
JK
2276This IOCTL replaces the obsolete KVM_CREATE_PIT.
2277
2278
22794.72 KVM_GET_PIT2
2280
2281Capability: KVM_CAP_PIT_STATE2
2282Architectures: x86
2283Type: vm ioctl
2284Parameters: struct kvm_pit_state2 (out)
2285Returns: 0 on success, -1 on error
2286
2287Retrieves the state of the in-kernel PIT model. Only valid after
2288KVM_CREATE_PIT2. The state is returned in the following structure:
2289
2290struct kvm_pit_state2 {
2291 struct kvm_pit_channel_state channels[3];
2292 __u32 flags;
2293 __u32 reserved[9];
2294};
2295
2296Valid flags are:
2297
2298/* disable PIT in HPET legacy mode */
2299#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2300
2301This IOCTL replaces the obsolete KVM_GET_PIT.
2302
2303
23044.73 KVM_SET_PIT2
2305
2306Capability: KVM_CAP_PIT_STATE2
2307Architectures: x86
2308Type: vm ioctl
2309Parameters: struct kvm_pit_state2 (in)
2310Returns: 0 on success, -1 on error
2311
2312Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2313See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2314
2315This IOCTL replaces the obsolete KVM_SET_PIT.
2316
2317
5b74716e
BH
23184.74 KVM_PPC_GET_SMMU_INFO
2319
2320Capability: KVM_CAP_PPC_GET_SMMU_INFO
2321Architectures: powerpc
2322Type: vm ioctl
2323Parameters: None
2324Returns: 0 on success, -1 on error
2325
2326This populates and returns a structure describing the features of
2327the "Server" class MMU emulation supported by KVM.
cc22c354 2328This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2329device-tree properties for the guest operating system.
2330
c98be0c9 2331The structure contains some global information, followed by an
5b74716e
BH
2332array of supported segment page sizes:
2333
2334 struct kvm_ppc_smmu_info {
2335 __u64 flags;
2336 __u32 slb_size;
2337 __u32 pad;
2338 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2339 };
2340
2341The supported flags are:
2342
2343 - KVM_PPC_PAGE_SIZES_REAL:
2344 When that flag is set, guest page sizes must "fit" the backing
2345 store page sizes. When not set, any page size in the list can
2346 be used regardless of how they are backed by userspace.
2347
2348 - KVM_PPC_1T_SEGMENTS
2349 The emulated MMU supports 1T segments in addition to the
2350 standard 256M ones.
2351
2352The "slb_size" field indicates how many SLB entries are supported
2353
2354The "sps" array contains 8 entries indicating the supported base
2355page sizes for a segment in increasing order. Each entry is defined
2356as follow:
2357
2358 struct kvm_ppc_one_seg_page_size {
2359 __u32 page_shift; /* Base page shift of segment (or 0) */
2360 __u32 slb_enc; /* SLB encoding for BookS */
2361 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2362 };
2363
2364An entry with a "page_shift" of 0 is unused. Because the array is
2365organized in increasing order, a lookup can stop when encoutering
2366such an entry.
2367
2368The "slb_enc" field provides the encoding to use in the SLB for the
2369page size. The bits are in positions such as the value can directly
2370be OR'ed into the "vsid" argument of the slbmte instruction.
2371
2372The "enc" array is a list which for each of those segment base page
2373size provides the list of supported actual page sizes (which can be
2374only larger or equal to the base page size), along with the
f884ab15 2375corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
23768 entries sorted by increasing sizes and an entry with a "0" shift
2377is an empty entry and a terminator:
2378
2379 struct kvm_ppc_one_page_size {
2380 __u32 page_shift; /* Page shift (or 0) */
2381 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2382 };
2383
2384The "pte_enc" field provides a value that can OR'ed into the hash
2385PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2386into the hash PTE second double word).
2387
f36992e3
AW
23884.75 KVM_IRQFD
2389
2390Capability: KVM_CAP_IRQFD
174178fe 2391Architectures: x86 s390 arm arm64
f36992e3
AW
2392Type: vm ioctl
2393Parameters: struct kvm_irqfd (in)
2394Returns: 0 on success, -1 on error
2395
2396Allows setting an eventfd to directly trigger a guest interrupt.
2397kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2398kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2399an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2400the guest using the specified gsi pin. The irqfd is removed using
2401the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2402and kvm_irqfd.gsi.
2403
7a84428a
AW
2404With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2405mechanism allowing emulation of level-triggered, irqfd-based
2406interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2407additional eventfd in the kvm_irqfd.resamplefd field. When operating
2408in resample mode, posting of an interrupt through kvm_irq.fd asserts
2409the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2410as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2411kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2412the interrupt if the device making use of it still requires service.
2413Note that closing the resamplefd is not sufficient to disable the
2414irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2415and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2416
180ae7b1
EA
2417On arm/arm64, gsi routing being supported, the following can happen:
2418- in case no routing entry is associated to this gsi, injection fails
2419- in case the gsi is associated to an irqchip routing entry,
2420 irqchip.pin + 32 corresponds to the injected SPI ID.
995a0ee9
EA
2421- in case the gsi is associated to an MSI routing entry, the MSI
2422 message and device ID are translated into an LPI (support restricted
2423 to GICv3 ITS in-kernel emulation).
174178fe 2424
5fecc9d8 24254.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2426
2427Capability: KVM_CAP_PPC_ALLOC_HTAB
2428Architectures: powerpc
2429Type: vm ioctl
2430Parameters: Pointer to u32 containing hash table order (in/out)
2431Returns: 0 on success, -1 on error
2432
2433This requests the host kernel to allocate an MMU hash table for a
2434guest using the PAPR paravirtualization interface. This only does
2435anything if the kernel is configured to use the Book 3S HV style of
2436virtualization. Otherwise the capability doesn't exist and the ioctl
2437returns an ENOTTY error. The rest of this description assumes Book 3S
2438HV.
2439
2440There must be no vcpus running when this ioctl is called; if there
2441are, it will do nothing and return an EBUSY error.
2442
2443The parameter is a pointer to a 32-bit unsigned integer variable
2444containing the order (log base 2) of the desired size of the hash
2445table, which must be between 18 and 46. On successful return from the
2446ioctl, it will have been updated with the order of the hash table that
2447was allocated.
2448
2449If no hash table has been allocated when any vcpu is asked to run
2450(with the KVM_RUN ioctl), the host kernel will allocate a
2451default-sized hash table (16 MB).
2452
2453If this ioctl is called when a hash table has already been allocated,
2454the kernel will clear out the existing hash table (zero all HPTEs) and
2455return the hash table order in the parameter. (If the guest is using
2456the virtualized real-mode area (VRMA) facility, the kernel will
2457re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2458
416ad65f
CH
24594.77 KVM_S390_INTERRUPT
2460
2461Capability: basic
2462Architectures: s390
2463Type: vm ioctl, vcpu ioctl
2464Parameters: struct kvm_s390_interrupt (in)
2465Returns: 0 on success, -1 on error
2466
2467Allows to inject an interrupt to the guest. Interrupts can be floating
2468(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2469
2470Interrupt parameters are passed via kvm_s390_interrupt:
2471
2472struct kvm_s390_interrupt {
2473 __u32 type;
2474 __u32 parm;
2475 __u64 parm64;
2476};
2477
2478type can be one of the following:
2479
2822545f 2480KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
416ad65f
CH
2481KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2482KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2483KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2484KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2485KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2486KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2487 parameters in parm and parm64
2488KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2489KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2490KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2491KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2492 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2493 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2494 interruption subclass)
48a3e950
CH
2495KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2496 machine check interrupt code in parm64 (note that
2497 machine checks needing further payload are not
2498 supported by this ioctl)
416ad65f
CH
2499
2500Note that the vcpu ioctl is asynchronous to vcpu execution.
