MIPS: KVM: Remove dead code in CP0 emulation
[linux-2.6-block.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
414fa985 85
9c1b96e3
AK
864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
414fa985 101
9c1b96e3
AK
1024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
e08b9637 107Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
e08b9637
CO
115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
9c1b96e3 120
414fa985 121
9c1b96e3
AK
1224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
2e2602ca
AK
144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
414fa985 148
9c1b96e3
AK
1494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
414fa985 163
9c1b96e3
AK
1644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
414fa985 176
9c1b96e3
AK
1774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
b74a07be 185This ioctl is obsolete and has been removed.
9c1b96e3 186
414fa985 187
68ba6974 1884.7 KVM_CREATE_VCPU
9c1b96e3
AK
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
76d25402
PE
204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
8c3ba334
SL
206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 208
371fefd6
PM
209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
5b1c1493
CO
222For virtual cpus that have been created with S390 user controlled virtual
223machines, the resulting vcpu fd can be memory mapped at page offset
224KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
225cpu's hardware control block.
226
414fa985 227
68ba6974 2284.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
229
230Capability: basic
231Architectures: x86
232Type: vm ioctl
233Parameters: struct kvm_dirty_log (in/out)
234Returns: 0 on success, -1 on error
235
236/* for KVM_GET_DIRTY_LOG */
237struct kvm_dirty_log {
238 __u32 slot;
239 __u32 padding;
240 union {
241 void __user *dirty_bitmap; /* one bit per page */
242 __u64 padding;
243 };
244};
245
246Given a memory slot, return a bitmap containing any pages dirtied
247since the last call to this ioctl. Bit 0 is the first page in the
248memory slot. Ensure the entire structure is cleared to avoid padding
249issues.
250
414fa985 251
68ba6974 2524.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
253
254Capability: basic
255Architectures: x86
256Type: vm ioctl
257Parameters: struct kvm_memory_alias (in)
258Returns: 0 (success), -1 (error)
259
a1f4d395 260This ioctl is obsolete and has been removed.
9c1b96e3 261
414fa985 262
68ba6974 2634.10 KVM_RUN
9c1b96e3
AK
264
265Capability: basic
266Architectures: all
267Type: vcpu ioctl
268Parameters: none
269Returns: 0 on success, -1 on error
270Errors:
271 EINTR: an unmasked signal is pending
272
273This ioctl is used to run a guest virtual cpu. While there are no
274explicit parameters, there is an implicit parameter block that can be
275obtained by mmap()ing the vcpu fd at offset 0, with the size given by
276KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
277kvm_run' (see below).
278
414fa985 279
68ba6974 2804.11 KVM_GET_REGS
9c1b96e3
AK
281
282Capability: basic
379e04c7 283Architectures: all except ARM, arm64
9c1b96e3
AK
284Type: vcpu ioctl
285Parameters: struct kvm_regs (out)
286Returns: 0 on success, -1 on error
287
288Reads the general purpose registers from the vcpu.
289
290/* x86 */
291struct kvm_regs {
292 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
293 __u64 rax, rbx, rcx, rdx;
294 __u64 rsi, rdi, rsp, rbp;
295 __u64 r8, r9, r10, r11;
296 __u64 r12, r13, r14, r15;
297 __u64 rip, rflags;
298};
299
414fa985 300
68ba6974 3014.12 KVM_SET_REGS
9c1b96e3
AK
302
303Capability: basic
379e04c7 304Architectures: all except ARM, arm64
9c1b96e3
AK
305Type: vcpu ioctl
306Parameters: struct kvm_regs (in)
307Returns: 0 on success, -1 on error
308
309Writes the general purpose registers into the vcpu.
310
311See KVM_GET_REGS for the data structure.
312
414fa985 313
68ba6974 3144.13 KVM_GET_SREGS
9c1b96e3
AK
315
316Capability: basic
5ce941ee 317Architectures: x86, ppc
9c1b96e3
AK
318Type: vcpu ioctl
319Parameters: struct kvm_sregs (out)
320Returns: 0 on success, -1 on error
321
322Reads special registers from the vcpu.
323
324/* x86 */
325struct kvm_sregs {
326 struct kvm_segment cs, ds, es, fs, gs, ss;
327 struct kvm_segment tr, ldt;
328 struct kvm_dtable gdt, idt;
329 __u64 cr0, cr2, cr3, cr4, cr8;
330 __u64 efer;
331 __u64 apic_base;
332 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
333};
334
68e2ffed 335/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 336
9c1b96e3
AK
337interrupt_bitmap is a bitmap of pending external interrupts. At most
338one bit may be set. This interrupt has been acknowledged by the APIC
339but not yet injected into the cpu core.
340
414fa985 341
68ba6974 3424.14 KVM_SET_SREGS
9c1b96e3
AK
343
344Capability: basic
5ce941ee 345Architectures: x86, ppc
9c1b96e3
AK
346Type: vcpu ioctl
347Parameters: struct kvm_sregs (in)
348Returns: 0 on success, -1 on error
349
350Writes special registers into the vcpu. See KVM_GET_SREGS for the
351data structures.
352
414fa985 353
68ba6974 3544.15 KVM_TRANSLATE
9c1b96e3
AK
355
356Capability: basic
357Architectures: x86
358Type: vcpu ioctl
359Parameters: struct kvm_translation (in/out)
360Returns: 0 on success, -1 on error
361
362Translates a virtual address according to the vcpu's current address
363translation mode.
364
365struct kvm_translation {
366 /* in */
367 __u64 linear_address;
368
369 /* out */
370 __u64 physical_address;
371 __u8 valid;
372 __u8 writeable;
373 __u8 usermode;
374 __u8 pad[5];
375};
376
414fa985 377
68ba6974 3784.16 KVM_INTERRUPT
9c1b96e3
AK
379
380Capability: basic
6f7a2bd4 381Architectures: x86, ppc
9c1b96e3
AK
382Type: vcpu ioctl
383Parameters: struct kvm_interrupt (in)
384Returns: 0 on success, -1 on error
385
386Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 387useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
388
389/* for KVM_INTERRUPT */
390struct kvm_interrupt {
391 /* in */
392 __u32 irq;
393};
394
6f7a2bd4
AG
395X86:
396
9c1b96e3
AK
397Note 'irq' is an interrupt vector, not an interrupt pin or line.
398
6f7a2bd4
AG
399PPC:
400
401Queues an external interrupt to be injected. This ioctl is overleaded
402with 3 different irq values:
403
404a) KVM_INTERRUPT_SET
405
406 This injects an edge type external interrupt into the guest once it's ready
407 to receive interrupts. When injected, the interrupt is done.
408
409b) KVM_INTERRUPT_UNSET
410
411 This unsets any pending interrupt.
412
413 Only available with KVM_CAP_PPC_UNSET_IRQ.
414
415c) KVM_INTERRUPT_SET_LEVEL
416
417 This injects a level type external interrupt into the guest context. The
418 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
419 is triggered.
420
421 Only available with KVM_CAP_PPC_IRQ_LEVEL.
422
423Note that any value for 'irq' other than the ones stated above is invalid
424and incurs unexpected behavior.
425
414fa985 426
68ba6974 4274.17 KVM_DEBUG_GUEST
9c1b96e3
AK
428
429Capability: basic
430Architectures: none
431Type: vcpu ioctl
432Parameters: none)
433Returns: -1 on error
434
435Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
436
414fa985 437
68ba6974 4384.18 KVM_GET_MSRS
9c1b96e3
AK
439
440Capability: basic
441Architectures: x86
442Type: vcpu ioctl
443Parameters: struct kvm_msrs (in/out)
444Returns: 0 on success, -1 on error
445
446Reads model-specific registers from the vcpu. Supported msr indices can
447be obtained using KVM_GET_MSR_INDEX_LIST.
448
449struct kvm_msrs {
450 __u32 nmsrs; /* number of msrs in entries */
451 __u32 pad;
452
453 struct kvm_msr_entry entries[0];
454};
455
456struct kvm_msr_entry {
457 __u32 index;
458 __u32 reserved;
459 __u64 data;
460};
461
462Application code should set the 'nmsrs' member (which indicates the
463size of the entries array) and the 'index' member of each array entry.
464kvm will fill in the 'data' member.
465
414fa985 466
68ba6974 4674.19 KVM_SET_MSRS
9c1b96e3
AK
468
469Capability: basic
470Architectures: x86
471Type: vcpu ioctl
472Parameters: struct kvm_msrs (in)
473Returns: 0 on success, -1 on error
474
475Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
476data structures.
477
478Application code should set the 'nmsrs' member (which indicates the
479size of the entries array), and the 'index' and 'data' members of each
480array entry.
481
414fa985 482
68ba6974 4834.20 KVM_SET_CPUID
9c1b96e3
AK
484
485Capability: basic
486Architectures: x86
487Type: vcpu ioctl
488Parameters: struct kvm_cpuid (in)
489Returns: 0 on success, -1 on error
490
491Defines the vcpu responses to the cpuid instruction. Applications
492should use the KVM_SET_CPUID2 ioctl if available.
493
494
495struct kvm_cpuid_entry {
496 __u32 function;
497 __u32 eax;
498 __u32 ebx;
499 __u32 ecx;
500 __u32 edx;
501 __u32 padding;
502};
503
504/* for KVM_SET_CPUID */
505struct kvm_cpuid {
506 __u32 nent;
507 __u32 padding;
508 struct kvm_cpuid_entry entries[0];
509};
510
414fa985 511
68ba6974 5124.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
513
514Capability: basic
515Architectures: x86
516Type: vcpu ioctl
517Parameters: struct kvm_signal_mask (in)
518Returns: 0 on success, -1 on error
519
520Defines which signals are blocked during execution of KVM_RUN. This
521signal mask temporarily overrides the threads signal mask. Any
522unblocked signal received (except SIGKILL and SIGSTOP, which retain
523their traditional behaviour) will cause KVM_RUN to return with -EINTR.
524
525Note the signal will only be delivered if not blocked by the original
526signal mask.
527
528/* for KVM_SET_SIGNAL_MASK */
529struct kvm_signal_mask {
530 __u32 len;
531 __u8 sigset[0];
532};
533
414fa985 534
68ba6974 5354.22 KVM_GET_FPU
9c1b96e3
AK
536
537Capability: basic
538Architectures: x86
539Type: vcpu ioctl
540Parameters: struct kvm_fpu (out)
541Returns: 0 on success, -1 on error
542
543Reads the floating point state from the vcpu.
544
545/* for KVM_GET_FPU and KVM_SET_FPU */
546struct kvm_fpu {
547 __u8 fpr[8][16];
548 __u16 fcw;
549 __u16 fsw;
550 __u8 ftwx; /* in fxsave format */
551 __u8 pad1;
552 __u16 last_opcode;
553 __u64 last_ip;
554 __u64 last_dp;
555 __u8 xmm[16][16];
556 __u32 mxcsr;
557 __u32 pad2;
558};
559
414fa985 560
68ba6974 5614.23 KVM_SET_FPU
9c1b96e3
AK
562
563Capability: basic
564Architectures: x86
565Type: vcpu ioctl
566Parameters: struct kvm_fpu (in)
567Returns: 0 on success, -1 on error
568
569Writes the floating point state to the vcpu.
