KVM: ia64: remove
[linux-2.6-block.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
7f05db6a 71 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
9c1b96e3 72 means availability needs to be checked with KVM_CHECK_EXTENSION
7f05db6a
MT
73 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
9c1b96e3
AK
77
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
414fa985 88
9c1b96e3
AK
894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
414fa985 104
9c1b96e3
AK
1054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
e08b9637 110Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
111Returns: a VM fd that can be used to control the new virtual machine.
112
113The new VM has no virtual cpus and no memory. An mmap() of a VM fd
114will access the virtual machine's physical address space; offset zero
115corresponds to guest physical address zero. Use of mmap() on a VM fd
116is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117available.
e08b9637
CO
118You most certainly want to use 0 as machine type.
119
120In order to create user controlled virtual machines on S390, check
121KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122privileged user (CAP_SYS_ADMIN).
9c1b96e3 123
414fa985 124
9c1b96e3
AK
1254.3 KVM_GET_MSR_INDEX_LIST
126
127Capability: basic
128Architectures: x86
129Type: system
130Parameters: struct kvm_msr_list (in/out)
131Returns: 0 on success; -1 on error
132Errors:
133 E2BIG: the msr index list is to be to fit in the array specified by
134 the user.
135
136struct kvm_msr_list {
137 __u32 nmsrs; /* number of msrs in entries */
138 __u32 indices[0];
139};
140
141This ioctl returns the guest msrs that are supported. The list varies
142by kvm version and host processor, but does not change otherwise. The
143user fills in the size of the indices array in nmsrs, and in return
144kvm adjusts nmsrs to reflect the actual number of msrs and fills in
145the indices array with their numbers.
146
2e2602ca
AK
147Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
148not returned in the MSR list, as different vcpus can have a different number
149of banks, as set via the KVM_X86_SETUP_MCE ioctl.
150
414fa985 151
9c1b96e3
AK
1524.4 KVM_CHECK_EXTENSION
153
92b591a4 154Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 155Architectures: all
92b591a4 156Type: system ioctl, vm ioctl
9c1b96e3
AK
157Parameters: extension identifier (KVM_CAP_*)
158Returns: 0 if unsupported; 1 (or some other positive integer) if supported
159
160The API allows the application to query about extensions to the core
161kvm API. Userspace passes an extension identifier (an integer) and
162receives an integer that describes the extension availability.
163Generally 0 means no and 1 means yes, but some extensions may report
164additional information in the integer return value.
165
92b591a4
AG
166Based on their initialization different VMs may have different capabilities.
167It is thus encouraged to use the vm ioctl to query for capabilities (available
168with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 169
9c1b96e3
AK
1704.5 KVM_GET_VCPU_MMAP_SIZE
171
172Capability: basic
173Architectures: all
174Type: system ioctl
175Parameters: none
176Returns: size of vcpu mmap area, in bytes
177
178The KVM_RUN ioctl (cf.) communicates with userspace via a shared
179memory region. This ioctl returns the size of that region. See the
180KVM_RUN documentation for details.
181
414fa985 182
9c1b96e3
AK
1834.6 KVM_SET_MEMORY_REGION
184
185Capability: basic
186Architectures: all
187Type: vm ioctl
188Parameters: struct kvm_memory_region (in)
189Returns: 0 on success, -1 on error
190
b74a07be 191This ioctl is obsolete and has been removed.
9c1b96e3 192
414fa985 193
68ba6974 1944.7 KVM_CREATE_VCPU
9c1b96e3
AK
195
196Capability: basic
197Architectures: all
198Type: vm ioctl
199Parameters: vcpu id (apic id on x86)
200Returns: vcpu fd on success, -1 on error
201
202This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
203in the range [0, max_vcpus).
204
205The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
206the KVM_CHECK_EXTENSION ioctl() at run-time.
207The maximum possible value for max_vcpus can be retrieved using the
208KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
209
76d25402
PE
210If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
211cpus max.
8c3ba334
SL
212If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
213same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 214
371fefd6
PM
215On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
216threads in one or more virtual CPU cores. (This is because the
217hardware requires all the hardware threads in a CPU core to be in the
218same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
219of vcpus per virtual core (vcore). The vcore id is obtained by
220dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
221given vcore will always be in the same physical core as each other
222(though that might be a different physical core from time to time).
223Userspace can control the threading (SMT) mode of the guest by its
224allocation of vcpu ids. For example, if userspace wants
225single-threaded guest vcpus, it should make all vcpu ids be a multiple
226of the number of vcpus per vcore.
227
5b1c1493
CO
228For virtual cpus that have been created with S390 user controlled virtual
229machines, the resulting vcpu fd can be memory mapped at page offset
230KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
231cpu's hardware control block.
232
414fa985 233
68ba6974 2344.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
235
236Capability: basic
237Architectures: x86
238Type: vm ioctl
239Parameters: struct kvm_dirty_log (in/out)
240Returns: 0 on success, -1 on error
241
242/* for KVM_GET_DIRTY_LOG */
243struct kvm_dirty_log {
244 __u32 slot;
245 __u32 padding;
246 union {
247 void __user *dirty_bitmap; /* one bit per page */
248 __u64 padding;
249 };
250};
251
252Given a memory slot, return a bitmap containing any pages dirtied
253since the last call to this ioctl. Bit 0 is the first page in the
254memory slot. Ensure the entire structure is cleared to avoid padding
255issues.
256
414fa985 257
68ba6974 2584.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
259
260Capability: basic
261Architectures: x86
262Type: vm ioctl
263Parameters: struct kvm_memory_alias (in)
264Returns: 0 (success), -1 (error)
265
a1f4d395 266This ioctl is obsolete and has been removed.
9c1b96e3 267
414fa985 268
68ba6974 2694.10 KVM_RUN
9c1b96e3
AK
270
271Capability: basic
272Architectures: all
273Type: vcpu ioctl
274Parameters: none
275Returns: 0 on success, -1 on error
276Errors:
277 EINTR: an unmasked signal is pending
278
279This ioctl is used to run a guest virtual cpu. While there are no
280explicit parameters, there is an implicit parameter block that can be
281obtained by mmap()ing the vcpu fd at offset 0, with the size given by
282KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
283kvm_run' (see below).
284
414fa985 285
68ba6974 2864.11 KVM_GET_REGS
9c1b96e3
AK
287
288Capability: basic
379e04c7 289Architectures: all except ARM, arm64
9c1b96e3
AK
290Type: vcpu ioctl
291Parameters: struct kvm_regs (out)
292Returns: 0 on success, -1 on error
293
294Reads the general purpose registers from the vcpu.
295
296/* x86 */
297struct kvm_regs {
298 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
299 __u64 rax, rbx, rcx, rdx;
300 __u64 rsi, rdi, rsp, rbp;
301 __u64 r8, r9, r10, r11;
302 __u64 r12, r13, r14, r15;
303 __u64 rip, rflags;
304};
305
c2d2c21b
JH
306/* mips */
307struct kvm_regs {
308 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
309 __u64 gpr[32];
310 __u64 hi;
311 __u64 lo;
312 __u64 pc;
313};
314
414fa985 315
68ba6974 3164.12 KVM_SET_REGS
9c1b96e3
AK
317
318Capability: basic
379e04c7 319Architectures: all except ARM, arm64
9c1b96e3
AK
320Type: vcpu ioctl
321Parameters: struct kvm_regs (in)
322Returns: 0 on success, -1 on error
323
324Writes the general purpose registers into the vcpu.
325
326See KVM_GET_REGS for the data structure.
327
414fa985 328
68ba6974 3294.13 KVM_GET_SREGS
9c1b96e3
AK
330
331Capability: basic
5ce941ee 332Architectures: x86, ppc
9c1b96e3
AK
333Type: vcpu ioctl
334Parameters: struct kvm_sregs (out)
335Returns: 0 on success, -1 on error
336
337Reads special registers from the vcpu.
338
339/* x86 */
340struct kvm_sregs {
341 struct kvm_segment cs, ds, es, fs, gs, ss;
342 struct kvm_segment tr, ldt;
343 struct kvm_dtable gdt, idt;
344 __u64 cr0, cr2, cr3, cr4, cr8;
345 __u64 efer;
346 __u64 apic_base;
347 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
348};
349
68e2ffed 350/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 351
9c1b96e3
AK
352interrupt_bitmap is a bitmap of pending external interrupts. At most
353one bit may be set. This interrupt has been acknowledged by the APIC
354but not yet injected into the cpu core.
355
414fa985 356
68ba6974 3574.14 KVM_SET_SREGS
9c1b96e3
AK
358
359Capability: basic
5ce941ee 360Architectures: x86, ppc
9c1b96e3
AK
361Type: vcpu ioctl
362Parameters: struct kvm_sregs (in)
363Returns: 0 on success, -1 on error
364
365Writes special registers into the vcpu. See KVM_GET_SREGS for the
366data structures.
367
414fa985 368
68ba6974 3694.15 KVM_TRANSLATE
9c1b96e3
AK
370
371Capability: basic
372Architectures: x86
373Type: vcpu ioctl
374Parameters: struct kvm_translation (in/out)
375Returns: 0 on success, -1 on error
376
377Translates a virtual address according to the vcpu's current address
378translation mode.
379
380struct kvm_translation {
381 /* in */
382 __u64 linear_address;
383
384 /* out */
385 __u64 physical_address;
386 __u8 valid;
387 __u8 writeable;
388 __u8 usermode;
389 __u8 pad[5];
390};
391
414fa985 392
68ba6974 3934.16 KVM_INTERRUPT
9c1b96e3
AK
394
395Capability: basic
c2d2c21b 396Architectures: x86, ppc, mips
9c1b96e3
AK
397Type: vcpu ioctl
398Parameters: struct kvm_interrupt (in)
399Returns: 0 on success, -1 on error
400
401Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 402useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
403
404/* for KVM_INTERRUPT */
405struct kvm_interrupt {
406 /* in */
407 __u32 irq;
408};
409
6f7a2bd4
AG
410X86:
411
9c1b96e3
AK
412Note 'irq' is an interrupt vector, not an interrupt pin or line.
413
6f7a2bd4
AG
414PPC:
415
416Queues an external interrupt to be injected. This ioctl is overleaded
417with 3 different irq values:
418
419a) KVM_INTERRUPT_SET
420
421 This injects an edge type external interrupt into the guest once it's ready
422 to receive interrupts. When injected, the interrupt is done.
423
424b) KVM_INTERRUPT_UNSET
425
426 This unsets any pending interrupt.
427
428 Only available with KVM_CAP_PPC_UNSET_IRQ.
429
430c) KVM_INTERRUPT_SET_LEVEL
431
432 This injects a level type external interrupt into the guest context. The
433 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
434 is triggered.
435
436 Only available with KVM_CAP_PPC_IRQ_LEVEL.
437
438Note that any value for 'irq' other than the ones stated above is invalid
439and incurs unexpected behavior.