2501
a2932923
PM
25024.78 KVM_PPC_GET_HTAB_FD
2503
2504Capability: KVM_CAP_PPC_HTAB_FD
2505Architectures: powerpc
2506Type: vm ioctl
2507Parameters: Pointer to struct kvm_get_htab_fd (in)
2508Returns: file descriptor number (>= 0) on success, -1 on error
2509
2510This returns a file descriptor that can be used either to read out the
2511entries in the guest's hashed page table (HPT), or to write entries to
2512initialize the HPT. The returned fd can only be written to if the
2513KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2514can only be read if that bit is clear. The argument struct looks like
2515this:
2516
2517/* For KVM_PPC_GET_HTAB_FD */
2518struct kvm_get_htab_fd {
2519 __u64 flags;
2520 __u64 start_index;
2521 __u64 reserved[2];
2522};
2523
2524/* Values for kvm_get_htab_fd.flags */
2525#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2526#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2527
2528The `start_index' field gives the index in the HPT of the entry at
2529which to start reading. It is ignored when writing.
2530
2531Reads on the fd will initially supply information about all
2532"interesting" HPT entries. Interesting entries are those with the
2533bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2534all entries. When the end of the HPT is reached, the read() will
2535return. If read() is called again on the fd, it will start again from
2536the beginning of the HPT, but will only return HPT entries that have
2537changed since they were last read.
2538
2539Data read or written is structured as a header (8 bytes) followed by a
2540series of valid HPT entries (16 bytes) each. The header indicates how
2541many valid HPT entries there are and how many invalid entries follow
2542the valid entries. The invalid entries are not represented explicitly
2543in the stream. The header format is:
2544
2545struct kvm_get_htab_header {
2546 __u32 index;
2547 __u16 n_valid;
2548 __u16 n_invalid;
2549};
2550
2551Writes to the fd create HPT entries starting at the index given in the
2552header; first `n_valid' valid entries with contents from the data
2553written, then `n_invalid' invalid entries, invalidating any previously
2554valid entries found.
2555
852b6d57
SW
25564.79 KVM_CREATE_DEVICE
2557
2558Capability: KVM_CAP_DEVICE_CTRL
2559Type: vm ioctl
2560Parameters: struct kvm_create_device (in/out)
2561Returns: 0 on success, -1 on error
2562Errors:
2563 ENODEV: The device type is unknown or unsupported
2564 EEXIST: Device already created, and this type of device may not
2565 be instantiated multiple times
2566
2567 Other error conditions may be defined by individual device types or
2568 have their standard meanings.
2569
2570Creates an emulated device in the kernel. The file descriptor returned
2571in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2572
2573If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2574device type is supported (not necessarily whether it can be created
2575in the current vm).
2576
2577Individual devices should not define flags. Attributes should be used
2578for specifying any behavior that is not implied by the device type
2579number.
2580
2581struct kvm_create_device {
2582 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2583 __u32 fd; /* out: device handle */
2584 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2585};
2586
25874.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2588
f577f6c2
SZ
2589Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2590 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2591Type: device ioctl, vm ioctl, vcpu ioctl
852b6d57
SW
2592Parameters: struct kvm_device_attr
2593Returns: 0 on success, -1 on error
2594Errors:
2595 ENXIO: The group or attribute is unknown/unsupported for this device
f9cbd9b0 2596 or hardware support is missing.
852b6d57
SW
2597 EPERM: The attribute cannot (currently) be accessed this way
2598 (e.g. read-only attribute, or attribute that only makes
2599 sense when the device is in a different state)
2600
2601 Other error conditions may be defined by individual device types.
2602
2603Gets/sets a specified piece of device configuration and/or state. The
2604semantics are device-specific. See individual device documentation in
2605the "devices" directory. As with ONE_REG, the size of the data
2606transferred is defined by the particular attribute.
2607
2608struct kvm_device_attr {
2609 __u32 flags; /* no flags currently defined */
2610 __u32 group; /* device-defined */
2611 __u64 attr; /* group-defined */
2612 __u64 addr; /* userspace address of attr data */
2613};
2614
26154.81 KVM_HAS_DEVICE_ATTR
2616
f577f6c2
SZ
2617Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2618 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2619Type: device ioctl, vm ioctl, vcpu ioctl
852b6d57
SW
2620Parameters: struct kvm_device_attr
2621Returns: 0 on success, -1 on error
2622Errors:
2623 ENXIO: The group or attribute is unknown/unsupported for this device
f9cbd9b0 2624 or hardware support is missing.
852b6d57
SW
2625
2626Tests whether a device supports a particular attribute. A successful
2627return indicates the attribute is implemented. It does not necessarily
2628indicate that the attribute can be read or written in the device's
2629current state. "addr" is ignored.
f36992e3 2630
d8968f1f 26314.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2632
2633Capability: basic
379e04c7 2634Architectures: arm, arm64
749cf76c 2635Type: vcpu ioctl
beb11fc7 2636Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2637Returns: 0 on success; -1 on error
2638Errors:
2639  EINVAL:    the target is unknown, or the combination of features is invalid.
2640  ENOENT:    a features bit specified is unknown.
2641
2642This tells KVM what type of CPU to present to the guest, and what
2643optional features it should have.  This will cause a reset of the cpu
2644registers to their initial values.  If this is not called, KVM_RUN will
2645return ENOEXEC for that vcpu.
2646
2647Note that because some registers reflect machine topology, all vcpus
2648should be created before this ioctl is invoked.
2649
f7fa034d
CD
2650Userspace can call this function multiple times for a given vcpu, including
2651after the vcpu has been run. This will reset the vcpu to its initial
2652state. All calls to this function after the initial call must use the same
2653target and same set of feature flags, otherwise EINVAL will be returned.
2654
aa024c2f
MZ
2655Possible features:
2656 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
3ad8b3de
CD
2657 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2658 and execute guest code when KVM_RUN is called.
379e04c7
MZ
2659 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2660 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2661 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2662 Depends on KVM_CAP_ARM_PSCI_0_2.
808e7381
SZ
2663 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2664 Depends on KVM_CAP_ARM_PMU_V3.
aa024c2f 2665
749cf76c 2666
740edfc0
AP
26674.83 KVM_ARM_PREFERRED_TARGET
2668
2669Capability: basic
2670Architectures: arm, arm64
2671Type: vm ioctl
2672Parameters: struct struct kvm_vcpu_init (out)
2673Returns: 0 on success; -1 on error
2674Errors:
a7265fb1 2675 ENODEV: no preferred target available for the host
740edfc0
AP
2676
2677This queries KVM for preferred CPU target type which can be emulated
2678by KVM on underlying host.
2679
2680The ioctl returns struct kvm_vcpu_init instance containing information
2681about preferred CPU target type and recommended features for it. The
2682kvm_vcpu_init->features bitmap returned will have feature bits set if
2683the preferred target recommends setting these features, but this is
2684not mandatory.
2685
2686The information returned by this ioctl can be used to prepare an instance
2687of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2688in VCPU matching underlying host.
2689
2690
26914.84 KVM_GET_REG_LIST
749cf76c
CD
2692
2693Capability: basic
c2d2c21b 2694Architectures: arm, arm64, mips
749cf76c
CD
2695Type: vcpu ioctl
2696Parameters: struct kvm_reg_list (in/out)
2697Returns: 0 on success; -1 on error
2698Errors:
2699  E2BIG:     the reg index list is too big to fit in the array specified by
2700             the user (the number required will be written into n).