570
571/* for KVM_GET_FPU and KVM_SET_FPU */
572struct kvm_fpu {
573 __u8 fpr[8][16];
574 __u16 fcw;
575 __u16 fsw;
576 __u8 ftwx; /* in fxsave format */
577 __u8 pad1;
578 __u16 last_opcode;
579 __u64 last_ip;
580 __u64 last_dp;
581 __u8 xmm[16][16];
582 __u32 mxcsr;
583 __u32 pad2;
584};
585
414fa985 586
68ba6974 5874.24 KVM_CREATE_IRQCHIP
5dadbfd6
AK
588
589Capability: KVM_CAP_IRQCHIP
379e04c7 590Architectures: x86, ia64, ARM, arm64
5dadbfd6
AK
591Type: vm ioctl
592Parameters: none
593Returns: 0 on success, -1 on error
594
595Creates an interrupt controller model in the kernel. On x86, creates a virtual
596ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
597local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
379e04c7 598only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM/arm64, a GIC is
749cf76c 599created.
5dadbfd6 600
414fa985 601
68ba6974 6024.25 KVM_IRQ_LINE
5dadbfd6
AK
603
604Capability: KVM_CAP_IRQCHIP
379e04c7 605Architectures: x86, ia64, arm, arm64
5dadbfd6
AK
606Type: vm ioctl
607Parameters: struct kvm_irq_level
608Returns: 0 on success, -1 on error
609
610Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
611On some architectures it is required that an interrupt controller model has
612been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
613interrupts require the level to be set to 1 and then back to 0.
614
100943c5
GS
615On real hardware, interrupt pins can be active-low or active-high. This
616does not matter for the level field of struct kvm_irq_level: 1 always
617means active (asserted), 0 means inactive (deasserted).
618
619x86 allows the operating system to program the interrupt polarity
620(active-low/active-high) for level-triggered interrupts, and KVM used
621to consider the polarity. However, due to bitrot in the handling of
622active-low interrupts, the above convention is now valid on x86 too.
623This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
624should not present interrupts to the guest as active-low unless this
625capability is present (or unless it is not using the in-kernel irqchip,
626of course).
627
628
379e04c7
MZ
629ARM/arm64 can signal an interrupt either at the CPU level, or at the
630in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
631use PPIs designated for specific cpus. The irq field is interpreted
632like this:
86ce8535
CD
633
634  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
635 field: | irq_type | vcpu_index | irq_id |
636
637The irq_type field has the following values:
638- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
639- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
640 (the vcpu_index field is ignored)
641- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
642
643(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
644
100943c5 645In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
646
647struct kvm_irq_level {
648 union {
649 __u32 irq; /* GSI */
650 __s32 status; /* not used for KVM_IRQ_LEVEL */
651 };
652 __u32 level; /* 0 or 1 */
653};
654
414fa985 655
68ba6974 6564.26 KVM_GET_IRQCHIP
5dadbfd6
AK
657
658Capability: KVM_CAP_IRQCHIP
659Architectures: x86, ia64
660Type: vm ioctl
661Parameters: struct kvm_irqchip (in/out)
662Returns: 0 on success, -1 on error
663
664Reads the state of a kernel interrupt controller created with
665KVM_CREATE_IRQCHIP into a buffer provided by the caller.
666
667struct kvm_irqchip {
668 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
669 __u32 pad;
670 union {
671 char dummy[512]; /* reserving space */
672 struct kvm_pic_state pic;
673 struct kvm_ioapic_state ioapic;
674 } chip;
675};
676
414fa985 677
68ba6974 6784.27 KVM_SET_IRQCHIP
5dadbfd6
AK
679
680Capability: KVM_CAP_IRQCHIP
681Architectures: x86, ia64
682Type: vm ioctl
683Parameters: struct kvm_irqchip (in)
684Returns: 0 on success, -1 on error
685
686Sets the state of a kernel interrupt controller created with
687KVM_CREATE_IRQCHIP from a buffer provided by the caller.
688
689struct kvm_irqchip {
690 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
691 __u32 pad;
692 union {
693 char dummy[512]; /* reserving space */
694 struct kvm_pic_state pic;
695 struct kvm_ioapic_state ioapic;
696 } chip;
697};
698
414fa985 699
68ba6974 7004.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
701
702Capability: KVM_CAP_XEN_HVM
703Architectures: x86
704Type: vm ioctl
705Parameters: struct kvm_xen_hvm_config (in)
706Returns: 0 on success, -1 on error
707
708Sets the MSR that the Xen HVM guest uses to initialize its hypercall
709page, and provides the starting address and size of the hypercall
710blobs in userspace. When the guest writes the MSR, kvm copies one
711page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
712memory.
713
714struct kvm_xen_hvm_config {
715 __u32 flags;
716 __u32 msr;
717 __u64 blob_addr_32;
718 __u64 blob_addr_64;
719 __u8 blob_size_32;
720 __u8 blob_size_64;
721 __u8 pad2[30];
722};
723
414fa985 724
68ba6974 7254.29 KVM_GET_CLOCK
afbcf7ab
GC
726
727Capability: KVM_CAP_ADJUST_CLOCK
728Architectures: x86
729Type: vm ioctl
730Parameters: struct kvm_clock_data (out)
731Returns: 0 on success, -1 on error
732
733Gets the current timestamp of kvmclock as seen by the current guest. In
734conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
735such as migration.
736
737struct kvm_clock_data {
738 __u64 clock; /* kvmclock current value */
739 __u32 flags;
740 __u32 pad[9];
741};
742
414fa985 743
68ba6974 7444.30 KVM_SET_CLOCK
afbcf7ab
GC
745
746Capability: KVM_CAP_ADJUST_CLOCK
747Architectures: x86
748Type: vm ioctl
749Parameters: struct kvm_clock_data (in)
750Returns: 0 on success, -1 on error
751
2044892d 752Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
753In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
754such as migration.
755
756struct kvm_clock_data {
757 __u64 clock; /* kvmclock current value */
758 __u32 flags;
759 __u32 pad[9];
760};
761
414fa985 762
68ba6974 7634.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
764
765Capability: KVM_CAP_VCPU_EVENTS
48005f64 766Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
767Architectures: x86
768Type: vm ioctl
769Parameters: struct kvm_vcpu_event (out)
770Returns: 0 on success, -1 on error
771
772Gets currently pending exceptions, interrupts, and NMIs as well as related
773states of the vcpu.
774
775struct kvm_vcpu_events {
776 struct {
777 __u8 injected;
778 __u8 nr;
779 __u8 has_error_code;
780 __u8 pad;
781 __u32 error_code;
782 } exception;
783 struct {
784 __u8 injected;
785 __u8 nr;
786 __u8 soft;
48005f64 787 __u8 shadow;
3cfc3092
JK
788 } interrupt;
789 struct {
790 __u8 injected;
791 __u8 pending;
792 __u8 masked;
793 __u8 pad;
794 } nmi;
795 __u32 sipi_vector;
dab4b911 796 __u32 flags;
3cfc3092
JK
797};
798
48005f64
JK
799KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
800interrupt.shadow contains a valid state. Otherwise, this field is undefined.
801
414fa985 802
68ba6974 8034.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
804
805Capability: KVM_CAP_VCPU_EVENTS
48005f64 806Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
807Architectures: x86
808Type: vm ioctl
809Parameters: struct kvm_vcpu_event (in)
810Returns: 0 on success, -1 on error
811
812Set pending exceptions, interrupts, and NMIs as well as related states of the
813vcpu.
814
815See KVM_GET_VCPU_EVENTS for the data structure.
816
dab4b911
JK
817Fields that may be modified asynchronously by running VCPUs can be excluded
818from the update. These fields are nmi.pending and sipi_vector. Keep the
819corresponding bits in the flags field cleared to suppress overwriting the
820current in-kernel state. The bits are:
821
822KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
823KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
824
48005f64
JK
825If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
826the flags field to signal that interrupt.shadow contains a valid state and
827shall be written into the VCPU.
828
414fa985 829
68ba6974 8304.33 KVM_GET_DEBUGREGS
a1efbe77
JK
831
832Capability: KVM_CAP_DEBUGREGS
833Architectures: x86
834Type: vm ioctl
835Parameters: struct kvm_debugregs (out)
836Returns: 0 on success, -1 on error
837
838Reads debug registers from the vcpu.
839
840struct kvm_debugregs {
841 __u64 db[4];
842 __u64 dr6;
843 __u64 dr7;
844 __u64 flags;
845 __u64 reserved[9];
846};
847
414fa985 848
68ba6974 8494.34 KVM_SET_DEBUGREGS
a1efbe77
JK
850
851Capability: KVM_CAP_DEBUGREGS
852Architectures: x86
853Type: vm ioctl
854Parameters: struct kvm_debugregs (in)
855Returns: 0 on success, -1 on error
856
857Writes debug registers into the vcpu.
858
859See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
860yet and must be cleared on entry.
861
414fa985 862
68ba6974 8634.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
864
865Capability: KVM_CAP_USER_MEM
866Architectures: all
867Type: vm ioctl
868Parameters: struct kvm_userspace_memory_region (in)
869Returns: 0 on success, -1 on error
870
871struct kvm_userspace_memory_region {
872 __u32 slot;
873 __u32 flags;
874 __u64 guest_phys_addr;
875 __u64 memory_size; /* bytes */
876 __u64 userspace_addr; /* start of the userspace allocated memory */
877};
878
879/* for kvm_memory_region::flags */
4d8b81ab
XG
880#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
881#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
882
883This ioctl allows the user to create or modify a guest physical memory
884slot. When changing an existing slot, it may be moved in the guest
885physical memory space, or its flags may be modified. It may not be
886resized. Slots may not overlap in guest physical address space.
887
888Memory for the region is taken starting at the address denoted by the
889field userspace_addr, which must point at user addressable memory for
890the entire memory slot size. Any object may back this memory, including
891anonymous memory, ordinary files, and hugetlbfs.
892
893It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
894be identical. This allows large pages in the guest to be backed by large
895pages in the host.
896
75d61fbc
TY
897The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
898KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
899writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
900use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
901to make a new slot read-only. In this case, writes to this memory will be
902posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
903
904When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
905the memory region are automatically reflected into the guest. For example, an
906mmap() that affects the region will be made visible immediately. Another
907example is madvise(MADV_DROP).
0f2d8f4d
AK
908
909It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
910The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
911allocation and is deprecated.
3cfc3092 912
414fa985 913
68ba6974 9144.36 KVM_SET_TSS_ADDR
8a5416db
AK
915
916Capability: KVM_CAP_SET_TSS_ADDR
917Architectures: x86
918Type: vm ioctl
919Parameters: unsigned long tss_address (in)
920Returns: 0 on success, -1 on error
921
922This ioctl defines the physical address of a three-page region in the guest
923physical address space. The region must be within the first 4GB of the
924guest physical address space and must not conflict with any memory slot
925or any mmio address. The guest may malfunction if it accesses this memory
926region.
927
928This ioctl is required on Intel-based hosts. This is needed on Intel hardware
929because of a quirk in the virtualization implementation (see the internals
930documentation when it pops into existence).
931
414fa985 932
68ba6974 9334.37 KVM_ENABLE_CAP
71fbfd5f
AG
934
935Capability: KVM_CAP_ENABLE_CAP
d6712df9 936Architectures: ppc, s390
71fbfd5f
AG
937Type: vcpu ioctl
938Parameters: struct kvm_enable_cap (in)
939Returns: 0 on success; -1 on error
940
941+Not all extensions are enabled by default. Using this ioctl the application
942can enable an extension, making it available to the guest.
943
944On systems that do not support this ioctl, it always fails. On systems that
945do support it, it only works for extensions that are supported for enablement.
946
947To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
948be used.
949
950struct kvm_enable_cap {
951 /* in */
952 __u32 cap;
953
954The capability that is supposed to get enabled.
955
956 __u32 flags;
957
958A bitfield indicating future enhancements. Has to be 0 for now.
959
960 __u64 args[4];
961
962Arguments for enabling a feature. If a feature needs initial values to
963function properly, this is the place to put them.