440
c2d2c21b
JH
441MIPS:
442
443Queues an external interrupt to be injected into the virtual CPU. A negative
444interrupt number dequeues the interrupt.
445
414fa985 446
68ba6974 4474.17 KVM_DEBUG_GUEST
9c1b96e3
AK
448
449Capability: basic
450Architectures: none
451Type: vcpu ioctl
452Parameters: none)
453Returns: -1 on error
454
455Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
456
414fa985 457
68ba6974 4584.18 KVM_GET_MSRS
9c1b96e3
AK
459
460Capability: basic
461Architectures: x86
462Type: vcpu ioctl
463Parameters: struct kvm_msrs (in/out)
464Returns: 0 on success, -1 on error
465
466Reads model-specific registers from the vcpu. Supported msr indices can
467be obtained using KVM_GET_MSR_INDEX_LIST.
468
469struct kvm_msrs {
470 __u32 nmsrs; /* number of msrs in entries */
471 __u32 pad;
472
473 struct kvm_msr_entry entries[0];
474};
475
476struct kvm_msr_entry {
477 __u32 index;
478 __u32 reserved;
479 __u64 data;
480};
481
482Application code should set the 'nmsrs' member (which indicates the
483size of the entries array) and the 'index' member of each array entry.
484kvm will fill in the 'data' member.
485
414fa985 486
68ba6974 4874.19 KVM_SET_MSRS
9c1b96e3
AK
488
489Capability: basic
490Architectures: x86
491Type: vcpu ioctl
492Parameters: struct kvm_msrs (in)
493Returns: 0 on success, -1 on error
494
495Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
496data structures.
497
498Application code should set the 'nmsrs' member (which indicates the
499size of the entries array), and the 'index' and 'data' members of each
500array entry.
501
414fa985 502
68ba6974 5034.20 KVM_SET_CPUID
9c1b96e3
AK
504
505Capability: basic
506Architectures: x86
507Type: vcpu ioctl
508Parameters: struct kvm_cpuid (in)
509Returns: 0 on success, -1 on error
510
511Defines the vcpu responses to the cpuid instruction. Applications
512should use the KVM_SET_CPUID2 ioctl if available.
513
514
515struct kvm_cpuid_entry {
516 __u32 function;
517 __u32 eax;
518 __u32 ebx;
519 __u32 ecx;
520 __u32 edx;
521 __u32 padding;
522};
523
524/* for KVM_SET_CPUID */
525struct kvm_cpuid {
526 __u32 nent;
527 __u32 padding;
528 struct kvm_cpuid_entry entries[0];
529};
530
414fa985 531
68ba6974 5324.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
533
534Capability: basic
572e0929 535Architectures: all
9c1b96e3
AK
536Type: vcpu ioctl
537Parameters: struct kvm_signal_mask (in)
538Returns: 0 on success, -1 on error
539
540Defines which signals are blocked during execution of KVM_RUN. This
541signal mask temporarily overrides the threads signal mask. Any
542unblocked signal received (except SIGKILL and SIGSTOP, which retain
543their traditional behaviour) will cause KVM_RUN to return with -EINTR.
544
545Note the signal will only be delivered if not blocked by the original
546signal mask.
547
548/* for KVM_SET_SIGNAL_MASK */
549struct kvm_signal_mask {
550 __u32 len;
551 __u8 sigset[0];
552};
553
414fa985 554
68ba6974 5554.22 KVM_GET_FPU
9c1b96e3
AK
556
557Capability: basic
558Architectures: x86
559Type: vcpu ioctl
560Parameters: struct kvm_fpu (out)
561Returns: 0 on success, -1 on error
562
563Reads the floating point state from the vcpu.
564
565/* for KVM_GET_FPU and KVM_SET_FPU */
566struct kvm_fpu {
567 __u8 fpr[8][16];
568 __u16 fcw;
569 __u16 fsw;
570 __u8 ftwx; /* in fxsave format */
571 __u8 pad1;
572 __u16 last_opcode;
573 __u64 last_ip;
574 __u64 last_dp;
575 __u8 xmm[16][16];
576 __u32 mxcsr;
577 __u32 pad2;
578};
579
414fa985 580
68ba6974 5814.23 KVM_SET_FPU
9c1b96e3
AK
582
583Capability: basic
584Architectures: x86
585Type: vcpu ioctl
586Parameters: struct kvm_fpu (in)
587Returns: 0 on success, -1 on error
588
589Writes the floating point state to the vcpu.
590
591/* for KVM_GET_FPU and KVM_SET_FPU */
592struct kvm_fpu {
593 __u8 fpr[8][16];
594 __u16 fcw;
595 __u16 fsw;
596 __u8 ftwx; /* in fxsave format */
597 __u8 pad1;
598 __u16 last_opcode;
599 __u64 last_ip;
600 __u64 last_dp;
601 __u8 xmm[16][16];
602 __u32 mxcsr;
603 __u32 pad2;
604};
605
414fa985 606
68ba6974 6074.24 KVM_CREATE_IRQCHIP
5dadbfd6 608
84223598
CH
609Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
610Architectures: x86, ia64, ARM, arm64, s390
5dadbfd6
AK
611Type: vm ioctl
612Parameters: none
613Returns: 0 on success, -1 on error
614
615Creates an interrupt controller model in the kernel. On x86, creates a virtual
616ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
617local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
379e04c7 618only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM/arm64, a GIC is
84223598
CH
619created. On s390, a dummy irq routing table is created.
620
621Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
622before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 623
414fa985 624
68ba6974 6254.25 KVM_IRQ_LINE
5dadbfd6
AK
626
627Capability: KVM_CAP_IRQCHIP
379e04c7 628Architectures: x86, ia64, arm, arm64
5dadbfd6
AK
629Type: vm ioctl
630Parameters: struct kvm_irq_level
631Returns: 0 on success, -1 on error
632
633Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
634On some architectures it is required that an interrupt controller model has
635been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
636interrupts require the level to be set to 1 and then back to 0.
637
100943c5
GS
638On real hardware, interrupt pins can be active-low or active-high. This
639does not matter for the level field of struct kvm_irq_level: 1 always
640means active (asserted), 0 means inactive (deasserted).
641
642x86 allows the operating system to program the interrupt polarity
643(active-low/active-high) for level-triggered interrupts, and KVM used
644to consider the polarity. However, due to bitrot in the handling of
645active-low interrupts, the above convention is now valid on x86 too.
646This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
647should not present interrupts to the guest as active-low unless this
648capability is present (or unless it is not using the in-kernel irqchip,
649of course).
650
651
379e04c7
MZ
652ARM/arm64 can signal an interrupt either at the CPU level, or at the
653in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
654use PPIs designated for specific cpus. The irq field is interpreted
655like this:
86ce8535
CD
656
657  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
658 field: | irq_type | vcpu_index | irq_id |
659
660The irq_type field has the following values:
661- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
662- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
663 (the vcpu_index field is ignored)
664- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
665
666(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
667
100943c5 668In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
669
670struct kvm_irq_level {
671 union {
672 __u32 irq; /* GSI */
673 __s32 status; /* not used for KVM_IRQ_LEVEL */
674 };
675 __u32 level; /* 0 or 1 */
676};
677
414fa985 678
68ba6974 6794.26 KVM_GET_IRQCHIP
5dadbfd6
AK
680
681Capability: KVM_CAP_IRQCHIP
682Architectures: x86, ia64
683Type: vm ioctl
684Parameters: struct kvm_irqchip (in/out)
685Returns: 0 on success, -1 on error
686
687Reads the state of a kernel interrupt controller created with
688KVM_CREATE_IRQCHIP into a buffer provided by the caller.
689
690struct kvm_irqchip {
691 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
692 __u32 pad;
693 union {
694 char dummy[512]; /* reserving space */
695 struct kvm_pic_state pic;
696 struct kvm_ioapic_state ioapic;
697 } chip;
698};
699
414fa985 700
68ba6974 7014.27 KVM_SET_IRQCHIP
5dadbfd6
AK
702
703Capability: KVM_CAP_IRQCHIP
704Architectures: x86, ia64
705Type: vm ioctl
706Parameters: struct kvm_irqchip (in)
707Returns: 0 on success, -1 on error
708
709Sets the state of a kernel interrupt controller created with
710KVM_CREATE_IRQCHIP from a buffer provided by the caller.
711
712struct kvm_irqchip {
713 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
714 __u32 pad;
715 union {
716 char dummy[512]; /* reserving space */
717 struct kvm_pic_state pic;
718 struct kvm_ioapic_state ioapic;
719 } chip;
720};
721
414fa985 722
68ba6974 7234.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
724
725Capability: KVM_CAP_XEN_HVM
726Architectures: x86
727Type: vm ioctl
728Parameters: struct kvm_xen_hvm_config (in)
729Returns: 0 on success, -1 on error
730
731Sets the MSR that the Xen HVM guest uses to initialize its hypercall
732page, and provides the starting address and size of the hypercall
733blobs in userspace. When the guest writes the MSR, kvm copies one
734page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
735memory.
736
737struct kvm_xen_hvm_config {
738 __u32 flags;
739 __u32 msr;
740 __u64 blob_addr_32;
741 __u64 blob_addr_64;
742 __u8 blob_size_32;
743 __u8 blob_size_64;
744 __u8 pad2[30];
745};
746
414fa985 747
68ba6974 7484.29 KVM_GET_CLOCK
afbcf7ab
GC
749
750Capability: KVM_CAP_ADJUST_CLOCK
751Architectures: x86
752Type: vm ioctl
753Parameters: struct kvm_clock_data (out)
754Returns: 0 on success, -1 on error
755
756Gets the current timestamp of kvmclock as seen by the current guest. In
757conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
758such as migration.
759
760struct kvm_clock_data {
761 __u64 clock; /* kvmclock current value */
762 __u32 flags;
763 __u32 pad[9];
764};
765
414fa985 766
68ba6974 7674.30 KVM_SET_CLOCK
afbcf7ab
GC
768
769Capability: KVM_CAP_ADJUST_CLOCK
770Architectures: x86
771Type: vm ioctl
772Parameters: struct kvm_clock_data (in)
773Returns: 0 on success, -1 on error
774
2044892d 775Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
776In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
777such as migration.
778
779struct kvm_clock_data {
780 __u64 clock; /* kvmclock current value */
781 __u32 flags;
782 __u32 pad[9];
783};
784
414fa985 785
68ba6974 7864.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
787
788Capability: KVM_CAP_VCPU_EVENTS
48005f64 789Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
790Architectures: x86
791Type: vm ioctl
792Parameters: struct kvm_vcpu_event (out)
793Returns: 0 on success, -1 on error
794
795Gets currently pending exceptions, interrupts, and NMIs as well as related
796states of the vcpu.