2701
2702struct kvm_reg_list {
2703 __u64 n; /* number of registers in reg[] */
2704 __u64 reg[0];
2705};
2706
2707This ioctl returns the guest registers that are supported for the
2708KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2709
ce01e4e8
CD
2710
27114.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2712
2713Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2714Architectures: arm, arm64
3401d546
CD
2715Type: vm ioctl
2716Parameters: struct kvm_arm_device_address (in)
2717Returns: 0 on success, -1 on error
2718Errors:
2719 ENODEV: The device id is unknown
2720 ENXIO: Device not supported on current system
2721 EEXIST: Address already set
2722 E2BIG: Address outside guest physical address space
330690cd 2723 EBUSY: Address overlaps with other device range
3401d546
CD
2724
2725struct kvm_arm_device_addr {
2726 __u64 id;
2727 __u64 addr;
2728};
2729
2730Specify a device address in the guest's physical address space where guests
2731can access emulated or directly exposed devices, which the host kernel needs
2732to know about. The id field is an architecture specific identifier for a
2733specific device.
2734
379e04c7
MZ
2735ARM/arm64 divides the id field into two parts, a device id and an
2736address type id specific to the individual device.
3401d546
CD
2737
2738  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2739 field: | 0x00000000 | device id | addr type id |
2740
379e04c7
MZ
2741ARM/arm64 currently only require this when using the in-kernel GIC
2742support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2743as the device id. When setting the base address for the guest's
2744mapping of the VGIC virtual CPU and distributor interface, the ioctl
2745must be called after calling KVM_CREATE_IRQCHIP, but before calling
2746KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2747base addresses will return -EEXIST.
3401d546 2748
ce01e4e8
CD
2749Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2750should be used instead.
2751
2752
740edfc0 27534.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2754
2755Capability: KVM_CAP_PPC_RTAS
2756Architectures: ppc
2757Type: vm ioctl
2758Parameters: struct kvm_rtas_token_args
2759Returns: 0 on success, -1 on error
2760
2761Defines a token value for a RTAS (Run Time Abstraction Services)
2762service in order to allow it to be handled in the kernel. The
2763argument struct gives the name of the service, which must be the name
2764of a service that has a kernel-side implementation. If the token
2765value is non-zero, it will be associated with that service, and
2766subsequent RTAS calls by the guest specifying that token will be
2767handled by the kernel. If the token value is 0, then any token
2768associated with the service will be forgotten, and subsequent RTAS
2769calls by the guest for that service will be passed to userspace to be
2770handled.
2771
4bd9d344
AB
27724.87 KVM_SET_GUEST_DEBUG
2773
2774Capability: KVM_CAP_SET_GUEST_DEBUG
0e6f07f2 2775Architectures: x86, s390, ppc, arm64
4bd9d344
AB
2776Type: vcpu ioctl
2777Parameters: struct kvm_guest_debug (in)
2778Returns: 0 on success; -1 on error
2779
2780struct kvm_guest_debug {
2781 __u32 control;
2782 __u32 pad;
2783 struct kvm_guest_debug_arch arch;
2784};
2785
2786Set up the processor specific debug registers and configure vcpu for
2787handling guest debug events. There are two parts to the structure, the
2788first a control bitfield indicates the type of debug events to handle
2789when running. Common control bits are:
2790
2791 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2792 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2793
2794The top 16 bits of the control field are architecture specific control
2795flags which can include the following:
2796
4bd611ca 2797 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
834bf887 2798 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
4bd9d344
AB
2799 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2800 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2801 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2802
2803For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2804are enabled in memory so we need to ensure breakpoint exceptions are
2805correctly trapped and the KVM run loop exits at the breakpoint and not
2806running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2807we need to ensure the guest vCPUs architecture specific registers are
2808updated to the correct (supplied) values.
2809
2810The second part of the structure is architecture specific and
2811typically contains a set of debug registers.
2812
834bf887
AB
2813For arm64 the number of debug registers is implementation defined and
2814can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2815KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2816indicating the number of supported registers.
2817
4bd9d344
AB
2818When debug events exit the main run loop with the reason
2819KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2820structure containing architecture specific debug information.
3401d546 2821
209cf19f
AB
28224.88 KVM_GET_EMULATED_CPUID
2823
2824Capability: KVM_CAP_EXT_EMUL_CPUID
2825Architectures: x86
2826Type: system ioctl
2827Parameters: struct kvm_cpuid2 (in/out)
2828Returns: 0 on success, -1 on error
2829
2830struct kvm_cpuid2 {
2831 __u32 nent;
2832 __u32 flags;
2833 struct kvm_cpuid_entry2 entries[0];
2834};
2835
2836The member 'flags' is used for passing flags from userspace.
2837
2838#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2839#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2840#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2841
2842struct kvm_cpuid_entry2 {
2843 __u32 function;
2844 __u32 index;
2845 __u32 flags;
2846 __u32 eax;
2847 __u32 ebx;
2848 __u32 ecx;
2849 __u32 edx;
2850 __u32 padding[3];
2851};
2852
2853This ioctl returns x86 cpuid features which are emulated by
2854kvm.Userspace can use the information returned by this ioctl to query
2855which features are emulated by kvm instead of being present natively.
2856
2857Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2858structure with the 'nent' field indicating the number of entries in
2859the variable-size array 'entries'. If the number of entries is too low
2860to describe the cpu capabilities, an error (E2BIG) is returned. If the
2861number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2862is returned. If the number is just right, the 'nent' field is adjusted
2863to the number of valid entries in the 'entries' array, which is then
2864filled.
2865
2866The entries returned are the set CPUID bits of the respective features
2867which kvm emulates, as returned by the CPUID instruction, with unknown
2868or unsupported feature bits cleared.
2869
2870Features like x2apic, for example, may not be present in the host cpu
2871but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2872emulated efficiently and thus not included here.
2873
2874The fields in each entry are defined as follows:
2875
2876 function: the eax value used to obtain the entry
2877 index: the ecx value used to obtain the entry (for entries that are
2878 affected by ecx)
2879 flags: an OR of zero or more of the following:
2880 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2881 if the index field is valid
2882 KVM_CPUID_FLAG_STATEFUL_FUNC:
2883 if cpuid for this function returns different values for successive
2884 invocations; there will be several entries with the same function,
2885 all with this flag set
2886 KVM_CPUID_FLAG_STATE_READ_NEXT:
2887 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2888 the first entry to be read by a cpu
2889 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2890 this function/index combination
2891
41408c28
TH
28924.89 KVM_S390_MEM_OP
2893
2894Capability: KVM_CAP_S390_MEM_OP
2895Architectures: s390
2896Type: vcpu ioctl
2897Parameters: struct kvm_s390_mem_op (in)
2898Returns: = 0 on success,
2899 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2900 > 0 if an exception occurred while walking the page tables
2901
5d4f6f3d 2902Read or write data from/to the logical (virtual) memory of a VCPU.
41408c28
TH
2903
2904Parameters are specified via the following structure:
2905
2906struct kvm_s390_mem_op {
2907 __u64 gaddr; /* the guest address */
2908 __u64 flags; /* flags */
2909 __u32 size; /* amount of bytes */
2910 __u32 op; /* type of operation */
2911 __u64 buf; /* buffer in userspace */
2912 __u8 ar; /* the access register number */
2913 __u8 reserved[31]; /* should be set to 0 */
2914};
2915
2916The type of operation is specified in the "op" field. It is either
2917KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2918KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2919KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2920whether the corresponding memory access would create an access exception
2921(without touching the data in the memory at the destination). In case an
2922access exception occurred while walking the MMU tables of the guest, the
2923ioctl returns a positive error number to indicate the type of exception.
2924This exception is also raised directly at the corresponding VCPU if the
2925flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2926
2927The start address of the memory region has to be specified in the "gaddr"
2928field, and the length of the region in the "size" field. "buf" is the buffer
2929supplied by the userspace application where the read data should be written
2930to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2931is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2932when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2933register number to be used.