964
965 __u8 pad[64];
966};
967
414fa985 968
68ba6974 9694.38 KVM_GET_MP_STATE
b843f065
AK
970
971Capability: KVM_CAP_MP_STATE
972Architectures: x86, ia64
973Type: vcpu ioctl
974Parameters: struct kvm_mp_state (out)
975Returns: 0 on success; -1 on error
976
977struct kvm_mp_state {
978 __u32 mp_state;
979};
980
981Returns the vcpu's current "multiprocessing state" (though also valid on
982uniprocessor guests).
983
984Possible values are:
985
986 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
987 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
988 which has not yet received an INIT signal
989 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
990 now ready for a SIPI
991 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
992 is waiting for an interrupt
993 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
b595076a 994 accessible via KVM_GET_VCPU_EVENTS)
b843f065
AK
995
996This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
997irqchip, the multiprocessing state must be maintained by userspace.
998
414fa985 999
68ba6974 10004.39 KVM_SET_MP_STATE
b843f065
AK
1001
1002Capability: KVM_CAP_MP_STATE
1003Architectures: x86, ia64
1004Type: vcpu ioctl
1005Parameters: struct kvm_mp_state (in)
1006Returns: 0 on success; -1 on error
1007
1008Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1009arguments.
1010
1011This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
1012irqchip, the multiprocessing state must be maintained by userspace.
1013
414fa985 1014
68ba6974 10154.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1016
1017Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1018Architectures: x86
1019Type: vm ioctl
1020Parameters: unsigned long identity (in)
1021Returns: 0 on success, -1 on error
1022
1023This ioctl defines the physical address of a one-page region in the guest
1024physical address space. The region must be within the first 4GB of the
1025guest physical address space and must not conflict with any memory slot
1026or any mmio address. The guest may malfunction if it accesses this memory
1027region.
1028
1029This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1030because of a quirk in the virtualization implementation (see the internals
1031documentation when it pops into existence).
1032
414fa985 1033
68ba6974 10344.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1035
1036Capability: KVM_CAP_SET_BOOT_CPU_ID
1037Architectures: x86, ia64
1038Type: vm ioctl
1039Parameters: unsigned long vcpu_id
1040Returns: 0 on success, -1 on error
1041
1042Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1043as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1044is vcpu 0.
1045
414fa985 1046
68ba6974 10474.42 KVM_GET_XSAVE
2d5b5a66
SY
1048
1049Capability: KVM_CAP_XSAVE
1050Architectures: x86
1051Type: vcpu ioctl
1052Parameters: struct kvm_xsave (out)
1053Returns: 0 on success, -1 on error
1054
1055struct kvm_xsave {
1056 __u32 region[1024];
1057};
1058
1059This ioctl would copy current vcpu's xsave struct to the userspace.
1060
414fa985 1061
68ba6974 10624.43 KVM_SET_XSAVE
2d5b5a66
SY
1063
1064Capability: KVM_CAP_XSAVE
1065Architectures: x86
1066Type: vcpu ioctl
1067Parameters: struct kvm_xsave (in)
1068Returns: 0 on success, -1 on error
1069
1070struct kvm_xsave {
1071 __u32 region[1024];
1072};
1073
1074This ioctl would copy userspace's xsave struct to the kernel.
1075
414fa985 1076
68ba6974 10774.44 KVM_GET_XCRS
2d5b5a66
SY
1078
1079Capability: KVM_CAP_XCRS
1080Architectures: x86
1081Type: vcpu ioctl
1082Parameters: struct kvm_xcrs (out)
1083Returns: 0 on success, -1 on error
1084
1085struct kvm_xcr {
1086 __u32 xcr;
1087 __u32 reserved;
1088 __u64 value;
1089};
1090
1091struct kvm_xcrs {
1092 __u32 nr_xcrs;
1093 __u32 flags;
1094 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1095 __u64 padding[16];
1096};
1097
1098This ioctl would copy current vcpu's xcrs to the userspace.
1099
414fa985 1100
68ba6974 11014.45 KVM_SET_XCRS
2d5b5a66
SY
1102
1103Capability: KVM_CAP_XCRS
1104Architectures: x86
1105Type: vcpu ioctl
1106Parameters: struct kvm_xcrs (in)
1107Returns: 0 on success, -1 on error
1108
1109struct kvm_xcr {
1110 __u32 xcr;
1111 __u32 reserved;
1112 __u64 value;
1113};
1114
1115struct kvm_xcrs {
1116 __u32 nr_xcrs;
1117 __u32 flags;
1118 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1119 __u64 padding[16];
1120};
1121
1122This ioctl would set vcpu's xcr to the value userspace specified.
1123
414fa985 1124
68ba6974 11254.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1126
1127Capability: KVM_CAP_EXT_CPUID
1128Architectures: x86
1129Type: system ioctl
1130Parameters: struct kvm_cpuid2 (in/out)
1131Returns: 0 on success, -1 on error
1132
1133struct kvm_cpuid2 {
1134 __u32 nent;
1135 __u32 padding;
1136 struct kvm_cpuid_entry2 entries[0];
1137};
1138
9c15bb1d
BP
1139#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1140#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1141#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1142
1143struct kvm_cpuid_entry2 {
1144 __u32 function;
1145 __u32 index;
1146 __u32 flags;
1147 __u32 eax;
1148 __u32 ebx;
1149 __u32 ecx;
1150 __u32 edx;
1151 __u32 padding[3];
1152};
1153
1154This ioctl returns x86 cpuid features which are supported by both the hardware
1155and kvm. Userspace can use the information returned by this ioctl to
1156construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1157hardware, kernel, and userspace capabilities, and with user requirements (for
1158example, the user may wish to constrain cpuid to emulate older hardware,
1159or for feature consistency across a cluster).
1160
1161Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1162with the 'nent' field indicating the number of entries in the variable-size
1163array 'entries'. If the number of entries is too low to describe the cpu
1164capabilities, an error (E2BIG) is returned. If the number is too high,
1165the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1166number is just right, the 'nent' field is adjusted to the number of valid
1167entries in the 'entries' array, which is then filled.
1168
1169The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1170with unknown or unsupported features masked out. Some features (for example,
1171x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1172emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1173
1174 function: the eax value used to obtain the entry
1175 index: the ecx value used to obtain the entry (for entries that are
1176 affected by ecx)
1177 flags: an OR of zero or more of the following:
1178 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1179 if the index field is valid
1180 KVM_CPUID_FLAG_STATEFUL_FUNC:
1181 if cpuid for this function returns different values for successive
1182 invocations; there will be several entries with the same function,
1183 all with this flag set
1184 KVM_CPUID_FLAG_STATE_READ_NEXT:
1185 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1186 the first entry to be read by a cpu
1187 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1188 this function/index combination
1189
4d25a066
JK
1190The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1191as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1192support. Instead it is reported via
1193
1194 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1195
1196if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1197feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1198
414fa985 1199
68ba6974 12004.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1201
1202Capability: KVM_CAP_PPC_GET_PVINFO
1203Architectures: ppc
1204Type: vm ioctl
1205Parameters: struct kvm_ppc_pvinfo (out)
1206Returns: 0 on success, !0 on error
1207
1208struct kvm_ppc_pvinfo {
1209 __u32 flags;
1210 __u32 hcall[4];
1211 __u8 pad[108];
1212};
1213
1214This ioctl fetches PV specific information that need to be passed to the guest
1215using the device tree or other means from vm context.
1216
9202e076 1217The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1218
1219If any additional field gets added to this structure later on, a bit for that
1220additional piece of information will be set in the flags bitmap.
1221
9202e076
LYB
1222The flags bitmap is defined as:
1223
1224 /* the host supports the ePAPR idle hcall
1225 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1226
68ba6974 12274.48 KVM_ASSIGN_PCI_DEVICE
49f48172
JK
1228
1229Capability: KVM_CAP_DEVICE_ASSIGNMENT
1230Architectures: x86 ia64
1231Type: vm ioctl
1232Parameters: struct kvm_assigned_pci_dev (in)
1233Returns: 0 on success, -1 on error
1234
1235Assigns a host PCI device to the VM.
1236
1237struct kvm_assigned_pci_dev {
1238 __u32 assigned_dev_id;
1239 __u32 busnr;
1240 __u32 devfn;
1241 __u32 flags;
1242 __u32 segnr;
1243 union {
1244 __u32 reserved[11];
1245 };
1246};
1247
1248The PCI device is specified by the triple segnr, busnr, and devfn.
1249Identification in succeeding service requests is done via assigned_dev_id. The
1250following flags are specified:
1251
1252/* Depends on KVM_CAP_IOMMU */
1253#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1254/* The following two depend on KVM_CAP_PCI_2_3 */
1255#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1256#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1257
1258If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1259via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1260assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1261guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1262
42387373
AW
1263The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1264isolation of the device. Usages not specifying this flag are deprecated.
1265
3d27e23b
AW
1266Only PCI header type 0 devices with PCI BAR resources are supported by
1267device assignment. The user requesting this ioctl must have read/write
1268access to the PCI sysfs resource files associated with the device.
1269
414fa985 1270
68ba6974 12714.49 KVM_DEASSIGN_PCI_DEVICE
49f48172
JK
1272
1273Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1274Architectures: x86 ia64
1275Type: vm ioctl
1276Parameters: struct kvm_assigned_pci_dev (in)
1277Returns: 0 on success, -1 on error
1278
1279Ends PCI device assignment, releasing all associated resources.
1280
1281See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1282used in kvm_assigned_pci_dev to identify the device.
1283
414fa985 1284
68ba6974 12854.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1286
1287Capability: KVM_CAP_ASSIGN_DEV_IRQ
1288Architectures: x86 ia64
1289Type: vm ioctl
1290Parameters: struct kvm_assigned_irq (in)
1291Returns: 0 on success, -1 on error
1292
1293Assigns an IRQ to a passed-through device.
1294
1295struct kvm_assigned_irq {
1296 __u32 assigned_dev_id;
91e3d71d 1297 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1298 __u32 guest_irq;
1299 __u32 flags;
1300 union {
49f48172
JK
1301 __u32 reserved[12];
1302 };
1303};
1304
1305The following flags are defined:
1306
1307#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1308#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1309#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1310
1311#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1312#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1313#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1314
1315It is not valid to specify multiple types per host or guest IRQ. However, the
1316IRQ type of host and guest can differ or can even be null.
1317
414fa985 1318
68ba6974 13194.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1320
1321Capability: KVM_CAP_ASSIGN_DEV_IRQ
1322Architectures: x86 ia64
1323Type: vm ioctl
1324Parameters: struct kvm_assigned_irq (in)
1325Returns: 0 on success, -1 on error
1326
1327Ends an IRQ assignment to a passed-through device.
1328
1329See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1330by assigned_dev_id, flags must correspond to the IRQ type specified on
1331KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1332
414fa985 1333
68ba6974 13344.52 KVM_SET_GSI_ROUTING
49f48172
JK
1335
1336Capability: KVM_CAP_IRQ_ROUTING
1337Architectures: x86 ia64
1338Type: vm ioctl
1339Parameters: struct kvm_irq_routing (in)
1340Returns: 0 on success, -1 on error
1341
1342Sets the GSI routing table entries, overwriting any previously set entries.
1343
1344struct kvm_irq_routing {
1345 __u32 nr;
1346 __u32 flags;
1347 struct kvm_irq_routing_entry entries[0];
1348};
1349
1350No flags are specified so far, the corresponding field must be set to zero.
1351
1352struct kvm_irq_routing_entry {
1353 __u32 gsi;
1354 __u32 type;
1355 __u32 flags;
1356 __u32 pad;
1357 union {
1358 struct kvm_irq_routing_irqchip irqchip;
1359 struct kvm_irq_routing_msi msi;
1360 __u32 pad[8];
1361 } u;
1362};
1363
1364/* gsi routing entry types */
1365#define KVM_IRQ_ROUTING_IRQCHIP 1
1366#define KVM_IRQ_ROUTING_MSI 2
1367
1368No flags are specified so far, the corresponding field must be set to zero.