797
798struct kvm_vcpu_events {
799 struct {
800 __u8 injected;
801 __u8 nr;
802 __u8 has_error_code;
803 __u8 pad;
804 __u32 error_code;
805 } exception;
806 struct {
807 __u8 injected;
808 __u8 nr;
809 __u8 soft;
48005f64 810 __u8 shadow;
3cfc3092
JK
811 } interrupt;
812 struct {
813 __u8 injected;
814 __u8 pending;
815 __u8 masked;
816 __u8 pad;
817 } nmi;
818 __u32 sipi_vector;
dab4b911 819 __u32 flags;
3cfc3092
JK
820};
821
48005f64
JK
822KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
823interrupt.shadow contains a valid state. Otherwise, this field is undefined.
824
414fa985 825
68ba6974 8264.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
827
828Capability: KVM_CAP_VCPU_EVENTS
48005f64 829Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
830Architectures: x86
831Type: vm ioctl
832Parameters: struct kvm_vcpu_event (in)
833Returns: 0 on success, -1 on error
834
835Set pending exceptions, interrupts, and NMIs as well as related states of the
836vcpu.
837
838See KVM_GET_VCPU_EVENTS for the data structure.
839
dab4b911
JK
840Fields that may be modified asynchronously by running VCPUs can be excluded
841from the update. These fields are nmi.pending and sipi_vector. Keep the
842corresponding bits in the flags field cleared to suppress overwriting the
843current in-kernel state. The bits are:
844
845KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
846KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
847
48005f64
JK
848If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
849the flags field to signal that interrupt.shadow contains a valid state and
850shall be written into the VCPU.
851
414fa985 852
68ba6974 8534.33 KVM_GET_DEBUGREGS
a1efbe77
JK
854
855Capability: KVM_CAP_DEBUGREGS
856Architectures: x86
857Type: vm ioctl
858Parameters: struct kvm_debugregs (out)
859Returns: 0 on success, -1 on error
860
861Reads debug registers from the vcpu.
862
863struct kvm_debugregs {
864 __u64 db[4];
865 __u64 dr6;
866 __u64 dr7;
867 __u64 flags;
868 __u64 reserved[9];
869};
870
414fa985 871
68ba6974 8724.34 KVM_SET_DEBUGREGS
a1efbe77
JK
873
874Capability: KVM_CAP_DEBUGREGS
875Architectures: x86
876Type: vm ioctl
877Parameters: struct kvm_debugregs (in)
878Returns: 0 on success, -1 on error
879
880Writes debug registers into the vcpu.
881
882See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
883yet and must be cleared on entry.
884
414fa985 885
68ba6974 8864.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
887
888Capability: KVM_CAP_USER_MEM
889Architectures: all
890Type: vm ioctl
891Parameters: struct kvm_userspace_memory_region (in)
892Returns: 0 on success, -1 on error
893
894struct kvm_userspace_memory_region {
895 __u32 slot;
896 __u32 flags;
897 __u64 guest_phys_addr;
898 __u64 memory_size; /* bytes */
899 __u64 userspace_addr; /* start of the userspace allocated memory */
900};
901
902/* for kvm_memory_region::flags */
4d8b81ab
XG
903#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
904#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
905
906This ioctl allows the user to create or modify a guest physical memory
907slot. When changing an existing slot, it may be moved in the guest
908physical memory space, or its flags may be modified. It may not be
909resized. Slots may not overlap in guest physical address space.
910
911Memory for the region is taken starting at the address denoted by the
912field userspace_addr, which must point at user addressable memory for
913the entire memory slot size. Any object may back this memory, including
914anonymous memory, ordinary files, and hugetlbfs.
915
916It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
917be identical. This allows large pages in the guest to be backed by large
918pages in the host.
919
75d61fbc
TY
920The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
921KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
922writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
923use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
924to make a new slot read-only. In this case, writes to this memory will be
925posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
926
927When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
928the memory region are automatically reflected into the guest. For example, an
929mmap() that affects the region will be made visible immediately. Another
930example is madvise(MADV_DROP).
0f2d8f4d
AK
931
932It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
933The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
934allocation and is deprecated.
3cfc3092 935
414fa985 936
68ba6974 9374.36 KVM_SET_TSS_ADDR
8a5416db
AK
938
939Capability: KVM_CAP_SET_TSS_ADDR
940Architectures: x86
941Type: vm ioctl
942Parameters: unsigned long tss_address (in)
943Returns: 0 on success, -1 on error
944
945This ioctl defines the physical address of a three-page region in the guest
946physical address space. The region must be within the first 4GB of the
947guest physical address space and must not conflict with any memory slot
948or any mmio address. The guest may malfunction if it accesses this memory
949region.
950
951This ioctl is required on Intel-based hosts. This is needed on Intel hardware
952because of a quirk in the virtualization implementation (see the internals
953documentation when it pops into existence).
954
414fa985 955
68ba6974 9564.37 KVM_ENABLE_CAP
71fbfd5f 957
d938dc55 958Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
d6712df9 959Architectures: ppc, s390
d938dc55 960Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
961Parameters: struct kvm_enable_cap (in)
962Returns: 0 on success; -1 on error
963
964+Not all extensions are enabled by default. Using this ioctl the application
965can enable an extension, making it available to the guest.
966
967On systems that do not support this ioctl, it always fails. On systems that
968do support it, it only works for extensions that are supported for enablement.
969
970To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
971be used.
972
973struct kvm_enable_cap {
974 /* in */
975 __u32 cap;
976
977The capability that is supposed to get enabled.
978
979 __u32 flags;
980
981A bitfield indicating future enhancements. Has to be 0 for now.
982
983 __u64 args[4];
984
985Arguments for enabling a feature. If a feature needs initial values to
986function properly, this is the place to put them.
987
988 __u8 pad[64];
989};
990
d938dc55
CH
991The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
992for vm-wide capabilities.
414fa985 993
68ba6974 9944.38 KVM_GET_MP_STATE
b843f065
AK
995
996Capability: KVM_CAP_MP_STATE
6352e4d2 997Architectures: x86, ia64, s390
b843f065
AK
998Type: vcpu ioctl
999Parameters: struct kvm_mp_state (out)
1000Returns: 0 on success; -1 on error
1001
1002struct kvm_mp_state {
1003 __u32 mp_state;
1004};
1005
1006Returns the vcpu's current "multiprocessing state" (though also valid on
1007uniprocessor guests).
1008
1009Possible values are:
1010
0b4820d6 1011 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86, ia64]
b843f065 1012 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
0b4820d6
DH
1013 which has not yet received an INIT signal [x86,
1014 ia64]
b843f065 1015 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
0b4820d6 1016 now ready for a SIPI [x86, ia64]
b843f065 1017 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
0b4820d6 1018 is waiting for an interrupt [x86, ia64]
b843f065 1019 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
0b4820d6 1020 accessible via KVM_GET_VCPU_EVENTS) [x86, ia64]
6352e4d2
DH
1021 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390]
1022 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1023 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1024 [s390]
1025 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1026 [s390]
b843f065 1027
0b4820d6
DH
1028On x86 and ia64, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
1029in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1030these architectures.
b843f065 1031
414fa985 1032
68ba6974 10334.39 KVM_SET_MP_STATE
b843f065
AK
1034
1035Capability: KVM_CAP_MP_STATE
6352e4d2 1036Architectures: x86, ia64, s390
b843f065
AK
1037Type: vcpu ioctl
1038Parameters: struct kvm_mp_state (in)
1039Returns: 0 on success; -1 on error
1040
1041Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1042arguments.
1043
0b4820d6
DH
1044On x86 and ia64, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
1045in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1046these architectures.
b843f065 1047
414fa985 1048
68ba6974 10494.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1050
1051Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1052Architectures: x86
1053Type: vm ioctl
1054Parameters: unsigned long identity (in)
1055Returns: 0 on success, -1 on error
1056
1057This ioctl defines the physical address of a one-page region in the guest
1058physical address space. The region must be within the first 4GB of the
1059guest physical address space and must not conflict with any memory slot
1060or any mmio address. The guest may malfunction if it accesses this memory
1061region.
1062
1063This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1064because of a quirk in the virtualization implementation (see the internals
1065documentation when it pops into existence).
1066
414fa985 1067
68ba6974 10684.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1069
1070Capability: KVM_CAP_SET_BOOT_CPU_ID
1071Architectures: x86, ia64
1072Type: vm ioctl
1073Parameters: unsigned long vcpu_id
1074Returns: 0 on success, -1 on error
1075
1076Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1077as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1078is vcpu 0.
1079
414fa985 1080
68ba6974 10814.42 KVM_GET_XSAVE
2d5b5a66
SY
1082
1083Capability: KVM_CAP_XSAVE
1084Architectures: x86
1085Type: vcpu ioctl
1086Parameters: struct kvm_xsave (out)
1087Returns: 0 on success, -1 on error
1088
1089struct kvm_xsave {
1090 __u32 region[1024];
1091};
1092
1093This ioctl would copy current vcpu's xsave struct to the userspace.
1094
414fa985 1095
68ba6974 10964.43 KVM_SET_XSAVE
2d5b5a66
SY
1097
1098Capability: KVM_CAP_XSAVE
1099Architectures: x86
1100Type: vcpu ioctl
1101Parameters: struct kvm_xsave (in)
1102Returns: 0 on success, -1 on error
1103
1104struct kvm_xsave {
1105 __u32 region[1024];
1106};
1107
1108This ioctl would copy userspace's xsave struct to the kernel.
1109
414fa985 1110
68ba6974 11114.44 KVM_GET_XCRS
2d5b5a66
SY
1112
1113Capability: KVM_CAP_XCRS
1114Architectures: x86
1115Type: vcpu ioctl
1116Parameters: struct kvm_xcrs (out)
1117Returns: 0 on success, -1 on error
1118
1119struct kvm_xcr {
1120 __u32 xcr;
1121 __u32 reserved;
1122 __u64 value;
1123};
1124
1125struct kvm_xcrs {
1126 __u32 nr_xcrs;
1127 __u32 flags;
1128 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1129 __u64 padding[16];
1130};
1131
1132This ioctl would copy current vcpu's xcrs to the userspace.
1133
414fa985 1134
68ba6974 11354.45 KVM_SET_XCRS
2d5b5a66
SY
1136
1137Capability: KVM_CAP_XCRS
1138Architectures: x86
1139Type: vcpu ioctl
1140Parameters: struct kvm_xcrs (in)
1141Returns: 0 on success, -1 on error
1142
1143struct kvm_xcr {
1144 __u32 xcr;
1145 __u32 reserved;
1146 __u64 value;
1147};
1148
1149struct kvm_xcrs {
1150 __u32 nr_xcrs;
1151 __u32 flags;
1152 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1153 __u64 padding[16];
1154};
1155
1156This ioctl would set vcpu's xcr to the value userspace specified.