2934
2935The "reserved" field is meant for future extensions. It is not used by
2936KVM with the currently defined set of flags.
2937
30ee2a98
JH
29384.90 KVM_S390_GET_SKEYS
2939
2940Capability: KVM_CAP_S390_SKEYS
2941Architectures: s390
2942Type: vm ioctl
2943Parameters: struct kvm_s390_skeys
2944Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2945 keys, negative value on error
2946
2947This ioctl is used to get guest storage key values on the s390
2948architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2949
2950struct kvm_s390_skeys {
2951 __u64 start_gfn;
2952 __u64 count;
2953 __u64 skeydata_addr;
2954 __u32 flags;
2955 __u32 reserved[9];
2956};
2957
2958The start_gfn field is the number of the first guest frame whose storage keys
2959you want to get.
2960
2961The count field is the number of consecutive frames (starting from start_gfn)
2962whose storage keys to get. The count field must be at least 1 and the maximum
2963allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2964will cause the ioctl to return -EINVAL.
2965
2966The skeydata_addr field is the address to a buffer large enough to hold count
2967bytes. This buffer will be filled with storage key data by the ioctl.
2968
29694.91 KVM_S390_SET_SKEYS
2970
2971Capability: KVM_CAP_S390_SKEYS
2972Architectures: s390
2973Type: vm ioctl
2974Parameters: struct kvm_s390_skeys
2975Returns: 0 on success, negative value on error
2976
2977This ioctl is used to set guest storage key values on the s390
2978architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2979See section on KVM_S390_GET_SKEYS for struct definition.
2980
2981The start_gfn field is the number of the first guest frame whose storage keys
2982you want to set.
2983
2984The count field is the number of consecutive frames (starting from start_gfn)
2985whose storage keys to get. The count field must be at least 1 and the maximum
2986allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2987will cause the ioctl to return -EINVAL.
2988
2989The skeydata_addr field is the address to a buffer containing count bytes of
2990storage keys. Each byte in the buffer will be set as the storage key for a
2991single frame starting at start_gfn for count frames.
2992
2993Note: If any architecturally invalid key value is found in the given data then
2994the ioctl will return -EINVAL.
2995
47b43c52
JF
29964.92 KVM_S390_IRQ
2997
2998Capability: KVM_CAP_S390_INJECT_IRQ
2999Architectures: s390
3000Type: vcpu ioctl
3001Parameters: struct kvm_s390_irq (in)
3002Returns: 0 on success, -1 on error
3003Errors:
3004 EINVAL: interrupt type is invalid
3005 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
3006 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
3007 than the maximum of VCPUs
3008 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
3009 type is KVM_S390_SIGP_STOP and a stop irq is already pending
3010 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
3011 is already pending
3012
3013Allows to inject an interrupt to the guest.
3014
3015Using struct kvm_s390_irq as a parameter allows
3016to inject additional payload which is not
3017possible via KVM_S390_INTERRUPT.
3018
3019Interrupt parameters are passed via kvm_s390_irq:
3020
3021struct kvm_s390_irq {
3022 __u64 type;
3023 union {
3024 struct kvm_s390_io_info io;
3025 struct kvm_s390_ext_info ext;
3026 struct kvm_s390_pgm_info pgm;
3027 struct kvm_s390_emerg_info emerg;
3028 struct kvm_s390_extcall_info extcall;
3029 struct kvm_s390_prefix_info prefix;
3030 struct kvm_s390_stop_info stop;
3031 struct kvm_s390_mchk_info mchk;
3032 char reserved[64];
3033 } u;
3034};
3035
3036type can be one of the following:
3037
3038KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
3039KVM_S390_PROGRAM_INT - program check; parameters in .pgm
3040KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
3041KVM_S390_RESTART - restart; no parameters
3042KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
3043KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
3044KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
3045KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
3046KVM_S390_MCHK - machine check interrupt; parameters in .mchk
3047
3048
3049Note that the vcpu ioctl is asynchronous to vcpu execution.
3050
816c7667
JF
30514.94 KVM_S390_GET_IRQ_STATE
3052
3053Capability: KVM_CAP_S390_IRQ_STATE
3054Architectures: s390
3055Type: vcpu ioctl
3056Parameters: struct kvm_s390_irq_state (out)
3057Returns: >= number of bytes copied into buffer,
3058 -EINVAL if buffer size is 0,
3059 -ENOBUFS if buffer size is too small to fit all pending interrupts,
3060 -EFAULT if the buffer address was invalid
3061
3062This ioctl allows userspace to retrieve the complete state of all currently
3063pending interrupts in a single buffer. Use cases include migration
3064and introspection. The parameter structure contains the address of a
3065userspace buffer and its length:
3066
3067struct kvm_s390_irq_state {
3068 __u64 buf;
3069 __u32 flags;
3070 __u32 len;
3071 __u32 reserved[4];
3072};
3073
3074Userspace passes in the above struct and for each pending interrupt a
3075struct kvm_s390_irq is copied to the provided buffer.
3076
3077If -ENOBUFS is returned the buffer provided was too small and userspace
3078may retry with a bigger buffer.
3079
30804.95 KVM_S390_SET_IRQ_STATE
3081
3082Capability: KVM_CAP_S390_IRQ_STATE
3083Architectures: s390
3084Type: vcpu ioctl
3085Parameters: struct kvm_s390_irq_state (in)
3086Returns: 0 on success,
3087 -EFAULT if the buffer address was invalid,
3088 -EINVAL for an invalid buffer length (see below),
3089 -EBUSY if there were already interrupts pending,
3090 errors occurring when actually injecting the
3091 interrupt. See KVM_S390_IRQ.
3092
3093This ioctl allows userspace to set the complete state of all cpu-local
3094interrupts currently pending for the vcpu. It is intended for restoring
3095interrupt state after a migration. The input parameter is a userspace buffer
3096containing a struct kvm_s390_irq_state:
3097
3098struct kvm_s390_irq_state {
3099 __u64 buf;
3100 __u32 len;
3101 __u32 pad;
3102};
3103
3104The userspace memory referenced by buf contains a struct kvm_s390_irq
3105for each interrupt to be injected into the guest.
3106If one of the interrupts could not be injected for some reason the
3107ioctl aborts.
3108
3109len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
3110and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
3111which is the maximum number of possibly pending cpu-local interrupts.
47b43c52 3112
ed8e5a24 31134.96 KVM_SMI
f077825a
PB
3114
3115Capability: KVM_CAP_X86_SMM
3116Architectures: x86
3117Type: vcpu ioctl
3118Parameters: none
3119Returns: 0 on success, -1 on error
3120
3121Queues an SMI on the thread's vcpu.
3122
d3695aa4
AK
31234.97 KVM_CAP_PPC_MULTITCE
3124
3125Capability: KVM_CAP_PPC_MULTITCE
3126Architectures: ppc
3127Type: vm
3128
3129This capability means the kernel is capable of handling hypercalls
3130H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
3131space. This significantly accelerates DMA operations for PPC KVM guests.
3132User space should expect that its handlers for these hypercalls
3133are not going to be called if user space previously registered LIOBN
3134in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
3135
3136In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
3137user space might have to advertise it for the guest. For example,
3138IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
3139present in the "ibm,hypertas-functions" device-tree property.
3140
3141The hypercalls mentioned above may or may not be processed successfully
3142in the kernel based fast path. If they can not be handled by the kernel,
3143they will get passed on to user space. So user space still has to have
3144an implementation for these despite the in kernel acceleration.
3145
3146This capability is always enabled.