1369
1370struct kvm_irq_routing_irqchip {
1371 __u32 irqchip;
1372 __u32 pin;
1373};
1374
1375struct kvm_irq_routing_msi {
1376 __u32 address_lo;
1377 __u32 address_hi;
1378 __u32 data;
1379 __u32 pad;
1380};
1381
414fa985 1382
68ba6974 13834.53 KVM_ASSIGN_SET_MSIX_NR
49f48172
JK
1384
1385Capability: KVM_CAP_DEVICE_MSIX
1386Architectures: x86 ia64
1387Type: vm ioctl
1388Parameters: struct kvm_assigned_msix_nr (in)
1389Returns: 0 on success, -1 on error
1390
58f0964e
JK
1391Set the number of MSI-X interrupts for an assigned device. The number is
1392reset again by terminating the MSI-X assignment of the device via
1393KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1394point will fail.
49f48172
JK
1395
1396struct kvm_assigned_msix_nr {
1397 __u32 assigned_dev_id;
1398 __u16 entry_nr;
1399 __u16 padding;
1400};
1401
1402#define KVM_MAX_MSIX_PER_DEV 256
1403
414fa985 1404
68ba6974 14054.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172
JK
1406
1407Capability: KVM_CAP_DEVICE_MSIX
1408Architectures: x86 ia64
1409Type: vm ioctl
1410Parameters: struct kvm_assigned_msix_entry (in)
1411Returns: 0 on success, -1 on error
1412
1413Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1414the GSI vector to zero means disabling the interrupt.
1415
1416struct kvm_assigned_msix_entry {
1417 __u32 assigned_dev_id;
1418 __u32 gsi;
1419 __u16 entry; /* The index of entry in the MSI-X table */
1420 __u16 padding[3];
1421};
1422
414fa985
JK
1423
14244.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1425
1426Capability: KVM_CAP_TSC_CONTROL
1427Architectures: x86
1428Type: vcpu ioctl
1429Parameters: virtual tsc_khz
1430Returns: 0 on success, -1 on error
1431
1432Specifies the tsc frequency for the virtual machine. The unit of the
1433frequency is KHz.
1434
414fa985
JK
1435
14364.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1437
1438Capability: KVM_CAP_GET_TSC_KHZ
1439Architectures: x86
1440Type: vcpu ioctl
1441Parameters: none
1442Returns: virtual tsc-khz on success, negative value on error
1443
1444Returns the tsc frequency of the guest. The unit of the return value is
1445KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1446error.
1447
414fa985
JK
1448
14494.57 KVM_GET_LAPIC
e7677933
AK
1450
1451Capability: KVM_CAP_IRQCHIP
1452Architectures: x86
1453Type: vcpu ioctl
1454Parameters: struct kvm_lapic_state (out)
1455Returns: 0 on success, -1 on error
1456
1457#define KVM_APIC_REG_SIZE 0x400
1458struct kvm_lapic_state {
1459 char regs[KVM_APIC_REG_SIZE];
1460};
1461
1462Reads the Local APIC registers and copies them into the input argument. The
1463data format and layout are the same as documented in the architecture manual.
1464
414fa985
JK
1465
14664.58 KVM_SET_LAPIC
e7677933
AK
1467
1468Capability: KVM_CAP_IRQCHIP
1469Architectures: x86
1470Type: vcpu ioctl
1471Parameters: struct kvm_lapic_state (in)
1472Returns: 0 on success, -1 on error
1473
1474#define KVM_APIC_REG_SIZE 0x400
1475struct kvm_lapic_state {
1476 char regs[KVM_APIC_REG_SIZE];
1477};
1478
1479Copies the input argument into the the Local APIC registers. The data format
1480and layout are the same as documented in the architecture manual.
1481
414fa985
JK
1482
14834.59 KVM_IOEVENTFD
55399a02
SL
1484
1485Capability: KVM_CAP_IOEVENTFD
1486Architectures: all
1487Type: vm ioctl
1488Parameters: struct kvm_ioeventfd (in)
1489Returns: 0 on success, !0 on error
1490
1491This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1492within the guest. A guest write in the registered address will signal the
1493provided event instead of triggering an exit.
1494
1495struct kvm_ioeventfd {
1496 __u64 datamatch;
1497 __u64 addr; /* legal pio/mmio address */
1498 __u32 len; /* 1, 2, 4, or 8 bytes */
1499 __s32 fd;
1500 __u32 flags;
1501 __u8 pad[36];
1502};
1503
2b83451b
CH
1504For the special case of virtio-ccw devices on s390, the ioevent is matched
1505to a subchannel/virtqueue tuple instead.
1506
55399a02
SL
1507The following flags are defined:
1508
1509#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1510#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1511#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1512#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1513 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1514
1515If datamatch flag is set, the event will be signaled only if the written value
1516to the registered address is equal to datamatch in struct kvm_ioeventfd.
1517
2b83451b
CH
1518For virtio-ccw devices, addr contains the subchannel id and datamatch the
1519virtqueue index.
1520
414fa985
JK
1521
15224.60 KVM_DIRTY_TLB
dc83b8bc
SW
1523
1524Capability: KVM_CAP_SW_TLB
1525Architectures: ppc
1526Type: vcpu ioctl
1527Parameters: struct kvm_dirty_tlb (in)
1528Returns: 0 on success, -1 on error
1529
1530struct kvm_dirty_tlb {
1531 __u64 bitmap;
1532 __u32 num_dirty;
1533};
1534
1535This must be called whenever userspace has changed an entry in the shared
1536TLB, prior to calling KVM_RUN on the associated vcpu.
1537
1538The "bitmap" field is the userspace address of an array. This array
1539consists of a number of bits, equal to the total number of TLB entries as
1540determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1541nearest multiple of 64.
1542
1543Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1544array.
1545
1546The array is little-endian: the bit 0 is the least significant bit of the
1547first byte, bit 8 is the least significant bit of the second byte, etc.
1548This avoids any complications with differing word sizes.
1549
1550The "num_dirty" field is a performance hint for KVM to determine whether it
1551should skip processing the bitmap and just invalidate everything. It must
1552be set to the number of set bits in the bitmap.
1553
414fa985
JK
1554
15554.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1556
1557Capability: KVM_CAP_PCI_2_3
1558Architectures: x86
1559Type: vm ioctl
1560Parameters: struct kvm_assigned_pci_dev (in)
1561Returns: 0 on success, -1 on error
1562
1563Allows userspace to mask PCI INTx interrupts from the assigned device. The
1564kernel will not deliver INTx interrupts to the guest between setting and
1565clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1566and emulation of PCI 2.3 INTx disable command register behavior.
1567
1568This may be used for both PCI 2.3 devices supporting INTx disable natively and
1569older devices lacking this support. Userspace is responsible for emulating the
1570read value of the INTx disable bit in the guest visible PCI command register.
1571When modifying the INTx disable state, userspace should precede updating the
1572physical device command register by calling this ioctl to inform the kernel of
1573the new intended INTx mask state.
1574
1575Note that the kernel uses the device INTx disable bit to internally manage the
1576device interrupt state for PCI 2.3 devices. Reads of this register may
1577therefore not match the expected value. Writes should always use the guest
1578intended INTx disable value rather than attempting to read-copy-update the
1579current physical device state. Races between user and kernel updates to the
1580INTx disable bit are handled lazily in the kernel. It's possible the device
1581may generate unintended interrupts, but they will not be injected into the
1582guest.
1583
1584See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1585by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1586evaluated.
1587
414fa985 1588
54738c09
DG
15894.62 KVM_CREATE_SPAPR_TCE
1590
1591Capability: KVM_CAP_SPAPR_TCE
1592Architectures: powerpc
1593Type: vm ioctl
1594Parameters: struct kvm_create_spapr_tce (in)
1595Returns: file descriptor for manipulating the created TCE table
1596
1597This creates a virtual TCE (translation control entry) table, which
1598is an IOMMU for PAPR-style virtual I/O. It is used to translate
1599logical addresses used in virtual I/O into guest physical addresses,
1600and provides a scatter/gather capability for PAPR virtual I/O.
1601
1602/* for KVM_CAP_SPAPR_TCE */
1603struct kvm_create_spapr_tce {
1604 __u64 liobn;
1605 __u32 window_size;
1606};
1607
1608The liobn field gives the logical IO bus number for which to create a
1609TCE table. The window_size field specifies the size of the DMA window
1610which this TCE table will translate - the table will contain one 64
1611bit TCE entry for every 4kiB of the DMA window.
1612
1613When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1614table has been created using this ioctl(), the kernel will handle it
1615in real mode, updating the TCE table. H_PUT_TCE calls for other
1616liobns will cause a vm exit and must be handled by userspace.
1617
1618The return value is a file descriptor which can be passed to mmap(2)
1619to map the created TCE table into userspace. This lets userspace read
1620the entries written by kernel-handled H_PUT_TCE calls, and also lets
1621userspace update the TCE table directly which is useful in some
1622circumstances.
1623
414fa985 1624
aa04b4cc
PM
16254.63 KVM_ALLOCATE_RMA
1626
1627Capability: KVM_CAP_PPC_RMA
1628Architectures: powerpc
1629Type: vm ioctl
1630Parameters: struct kvm_allocate_rma (out)
1631Returns: file descriptor for mapping the allocated RMA
1632
1633This allocates a Real Mode Area (RMA) from the pool allocated at boot
1634time by the kernel. An RMA is a physically-contiguous, aligned region
1635of memory used on older POWER processors to provide the memory which
1636will be accessed by real-mode (MMU off) accesses in a KVM guest.
1637POWER processors support a set of sizes for the RMA that usually
1638includes 64MB, 128MB, 256MB and some larger powers of two.
1639
1640/* for KVM_ALLOCATE_RMA */
1641struct kvm_allocate_rma {
1642 __u64 rma_size;
1643};
1644
1645The return value is a file descriptor which can be passed to mmap(2)
1646to map the allocated RMA into userspace. The mapped area can then be
1647passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1648RMA for a virtual machine. The size of the RMA in bytes (which is
1649fixed at host kernel boot time) is returned in the rma_size field of
1650the argument structure.
1651
1652The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1653is supported; 2 if the processor requires all virtual machines to have
1654an RMA, or 1 if the processor can use an RMA but doesn't require it,
1655because it supports the Virtual RMA (VRMA) facility.
1656
414fa985 1657
3f745f1e
AK
16584.64 KVM_NMI
1659
1660Capability: KVM_CAP_USER_NMI
1661Architectures: x86
1662Type: vcpu ioctl
1663Parameters: none
1664Returns: 0 on success, -1 on error
1665
1666Queues an NMI on the thread's vcpu. Note this is well defined only
1667when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1668between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1669has been called, this interface is completely emulated within the kernel.
1670
1671To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1672following algorithm:
1673
1674 - pause the vpcu
1675 - read the local APIC's state (KVM_GET_LAPIC)
1676 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1677 - if so, issue KVM_NMI
1678 - resume the vcpu
1679
1680Some guests configure the LINT1 NMI input to cause a panic, aiding in
1681debugging.
1682
414fa985 1683
e24ed81f 16844.65 KVM_S390_UCAS_MAP
27e0393f
CO
1685
1686Capability: KVM_CAP_S390_UCONTROL
1687Architectures: s390
1688Type: vcpu ioctl
1689Parameters: struct kvm_s390_ucas_mapping (in)
1690Returns: 0 in case of success
1691
1692The parameter is defined like this:
1693 struct kvm_s390_ucas_mapping {
1694 __u64 user_addr;
1695 __u64 vcpu_addr;
1696 __u64 length;
1697 };
1698
1699This ioctl maps the memory at "user_addr" with the length "length" to
1700the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1701be aligned by 1 megabyte.