1157
414fa985 1158
68ba6974 11594.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1160
1161Capability: KVM_CAP_EXT_CPUID
1162Architectures: x86
1163Type: system ioctl
1164Parameters: struct kvm_cpuid2 (in/out)
1165Returns: 0 on success, -1 on error
1166
1167struct kvm_cpuid2 {
1168 __u32 nent;
1169 __u32 padding;
1170 struct kvm_cpuid_entry2 entries[0];
1171};
1172
9c15bb1d
BP
1173#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1174#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1175#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1176
1177struct kvm_cpuid_entry2 {
1178 __u32 function;
1179 __u32 index;
1180 __u32 flags;
1181 __u32 eax;
1182 __u32 ebx;
1183 __u32 ecx;
1184 __u32 edx;
1185 __u32 padding[3];
1186};
1187
1188This ioctl returns x86 cpuid features which are supported by both the hardware
1189and kvm. Userspace can use the information returned by this ioctl to
1190construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1191hardware, kernel, and userspace capabilities, and with user requirements (for
1192example, the user may wish to constrain cpuid to emulate older hardware,
1193or for feature consistency across a cluster).
1194
1195Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1196with the 'nent' field indicating the number of entries in the variable-size
1197array 'entries'. If the number of entries is too low to describe the cpu
1198capabilities, an error (E2BIG) is returned. If the number is too high,
1199the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1200number is just right, the 'nent' field is adjusted to the number of valid
1201entries in the 'entries' array, which is then filled.
1202
1203The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1204with unknown or unsupported features masked out. Some features (for example,
1205x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1206emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1207
1208 function: the eax value used to obtain the entry
1209 index: the ecx value used to obtain the entry (for entries that are
1210 affected by ecx)
1211 flags: an OR of zero or more of the following:
1212 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1213 if the index field is valid
1214 KVM_CPUID_FLAG_STATEFUL_FUNC:
1215 if cpuid for this function returns different values for successive
1216 invocations; there will be several entries with the same function,
1217 all with this flag set
1218 KVM_CPUID_FLAG_STATE_READ_NEXT:
1219 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1220 the first entry to be read by a cpu
1221 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1222 this function/index combination
1223
4d25a066
JK
1224The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1225as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1226support. Instead it is reported via
1227
1228 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1229
1230if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1231feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1232
414fa985 1233
68ba6974 12344.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1235
1236Capability: KVM_CAP_PPC_GET_PVINFO
1237Architectures: ppc
1238Type: vm ioctl
1239Parameters: struct kvm_ppc_pvinfo (out)
1240Returns: 0 on success, !0 on error
1241
1242struct kvm_ppc_pvinfo {
1243 __u32 flags;
1244 __u32 hcall[4];
1245 __u8 pad[108];
1246};
1247
1248This ioctl fetches PV specific information that need to be passed to the guest
1249using the device tree or other means from vm context.
1250
9202e076 1251The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1252
1253If any additional field gets added to this structure later on, a bit for that
1254additional piece of information will be set in the flags bitmap.
1255
9202e076
LYB
1256The flags bitmap is defined as:
1257
1258 /* the host supports the ePAPR idle hcall
1259 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1260
68ba6974 12614.48 KVM_ASSIGN_PCI_DEVICE
49f48172 1262
7f05db6a 1263Capability: none
49f48172
JK
1264Architectures: x86 ia64
1265Type: vm ioctl
1266Parameters: struct kvm_assigned_pci_dev (in)
1267Returns: 0 on success, -1 on error
1268
1269Assigns a host PCI device to the VM.
1270
1271struct kvm_assigned_pci_dev {
1272 __u32 assigned_dev_id;
1273 __u32 busnr;
1274 __u32 devfn;
1275 __u32 flags;
1276 __u32 segnr;
1277 union {
1278 __u32 reserved[11];
1279 };
1280};
1281
1282The PCI device is specified by the triple segnr, busnr, and devfn.
1283Identification in succeeding service requests is done via assigned_dev_id. The
1284following flags are specified:
1285
1286/* Depends on KVM_CAP_IOMMU */
1287#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1288/* The following two depend on KVM_CAP_PCI_2_3 */
1289#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1290#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1291
1292If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1293via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1294assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1295guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1296
42387373
AW
1297The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1298isolation of the device. Usages not specifying this flag are deprecated.
1299
3d27e23b
AW
1300Only PCI header type 0 devices with PCI BAR resources are supported by
1301device assignment. The user requesting this ioctl must have read/write
1302access to the PCI sysfs resource files associated with the device.
1303
7f05db6a
MT
1304Errors:
1305 ENOTTY: kernel does not support this ioctl
1306
1307 Other error conditions may be defined by individual device types or
1308 have their standard meanings.
1309
414fa985 1310
68ba6974 13114.49 KVM_DEASSIGN_PCI_DEVICE
49f48172 1312
7f05db6a 1313Capability: none
49f48172
JK
1314Architectures: x86 ia64
1315Type: vm ioctl
1316Parameters: struct kvm_assigned_pci_dev (in)
1317Returns: 0 on success, -1 on error
1318
1319Ends PCI device assignment, releasing all associated resources.
1320
7f05db6a 1321See KVM_ASSIGN_PCI_DEVICE for the data structure. Only assigned_dev_id is
49f48172
JK
1322used in kvm_assigned_pci_dev to identify the device.
1323
7f05db6a
MT
1324Errors:
1325 ENOTTY: kernel does not support this ioctl
1326
1327 Other error conditions may be defined by individual device types or
1328 have their standard meanings.
414fa985 1329
68ba6974 13304.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1331
1332Capability: KVM_CAP_ASSIGN_DEV_IRQ
1333Architectures: x86 ia64
1334Type: vm ioctl
1335Parameters: struct kvm_assigned_irq (in)
1336Returns: 0 on success, -1 on error
1337
1338Assigns an IRQ to a passed-through device.
1339
1340struct kvm_assigned_irq {
1341 __u32 assigned_dev_id;
91e3d71d 1342 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1343 __u32 guest_irq;
1344 __u32 flags;
1345 union {
49f48172
JK
1346 __u32 reserved[12];
1347 };
1348};
1349
1350The following flags are defined:
1351
1352#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1353#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1354#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1355
1356#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1357#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1358#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1359
1360It is not valid to specify multiple types per host or guest IRQ. However, the
1361IRQ type of host and guest can differ or can even be null.
1362
7f05db6a
MT
1363Errors:
1364 ENOTTY: kernel does not support this ioctl
1365
1366 Other error conditions may be defined by individual device types or
1367 have their standard meanings.
1368
414fa985 1369
68ba6974 13704.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1371
1372Capability: KVM_CAP_ASSIGN_DEV_IRQ
1373Architectures: x86 ia64
1374Type: vm ioctl
1375Parameters: struct kvm_assigned_irq (in)
1376Returns: 0 on success, -1 on error
1377
1378Ends an IRQ assignment to a passed-through device.
1379
1380See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1381by assigned_dev_id, flags must correspond to the IRQ type specified on
1382KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1383
414fa985 1384
68ba6974 13854.52 KVM_SET_GSI_ROUTING
49f48172
JK
1386
1387Capability: KVM_CAP_IRQ_ROUTING
84223598 1388Architectures: x86 ia64 s390
49f48172
JK
1389Type: vm ioctl
1390Parameters: struct kvm_irq_routing (in)
1391Returns: 0 on success, -1 on error
1392
1393Sets the GSI routing table entries, overwriting any previously set entries.
1394
1395struct kvm_irq_routing {
1396 __u32 nr;
1397 __u32 flags;
1398 struct kvm_irq_routing_entry entries[0];
1399};
1400
1401No flags are specified so far, the corresponding field must be set to zero.
1402
1403struct kvm_irq_routing_entry {
1404 __u32 gsi;
1405 __u32 type;
1406 __u32 flags;
1407 __u32 pad;
1408 union {
1409 struct kvm_irq_routing_irqchip irqchip;
1410 struct kvm_irq_routing_msi msi;
84223598 1411 struct kvm_irq_routing_s390_adapter adapter;
49f48172
JK
1412 __u32 pad[8];
1413 } u;
1414};
1415
1416/* gsi routing entry types */
1417#define KVM_IRQ_ROUTING_IRQCHIP 1
1418#define KVM_IRQ_ROUTING_MSI 2
84223598 1419#define KVM_IRQ_ROUTING_S390_ADAPTER 3
49f48172
JK
1420
1421No flags are specified so far, the corresponding field must be set to zero.
1422
1423struct kvm_irq_routing_irqchip {
1424 __u32 irqchip;
1425 __u32 pin;
1426};
1427
1428struct kvm_irq_routing_msi {
1429 __u32 address_lo;
1430 __u32 address_hi;
1431 __u32 data;
1432 __u32 pad;
1433};
1434
84223598
CH
1435struct kvm_irq_routing_s390_adapter {
1436 __u64 ind_addr;
1437 __u64 summary_addr;
1438 __u64 ind_offset;
1439 __u32 summary_offset;
1440 __u32 adapter_id;
1441};
1442
414fa985 1443
68ba6974 14444.53 KVM_ASSIGN_SET_MSIX_NR
49f48172 1445
7f05db6a 1446Capability: none
49f48172
JK
1447Architectures: x86 ia64
1448Type: vm ioctl
1449Parameters: struct kvm_assigned_msix_nr (in)
1450Returns: 0 on success, -1 on error
1451
58f0964e
JK
1452Set the number of MSI-X interrupts for an assigned device. The number is
1453reset again by terminating the MSI-X assignment of the device via
1454KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1455point will fail.
49f48172
JK
1456
1457struct kvm_assigned_msix_nr {
1458 __u32 assigned_dev_id;
1459 __u16 entry_nr;
1460 __u16 padding;
1461};
1462
1463#define KVM_MAX_MSIX_PER_DEV 256
1464
414fa985 1465
68ba6974 14664.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172 1467
7f05db6a 1468Capability: none
49f48172
JK
1469Architectures: x86 ia64
1470Type: vm ioctl
1471Parameters: struct kvm_assigned_msix_entry (in)
1472Returns: 0 on success, -1 on error
1473
1474Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1475the GSI vector to zero means disabling the interrupt.
1476
1477struct kvm_assigned_msix_entry {
1478 __u32 assigned_dev_id;
1479 __u32 gsi;
1480 __u16 entry; /* The index of entry in the MSI-X table */
1481 __u16 padding[3];
1482};
1483
7f05db6a
MT
1484Errors:
1485 ENOTTY: kernel does not support this ioctl
1486
1487 Other error conditions may be defined by individual device types or
1488 have their standard meanings.
1489
414fa985
JK
1490
14914.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1492
1493Capability: KVM_CAP_TSC_CONTROL
1494Architectures: x86
1495Type: vcpu ioctl
1496Parameters: virtual tsc_khz
1497Returns: 0 on success, -1 on error
1498
1499Specifies the tsc frequency for the virtual machine. The unit of the
1500frequency is KHz.
1501
414fa985
JK
1502
15034.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1504
1505Capability: KVM_CAP_GET_TSC_KHZ
1506Architectures: x86
1507Type: vcpu ioctl
1508Parameters: none
1509Returns: virtual tsc-khz on success, negative value on error
1510
1511Returns the tsc frequency of the guest. The unit of the return value is
1512KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1513error.