3147
58ded420
AK
31484.98 KVM_CREATE_SPAPR_TCE_64
3149
3150Capability: KVM_CAP_SPAPR_TCE_64
3151Architectures: powerpc
3152Type: vm ioctl
3153Parameters: struct kvm_create_spapr_tce_64 (in)
3154Returns: file descriptor for manipulating the created TCE table
3155
3156This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3157windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3158
3159This capability uses extended struct in ioctl interface:
3160
3161/* for KVM_CAP_SPAPR_TCE_64 */
3162struct kvm_create_spapr_tce_64 {
3163 __u64 liobn;
3164 __u32 page_shift;
3165 __u32 flags;
3166 __u64 offset; /* in pages */
3167 __u64 size; /* in pages */
3168};
3169
3170The aim of extension is to support an additional bigger DMA window with
3171a variable page size.
3172KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3173a bus offset of the corresponding DMA window, @size and @offset are numbers
3174of IOMMU pages.
3175
3176@flags are not used at the moment.
3177
3178The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3179
ccc4df4e 31804.99 KVM_REINJECT_CONTROL
107d44a2
RK
3181
3182Capability: KVM_CAP_REINJECT_CONTROL
3183Architectures: x86
3184Type: vm ioctl
3185Parameters: struct kvm_reinject_control (in)
3186Returns: 0 on success,
3187 -EFAULT if struct kvm_reinject_control cannot be read,
3188 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3189
3190i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3191where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3192vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3193interrupt whenever there isn't a pending interrupt from i8254.
3194!reinject mode injects an interrupt as soon as a tick arrives.
3195
3196struct kvm_reinject_control {
3197 __u8 pit_reinject;
3198 __u8 reserved[31];
3199};
3200
3201pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3202operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3203
ccc4df4e 32044.100 KVM_PPC_CONFIGURE_V3_MMU
c9270132
PM
3205
3206Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3207Architectures: ppc
3208Type: vm ioctl
3209Parameters: struct kvm_ppc_mmuv3_cfg (in)
3210Returns: 0 on success,
3211 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3212 -EINVAL if the configuration is invalid
3213
3214This ioctl controls whether the guest will use radix or HPT (hashed
3215page table) translation, and sets the pointer to the process table for
3216the guest.
3217
3218struct kvm_ppc_mmuv3_cfg {
3219 __u64 flags;
3220 __u64 process_table;
3221};
3222
3223There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3224KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3225to use radix tree translation, and if clear, to use HPT translation.
3226KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3227to be able to use the global TLB and SLB invalidation instructions;
3228if clear, the guest may not use these instructions.
3229
3230The process_table field specifies the address and size of the guest
3231process table, which is in the guest's space. This field is formatted
3232as the second doubleword of the partition table entry, as defined in
3233the Power ISA V3.00, Book III section 5.7.6.1.
3234
ccc4df4e 32354.101 KVM_PPC_GET_RMMU_INFO
c9270132
PM
3236
3237Capability: KVM_CAP_PPC_RADIX_MMU
3238Architectures: ppc
3239Type: vm ioctl
3240Parameters: struct kvm_ppc_rmmu_info (out)
3241Returns: 0 on success,
3242 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3243 -EINVAL if no useful information can be returned
3244
3245This ioctl returns a structure containing two things: (a) a list
3246containing supported radix tree geometries, and (b) a list that maps
3247page sizes to put in the "AP" (actual page size) field for the tlbie
3248(TLB invalidate entry) instruction.
3249
3250struct kvm_ppc_rmmu_info {
3251 struct kvm_ppc_radix_geom {
3252 __u8 page_shift;
3253 __u8 level_bits[4];
3254 __u8 pad[3];
3255 } geometries[8];
3256 __u32 ap_encodings[8];
3257};
3258
3259The geometries[] field gives up to 8 supported geometries for the
3260radix page table, in terms of the log base 2 of the smallest page
3261size, and the number of bits indexed at each level of the tree, from
3262the PTE level up to the PGD level in that order. Any unused entries
3263will have 0 in the page_shift field.
3264
3265The ap_encodings gives the supported page sizes and their AP field
3266encodings, encoded with the AP value in the top 3 bits and the log
3267base 2 of the page size in the bottom 6 bits.
3268
9c1b96e3 32695. The kvm_run structure
414fa985 3270------------------------
9c1b96e3
AK
3271
3272Application code obtains a pointer to the kvm_run structure by
3273mmap()ing a vcpu fd. From that point, application code can control
3274execution by changing fields in kvm_run prior to calling the KVM_RUN
3275ioctl, and obtain information about the reason KVM_RUN returned by
3276looking up structure members.
3277
3278struct kvm_run {
3279 /* in */
3280 __u8 request_interrupt_window;
3281
3282Request that KVM_RUN return when it becomes possible to inject external
3283interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3284
3285 __u8 padding1[7];
3286
3287 /* out */
3288 __u32 exit_reason;
3289
3290When KVM_RUN has returned successfully (return value 0), this informs
3291application code why KVM_RUN has returned. Allowable values for this
3292field are detailed below.
3293
3294 __u8 ready_for_interrupt_injection;
3295
3296If request_interrupt_window has been specified, this field indicates
3297an interrupt can be injected now with KVM_INTERRUPT.
3298
3299 __u8 if_flag;
3300
3301The value of the current interrupt flag. Only valid if in-kernel
3302local APIC is not used.
3303
f077825a
PB
3304 __u16 flags;
3305
3306More architecture-specific flags detailing state of the VCPU that may
3307affect the device's behavior. The only currently defined flag is
3308KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3309VCPU is in system management mode.
9c1b96e3
AK
3310
3311 /* in (pre_kvm_run), out (post_kvm_run) */
3312 __u64 cr8;
3313
3314The value of the cr8 register. Only valid if in-kernel local APIC is
3315not used. Both input and output.
3316
3317 __u64 apic_base;
3318
3319The value of the APIC BASE msr. Only valid if in-kernel local
3320APIC is not used. Both input and output.
3321
3322 union {
3323 /* KVM_EXIT_UNKNOWN */
3324 struct {
3325 __u64 hardware_exit_reason;
3326 } hw;
3327
3328If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3329reasons. Further architecture-specific information is available in
3330hardware_exit_reason.
3331
3332 /* KVM_EXIT_FAIL_ENTRY */
3333 struct {
3334 __u64 hardware_entry_failure_reason;
3335 } fail_entry;
3336
3337If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3338to unknown reasons. Further architecture-specific information is
3339available in hardware_entry_failure_reason.
3340
3341 /* KVM_EXIT_EXCEPTION */
3342 struct {
3343 __u32 exception;
3344 __u32 error_code;
3345 } ex;
3346
3347Unused.
3348
3349 /* KVM_EXIT_IO */
3350 struct {
3351#define KVM_EXIT_IO_IN 0
3352#define KVM_EXIT_IO_OUT 1
3353 __u8 direction;
3354 __u8 size; /* bytes */
3355 __u16 port;
3356 __u32 count;
3357 __u64 data_offset; /* relative to kvm_run start */
3358 } io;
3359
2044892d 3360If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
3361executed a port I/O instruction which could not be satisfied by kvm.
3362data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3363where kvm expects application code to place the data for the next
2044892d 3364KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3 3365
8ab30c15 3366 /* KVM_EXIT_DEBUG */
9c1b96e3
AK
3367 struct {
3368 struct kvm_debug_exit_arch arch;
3369 } debug;
3370
8ab30c15
AB
3371If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3372for which architecture specific information is returned.
9c1b96e3
AK
3373
3374 /* KVM_EXIT_MMIO */
3375 struct {
3376 __u64 phys_addr;
3377 __u8 data[8];
3378 __u32 len;
3379 __u8 is_write;
3380 } mmio;
3381
2044892d 3382If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
3383executed a memory-mapped I/O instruction which could not be satisfied
3384by kvm. The 'data' member contains the written data if 'is_write' is
3385true, and should be filled by application code otherwise.