27e0393f 1702
414fa985 1703
e24ed81f 17044.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1705
1706Capability: KVM_CAP_S390_UCONTROL
1707Architectures: s390
1708Type: vcpu ioctl
1709Parameters: struct kvm_s390_ucas_mapping (in)
1710Returns: 0 in case of success
1711
1712The parameter is defined like this:
1713 struct kvm_s390_ucas_mapping {
1714 __u64 user_addr;
1715 __u64 vcpu_addr;
1716 __u64 length;
1717 };
1718
1719This ioctl unmaps the memory in the vcpu's address space starting at
1720"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1721All parameters need to be aligned by 1 megabyte.
27e0393f 1722
414fa985 1723
e24ed81f 17244.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1725
1726Capability: KVM_CAP_S390_UCONTROL
1727Architectures: s390
1728Type: vcpu ioctl
1729Parameters: vcpu absolute address (in)
1730Returns: 0 in case of success
1731
1732This call creates a page table entry on the virtual cpu's address space
1733(for user controlled virtual machines) or the virtual machine's address
1734space (for regular virtual machines). This only works for minor faults,
1735thus it's recommended to access subject memory page via the user page
1736table upfront. This is useful to handle validity intercepts for user
1737controlled virtual machines to fault in the virtual cpu's lowcore pages
1738prior to calling the KVM_RUN ioctl.
1739
414fa985 1740
e24ed81f
AG
17414.68 KVM_SET_ONE_REG
1742
1743Capability: KVM_CAP_ONE_REG
1744Architectures: all
1745Type: vcpu ioctl
1746Parameters: struct kvm_one_reg (in)
1747Returns: 0 on success, negative value on failure
1748
1749struct kvm_one_reg {
1750 __u64 id;
1751 __u64 addr;
1752};
1753
1754Using this ioctl, a single vcpu register can be set to a specific value
1755defined by user space with the passed in struct kvm_one_reg, where id
1756refers to the register identifier as described below and addr is a pointer
1757to a variable with the respective size. There can be architecture agnostic
1758and architecture specific registers. Each have their own range of operation
1759and their own constants and width. To keep track of the implemented
1760registers, find a list below:
1761
1762 Arch | Register | Width (bits)
1763 | |
1022fc3d 1764 PPC | KVM_REG_PPC_HIOR | 64
2e232702
BB
1765 PPC | KVM_REG_PPC_IAC1 | 64
1766 PPC | KVM_REG_PPC_IAC2 | 64
1767 PPC | KVM_REG_PPC_IAC3 | 64
1768 PPC | KVM_REG_PPC_IAC4 | 64
1769 PPC | KVM_REG_PPC_DAC1 | 64
1770 PPC | KVM_REG_PPC_DAC2 | 64
a136a8bd
PM
1771 PPC | KVM_REG_PPC_DABR | 64
1772 PPC | KVM_REG_PPC_DSCR | 64
1773 PPC | KVM_REG_PPC_PURR | 64
1774 PPC | KVM_REG_PPC_SPURR | 64
1775 PPC | KVM_REG_PPC_DAR | 64
1776 PPC | KVM_REG_PPC_DSISR | 32
1777 PPC | KVM_REG_PPC_AMR | 64
1778 PPC | KVM_REG_PPC_UAMOR | 64
1779 PPC | KVM_REG_PPC_MMCR0 | 64
1780 PPC | KVM_REG_PPC_MMCR1 | 64
1781 PPC | KVM_REG_PPC_MMCRA | 64
1782 PPC | KVM_REG_PPC_PMC1 | 32
1783 PPC | KVM_REG_PPC_PMC2 | 32
1784 PPC | KVM_REG_PPC_PMC3 | 32
1785 PPC | KVM_REG_PPC_PMC4 | 32
1786 PPC | KVM_REG_PPC_PMC5 | 32
1787 PPC | KVM_REG_PPC_PMC6 | 32
1788 PPC | KVM_REG_PPC_PMC7 | 32
1789 PPC | KVM_REG_PPC_PMC8 | 32
a8bd19ef
PM
1790 PPC | KVM_REG_PPC_FPR0 | 64
1791 ...
1792 PPC | KVM_REG_PPC_FPR31 | 64
1793 PPC | KVM_REG_PPC_VR0 | 128
1794 ...
1795 PPC | KVM_REG_PPC_VR31 | 128
1796 PPC | KVM_REG_PPC_VSR0 | 128
1797 ...
1798 PPC | KVM_REG_PPC_VSR31 | 128
1799 PPC | KVM_REG_PPC_FPSCR | 64
1800 PPC | KVM_REG_PPC_VSCR | 32
55b665b0
PM
1801 PPC | KVM_REG_PPC_VPA_ADDR | 64
1802 PPC | KVM_REG_PPC_VPA_SLB | 128
1803 PPC | KVM_REG_PPC_VPA_DTL | 128
352df1de 1804 PPC | KVM_REG_PPC_EPCR | 32
324b3e63 1805 PPC | KVM_REG_PPC_EPR | 32
78accda4
BB
1806 PPC | KVM_REG_PPC_TCR | 32
1807 PPC | KVM_REG_PPC_TSR | 32
1808 PPC | KVM_REG_PPC_OR_TSR | 32
1809 PPC | KVM_REG_PPC_CLEAR_TSR | 32
a85d2aa2
MC
1810 PPC | KVM_REG_PPC_MAS0 | 32
1811 PPC | KVM_REG_PPC_MAS1 | 32
1812 PPC | KVM_REG_PPC_MAS2 | 64
1813 PPC | KVM_REG_PPC_MAS7_3 | 64
1814 PPC | KVM_REG_PPC_MAS4 | 32
1815 PPC | KVM_REG_PPC_MAS6 | 32
1816 PPC | KVM_REG_PPC_MMUCFG | 32
1817 PPC | KVM_REG_PPC_TLB0CFG | 32
1818 PPC | KVM_REG_PPC_TLB1CFG | 32
1819 PPC | KVM_REG_PPC_TLB2CFG | 32
1820 PPC | KVM_REG_PPC_TLB3CFG | 32
307d9008
MC
1821 PPC | KVM_REG_PPC_TLB0PS | 32
1822 PPC | KVM_REG_PPC_TLB1PS | 32
1823 PPC | KVM_REG_PPC_TLB2PS | 32
1824 PPC | KVM_REG_PPC_TLB3PS | 32
9a6061d7 1825 PPC | KVM_REG_PPC_EPTCFG | 32
8b78645c 1826 PPC | KVM_REG_PPC_ICP_STATE | 64
93b0f4dc 1827 PPC | KVM_REG_PPC_TB_OFFSET | 64
3b783474
MN
1828 PPC | KVM_REG_PPC_SPMC1 | 32
1829 PPC | KVM_REG_PPC_SPMC2 | 32
1830 PPC | KVM_REG_PPC_IAMR | 64
1831 PPC | KVM_REG_PPC_TFHAR | 64
1832 PPC | KVM_REG_PPC_TFIAR | 64
1833 PPC | KVM_REG_PPC_TEXASR | 64
1834 PPC | KVM_REG_PPC_FSCR | 64
1835 PPC | KVM_REG_PPC_PSPB | 32
1836 PPC | KVM_REG_PPC_EBBHR | 64
1837 PPC | KVM_REG_PPC_EBBRR | 64
1838 PPC | KVM_REG_PPC_BESCR | 64
1839 PPC | KVM_REG_PPC_TAR | 64
1840 PPC | KVM_REG_PPC_DPDES | 64
1841 PPC | KVM_REG_PPC_DAWR | 64
1842 PPC | KVM_REG_PPC_DAWRX | 64
1843 PPC | KVM_REG_PPC_CIABR | 64
1844 PPC | KVM_REG_PPC_IC | 64
1845 PPC | KVM_REG_PPC_VTB | 64
1846 PPC | KVM_REG_PPC_CSIGR | 64
1847 PPC | KVM_REG_PPC_TACR | 64
1848 PPC | KVM_REG_PPC_TCSCR | 64
1849 PPC | KVM_REG_PPC_PID | 64
1850 PPC | KVM_REG_PPC_ACOP | 64
c0867fd5 1851 PPC | KVM_REG_PPC_VRSAVE | 32
a0144e2a 1852 PPC | KVM_REG_PPC_LPCR | 64
4b8473c9 1853 PPC | KVM_REG_PPC_PPR | 64
388cc6e1 1854 PPC | KVM_REG_PPC_ARCH_COMPAT 32
8563bf52 1855 PPC | KVM_REG_PPC_DABRX | 32
3b783474
MN
1856 PPC | KVM_REG_PPC_TM_GPR0 | 64
1857 ...
1858 PPC | KVM_REG_PPC_TM_GPR31 | 64
1859 PPC | KVM_REG_PPC_TM_VSR0 | 128
1860 ...
1861 PPC | KVM_REG_PPC_TM_VSR63 | 128
1862 PPC | KVM_REG_PPC_TM_CR | 64
1863 PPC | KVM_REG_PPC_TM_LR | 64
1864 PPC | KVM_REG_PPC_TM_CTR | 64
1865 PPC | KVM_REG_PPC_TM_FPSCR | 64
1866 PPC | KVM_REG_PPC_TM_AMR | 64
1867 PPC | KVM_REG_PPC_TM_PPR | 64
1868 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1869 PPC | KVM_REG_PPC_TM_VSCR | 32
1870 PPC | KVM_REG_PPC_TM_DSCR | 64
1871 PPC | KVM_REG_PPC_TM_TAR | 64
414fa985 1872
749cf76c
CD
1873ARM registers are mapped using the lower 32 bits. The upper 16 of that
1874is the register group type, or coprocessor number:
1875
1876ARM core registers have the following id bit patterns:
aa404ddf 1877 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 1878
1138245c 1879ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 1880 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
1881
1882ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 1883 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 1884
c27581ed 1885ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 1886 0x4020 0000 0011 00 <csselr:8>
749cf76c 1887
4fe21e4c 1888ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 1889 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
1890
1891ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 1892 0x4030 0000 0012 0 <regno:12>
4fe21e4c 1893
379e04c7
MZ
1894
1895arm64 registers are mapped using the lower 32 bits. The upper 16 of
1896that is the register group type, or coprocessor number:
1897
1898arm64 core/FP-SIMD registers have the following id bit patterns. Note
1899that the size of the access is variable, as the kvm_regs structure
1900contains elements ranging from 32 to 128 bits. The index is a 32bit
1901value in the kvm_regs structure seen as a 32bit array.
1902 0x60x0 0000 0010 <index into the kvm_regs struct:16>
1903
1904arm64 CCSIDR registers are demultiplexed by CSSELR value:
1905 0x6020 0000 0011 00 <csselr:8>
1906
1907arm64 system registers have the following id bit patterns:
1908 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
1909
e24ed81f
AG
19104.69 KVM_GET_ONE_REG
1911
1912Capability: KVM_CAP_ONE_REG
1913Architectures: all
1914Type: vcpu ioctl
1915Parameters: struct kvm_one_reg (in and out)
1916Returns: 0 on success, negative value on failure
1917
1918This ioctl allows to receive the value of a single register implemented
1919in a vcpu. The register to read is indicated by the "id" field of the
1920kvm_one_reg struct passed in. On success, the register value can be found
1921at the memory location pointed to by "addr".