1514
414fa985
JK
1515
15164.57 KVM_GET_LAPIC
e7677933
AK
1517
1518Capability: KVM_CAP_IRQCHIP
1519Architectures: x86
1520Type: vcpu ioctl
1521Parameters: struct kvm_lapic_state (out)
1522Returns: 0 on success, -1 on error
1523
1524#define KVM_APIC_REG_SIZE 0x400
1525struct kvm_lapic_state {
1526 char regs[KVM_APIC_REG_SIZE];
1527};
1528
1529Reads the Local APIC registers and copies them into the input argument. The
1530data format and layout are the same as documented in the architecture manual.
1531
414fa985
JK
1532
15334.58 KVM_SET_LAPIC
e7677933
AK
1534
1535Capability: KVM_CAP_IRQCHIP
1536Architectures: x86
1537Type: vcpu ioctl
1538Parameters: struct kvm_lapic_state (in)
1539Returns: 0 on success, -1 on error
1540
1541#define KVM_APIC_REG_SIZE 0x400
1542struct kvm_lapic_state {
1543 char regs[KVM_APIC_REG_SIZE];
1544};
1545
df5cbb27 1546Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1547and layout are the same as documented in the architecture manual.
1548
414fa985
JK
1549
15504.59 KVM_IOEVENTFD
55399a02
SL
1551
1552Capability: KVM_CAP_IOEVENTFD
1553Architectures: all
1554Type: vm ioctl
1555Parameters: struct kvm_ioeventfd (in)
1556Returns: 0 on success, !0 on error
1557
1558This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1559within the guest. A guest write in the registered address will signal the
1560provided event instead of triggering an exit.
1561
1562struct kvm_ioeventfd {
1563 __u64 datamatch;
1564 __u64 addr; /* legal pio/mmio address */
1565 __u32 len; /* 1, 2, 4, or 8 bytes */
1566 __s32 fd;
1567 __u32 flags;
1568 __u8 pad[36];
1569};
1570
2b83451b
CH
1571For the special case of virtio-ccw devices on s390, the ioevent is matched
1572to a subchannel/virtqueue tuple instead.
1573
55399a02
SL
1574The following flags are defined:
1575
1576#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1577#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1578#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1579#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1580 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1581
1582If datamatch flag is set, the event will be signaled only if the written value
1583to the registered address is equal to datamatch in struct kvm_ioeventfd.
1584
2b83451b
CH
1585For virtio-ccw devices, addr contains the subchannel id and datamatch the
1586virtqueue index.
1587
414fa985
JK
1588
15894.60 KVM_DIRTY_TLB
dc83b8bc
SW
1590
1591Capability: KVM_CAP_SW_TLB
1592Architectures: ppc
1593Type: vcpu ioctl
1594Parameters: struct kvm_dirty_tlb (in)
1595Returns: 0 on success, -1 on error
1596
1597struct kvm_dirty_tlb {
1598 __u64 bitmap;
1599 __u32 num_dirty;
1600};
1601
1602This must be called whenever userspace has changed an entry in the shared
1603TLB, prior to calling KVM_RUN on the associated vcpu.
1604
1605The "bitmap" field is the userspace address of an array. This array
1606consists of a number of bits, equal to the total number of TLB entries as
1607determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1608nearest multiple of 64.
1609
1610Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1611array.
1612
1613The array is little-endian: the bit 0 is the least significant bit of the
1614first byte, bit 8 is the least significant bit of the second byte, etc.
1615This avoids any complications with differing word sizes.
1616
1617The "num_dirty" field is a performance hint for KVM to determine whether it
1618should skip processing the bitmap and just invalidate everything. It must
1619be set to the number of set bits in the bitmap.
1620
414fa985
JK
1621
16224.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1623
1624Capability: KVM_CAP_PCI_2_3
1625Architectures: x86
1626Type: vm ioctl
1627Parameters: struct kvm_assigned_pci_dev (in)
1628Returns: 0 on success, -1 on error
1629
1630Allows userspace to mask PCI INTx interrupts from the assigned device. The
1631kernel will not deliver INTx interrupts to the guest between setting and
1632clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1633and emulation of PCI 2.3 INTx disable command register behavior.
1634
1635This may be used for both PCI 2.3 devices supporting INTx disable natively and
1636older devices lacking this support. Userspace is responsible for emulating the
1637read value of the INTx disable bit in the guest visible PCI command register.
1638When modifying the INTx disable state, userspace should precede updating the
1639physical device command register by calling this ioctl to inform the kernel of
1640the new intended INTx mask state.
1641
1642Note that the kernel uses the device INTx disable bit to internally manage the
1643device interrupt state for PCI 2.3 devices. Reads of this register may
1644therefore not match the expected value. Writes should always use the guest
1645intended INTx disable value rather than attempting to read-copy-update the
1646current physical device state. Races between user and kernel updates to the
1647INTx disable bit are handled lazily in the kernel. It's possible the device
1648may generate unintended interrupts, but they will not be injected into the
1649guest.
1650
1651See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1652by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1653evaluated.
1654
414fa985 1655
54738c09
DG
16564.62 KVM_CREATE_SPAPR_TCE
1657
1658Capability: KVM_CAP_SPAPR_TCE
1659Architectures: powerpc
1660Type: vm ioctl
1661Parameters: struct kvm_create_spapr_tce (in)
1662Returns: file descriptor for manipulating the created TCE table
1663
1664This creates a virtual TCE (translation control entry) table, which
1665is an IOMMU for PAPR-style virtual I/O. It is used to translate
1666logical addresses used in virtual I/O into guest physical addresses,
1667and provides a scatter/gather capability for PAPR virtual I/O.
1668
1669/* for KVM_CAP_SPAPR_TCE */
1670struct kvm_create_spapr_tce {
1671 __u64 liobn;
1672 __u32 window_size;
1673};
1674
1675The liobn field gives the logical IO bus number for which to create a
1676TCE table. The window_size field specifies the size of the DMA window
1677which this TCE table will translate - the table will contain one 64
1678bit TCE entry for every 4kiB of the DMA window.
1679
1680When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1681table has been created using this ioctl(), the kernel will handle it
1682in real mode, updating the TCE table. H_PUT_TCE calls for other
1683liobns will cause a vm exit and must be handled by userspace.
1684
1685The return value is a file descriptor which can be passed to mmap(2)
1686to map the created TCE table into userspace. This lets userspace read
1687the entries written by kernel-handled H_PUT_TCE calls, and also lets
1688userspace update the TCE table directly which is useful in some
1689circumstances.
1690
414fa985 1691
aa04b4cc
PM
16924.63 KVM_ALLOCATE_RMA
1693
1694Capability: KVM_CAP_PPC_RMA
1695Architectures: powerpc
1696Type: vm ioctl
1697Parameters: struct kvm_allocate_rma (out)
1698Returns: file descriptor for mapping the allocated RMA
1699
1700This allocates a Real Mode Area (RMA) from the pool allocated at boot
1701time by the kernel. An RMA is a physically-contiguous, aligned region
1702of memory used on older POWER processors to provide the memory which
1703will be accessed by real-mode (MMU off) accesses in a KVM guest.
1704POWER processors support a set of sizes for the RMA that usually
1705includes 64MB, 128MB, 256MB and some larger powers of two.
1706
1707/* for KVM_ALLOCATE_RMA */
1708struct kvm_allocate_rma {
1709 __u64 rma_size;
1710};
1711
1712The return value is a file descriptor which can be passed to mmap(2)
1713to map the allocated RMA into userspace. The mapped area can then be
1714passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1715RMA for a virtual machine. The size of the RMA in bytes (which is
1716fixed at host kernel boot time) is returned in the rma_size field of
1717the argument structure.
1718
1719The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1720is supported; 2 if the processor requires all virtual machines to have
1721an RMA, or 1 if the processor can use an RMA but doesn't require it,
1722because it supports the Virtual RMA (VRMA) facility.
1723
414fa985 1724
3f745f1e
AK
17254.64 KVM_NMI
1726
1727Capability: KVM_CAP_USER_NMI
1728Architectures: x86
1729Type: vcpu ioctl
1730Parameters: none
1731Returns: 0 on success, -1 on error
1732
1733Queues an NMI on the thread's vcpu. Note this is well defined only
1734when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1735between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1736has been called, this interface is completely emulated within the kernel.
1737
1738To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1739following algorithm:
1740
1741 - pause the vpcu
1742 - read the local APIC's state (KVM_GET_LAPIC)
1743 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1744 - if so, issue KVM_NMI
1745 - resume the vcpu
1746
1747Some guests configure the LINT1 NMI input to cause a panic, aiding in
1748debugging.
1749
414fa985 1750
e24ed81f 17514.65 KVM_S390_UCAS_MAP
27e0393f
CO
1752
1753Capability: KVM_CAP_S390_UCONTROL
1754Architectures: s390
1755Type: vcpu ioctl
1756Parameters: struct kvm_s390_ucas_mapping (in)
1757Returns: 0 in case of success
1758
1759The parameter is defined like this:
1760 struct kvm_s390_ucas_mapping {
1761 __u64 user_addr;
1762 __u64 vcpu_addr;
1763 __u64 length;
1764 };
1765
1766This ioctl maps the memory at "user_addr" with the length "length" to
1767the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1768be aligned by 1 megabyte.
27e0393f 1769
414fa985 1770
e24ed81f 17714.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1772
1773Capability: KVM_CAP_S390_UCONTROL
1774Architectures: s390
1775Type: vcpu ioctl
1776Parameters: struct kvm_s390_ucas_mapping (in)
1777Returns: 0 in case of success
1778
1779The parameter is defined like this:
1780 struct kvm_s390_ucas_mapping {
1781 __u64 user_addr;
1782 __u64 vcpu_addr;
1783 __u64 length;
1784 };
1785
1786This ioctl unmaps the memory in the vcpu's address space starting at
1787"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1788All parameters need to be aligned by 1 megabyte.
27e0393f 1789
414fa985 1790
e24ed81f 17914.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1792
1793Capability: KVM_CAP_S390_UCONTROL
1794Architectures: s390
1795Type: vcpu ioctl
1796Parameters: vcpu absolute address (in)
1797Returns: 0 in case of success
1798
1799This call creates a page table entry on the virtual cpu's address space
1800(for user controlled virtual machines) or the virtual machine's address
1801space (for regular virtual machines). This only works for minor faults,
1802thus it's recommended to access subject memory page via the user page
1803table upfront. This is useful to handle validity intercepts for user
1804controlled virtual machines to fault in the virtual cpu's lowcore pages
1805prior to calling the KVM_RUN ioctl.