3386
6acdb160
CD
3387The 'data' member contains, in its first 'len' bytes, the value as it would
3388appear if the VCPU performed a load or store of the appropriate width directly
3389to the byte array.
3390
cc568ead 3391NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 3392 KVM_EXIT_EPR the corresponding
ad0a048b
AG
3393operations are complete (and guest state is consistent) only after userspace
3394has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
3395incomplete operations and then check for pending signals. Userspace
3396can re-enter the guest with an unmasked signal pending to complete
3397pending operations.
3398
9c1b96e3
AK
3399 /* KVM_EXIT_HYPERCALL */
3400 struct {
3401 __u64 nr;
3402 __u64 args[6];
3403 __u64 ret;
3404 __u32 longmode;
3405 __u32 pad;
3406 } hypercall;
3407
647dc49e
AK
3408Unused. This was once used for 'hypercall to userspace'. To implement
3409such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3410Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
3411
3412 /* KVM_EXIT_TPR_ACCESS */
3413 struct {
3414 __u64 rip;
3415 __u32 is_write;
3416 __u32 pad;
3417 } tpr_access;
3418
3419To be documented (KVM_TPR_ACCESS_REPORTING).
3420
3421 /* KVM_EXIT_S390_SIEIC */
3422 struct {
3423 __u8 icptcode;
3424 __u64 mask; /* psw upper half */
3425 __u64 addr; /* psw lower half */
3426 __u16 ipa;
3427 __u32 ipb;
3428 } s390_sieic;
3429
3430s390 specific.
3431
3432 /* KVM_EXIT_S390_RESET */
3433#define KVM_S390_RESET_POR 1
3434#define KVM_S390_RESET_CLEAR 2
3435#define KVM_S390_RESET_SUBSYSTEM 4
3436#define KVM_S390_RESET_CPU_INIT 8
3437#define KVM_S390_RESET_IPL 16
3438 __u64 s390_reset_flags;
3439
3440s390 specific.
3441
e168bf8d
CO
3442 /* KVM_EXIT_S390_UCONTROL */
3443 struct {
3444 __u64 trans_exc_code;
3445 __u32 pgm_code;
3446 } s390_ucontrol;
3447
3448s390 specific. A page fault has occurred for a user controlled virtual
3449machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3450resolved by the kernel.
3451The program code and the translation exception code that were placed
3452in the cpu's lowcore are presented here as defined by the z Architecture
3453Principles of Operation Book in the Chapter for Dynamic Address Translation
3454(DAT)
3455
9c1b96e3
AK
3456 /* KVM_EXIT_DCR */
3457 struct {
3458 __u32 dcrn;
3459 __u32 data;
3460 __u8 is_write;
3461 } dcr;
3462
ce91ddc4 3463Deprecated - was used for 440 KVM.
9c1b96e3 3464
ad0a048b
AG
3465 /* KVM_EXIT_OSI */
3466 struct {
3467 __u64 gprs[32];
3468 } osi;
3469
3470MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3471hypercalls and exit with this exit struct that contains all the guest gprs.
3472
3473If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3474Userspace can now handle the hypercall and when it's done modify the gprs as
3475necessary. Upon guest entry all guest GPRs will then be replaced by the values
3476in this struct.
3477
de56a948
PM
3478 /* KVM_EXIT_PAPR_HCALL */
3479 struct {
3480 __u64 nr;
3481 __u64 ret;
3482 __u64 args[9];
3483 } papr_hcall;
3484
3485This is used on 64-bit PowerPC when emulating a pSeries partition,
3486e.g. with the 'pseries' machine type in qemu. It occurs when the
3487guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3488contains the hypercall number (from the guest R3), and 'args' contains
3489the arguments (from the guest R4 - R12). Userspace should put the
3490return code in 'ret' and any extra returned values in args[].
3491The possible hypercalls are defined in the Power Architecture Platform
3492Requirements (PAPR) document available from www.power.org (free
3493developer registration required to access it).
3494
fa6b7fe9
CH
3495 /* KVM_EXIT_S390_TSCH */
3496 struct {
3497 __u16 subchannel_id;
3498 __u16 subchannel_nr;
3499 __u32 io_int_parm;
3500 __u32 io_int_word;
3501 __u32 ipb;
3502 __u8 dequeued;
3503 } s390_tsch;
3504
3505s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3506and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3507interrupt for the target subchannel has been dequeued and subchannel_id,
3508subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3509interrupt. ipb is needed for instruction parameter decoding.
3510
1c810636
AG
3511 /* KVM_EXIT_EPR */
3512 struct {
3513 __u32 epr;
3514 } epr;
3515
3516On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3517interrupt acknowledge path to the core. When the core successfully
3518delivers an interrupt, it automatically populates the EPR register with
3519the interrupt vector number and acknowledges the interrupt inside
3520the interrupt controller.
3521
3522In case the interrupt controller lives in user space, we need to do
3523the interrupt acknowledge cycle through it to fetch the next to be
3524delivered interrupt vector using this exit.
3525
3526It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3527external interrupt has just been delivered into the guest. User space
3528should put the acknowledged interrupt vector into the 'epr' field.
3529
8ad6b634
AP
3530 /* KVM_EXIT_SYSTEM_EVENT */
3531 struct {
3532#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3533#define KVM_SYSTEM_EVENT_RESET 2
2ce79189 3534#define KVM_SYSTEM_EVENT_CRASH 3
8ad6b634
AP
3535 __u32 type;
3536 __u64 flags;
3537 } system_event;
3538
3539If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3540a system-level event using some architecture specific mechanism (hypercall
3541or some special instruction). In case of ARM/ARM64, this is triggered using
3542HVC instruction based PSCI call from the vcpu. The 'type' field describes
3543the system-level event type. The 'flags' field describes architecture
3544specific flags for the system-level event.
3545
cf5d3188
CD
3546Valid values for 'type' are:
3547 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3548 VM. Userspace is not obliged to honour this, and if it does honour
3549 this does not need to destroy the VM synchronously (ie it may call
3550 KVM_RUN again before shutdown finally occurs).
3551 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3552 As with SHUTDOWN, userspace can choose to ignore the request, or
3553 to schedule the reset to occur in the future and may call KVM_RUN again.
2ce79189
AS
3554 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3555 has requested a crash condition maintenance. Userspace can choose
3556 to ignore the request, or to gather VM memory core dump and/or
3557 reset/shutdown of the VM.
cf5d3188 3558
7543a635
SR
3559 /* KVM_EXIT_IOAPIC_EOI */
3560 struct {
3561 __u8 vector;
3562 } eoi;
3563
3564Indicates that the VCPU's in-kernel local APIC received an EOI for a
3565level-triggered IOAPIC interrupt. This exit only triggers when the
3566IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3567the userspace IOAPIC should process the EOI and retrigger the interrupt if
3568it is still asserted. Vector is the LAPIC interrupt vector for which the
3569EOI was received.
3570
db397571
AS
3571 struct kvm_hyperv_exit {
3572#define KVM_EXIT_HYPERV_SYNIC 1
83326e43 3573#define KVM_EXIT_HYPERV_HCALL 2
db397571
AS
3574 __u32 type;
3575 union {
3576 struct {
3577 __u32 msr;
3578 __u64 control;
3579 __u64 evt_page;
3580 __u64 msg_page;
3581 } synic;
83326e43
AS
3582 struct {
3583 __u64 input;
3584 __u64 result;
3585 __u64 params[2];
3586 } hcall;
db397571
AS
3587 } u;
3588 };
3589 /* KVM_EXIT_HYPERV */
3590 struct kvm_hyperv_exit hyperv;
3591Indicates that the VCPU exits into userspace to process some tasks
3592related to Hyper-V emulation.