1922
1923The list of registers accessible using this interface is identical to the
2e232702 1924list in 4.68.
e24ed81f 1925
414fa985 1926
1c0b28c2
EM
19274.70 KVM_KVMCLOCK_CTRL
1928
1929Capability: KVM_CAP_KVMCLOCK_CTRL
1930Architectures: Any that implement pvclocks (currently x86 only)
1931Type: vcpu ioctl
1932Parameters: None
1933Returns: 0 on success, -1 on error
1934
1935This signals to the host kernel that the specified guest is being paused by
1936userspace. The host will set a flag in the pvclock structure that is checked
1937from the soft lockup watchdog. The flag is part of the pvclock structure that
1938is shared between guest and host, specifically the second bit of the flags
1939field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1940the host and read/cleared exclusively by the guest. The guest operation of
1941checking and clearing the flag must an atomic operation so
1942load-link/store-conditional, or equivalent must be used. There are two cases
1943where the guest will clear the flag: when the soft lockup watchdog timer resets
1944itself or when a soft lockup is detected. This ioctl can be called any time
1945after pausing the vcpu, but before it is resumed.
1946
414fa985 1947
07975ad3
JK
19484.71 KVM_SIGNAL_MSI
1949
1950Capability: KVM_CAP_SIGNAL_MSI
1951Architectures: x86
1952Type: vm ioctl
1953Parameters: struct kvm_msi (in)
1954Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1955
1956Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1957MSI messages.
1958
1959struct kvm_msi {
1960 __u32 address_lo;
1961 __u32 address_hi;
1962 __u32 data;
1963 __u32 flags;
1964 __u8 pad[16];
1965};
1966
1967No flags are defined so far. The corresponding field must be 0.
1968
414fa985 1969
0589ff6c
JK
19704.71 KVM_CREATE_PIT2
1971
1972Capability: KVM_CAP_PIT2
1973Architectures: x86
1974Type: vm ioctl
1975Parameters: struct kvm_pit_config (in)
1976Returns: 0 on success, -1 on error
1977
1978Creates an in-kernel device model for the i8254 PIT. This call is only valid
1979after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
1980parameters have to be passed:
1981
1982struct kvm_pit_config {
1983 __u32 flags;
1984 __u32 pad[15];
1985};
1986
1987Valid flags are:
1988
1989#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
1990
b6ddf05f
JK
1991PIT timer interrupts may use a per-VM kernel thread for injection. If it
1992exists, this thread will have a name of the following pattern:
1993
1994kvm-pit/<owner-process-pid>
1995
1996When running a guest with elevated priorities, the scheduling parameters of
1997this thread may have to be adjusted accordingly.
1998
0589ff6c
JK
1999This IOCTL replaces the obsolete KVM_CREATE_PIT.
2000
2001
20024.72 KVM_GET_PIT2
2003
2004Capability: KVM_CAP_PIT_STATE2
2005Architectures: x86
2006Type: vm ioctl
2007Parameters: struct kvm_pit_state2 (out)
2008Returns: 0 on success, -1 on error
2009
2010Retrieves the state of the in-kernel PIT model. Only valid after
2011KVM_CREATE_PIT2. The state is returned in the following structure:
2012
2013struct kvm_pit_state2 {
2014 struct kvm_pit_channel_state channels[3];
2015 __u32 flags;
2016 __u32 reserved[9];
2017};
2018
2019Valid flags are:
2020
2021/* disable PIT in HPET legacy mode */
2022#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2023
2024This IOCTL replaces the obsolete KVM_GET_PIT.
2025
2026
20274.73 KVM_SET_PIT2
2028
2029Capability: KVM_CAP_PIT_STATE2
2030Architectures: x86
2031Type: vm ioctl
2032Parameters: struct kvm_pit_state2 (in)
2033Returns: 0 on success, -1 on error
2034
2035Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2036See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2037
2038This IOCTL replaces the obsolete KVM_SET_PIT.
2039
2040
5b74716e
BH
20414.74 KVM_PPC_GET_SMMU_INFO
2042
2043Capability: KVM_CAP_PPC_GET_SMMU_INFO
2044Architectures: powerpc
2045Type: vm ioctl
2046Parameters: None
2047Returns: 0 on success, -1 on error
2048
2049This populates and returns a structure describing the features of
2050the "Server" class MMU emulation supported by KVM.
cc22c354 2051This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2052device-tree properties for the guest operating system.
2053
2054The structure contains some global informations, followed by an
2055array of supported segment page sizes:
2056
2057 struct kvm_ppc_smmu_info {
2058 __u64 flags;
2059 __u32 slb_size;
2060 __u32 pad;
2061 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2062 };
2063
2064The supported flags are:
2065
2066 - KVM_PPC_PAGE_SIZES_REAL:
2067 When that flag is set, guest page sizes must "fit" the backing
2068 store page sizes. When not set, any page size in the list can
2069 be used regardless of how they are backed by userspace.
2070
2071 - KVM_PPC_1T_SEGMENTS
2072 The emulated MMU supports 1T segments in addition to the
2073 standard 256M ones.
2074
2075The "slb_size" field indicates how many SLB entries are supported
2076
2077The "sps" array contains 8 entries indicating the supported base
2078page sizes for a segment in increasing order. Each entry is defined
2079as follow:
2080
2081 struct kvm_ppc_one_seg_page_size {
2082 __u32 page_shift; /* Base page shift of segment (or 0) */
2083 __u32 slb_enc; /* SLB encoding for BookS */
2084 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2085 };
2086
2087An entry with a "page_shift" of 0 is unused. Because the array is
2088organized in increasing order, a lookup can stop when encoutering
2089such an entry.
2090
2091The "slb_enc" field provides the encoding to use in the SLB for the
2092page size. The bits are in positions such as the value can directly
2093be OR'ed into the "vsid" argument of the slbmte instruction.
2094
2095The "enc" array is a list which for each of those segment base page
2096size provides the list of supported actual page sizes (which can be
2097only larger or equal to the base page size), along with the
f884ab15 2098corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
20998 entries sorted by increasing sizes and an entry with a "0" shift
2100is an empty entry and a terminator:
2101
2102 struct kvm_ppc_one_page_size {
2103 __u32 page_shift; /* Page shift (or 0) */
2104 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2105 };
2106
2107The "pte_enc" field provides a value that can OR'ed into the hash
2108PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2109into the hash PTE second double word).
2110
f36992e3
AW
21114.75 KVM_IRQFD
2112
2113Capability: KVM_CAP_IRQFD
2114Architectures: x86
2115Type: vm ioctl
2116Parameters: struct kvm_irqfd (in)
2117Returns: 0 on success, -1 on error
2118
2119Allows setting an eventfd to directly trigger a guest interrupt.
2120kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2121kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2122an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2123the guest using the specified gsi pin. The irqfd is removed using
2124the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2125and kvm_irqfd.gsi.
2126
7a84428a
AW
2127With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2128mechanism allowing emulation of level-triggered, irqfd-based
2129interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2130additional eventfd in the kvm_irqfd.resamplefd field. When operating
2131in resample mode, posting of an interrupt through kvm_irq.fd asserts
2132the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2133as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2134kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2135the interrupt if the device making use of it still requires service.
2136Note that closing the resamplefd is not sufficient to disable the
2137irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2138and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2139
5fecc9d8 21404.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2141
2142Capability: KVM_CAP_PPC_ALLOC_HTAB
2143Architectures: powerpc
2144Type: vm ioctl
2145Parameters: Pointer to u32 containing hash table order (in/out)
2146Returns: 0 on success, -1 on error
2147
2148This requests the host kernel to allocate an MMU hash table for a
2149guest using the PAPR paravirtualization interface. This only does
2150anything if the kernel is configured to use the Book 3S HV style of
2151virtualization. Otherwise the capability doesn't exist and the ioctl
2152returns an ENOTTY error. The rest of this description assumes Book 3S
2153HV.
2154
2155There must be no vcpus running when this ioctl is called; if there
2156are, it will do nothing and return an EBUSY error.
2157
2158The parameter is a pointer to a 32-bit unsigned integer variable
2159containing the order (log base 2) of the desired size of the hash
2160table, which must be between 18 and 46. On successful return from the
2161ioctl, it will have been updated with the order of the hash table that
2162was allocated.
2163
2164If no hash table has been allocated when any vcpu is asked to run
2165(with the KVM_RUN ioctl), the host kernel will allocate a
2166default-sized hash table (16 MB).
2167
2168If this ioctl is called when a hash table has already been allocated,
2169the kernel will clear out the existing hash table (zero all HPTEs) and
2170return the hash table order in the parameter. (If the guest is using
2171the virtualized real-mode area (VRMA) facility, the kernel will
2172re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2173
416ad65f
CH
21744.77 KVM_S390_INTERRUPT
2175
2176Capability: basic
2177Architectures: s390
2178Type: vm ioctl, vcpu ioctl
2179Parameters: struct kvm_s390_interrupt (in)
2180Returns: 0 on success, -1 on error
2181
2182Allows to inject an interrupt to the guest. Interrupts can be floating
2183(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2184
2185Interrupt parameters are passed via kvm_s390_interrupt:
2186
2187struct kvm_s390_interrupt {
2188 __u32 type;
2189 __u32 parm;
2190 __u64 parm64;
2191};
2192
2193type can be one of the following:
2194
2195KVM_S390_SIGP_STOP (vcpu) - sigp restart
2196KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2197KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2198KVM_S390_RESTART (vcpu) - restart
2199KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2200 parameters in parm and parm64
2201KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2202KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2203KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2204KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2205 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2206 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2207 interruption subclass)
48a3e950
CH
2208KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2209 machine check interrupt code in parm64 (note that
2210 machine checks needing further payload are not
2211 supported by this ioctl)
416ad65f
CH
2212
2213Note that the vcpu ioctl is asynchronous to vcpu execution.
2214
a2932923
PM
22154.78 KVM_PPC_GET_HTAB_FD
2216
2217Capability: KVM_CAP_PPC_HTAB_FD
2218Architectures: powerpc
2219Type: vm ioctl
2220Parameters: Pointer to struct kvm_get_htab_fd (in)
2221Returns: file descriptor number (>= 0) on success, -1 on error
2222
2223This returns a file descriptor that can be used either to read out the
2224entries in the guest's hashed page table (HPT), or to write entries to
2225initialize the HPT. The returned fd can only be written to if the
2226KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2227can only be read if that bit is clear. The argument struct looks like
2228this:
2229
2230/* For KVM_PPC_GET_HTAB_FD */
2231struct kvm_get_htab_fd {
2232 __u64 flags;
2233 __u64 start_index;
2234 __u64 reserved[2];
2235};
2236
2237/* Values for kvm_get_htab_fd.flags */
2238#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2239#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2240
2241The `start_index' field gives the index in the HPT of the entry at
2242which to start reading. It is ignored when writing.
2243
2244Reads on the fd will initially supply information about all
2245"interesting" HPT entries. Interesting entries are those with the
2246bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2247all entries. When the end of the HPT is reached, the read() will
2248return. If read() is called again on the fd, it will start again from
2249the beginning of the HPT, but will only return HPT entries that have
2250changed since they were last read.
2251
2252Data read or written is structured as a header (8 bytes) followed by a
2253series of valid HPT entries (16 bytes) each. The header indicates how
2254many valid HPT entries there are and how many invalid entries follow
2255the valid entries. The invalid entries are not represented explicitly
2256in the stream. The header format is:
2257
2258struct kvm_get_htab_header {
2259 __u32 index;
2260 __u16 n_valid;
2261 __u16 n_invalid;
2262};
2263
2264Writes to the fd create HPT entries starting at the index given in the
2265header; first `n_valid' valid entries with contents from the data
2266written, then `n_invalid' invalid entries, invalidating any previously
2267valid entries found.