1806
414fa985 1807
e24ed81f
AG
18084.68 KVM_SET_ONE_REG
1809
1810Capability: KVM_CAP_ONE_REG
1811Architectures: all
1812Type: vcpu ioctl
1813Parameters: struct kvm_one_reg (in)
1814Returns: 0 on success, negative value on failure
1815
1816struct kvm_one_reg {
1817 __u64 id;
1818 __u64 addr;
1819};
1820
1821Using this ioctl, a single vcpu register can be set to a specific value
1822defined by user space with the passed in struct kvm_one_reg, where id
1823refers to the register identifier as described below and addr is a pointer
1824to a variable with the respective size. There can be architecture agnostic
1825and architecture specific registers. Each have their own range of operation
1826and their own constants and width. To keep track of the implemented
1827registers, find a list below:
1828
bf5590f3
JH
1829 Arch | Register | Width (bits)
1830 | |
1831 PPC | KVM_REG_PPC_HIOR | 64
1832 PPC | KVM_REG_PPC_IAC1 | 64
1833 PPC | KVM_REG_PPC_IAC2 | 64
1834 PPC | KVM_REG_PPC_IAC3 | 64
1835 PPC | KVM_REG_PPC_IAC4 | 64
1836 PPC | KVM_REG_PPC_DAC1 | 64
1837 PPC | KVM_REG_PPC_DAC2 | 64
1838 PPC | KVM_REG_PPC_DABR | 64
1839 PPC | KVM_REG_PPC_DSCR | 64
1840 PPC | KVM_REG_PPC_PURR | 64
1841 PPC | KVM_REG_PPC_SPURR | 64
1842 PPC | KVM_REG_PPC_DAR | 64
1843 PPC | KVM_REG_PPC_DSISR | 32
1844 PPC | KVM_REG_PPC_AMR | 64
1845 PPC | KVM_REG_PPC_UAMOR | 64
1846 PPC | KVM_REG_PPC_MMCR0 | 64
1847 PPC | KVM_REG_PPC_MMCR1 | 64
1848 PPC | KVM_REG_PPC_MMCRA | 64
1849 PPC | KVM_REG_PPC_MMCR2 | 64
1850 PPC | KVM_REG_PPC_MMCRS | 64
1851 PPC | KVM_REG_PPC_SIAR | 64
1852 PPC | KVM_REG_PPC_SDAR | 64
1853 PPC | KVM_REG_PPC_SIER | 64
1854 PPC | KVM_REG_PPC_PMC1 | 32
1855 PPC | KVM_REG_PPC_PMC2 | 32
1856 PPC | KVM_REG_PPC_PMC3 | 32
1857 PPC | KVM_REG_PPC_PMC4 | 32
1858 PPC | KVM_REG_PPC_PMC5 | 32
1859 PPC | KVM_REG_PPC_PMC6 | 32
1860 PPC | KVM_REG_PPC_PMC7 | 32
1861 PPC | KVM_REG_PPC_PMC8 | 32
1862 PPC | KVM_REG_PPC_FPR0 | 64
a8bd19ef 1863 ...
bf5590f3
JH
1864 PPC | KVM_REG_PPC_FPR31 | 64
1865 PPC | KVM_REG_PPC_VR0 | 128
a8bd19ef 1866 ...
bf5590f3
JH
1867 PPC | KVM_REG_PPC_VR31 | 128
1868 PPC | KVM_REG_PPC_VSR0 | 128
a8bd19ef 1869 ...
bf5590f3
JH
1870 PPC | KVM_REG_PPC_VSR31 | 128
1871 PPC | KVM_REG_PPC_FPSCR | 64
1872 PPC | KVM_REG_PPC_VSCR | 32
1873 PPC | KVM_REG_PPC_VPA_ADDR | 64
1874 PPC | KVM_REG_PPC_VPA_SLB | 128
1875 PPC | KVM_REG_PPC_VPA_DTL | 128
1876 PPC | KVM_REG_PPC_EPCR | 32
1877 PPC | KVM_REG_PPC_EPR | 32
1878 PPC | KVM_REG_PPC_TCR | 32
1879 PPC | KVM_REG_PPC_TSR | 32
1880 PPC | KVM_REG_PPC_OR_TSR | 32
1881 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1882 PPC | KVM_REG_PPC_MAS0 | 32
1883 PPC | KVM_REG_PPC_MAS1 | 32
1884 PPC | KVM_REG_PPC_MAS2 | 64
1885 PPC | KVM_REG_PPC_MAS7_3 | 64
1886 PPC | KVM_REG_PPC_MAS4 | 32
1887 PPC | KVM_REG_PPC_MAS6 | 32
1888 PPC | KVM_REG_PPC_MMUCFG | 32
1889 PPC | KVM_REG_PPC_TLB0CFG | 32
1890 PPC | KVM_REG_PPC_TLB1CFG | 32
1891 PPC | KVM_REG_PPC_TLB2CFG | 32
1892 PPC | KVM_REG_PPC_TLB3CFG | 32
1893 PPC | KVM_REG_PPC_TLB0PS | 32
1894 PPC | KVM_REG_PPC_TLB1PS | 32
1895 PPC | KVM_REG_PPC_TLB2PS | 32
1896 PPC | KVM_REG_PPC_TLB3PS | 32
1897 PPC | KVM_REG_PPC_EPTCFG | 32
1898 PPC | KVM_REG_PPC_ICP_STATE | 64
1899 PPC | KVM_REG_PPC_TB_OFFSET | 64
1900 PPC | KVM_REG_PPC_SPMC1 | 32
1901 PPC | KVM_REG_PPC_SPMC2 | 32
1902 PPC | KVM_REG_PPC_IAMR | 64
1903 PPC | KVM_REG_PPC_TFHAR | 64
1904 PPC | KVM_REG_PPC_TFIAR | 64
1905 PPC | KVM_REG_PPC_TEXASR | 64
1906 PPC | KVM_REG_PPC_FSCR | 64
1907 PPC | KVM_REG_PPC_PSPB | 32
1908 PPC | KVM_REG_PPC_EBBHR | 64
1909 PPC | KVM_REG_PPC_EBBRR | 64
1910 PPC | KVM_REG_PPC_BESCR | 64
1911 PPC | KVM_REG_PPC_TAR | 64
1912 PPC | KVM_REG_PPC_DPDES | 64
1913 PPC | KVM_REG_PPC_DAWR | 64
1914 PPC | KVM_REG_PPC_DAWRX | 64
1915 PPC | KVM_REG_PPC_CIABR | 64
1916 PPC | KVM_REG_PPC_IC | 64
1917 PPC | KVM_REG_PPC_VTB | 64
1918 PPC | KVM_REG_PPC_CSIGR | 64
1919 PPC | KVM_REG_PPC_TACR | 64
1920 PPC | KVM_REG_PPC_TCSCR | 64
1921 PPC | KVM_REG_PPC_PID | 64
1922 PPC | KVM_REG_PPC_ACOP | 64
1923 PPC | KVM_REG_PPC_VRSAVE | 32
cc568ead
PB
1924 PPC | KVM_REG_PPC_LPCR | 32
1925 PPC | KVM_REG_PPC_LPCR_64 | 64
bf5590f3
JH
1926 PPC | KVM_REG_PPC_PPR | 64
1927 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1928 PPC | KVM_REG_PPC_DABRX | 32
1929 PPC | KVM_REG_PPC_WORT | 64
bc8a4e5c
BB
1930 PPC | KVM_REG_PPC_SPRG9 | 64
1931 PPC | KVM_REG_PPC_DBSR | 32
bf5590f3 1932 PPC | KVM_REG_PPC_TM_GPR0 | 64
3b783474 1933 ...
bf5590f3
JH
1934 PPC | KVM_REG_PPC_TM_GPR31 | 64
1935 PPC | KVM_REG_PPC_TM_VSR0 | 128
3b783474 1936 ...
bf5590f3
JH
1937 PPC | KVM_REG_PPC_TM_VSR63 | 128
1938 PPC | KVM_REG_PPC_TM_CR | 64
1939 PPC | KVM_REG_PPC_TM_LR | 64
1940 PPC | KVM_REG_PPC_TM_CTR | 64
1941 PPC | KVM_REG_PPC_TM_FPSCR | 64
1942 PPC | KVM_REG_PPC_TM_AMR | 64
1943 PPC | KVM_REG_PPC_TM_PPR | 64
1944 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1945 PPC | KVM_REG_PPC_TM_VSCR | 32
1946 PPC | KVM_REG_PPC_TM_DSCR | 64
1947 PPC | KVM_REG_PPC_TM_TAR | 64
c2d2c21b
JH
1948 | |
1949 MIPS | KVM_REG_MIPS_R0 | 64
1950 ...
1951 MIPS | KVM_REG_MIPS_R31 | 64
1952 MIPS | KVM_REG_MIPS_HI | 64
1953 MIPS | KVM_REG_MIPS_LO | 64
1954 MIPS | KVM_REG_MIPS_PC | 64
1955 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
1956 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
1957 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
1958 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
1959 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
1960 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1961 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
1962 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1963 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
1964 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
1965 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
1966 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
1967 MIPS | KVM_REG_MIPS_CP0_EPC | 64
1968 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
1969 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
1970 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
1971 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
1972 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
1973 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
1974 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
1975 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
1976 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
414fa985 1977
749cf76c
CD
1978ARM registers are mapped using the lower 32 bits. The upper 16 of that
1979is the register group type, or coprocessor number:
1980
1981ARM core registers have the following id bit patterns:
aa404ddf 1982 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 1983
1138245c 1984ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 1985 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
1986
1987ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 1988 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 1989
c27581ed 1990ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 1991 0x4020 0000 0011 00 <csselr:8>
749cf76c 1992
4fe21e4c 1993ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 1994 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
1995
1996ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 1997 0x4030 0000 0012 0 <regno:12>
4fe21e4c 1998
379e04c7
MZ
1999
2000arm64 registers are mapped using the lower 32 bits. The upper 16 of
2001that is the register group type, or coprocessor number:
2002
2003arm64 core/FP-SIMD registers have the following id bit patterns. Note
2004that the size of the access is variable, as the kvm_regs structure
2005contains elements ranging from 32 to 128 bits. The index is a 32bit
2006value in the kvm_regs structure seen as a 32bit array.
2007 0x60x0 0000 0010 <index into the kvm_regs struct:16>
2008
2009arm64 CCSIDR registers are demultiplexed by CSSELR value:
2010 0x6020 0000 0011 00 <csselr:8>
2011
2012arm64 system registers have the following id bit patterns:
2013 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
2014
c2d2c21b
JH
2015
2016MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
2017the register group type:
2018
2019MIPS core registers (see above) have the following id bit patterns:
2020 0x7030 0000 0000 <reg:16>
2021
2022MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
2023patterns depending on whether they're 32-bit or 64-bit registers:
2024 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
2025 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
2026
2027MIPS KVM control registers (see above) have the following id bit patterns:
2028 0x7030 0000 0002 <reg:16>
2029
2030
e24ed81f
AG
20314.69 KVM_GET_ONE_REG
2032
2033Capability: KVM_CAP_ONE_REG
2034Architectures: all
2035Type: vcpu ioctl
2036Parameters: struct kvm_one_reg (in and out)
2037Returns: 0 on success, negative value on failure
2038
2039This ioctl allows to receive the value of a single register implemented
2040in a vcpu. The register to read is indicated by the "id" field of the
2041kvm_one_reg struct passed in. On success, the register value can be found
2042at the memory location pointed to by "addr".