3593Valid values for 'type' are:
3594 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3595Hyper-V SynIC state change. Notification is used to remap SynIC
3596event/message pages and to enable/disable SynIC messages/events processing
3597in userspace.
3598
9c1b96e3
AK
3599 /* Fix the size of the union. */
3600 char padding[256];
3601 };
b9e5dc8d
CB
3602
3603 /*
3604 * shared registers between kvm and userspace.
3605 * kvm_valid_regs specifies the register classes set by the host
3606 * kvm_dirty_regs specified the register classes dirtied by userspace
3607 * struct kvm_sync_regs is architecture specific, as well as the
3608 * bits for kvm_valid_regs and kvm_dirty_regs
3609 */
3610 __u64 kvm_valid_regs;
3611 __u64 kvm_dirty_regs;
3612 union {
3613 struct kvm_sync_regs regs;
3614 char padding[1024];
3615 } s;
3616
3617If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3618certain guest registers without having to call SET/GET_*REGS. Thus we can
3619avoid some system call overhead if userspace has to handle the exit.
3620Userspace can query the validity of the structure by checking
3621kvm_valid_regs for specific bits. These bits are architecture specific
3622and usually define the validity of a groups of registers. (e.g. one bit
3623 for general purpose registers)
3624
d8482c0d
DH
3625Please note that the kernel is allowed to use the kvm_run structure as the
3626primary storage for certain register types. Therefore, the kernel may use the
3627values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3628
9c1b96e3 3629};
821246a5 3630
414fa985 3631
9c15bb1d 3632
699a0ea0
PM
36336. Capabilities that can be enabled on vCPUs
3634--------------------------------------------
821246a5 3635
0907c855
CH
3636There are certain capabilities that change the behavior of the virtual CPU or
3637the virtual machine when enabled. To enable them, please see section 4.37.
3638Below you can find a list of capabilities and what their effect on the vCPU or
3639the virtual machine is when enabling them.
821246a5
AG
3640
3641The following information is provided along with the description:
3642
3643 Architectures: which instruction set architectures provide this ioctl.
3644 x86 includes both i386 and x86_64.
3645
0907c855
CH
3646 Target: whether this is a per-vcpu or per-vm capability.
3647
821246a5
AG
3648 Parameters: what parameters are accepted by the capability.
3649
3650 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3651 are not detailed, but errors with specific meanings are.
3652
414fa985 3653
821246a5
AG
36546.1 KVM_CAP_PPC_OSI
3655
3656Architectures: ppc
0907c855 3657Target: vcpu
821246a5
AG
3658Parameters: none
3659Returns: 0 on success; -1 on error
3660
3661This capability enables interception of OSI hypercalls that otherwise would
3662be treated as normal system calls to be injected into the guest. OSI hypercalls
3663were invented by Mac-on-Linux to have a standardized communication mechanism
3664between the guest and the host.
3665
3666When this capability is enabled, KVM_EXIT_OSI can occur.
3667
414fa985 3668
821246a5
AG
36696.2 KVM_CAP_PPC_PAPR
3670
3671Architectures: ppc
0907c855 3672Target: vcpu
821246a5
AG
3673Parameters: none
3674Returns: 0 on success; -1 on error
3675
3676This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3677done using the hypercall instruction "sc 1".
3678
3679It also sets the guest privilege level to "supervisor" mode. Usually the guest
3680runs in "hypervisor" privilege mode with a few missing features.
3681
3682In addition to the above, it changes the semantics of SDR1. In this mode, the
3683HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3684HTAB invisible to the guest.
3685
3686When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3687
414fa985 3688
dc83b8bc
SW
36896.3 KVM_CAP_SW_TLB
3690
3691Architectures: ppc
0907c855 3692Target: vcpu
dc83b8bc
SW
3693Parameters: args[0] is the address of a struct kvm_config_tlb
3694Returns: 0 on success; -1 on error
3695
3696struct kvm_config_tlb {
3697 __u64 params;
3698 __u64 array;
3699 __u32 mmu_type;
3700 __u32 array_len;
3701};
3702
3703Configures the virtual CPU's TLB array, establishing a shared memory area
3704between userspace and KVM. The "params" and "array" fields are userspace
3705addresses of mmu-type-specific data structures. The "array_len" field is an
3706safety mechanism, and should be set to the size in bytes of the memory that
3707userspace has reserved for the array. It must be at least the size dictated
3708by "mmu_type" and "params".
3709
3710While KVM_RUN is active, the shared region is under control of KVM. Its
3711contents are undefined, and any modification by userspace results in
3712boundedly undefined behavior.
3713
3714On return from KVM_RUN, the shared region will reflect the current state of
3715the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3716to tell KVM which entries have been changed, prior to calling KVM_RUN again
3717on this vcpu.
3718
3719For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3720 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3721 - The "array" field points to an array of type "struct
3722 kvm_book3e_206_tlb_entry".
3723 - The array consists of all entries in the first TLB, followed by all
3724 entries in the second TLB.
3725 - Within a TLB, entries are ordered first by increasing set number. Within a
3726 set, entries are ordered by way (increasing ESEL).
3727 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3728 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3729 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3730 hardware ignores this value for TLB0.
fa6b7fe9
CH
3731
37326.4 KVM_CAP_S390_CSS_SUPPORT
3733
3734Architectures: s390
0907c855 3735Target: vcpu
fa6b7fe9
CH
3736Parameters: none
3737Returns: 0 on success; -1 on error
3738
3739This capability enables support for handling of channel I/O instructions.
3740
3741TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3742handled in-kernel, while the other I/O instructions are passed to userspace.
3743
3744When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3745SUBCHANNEL intercepts.
1c810636 3746
0907c855
CH
3747Note that even though this capability is enabled per-vcpu, the complete
3748virtual machine is affected.
3749
1c810636
AG
37506.5 KVM_CAP_PPC_EPR
3751
3752Architectures: ppc
0907c855 3753Target: vcpu
1c810636
AG
3754Parameters: args[0] defines whether the proxy facility is active
3755Returns: 0 on success; -1 on error
3756
3757This capability enables or disables the delivery of interrupts through the
3758external proxy facility.
3759
3760When enabled (args[0] != 0), every time the guest gets an external interrupt
3761delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3762to receive the topmost interrupt vector.
3763
3764When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3765
3766When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3767
37686.6 KVM_CAP_IRQ_MPIC
3769
3770Architectures: ppc
3771Parameters: args[0] is the MPIC device fd
3772 args[1] is the MPIC CPU number for this vcpu
3773
3774This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3775
37766.7 KVM_CAP_IRQ_XICS
3777
3778Architectures: ppc
0907c855 3779Target: vcpu
5975a2e0
PM
3780Parameters: args[0] is the XICS device fd
3781 args[1] is the XICS CPU number (server ID) for this vcpu
3782
3783This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3784
37856.8 KVM_CAP_S390_IRQCHIP
3786
3787Architectures: s390
3788Target: vm
3789Parameters: none
3790
3791This capability enables the in-kernel irqchip for s390. Please refer to
3792"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0 3793
5fafd874
JH
37946.9 KVM_CAP_MIPS_FPU
3795
3796Architectures: mips
3797Target: vcpu
3798Parameters: args[0] is reserved for future use (should be 0).
3799
3800This capability allows the use of the host Floating Point Unit by the guest. It
3801allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3802done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3803(depending on the current guest FPU register mode), and the Status.FR,
3804Config5.FRE bits are accessible via the KVM API and also from the guest,
3805depending on them being supported by the FPU.