2268
852b6d57
SW
22694.79 KVM_CREATE_DEVICE
2270
2271Capability: KVM_CAP_DEVICE_CTRL
2272Type: vm ioctl
2273Parameters: struct kvm_create_device (in/out)
2274Returns: 0 on success, -1 on error
2275Errors:
2276 ENODEV: The device type is unknown or unsupported
2277 EEXIST: Device already created, and this type of device may not
2278 be instantiated multiple times
2279
2280 Other error conditions may be defined by individual device types or
2281 have their standard meanings.
2282
2283Creates an emulated device in the kernel. The file descriptor returned
2284in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2285
2286If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2287device type is supported (not necessarily whether it can be created
2288in the current vm).
2289
2290Individual devices should not define flags. Attributes should be used
2291for specifying any behavior that is not implied by the device type
2292number.
2293
2294struct kvm_create_device {
2295 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2296 __u32 fd; /* out: device handle */
2297 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2298};
2299
23004.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2301
2302Capability: KVM_CAP_DEVICE_CTRL
2303Type: device ioctl
2304Parameters: struct kvm_device_attr
2305Returns: 0 on success, -1 on error
2306Errors:
2307 ENXIO: The group or attribute is unknown/unsupported for this device
2308 EPERM: The attribute cannot (currently) be accessed this way
2309 (e.g. read-only attribute, or attribute that only makes
2310 sense when the device is in a different state)
2311
2312 Other error conditions may be defined by individual device types.
2313
2314Gets/sets a specified piece of device configuration and/or state. The
2315semantics are device-specific. See individual device documentation in
2316the "devices" directory. As with ONE_REG, the size of the data
2317transferred is defined by the particular attribute.
2318
2319struct kvm_device_attr {
2320 __u32 flags; /* no flags currently defined */
2321 __u32 group; /* device-defined */
2322 __u64 attr; /* group-defined */
2323 __u64 addr; /* userspace address of attr data */
2324};
2325
23264.81 KVM_HAS_DEVICE_ATTR
2327
2328Capability: KVM_CAP_DEVICE_CTRL
2329Type: device ioctl
2330Parameters: struct kvm_device_attr
2331Returns: 0 on success, -1 on error
2332Errors:
2333 ENXIO: The group or attribute is unknown/unsupported for this device
2334
2335Tests whether a device supports a particular attribute. A successful
2336return indicates the attribute is implemented. It does not necessarily
2337indicate that the attribute can be read or written in the device's
2338current state. "addr" is ignored.
f36992e3 2339
d8968f1f 23404.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2341
2342Capability: basic
379e04c7 2343Architectures: arm, arm64
749cf76c 2344Type: vcpu ioctl
beb11fc7 2345Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2346Returns: 0 on success; -1 on error
2347Errors:
2348  EINVAL:    the target is unknown, or the combination of features is invalid.
2349  ENOENT:    a features bit specified is unknown.
2350
2351This tells KVM what type of CPU to present to the guest, and what
2352optional features it should have.  This will cause a reset of the cpu
2353registers to their initial values.  If this is not called, KVM_RUN will
2354return ENOEXEC for that vcpu.
2355
2356Note that because some registers reflect machine topology, all vcpus
2357should be created before this ioctl is invoked.
2358
aa024c2f
MZ
2359Possible features:
2360 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
2361 Depends on KVM_CAP_ARM_PSCI.
379e04c7
MZ
2362 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2363 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
aa024c2f 2364
749cf76c 2365
740edfc0
AP
23664.83 KVM_ARM_PREFERRED_TARGET
2367
2368Capability: basic
2369Architectures: arm, arm64
2370Type: vm ioctl
2371Parameters: struct struct kvm_vcpu_init (out)
2372Returns: 0 on success; -1 on error
2373Errors:
a7265fb1 2374 ENODEV: no preferred target available for the host
740edfc0
AP
2375
2376This queries KVM for preferred CPU target type which can be emulated
2377by KVM on underlying host.
2378
2379The ioctl returns struct kvm_vcpu_init instance containing information
2380about preferred CPU target type and recommended features for it. The
2381kvm_vcpu_init->features bitmap returned will have feature bits set if
2382the preferred target recommends setting these features, but this is
2383not mandatory.
2384
2385The information returned by this ioctl can be used to prepare an instance
2386of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2387in VCPU matching underlying host.
2388
2389
23904.84 KVM_GET_REG_LIST
749cf76c
CD
2391
2392Capability: basic
379e04c7 2393Architectures: arm, arm64
749cf76c
CD
2394Type: vcpu ioctl
2395Parameters: struct kvm_reg_list (in/out)
2396Returns: 0 on success; -1 on error
2397Errors:
2398  E2BIG:     the reg index list is too big to fit in the array specified by
2399             the user (the number required will be written into n).
2400
2401struct kvm_reg_list {
2402 __u64 n; /* number of registers in reg[] */
2403 __u64 reg[0];
2404};
2405
2406This ioctl returns the guest registers that are supported for the
2407KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2408
ce01e4e8
CD
2409
24104.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2411
2412Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2413Architectures: arm, arm64
3401d546
CD
2414Type: vm ioctl
2415Parameters: struct kvm_arm_device_address (in)
2416Returns: 0 on success, -1 on error
2417Errors:
2418 ENODEV: The device id is unknown
2419 ENXIO: Device not supported on current system
2420 EEXIST: Address already set
2421 E2BIG: Address outside guest physical address space
330690cd 2422 EBUSY: Address overlaps with other device range
3401d546
CD
2423
2424struct kvm_arm_device_addr {
2425 __u64 id;
2426 __u64 addr;
2427};
2428
2429Specify a device address in the guest's physical address space where guests
2430can access emulated or directly exposed devices, which the host kernel needs
2431to know about. The id field is an architecture specific identifier for a
2432specific device.
2433
379e04c7
MZ
2434ARM/arm64 divides the id field into two parts, a device id and an
2435address type id specific to the individual device.
3401d546
CD
2436
2437  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2438 field: | 0x00000000 | device id | addr type id |
2439
379e04c7
MZ
2440ARM/arm64 currently only require this when using the in-kernel GIC
2441support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2442as the device id. When setting the base address for the guest's
2443mapping of the VGIC virtual CPU and distributor interface, the ioctl
2444must be called after calling KVM_CREATE_IRQCHIP, but before calling
2445KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2446base addresses will return -EEXIST.
3401d546 2447
ce01e4e8
CD
2448Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2449should be used instead.
2450
2451
740edfc0 24524.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2453
2454Capability: KVM_CAP_PPC_RTAS
2455Architectures: ppc
2456Type: vm ioctl
2457Parameters: struct kvm_rtas_token_args
2458Returns: 0 on success, -1 on error
2459
2460Defines a token value for a RTAS (Run Time Abstraction Services)
2461service in order to allow it to be handled in the kernel. The
2462argument struct gives the name of the service, which must be the name
2463of a service that has a kernel-side implementation. If the token
2464value is non-zero, it will be associated with that service, and
2465subsequent RTAS calls by the guest specifying that token will be
2466handled by the kernel. If the token value is 0, then any token
2467associated with the service will be forgotten, and subsequent RTAS
2468calls by the guest for that service will be passed to userspace to be
2469handled.
2470
3401d546 2471
9c1b96e3 24725. The kvm_run structure
414fa985 2473------------------------
9c1b96e3
AK
2474
2475Application code obtains a pointer to the kvm_run structure by
2476mmap()ing a vcpu fd. From that point, application code can control
2477execution by changing fields in kvm_run prior to calling the KVM_RUN
2478ioctl, and obtain information about the reason KVM_RUN returned by
2479looking up structure members.
2480
2481struct kvm_run {
2482 /* in */
2483 __u8 request_interrupt_window;
2484
2485Request that KVM_RUN return when it becomes possible to inject external
2486interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2487
2488 __u8 padding1[7];
2489
2490 /* out */
2491 __u32 exit_reason;
2492
2493When KVM_RUN has returned successfully (return value 0), this informs
2494application code why KVM_RUN has returned. Allowable values for this
2495field are detailed below.
2496
2497 __u8 ready_for_interrupt_injection;
2498
2499If request_interrupt_window has been specified, this field indicates
2500an interrupt can be injected now with KVM_INTERRUPT.
2501
2502 __u8 if_flag;
2503
2504The value of the current interrupt flag. Only valid if in-kernel
2505local APIC is not used.
2506
2507 __u8 padding2[2];
2508
2509 /* in (pre_kvm_run), out (post_kvm_run) */
2510 __u64 cr8;
2511
2512The value of the cr8 register. Only valid if in-kernel local APIC is
2513not used. Both input and output.
2514
2515 __u64 apic_base;
2516
2517The value of the APIC BASE msr. Only valid if in-kernel local
2518APIC is not used. Both input and output.
2519
2520 union {
2521 /* KVM_EXIT_UNKNOWN */
2522 struct {
2523 __u64 hardware_exit_reason;
2524 } hw;
2525
2526If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2527reasons. Further architecture-specific information is available in
2528hardware_exit_reason.
2529
2530 /* KVM_EXIT_FAIL_ENTRY */
2531 struct {
2532 __u64 hardware_entry_failure_reason;
2533 } fail_entry;
2534
2535If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2536to unknown reasons. Further architecture-specific information is
2537available in hardware_entry_failure_reason.
2538
2539 /* KVM_EXIT_EXCEPTION */
2540 struct {
2541 __u32 exception;
2542 __u32 error_code;
2543 } ex;
2544
2545Unused.
2546
2547 /* KVM_EXIT_IO */
2548 struct {
2549#define KVM_EXIT_IO_IN 0
2550#define KVM_EXIT_IO_OUT 1
2551 __u8 direction;
2552 __u8 size; /* bytes */
2553 __u16 port;
2554 __u32 count;
2555 __u64 data_offset; /* relative to kvm_run start */
2556 } io;
2557
2044892d 2558If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2559executed a port I/O instruction which could not be satisfied by kvm.
2560data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2561where kvm expects application code to place the data for the next
2044892d 2562KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2563
2564 struct {
2565 struct kvm_debug_exit_arch arch;
2566 } debug;
2567
2568Unused.
2569
2570 /* KVM_EXIT_MMIO */
2571 struct {
2572 __u64 phys_addr;
2573 __u8 data[8];
2574 __u32 len;
2575 __u8 is_write;
2576 } mmio;
2577
2044892d 2578If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2579executed a memory-mapped I/O instruction which could not be satisfied
2580by kvm. The 'data' member contains the written data if 'is_write' is
2581true, and should be filled by application code otherwise.
2582
1c810636
AG
2583NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR,
2584 KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding
ad0a048b
AG
2585operations are complete (and guest state is consistent) only after userspace
2586has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2587incomplete operations and then check for pending signals. Userspace
2588can re-enter the guest with an unmasked signal pending to complete
2589pending operations.
2590
9c1b96e3
AK
2591 /* KVM_EXIT_HYPERCALL */
2592 struct {
2593 __u64 nr;
2594 __u64 args[6];
2595 __u64 ret;
2596 __u32 longmode;
2597 __u32 pad;
2598 } hypercall;
2599
647dc49e
AK
2600Unused. This was once used for 'hypercall to userspace'. To implement
2601such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2602Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2603
2604 /* KVM_EXIT_TPR_ACCESS */
2605 struct {
2606 __u64 rip;
2607 __u32 is_write;
2608 __u32 pad;
2609 } tpr_access;
2610
2611To be documented (KVM_TPR_ACCESS_REPORTING).
2612
2613 /* KVM_EXIT_S390_SIEIC */
2614 struct {
2615 __u8 icptcode;
2616 __u64 mask; /* psw upper half */
2617 __u64 addr; /* psw lower half */
2618 __u16 ipa;
2619 __u32 ipb;
2620 } s390_sieic;
2621
2622s390 specific.