2043
2044The list of registers accessible using this interface is identical to the
2e232702 2045list in 4.68.
e24ed81f 2046
414fa985 2047
1c0b28c2
EM
20484.70 KVM_KVMCLOCK_CTRL
2049
2050Capability: KVM_CAP_KVMCLOCK_CTRL
2051Architectures: Any that implement pvclocks (currently x86 only)
2052Type: vcpu ioctl
2053Parameters: None
2054Returns: 0 on success, -1 on error
2055
2056This signals to the host kernel that the specified guest is being paused by
2057userspace. The host will set a flag in the pvclock structure that is checked
2058from the soft lockup watchdog. The flag is part of the pvclock structure that
2059is shared between guest and host, specifically the second bit of the flags
2060field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2061the host and read/cleared exclusively by the guest. The guest operation of
2062checking and clearing the flag must an atomic operation so
2063load-link/store-conditional, or equivalent must be used. There are two cases
2064where the guest will clear the flag: when the soft lockup watchdog timer resets
2065itself or when a soft lockup is detected. This ioctl can be called any time
2066after pausing the vcpu, but before it is resumed.
2067
414fa985 2068
07975ad3
JK
20694.71 KVM_SIGNAL_MSI
2070
2071Capability: KVM_CAP_SIGNAL_MSI
2072Architectures: x86
2073Type: vm ioctl
2074Parameters: struct kvm_msi (in)
2075Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2076
2077Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2078MSI messages.
2079
2080struct kvm_msi {
2081 __u32 address_lo;
2082 __u32 address_hi;
2083 __u32 data;
2084 __u32 flags;
2085 __u8 pad[16];
2086};
2087
2088No flags are defined so far. The corresponding field must be 0.
2089
414fa985 2090
0589ff6c
JK
20914.71 KVM_CREATE_PIT2
2092
2093Capability: KVM_CAP_PIT2
2094Architectures: x86
2095Type: vm ioctl
2096Parameters: struct kvm_pit_config (in)
2097Returns: 0 on success, -1 on error
2098
2099Creates an in-kernel device model for the i8254 PIT. This call is only valid
2100after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2101parameters have to be passed:
2102
2103struct kvm_pit_config {
2104 __u32 flags;
2105 __u32 pad[15];
2106};
2107
2108Valid flags are:
2109
2110#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2111
b6ddf05f
JK
2112PIT timer interrupts may use a per-VM kernel thread for injection. If it
2113exists, this thread will have a name of the following pattern:
2114
2115kvm-pit/<owner-process-pid>
2116
2117When running a guest with elevated priorities, the scheduling parameters of
2118this thread may have to be adjusted accordingly.
2119
0589ff6c
JK
2120This IOCTL replaces the obsolete KVM_CREATE_PIT.
2121
2122
21234.72 KVM_GET_PIT2
2124
2125Capability: KVM_CAP_PIT_STATE2
2126Architectures: x86
2127Type: vm ioctl
2128Parameters: struct kvm_pit_state2 (out)
2129Returns: 0 on success, -1 on error
2130
2131Retrieves the state of the in-kernel PIT model. Only valid after
2132KVM_CREATE_PIT2. The state is returned in the following structure:
2133
2134struct kvm_pit_state2 {
2135 struct kvm_pit_channel_state channels[3];
2136 __u32 flags;
2137 __u32 reserved[9];
2138};
2139
2140Valid flags are:
2141
2142/* disable PIT in HPET legacy mode */
2143#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2144
2145This IOCTL replaces the obsolete KVM_GET_PIT.
2146
2147
21484.73 KVM_SET_PIT2
2149
2150Capability: KVM_CAP_PIT_STATE2
2151Architectures: x86
2152Type: vm ioctl
2153Parameters: struct kvm_pit_state2 (in)
2154Returns: 0 on success, -1 on error
2155
2156Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2157See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2158
2159This IOCTL replaces the obsolete KVM_SET_PIT.
2160
2161
5b74716e
BH
21624.74 KVM_PPC_GET_SMMU_INFO
2163
2164Capability: KVM_CAP_PPC_GET_SMMU_INFO
2165Architectures: powerpc
2166Type: vm ioctl
2167Parameters: None
2168Returns: 0 on success, -1 on error
2169
2170This populates and returns a structure describing the features of
2171the "Server" class MMU emulation supported by KVM.
cc22c354 2172This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2173device-tree properties for the guest operating system.
2174
c98be0c9 2175The structure contains some global information, followed by an
5b74716e
BH
2176array of supported segment page sizes:
2177
2178 struct kvm_ppc_smmu_info {
2179 __u64 flags;
2180 __u32 slb_size;
2181 __u32 pad;
2182 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2183 };
2184
2185The supported flags are:
2186
2187 - KVM_PPC_PAGE_SIZES_REAL:
2188 When that flag is set, guest page sizes must "fit" the backing
2189 store page sizes. When not set, any page size in the list can
2190 be used regardless of how they are backed by userspace.
2191
2192 - KVM_PPC_1T_SEGMENTS
2193 The emulated MMU supports 1T segments in addition to the
2194 standard 256M ones.
2195
2196The "slb_size" field indicates how many SLB entries are supported
2197
2198The "sps" array contains 8 entries indicating the supported base
2199page sizes for a segment in increasing order. Each entry is defined
2200as follow:
2201
2202 struct kvm_ppc_one_seg_page_size {
2203 __u32 page_shift; /* Base page shift of segment (or 0) */
2204 __u32 slb_enc; /* SLB encoding for BookS */
2205 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2206 };
2207
2208An entry with a "page_shift" of 0 is unused. Because the array is
2209organized in increasing order, a lookup can stop when encoutering
2210such an entry.
2211
2212The "slb_enc" field provides the encoding to use in the SLB for the
2213page size. The bits are in positions such as the value can directly
2214be OR'ed into the "vsid" argument of the slbmte instruction.
2215
2216The "enc" array is a list which for each of those segment base page
2217size provides the list of supported actual page sizes (which can be
2218only larger or equal to the base page size), along with the
f884ab15 2219corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
22208 entries sorted by increasing sizes and an entry with a "0" shift
2221is an empty entry and a terminator:
2222
2223 struct kvm_ppc_one_page_size {
2224 __u32 page_shift; /* Page shift (or 0) */
2225 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2226 };
2227
2228The "pte_enc" field provides a value that can OR'ed into the hash
2229PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2230into the hash PTE second double word).
2231
f36992e3
AW
22324.75 KVM_IRQFD
2233
2234Capability: KVM_CAP_IRQFD
ebc32262 2235Architectures: x86 s390
f36992e3
AW
2236Type: vm ioctl
2237Parameters: struct kvm_irqfd (in)
2238Returns: 0 on success, -1 on error
2239
2240Allows setting an eventfd to directly trigger a guest interrupt.
2241kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2242kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2243an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2244the guest using the specified gsi pin. The irqfd is removed using
2245the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2246and kvm_irqfd.gsi.
2247
7a84428a
AW
2248With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2249mechanism allowing emulation of level-triggered, irqfd-based
2250interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2251additional eventfd in the kvm_irqfd.resamplefd field. When operating
2252in resample mode, posting of an interrupt through kvm_irq.fd asserts
2253the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2254as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2255kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2256the interrupt if the device making use of it still requires service.
2257Note that closing the resamplefd is not sufficient to disable the
2258irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2259and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2260
5fecc9d8 22614.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2262
2263Capability: KVM_CAP_PPC_ALLOC_HTAB
2264Architectures: powerpc
2265Type: vm ioctl
2266Parameters: Pointer to u32 containing hash table order (in/out)
2267Returns: 0 on success, -1 on error
2268
2269This requests the host kernel to allocate an MMU hash table for a
2270guest using the PAPR paravirtualization interface. This only does
2271anything if the kernel is configured to use the Book 3S HV style of
2272virtualization. Otherwise the capability doesn't exist and the ioctl
2273returns an ENOTTY error. The rest of this description assumes Book 3S
2274HV.
2275
2276There must be no vcpus running when this ioctl is called; if there
2277are, it will do nothing and return an EBUSY error.
2278
2279The parameter is a pointer to a 32-bit unsigned integer variable
2280containing the order (log base 2) of the desired size of the hash
2281table, which must be between 18 and 46. On successful return from the
2282ioctl, it will have been updated with the order of the hash table that
2283was allocated.
2284
2285If no hash table has been allocated when any vcpu is asked to run
2286(with the KVM_RUN ioctl), the host kernel will allocate a
2287default-sized hash table (16 MB).
2288
2289If this ioctl is called when a hash table has already been allocated,
2290the kernel will clear out the existing hash table (zero all HPTEs) and
2291return the hash table order in the parameter. (If the guest is using
2292the virtualized real-mode area (VRMA) facility, the kernel will
2293re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2294
416ad65f
CH
22954.77 KVM_S390_INTERRUPT
2296
2297Capability: basic
2298Architectures: s390
2299Type: vm ioctl, vcpu ioctl
2300Parameters: struct kvm_s390_interrupt (in)
2301Returns: 0 on success, -1 on error
2302
2303Allows to inject an interrupt to the guest. Interrupts can be floating
2304(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2305
2306Interrupt parameters are passed via kvm_s390_interrupt:
2307
2308struct kvm_s390_interrupt {
2309 __u32 type;
2310 __u32 parm;
2311 __u64 parm64;
2312};
2313
2314type can be one of the following:
2315
2316KVM_S390_SIGP_STOP (vcpu) - sigp restart
2317KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2318KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2319KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2320KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2321KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2322KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2323 parameters in parm and parm64
2324KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2325KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2326KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2327KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2328 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2329 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2330 interruption subclass)
48a3e950
CH
2331KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2332 machine check interrupt code in parm64 (note that
2333 machine checks needing further payload are not
2334 supported by this ioctl)
416ad65f
CH
2335
2336Note that the vcpu ioctl is asynchronous to vcpu execution.
2337
a2932923
PM
23384.78 KVM_PPC_GET_HTAB_FD
2339
2340Capability: KVM_CAP_PPC_HTAB_FD
2341Architectures: powerpc
2342Type: vm ioctl
2343Parameters: Pointer to struct kvm_get_htab_fd (in)
2344Returns: file descriptor number (>= 0) on success, -1 on error
2345
2346This returns a file descriptor that can be used either to read out the
2347entries in the guest's hashed page table (HPT), or to write entries to
2348initialize the HPT. The returned fd can only be written to if the
2349KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2350can only be read if that bit is clear. The argument struct looks like
2351this:
2352
2353/* For KVM_PPC_GET_HTAB_FD */
2354struct kvm_get_htab_fd {
2355 __u64 flags;
2356 __u64 start_index;
2357 __u64 reserved[2];
2358};
2359
2360/* Values for kvm_get_htab_fd.flags */
2361#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2362#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2363
2364The `start_index' field gives the index in the HPT of the entry at
2365which to start reading. It is ignored when writing.