3806
d952bd07
JH
38076.10 KVM_CAP_MIPS_MSA
3808
3809Architectures: mips
3810Target: vcpu
3811Parameters: args[0] is reserved for future use (should be 0).
3812
3813This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3814It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3815Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3816accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3817the guest.
3818
699a0ea0
PM
38197. Capabilities that can be enabled on VMs
3820------------------------------------------
3821
3822There are certain capabilities that change the behavior of the virtual
3823machine when enabled. To enable them, please see section 4.37. Below
3824you can find a list of capabilities and what their effect on the VM
3825is when enabling them.
3826
3827The following information is provided along with the description:
3828
3829 Architectures: which instruction set architectures provide this ioctl.
3830 x86 includes both i386 and x86_64.
3831
3832 Parameters: what parameters are accepted by the capability.
3833
3834 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3835 are not detailed, but errors with specific meanings are.
3836
3837
38387.1 KVM_CAP_PPC_ENABLE_HCALL
3839
3840Architectures: ppc
3841Parameters: args[0] is the sPAPR hcall number
3842 args[1] is 0 to disable, 1 to enable in-kernel handling
3843
3844This capability controls whether individual sPAPR hypercalls (hcalls)
3845get handled by the kernel or not. Enabling or disabling in-kernel
3846handling of an hcall is effective across the VM. On creation, an
3847initial set of hcalls are enabled for in-kernel handling, which
3848consists of those hcalls for which in-kernel handlers were implemented
3849before this capability was implemented. If disabled, the kernel will
3850not to attempt to handle the hcall, but will always exit to userspace
3851to handle it. Note that it may not make sense to enable some and
3852disable others of a group of related hcalls, but KVM does not prevent
3853userspace from doing that.
ae2113a4
PM
3854
3855If the hcall number specified is not one that has an in-kernel
3856implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3857error.
2444b352
DH
3858
38597.2 KVM_CAP_S390_USER_SIGP
3860
3861Architectures: s390
3862Parameters: none
3863
3864This capability controls which SIGP orders will be handled completely in user
3865space. With this capability enabled, all fast orders will be handled completely
3866in the kernel:
3867- SENSE
3868- SENSE RUNNING
3869- EXTERNAL CALL
3870- EMERGENCY SIGNAL
3871- CONDITIONAL EMERGENCY SIGNAL
3872
3873All other orders will be handled completely in user space.
3874
3875Only privileged operation exceptions will be checked for in the kernel (or even
3876in the hardware prior to interception). If this capability is not enabled, the
3877old way of handling SIGP orders is used (partially in kernel and user space).
68c55750
EF
3878
38797.3 KVM_CAP_S390_VECTOR_REGISTERS
3880
3881Architectures: s390
3882Parameters: none
3883Returns: 0 on success, negative value on error
3884
3885Allows use of the vector registers introduced with z13 processor, and
3886provides for the synchronization between host and user space. Will
3887return -EINVAL if the machine does not support vectors.
e44fc8c9
ET
3888
38897.4 KVM_CAP_S390_USER_STSI
3890
3891Architectures: s390
3892Parameters: none
3893
3894This capability allows post-handlers for the STSI instruction. After
3895initial handling in the kernel, KVM exits to user space with
3896KVM_EXIT_S390_STSI to allow user space to insert further data.
3897
3898Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3899vcpu->run:
3900struct {
3901 __u64 addr;
3902 __u8 ar;
3903 __u8 reserved;
3904 __u8 fc;
3905 __u8 sel1;
3906 __u16 sel2;
3907} s390_stsi;
3908
3909@addr - guest address of STSI SYSIB
3910@fc - function code
3911@sel1 - selector 1
3912@sel2 - selector 2
3913@ar - access register number
3914
3915KVM handlers should exit to userspace with rc = -EREMOTE.
e928e9cb 3916
49df6397
SR
39177.5 KVM_CAP_SPLIT_IRQCHIP
3918
3919Architectures: x86
b053b2ae 3920Parameters: args[0] - number of routes reserved for userspace IOAPICs
49df6397
SR
3921Returns: 0 on success, -1 on error
3922
3923Create a local apic for each processor in the kernel. This can be used
3924instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
3925IOAPIC and PIC (and also the PIT, even though this has to be enabled
3926separately).
3927
b053b2ae
SR
3928This capability also enables in kernel routing of interrupt requests;
3929when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
3930used in the IRQ routing table. The first args[0] MSI routes are reserved
3931for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
3932a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
49df6397
SR
3933
3934Fails if VCPU has already been created, or if the irqchip is already in the
3935kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
3936
051c87f7
DH
39377.6 KVM_CAP_S390_RI
3938
3939Architectures: s390
3940Parameters: none
3941
3942Allows use of runtime-instrumentation introduced with zEC12 processor.
3943Will return -EINVAL if the machine does not support runtime-instrumentation.
3944Will return -EBUSY if a VCPU has already been created.
e928e9cb 3945
37131313
RK
39467.7 KVM_CAP_X2APIC_API
3947
3948Architectures: x86
3949Parameters: args[0] - features that should be enabled
3950Returns: 0 on success, -EINVAL when args[0] contains invalid features
3951
3952Valid feature flags in args[0] are
3953
3954#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
c519265f 3955#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
37131313
RK
3956
3957Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
3958KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
3959allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
3960respective sections.
3961
c519265f
RK
3962KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
3963in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
3964as a broadcast even in x2APIC mode in order to support physical x2APIC
3965without interrupt remapping. This is undesirable in logical mode,
3966where 0xff represents CPUs 0-7 in cluster 0.
37131313 3967
6502a34c
DH
39687.8 KVM_CAP_S390_USER_INSTR0
3969
3970Architectures: s390
3971Parameters: none
3972
3973With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
3974be intercepted and forwarded to user space. User space can use this
3975mechanism e.g. to realize 2-byte software breakpoints. The kernel will
3976not inject an operating exception for these instructions, user space has
3977to take care of that.
3978
3979This capability can be enabled dynamically even if VCPUs were already
3980created and are running.
37131313 3981
e928e9cb
ME
39828. Other capabilities.
3983----------------------
3984
3985This section lists capabilities that give information about other
3986features of the KVM implementation.
3987
39888.1 KVM_CAP_PPC_HWRNG
3989
3990Architectures: ppc
3991
3992This capability, if KVM_CHECK_EXTENSION indicates that it is
3993available, means that that the kernel has an implementation of the
3994H_RANDOM hypercall backed by a hardware random-number generator.
3995If present, the kernel H_RANDOM handler can be enabled for guest use
3996with the KVM_CAP_PPC_ENABLE_HCALL capability.
5c919412
AS
3997
39988.2 KVM_CAP_HYPERV_SYNIC
3999
4000Architectures: x86
4001This capability, if KVM_CHECK_EXTENSION indicates that it is
4002available, means that that the kernel has an implementation of the
4003Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
4004used to support Windows Hyper-V based guest paravirt drivers(VMBus).
4005
4006In order to use SynIC, it has to be activated by setting this
4007capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
4008will disable the use of APIC hardware virtualization even if supported
4009by the CPU, as it's incompatible with SynIC auto-EOI behavior.
c9270132
PM
4010
40118.3 KVM_CAP_PPC_RADIX_MMU
4012
4013Architectures: ppc
4014
4015This capability, if KVM_CHECK_EXTENSION indicates that it is
4016available, means that that the kernel can support guests using the
4017radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
4018processor).
4019
40208.4 KVM_CAP_PPC_HASH_MMU_V3
4021
4022Architectures: ppc
4023
4024This capability, if KVM_CHECK_EXTENSION indicates that it is
4025available, means that that the kernel can support guests using the
4026hashed page table MMU defined in Power ISA V3.00 (as implemented in
4027the POWER9 processor), including in-memory segment tables.