2623
2624 /* KVM_EXIT_S390_RESET */
2625#define KVM_S390_RESET_POR 1
2626#define KVM_S390_RESET_CLEAR 2
2627#define KVM_S390_RESET_SUBSYSTEM 4
2628#define KVM_S390_RESET_CPU_INIT 8
2629#define KVM_S390_RESET_IPL 16
2630 __u64 s390_reset_flags;
2631
2632s390 specific.
2633
e168bf8d
CO
2634 /* KVM_EXIT_S390_UCONTROL */
2635 struct {
2636 __u64 trans_exc_code;
2637 __u32 pgm_code;
2638 } s390_ucontrol;
2639
2640s390 specific. A page fault has occurred for a user controlled virtual
2641machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2642resolved by the kernel.
2643The program code and the translation exception code that were placed
2644in the cpu's lowcore are presented here as defined by the z Architecture
2645Principles of Operation Book in the Chapter for Dynamic Address Translation
2646(DAT)
2647
9c1b96e3
AK
2648 /* KVM_EXIT_DCR */
2649 struct {
2650 __u32 dcrn;
2651 __u32 data;
2652 __u8 is_write;
2653 } dcr;
2654
2655powerpc specific.
2656
ad0a048b
AG
2657 /* KVM_EXIT_OSI */
2658 struct {
2659 __u64 gprs[32];
2660 } osi;
2661
2662MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2663hypercalls and exit with this exit struct that contains all the guest gprs.
2664
2665If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2666Userspace can now handle the hypercall and when it's done modify the gprs as
2667necessary. Upon guest entry all guest GPRs will then be replaced by the values
2668in this struct.
2669
de56a948
PM
2670 /* KVM_EXIT_PAPR_HCALL */
2671 struct {
2672 __u64 nr;
2673 __u64 ret;
2674 __u64 args[9];
2675 } papr_hcall;
2676
2677This is used on 64-bit PowerPC when emulating a pSeries partition,
2678e.g. with the 'pseries' machine type in qemu. It occurs when the
2679guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2680contains the hypercall number (from the guest R3), and 'args' contains
2681the arguments (from the guest R4 - R12). Userspace should put the
2682return code in 'ret' and any extra returned values in args[].
2683The possible hypercalls are defined in the Power Architecture Platform
2684Requirements (PAPR) document available from www.power.org (free
2685developer registration required to access it).
2686
fa6b7fe9
CH
2687 /* KVM_EXIT_S390_TSCH */
2688 struct {
2689 __u16 subchannel_id;
2690 __u16 subchannel_nr;
2691 __u32 io_int_parm;
2692 __u32 io_int_word;
2693 __u32 ipb;
2694 __u8 dequeued;
2695 } s390_tsch;
2696
2697s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
2698and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
2699interrupt for the target subchannel has been dequeued and subchannel_id,
2700subchannel_nr, io_int_parm and io_int_word contain the parameters for that
2701interrupt. ipb is needed for instruction parameter decoding.
2702
1c810636
AG
2703 /* KVM_EXIT_EPR */
2704 struct {
2705 __u32 epr;
2706 } epr;
2707
2708On FSL BookE PowerPC chips, the interrupt controller has a fast patch
2709interrupt acknowledge path to the core. When the core successfully
2710delivers an interrupt, it automatically populates the EPR register with
2711the interrupt vector number and acknowledges the interrupt inside
2712the interrupt controller.
2713
2714In case the interrupt controller lives in user space, we need to do
2715the interrupt acknowledge cycle through it to fetch the next to be
2716delivered interrupt vector using this exit.
2717
2718It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
2719external interrupt has just been delivered into the guest. User space
2720should put the acknowledged interrupt vector into the 'epr' field.
2721
9c1b96e3
AK
2722 /* Fix the size of the union. */
2723 char padding[256];
2724 };
b9e5dc8d
CB
2725
2726 /*
2727 * shared registers between kvm and userspace.
2728 * kvm_valid_regs specifies the register classes set by the host
2729 * kvm_dirty_regs specified the register classes dirtied by userspace
2730 * struct kvm_sync_regs is architecture specific, as well as the
2731 * bits for kvm_valid_regs and kvm_dirty_regs
2732 */
2733 __u64 kvm_valid_regs;
2734 __u64 kvm_dirty_regs;
2735 union {
2736 struct kvm_sync_regs regs;
2737 char padding[1024];
2738 } s;
2739
2740If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2741certain guest registers without having to call SET/GET_*REGS. Thus we can
2742avoid some system call overhead if userspace has to handle the exit.
2743Userspace can query the validity of the structure by checking
2744kvm_valid_regs for specific bits. These bits are architecture specific
2745and usually define the validity of a groups of registers. (e.g. one bit
2746 for general purpose registers)
2747
9c1b96e3 2748};
821246a5 2749
414fa985 2750
9c15bb1d
BP
27514.81 KVM_GET_EMULATED_CPUID
2752
2753Capability: KVM_CAP_EXT_EMUL_CPUID
2754Architectures: x86
2755Type: system ioctl
2756Parameters: struct kvm_cpuid2 (in/out)
2757Returns: 0 on success, -1 on error
2758
2759struct kvm_cpuid2 {
2760 __u32 nent;
2761 __u32 flags;
2762 struct kvm_cpuid_entry2 entries[0];
2763};
2764
2765The member 'flags' is used for passing flags from userspace.
2766
2767#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2768#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2769#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2770
2771struct kvm_cpuid_entry2 {
2772 __u32 function;
2773 __u32 index;
2774 __u32 flags;
2775 __u32 eax;
2776 __u32 ebx;
2777 __u32 ecx;
2778 __u32 edx;
2779 __u32 padding[3];
2780};
2781
2782This ioctl returns x86 cpuid features which are emulated by
2783kvm.Userspace can use the information returned by this ioctl to query
2784which features are emulated by kvm instead of being present natively.
2785
2786Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2787structure with the 'nent' field indicating the number of entries in
2788the variable-size array 'entries'. If the number of entries is too low
2789to describe the cpu capabilities, an error (E2BIG) is returned. If the
2790number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2791is returned. If the number is just right, the 'nent' field is adjusted
2792to the number of valid entries in the 'entries' array, which is then
2793filled.
2794
2795The entries returned are the set CPUID bits of the respective features
2796which kvm emulates, as returned by the CPUID instruction, with unknown
2797or unsupported feature bits cleared.
2798
2799Features like x2apic, for example, may not be present in the host cpu
2800but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2801emulated efficiently and thus not included here.
2802
2803The fields in each entry are defined as follows:
2804
2805 function: the eax value used to obtain the entry
2806 index: the ecx value used to obtain the entry (for entries that are
2807 affected by ecx)
2808 flags: an OR of zero or more of the following:
2809 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2810 if the index field is valid
2811 KVM_CPUID_FLAG_STATEFUL_FUNC:
2812 if cpuid for this function returns different values for successive
2813 invocations; there will be several entries with the same function,
2814 all with this flag set
2815 KVM_CPUID_FLAG_STATE_READ_NEXT:
2816 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2817 the first entry to be read by a cpu
2818 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2819 this function/index combination
2820
2821
821246a5 28226. Capabilities that can be enabled
414fa985 2823-----------------------------------
821246a5
AG
2824
2825There are certain capabilities that change the behavior of the virtual CPU when
2826enabled. To enable them, please see section 4.37. Below you can find a list of
2827capabilities and what their effect on the vCPU is when enabling them.
2828
2829The following information is provided along with the description:
2830
2831 Architectures: which instruction set architectures provide this ioctl.
2832 x86 includes both i386 and x86_64.
2833
2834 Parameters: what parameters are accepted by the capability.
2835
2836 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2837 are not detailed, but errors with specific meanings are.
2838
414fa985 2839
821246a5
AG
28406.1 KVM_CAP_PPC_OSI
2841
2842Architectures: ppc
2843Parameters: none
2844Returns: 0 on success; -1 on error
2845
2846This capability enables interception of OSI hypercalls that otherwise would
2847be treated as normal system calls to be injected into the guest. OSI hypercalls
2848were invented by Mac-on-Linux to have a standardized communication mechanism
2849between the guest and the host.
2850
2851When this capability is enabled, KVM_EXIT_OSI can occur.
2852
414fa985 2853
821246a5
AG
28546.2 KVM_CAP_PPC_PAPR
2855
2856Architectures: ppc
2857Parameters: none
2858Returns: 0 on success; -1 on error
2859
2860This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2861done using the hypercall instruction "sc 1".
2862
2863It also sets the guest privilege level to "supervisor" mode. Usually the guest
2864runs in "hypervisor" privilege mode with a few missing features.
2865
2866In addition to the above, it changes the semantics of SDR1. In this mode, the
2867HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2868HTAB invisible to the guest.
2869
2870When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 2871
414fa985 2872
dc83b8bc
SW
28736.3 KVM_CAP_SW_TLB
2874
2875Architectures: ppc
2876Parameters: args[0] is the address of a struct kvm_config_tlb
2877Returns: 0 on success; -1 on error
2878
2879struct kvm_config_tlb {
2880 __u64 params;
2881 __u64 array;
2882 __u32 mmu_type;
2883 __u32 array_len;
2884};
2885
2886Configures the virtual CPU's TLB array, establishing a shared memory area
2887between userspace and KVM. The "params" and "array" fields are userspace
2888addresses of mmu-type-specific data structures. The "array_len" field is an
2889safety mechanism, and should be set to the size in bytes of the memory that
2890userspace has reserved for the array. It must be at least the size dictated
2891by "mmu_type" and "params".
2892
2893While KVM_RUN is active, the shared region is under control of KVM. Its
2894contents are undefined, and any modification by userspace results in
2895boundedly undefined behavior.
2896
2897On return from KVM_RUN, the shared region will reflect the current state of
2898the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2899to tell KVM which entries have been changed, prior to calling KVM_RUN again
2900on this vcpu.
2901
2902For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2903 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2904 - The "array" field points to an array of type "struct
2905 kvm_book3e_206_tlb_entry".
2906 - The array consists of all entries in the first TLB, followed by all
2907 entries in the second TLB.
2908 - Within a TLB, entries are ordered first by increasing set number. Within a
2909 set, entries are ordered by way (increasing ESEL).
2910 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2911 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2912 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2913 hardware ignores this value for TLB0.
fa6b7fe9
CH
2914
29156.4 KVM_CAP_S390_CSS_SUPPORT
2916
2917Architectures: s390
2918Parameters: none
2919Returns: 0 on success; -1 on error
2920
2921This capability enables support for handling of channel I/O instructions.
2922
2923TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
2924handled in-kernel, while the other I/O instructions are passed to userspace.
2925
2926When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
2927SUBCHANNEL intercepts.
1c810636
AG
2928
29296.5 KVM_CAP_PPC_EPR
2930
2931Architectures: ppc
2932Parameters: args[0] defines whether the proxy facility is active
2933Returns: 0 on success; -1 on error
2934
2935This capability enables or disables the delivery of interrupts through the
2936external proxy facility.
2937
2938When enabled (args[0] != 0), every time the guest gets an external interrupt
2939delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
2940to receive the topmost interrupt vector.
2941
2942When disabled (args[0] == 0), behavior is as if this facility is unsupported.
2943
2944When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
2945
29466.6 KVM_CAP_IRQ_MPIC
2947
2948Architectures: ppc
2949Parameters: args[0] is the MPIC device fd
2950 args[1] is the MPIC CPU number for this vcpu
2951
2952This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
2953
29546.7 KVM_CAP_IRQ_XICS
2955
2956Architectures: ppc
2957Parameters: args[0] is the XICS device fd
2958 args[1] is the XICS CPU number (server ID) for this vcpu
2959
2960This capability connects the vcpu to an in-kernel XICS device.