2366
2367Reads on the fd will initially supply information about all
2368"interesting" HPT entries. Interesting entries are those with the
2369bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2370all entries. When the end of the HPT is reached, the read() will
2371return. If read() is called again on the fd, it will start again from
2372the beginning of the HPT, but will only return HPT entries that have
2373changed since they were last read.
2374
2375Data read or written is structured as a header (8 bytes) followed by a
2376series of valid HPT entries (16 bytes) each. The header indicates how
2377many valid HPT entries there are and how many invalid entries follow
2378the valid entries. The invalid entries are not represented explicitly
2379in the stream. The header format is:
2380
2381struct kvm_get_htab_header {
2382 __u32 index;
2383 __u16 n_valid;
2384 __u16 n_invalid;
2385};
2386
2387Writes to the fd create HPT entries starting at the index given in the
2388header; first `n_valid' valid entries with contents from the data
2389written, then `n_invalid' invalid entries, invalidating any previously
2390valid entries found.
2391
852b6d57
SW
23924.79 KVM_CREATE_DEVICE
2393
2394Capability: KVM_CAP_DEVICE_CTRL
2395Type: vm ioctl
2396Parameters: struct kvm_create_device (in/out)
2397Returns: 0 on success, -1 on error
2398Errors:
2399 ENODEV: The device type is unknown or unsupported
2400 EEXIST: Device already created, and this type of device may not
2401 be instantiated multiple times
2402
2403 Other error conditions may be defined by individual device types or
2404 have their standard meanings.
2405
2406Creates an emulated device in the kernel. The file descriptor returned
2407in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2408
2409If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2410device type is supported (not necessarily whether it can be created
2411in the current vm).
2412
2413Individual devices should not define flags. Attributes should be used
2414for specifying any behavior that is not implied by the device type
2415number.
2416
2417struct kvm_create_device {
2418 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2419 __u32 fd; /* out: device handle */
2420 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2421};
2422
24234.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2424
f2061656
DD
2425Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2426Type: device ioctl, vm ioctl
852b6d57
SW
2427Parameters: struct kvm_device_attr
2428Returns: 0 on success, -1 on error
2429Errors:
2430 ENXIO: The group or attribute is unknown/unsupported for this device
2431 EPERM: The attribute cannot (currently) be accessed this way
2432 (e.g. read-only attribute, or attribute that only makes
2433 sense when the device is in a different state)
2434
2435 Other error conditions may be defined by individual device types.
2436
2437Gets/sets a specified piece of device configuration and/or state. The
2438semantics are device-specific. See individual device documentation in
2439the "devices" directory. As with ONE_REG, the size of the data
2440transferred is defined by the particular attribute.
2441
2442struct kvm_device_attr {
2443 __u32 flags; /* no flags currently defined */
2444 __u32 group; /* device-defined */
2445 __u64 attr; /* group-defined */
2446 __u64 addr; /* userspace address of attr data */
2447};
2448
24494.81 KVM_HAS_DEVICE_ATTR
2450
f2061656
DD
2451Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2452Type: device ioctl, vm ioctl
852b6d57
SW
2453Parameters: struct kvm_device_attr
2454Returns: 0 on success, -1 on error
2455Errors:
2456 ENXIO: The group or attribute is unknown/unsupported for this device
2457
2458Tests whether a device supports a particular attribute. A successful
2459return indicates the attribute is implemented. It does not necessarily
2460indicate that the attribute can be read or written in the device's
2461current state. "addr" is ignored.
f36992e3 2462
d8968f1f 24634.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2464
2465Capability: basic
379e04c7 2466Architectures: arm, arm64
749cf76c 2467Type: vcpu ioctl
beb11fc7 2468Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2469Returns: 0 on success; -1 on error
2470Errors:
2471  EINVAL:    the target is unknown, or the combination of features is invalid.
2472  ENOENT:    a features bit specified is unknown.
2473
2474This tells KVM what type of CPU to present to the guest, and what
2475optional features it should have.  This will cause a reset of the cpu
2476registers to their initial values.  If this is not called, KVM_RUN will
2477return ENOEXEC for that vcpu.
2478
2479Note that because some registers reflect machine topology, all vcpus
2480should be created before this ioctl is invoked.
2481
aa024c2f
MZ
2482Possible features:
2483 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
2484 Depends on KVM_CAP_ARM_PSCI.
379e04c7
MZ
2485 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2486 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2487 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2488 Depends on KVM_CAP_ARM_PSCI_0_2.
aa024c2f 2489
749cf76c 2490
740edfc0
AP
24914.83 KVM_ARM_PREFERRED_TARGET
2492
2493Capability: basic
2494Architectures: arm, arm64
2495Type: vm ioctl
2496Parameters: struct struct kvm_vcpu_init (out)
2497Returns: 0 on success; -1 on error
2498Errors:
a7265fb1 2499 ENODEV: no preferred target available for the host
740edfc0
AP
2500
2501This queries KVM for preferred CPU target type which can be emulated
2502by KVM on underlying host.
2503
2504The ioctl returns struct kvm_vcpu_init instance containing information
2505about preferred CPU target type and recommended features for it. The
2506kvm_vcpu_init->features bitmap returned will have feature bits set if
2507the preferred target recommends setting these features, but this is
2508not mandatory.
2509
2510The information returned by this ioctl can be used to prepare an instance
2511of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2512in VCPU matching underlying host.
2513
2514
25154.84 KVM_GET_REG_LIST
749cf76c
CD
2516
2517Capability: basic
c2d2c21b 2518Architectures: arm, arm64, mips
749cf76c
CD
2519Type: vcpu ioctl
2520Parameters: struct kvm_reg_list (in/out)
2521Returns: 0 on success; -1 on error
2522Errors:
2523  E2BIG:     the reg index list is too big to fit in the array specified by
2524             the user (the number required will be written into n).
2525
2526struct kvm_reg_list {
2527 __u64 n; /* number of registers in reg[] */
2528 __u64 reg[0];
2529};
2530
2531This ioctl returns the guest registers that are supported for the
2532KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2533
ce01e4e8
CD
2534
25354.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2536
2537Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2538Architectures: arm, arm64
3401d546
CD
2539Type: vm ioctl
2540Parameters: struct kvm_arm_device_address (in)
2541Returns: 0 on success, -1 on error
2542Errors:
2543 ENODEV: The device id is unknown
2544 ENXIO: Device not supported on current system
2545 EEXIST: Address already set
2546 E2BIG: Address outside guest physical address space
330690cd 2547 EBUSY: Address overlaps with other device range
3401d546
CD
2548
2549struct kvm_arm_device_addr {
2550 __u64 id;
2551 __u64 addr;
2552};
2553
2554Specify a device address in the guest's physical address space where guests
2555can access emulated or directly exposed devices, which the host kernel needs
2556to know about. The id field is an architecture specific identifier for a
2557specific device.
2558
379e04c7
MZ
2559ARM/arm64 divides the id field into two parts, a device id and an
2560address type id specific to the individual device.
3401d546
CD
2561
2562  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2563 field: | 0x00000000 | device id | addr type id |
2564
379e04c7
MZ
2565ARM/arm64 currently only require this when using the in-kernel GIC
2566support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2567as the device id. When setting the base address for the guest's
2568mapping of the VGIC virtual CPU and distributor interface, the ioctl
2569must be called after calling KVM_CREATE_IRQCHIP, but before calling
2570KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2571base addresses will return -EEXIST.
3401d546 2572
ce01e4e8
CD
2573Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2574should be used instead.
2575
2576
740edfc0 25774.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2578
2579Capability: KVM_CAP_PPC_RTAS
2580Architectures: ppc
2581Type: vm ioctl
2582Parameters: struct kvm_rtas_token_args
2583Returns: 0 on success, -1 on error
2584
2585Defines a token value for a RTAS (Run Time Abstraction Services)
2586service in order to allow it to be handled in the kernel. The
2587argument struct gives the name of the service, which must be the name
2588of a service that has a kernel-side implementation. If the token
2589value is non-zero, it will be associated with that service, and
2590subsequent RTAS calls by the guest specifying that token will be
2591handled by the kernel. If the token value is 0, then any token
2592associated with the service will be forgotten, and subsequent RTAS
2593calls by the guest for that service will be passed to userspace to be
2594handled.
2595
4bd9d344
AB
25964.87 KVM_SET_GUEST_DEBUG
2597
2598Capability: KVM_CAP_SET_GUEST_DEBUG
2599Architectures: x86, s390, ppc
2600Type: vcpu ioctl
2601Parameters: struct kvm_guest_debug (in)
2602Returns: 0 on success; -1 on error
2603
2604struct kvm_guest_debug {
2605 __u32 control;
2606 __u32 pad;
2607 struct kvm_guest_debug_arch arch;
2608};
2609
2610Set up the processor specific debug registers and configure vcpu for
2611handling guest debug events. There are two parts to the structure, the
2612first a control bitfield indicates the type of debug events to handle
2613when running. Common control bits are:
2614
2615 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2616 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2617
2618The top 16 bits of the control field are architecture specific control
2619flags which can include the following:
2620
2621 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86]
2622 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390]
2623 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2624 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2625 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2626
2627For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2628are enabled in memory so we need to ensure breakpoint exceptions are
2629correctly trapped and the KVM run loop exits at the breakpoint and not
2630running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2631we need to ensure the guest vCPUs architecture specific registers are
2632updated to the correct (supplied) values.
2633
2634The second part of the structure is architecture specific and
2635typically contains a set of debug registers.
2636
2637When debug events exit the main run loop with the reason
2638KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2639structure containing architecture specific debug information.
3401d546 2640
209cf19f
AB
26414.88 KVM_GET_EMULATED_CPUID
2642
2643Capability: KVM_CAP_EXT_EMUL_CPUID
2644Architectures: x86
2645Type: system ioctl
2646Parameters: struct kvm_cpuid2 (in/out)
2647Returns: 0 on success, -1 on error
2648
2649struct kvm_cpuid2 {
2650 __u32 nent;
2651 __u32 flags;
2652 struct kvm_cpuid_entry2 entries[0];
2653};
2654
2655The member 'flags' is used for passing flags from userspace.
2656
2657#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2658#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2659#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2660
2661struct kvm_cpuid_entry2 {
2662 __u32 function;
2663 __u32 index;
2664 __u32 flags;
2665 __u32 eax;
2666 __u32 ebx;
2667 __u32 ecx;
2668 __u32 edx;
2669 __u32 padding[3];
2670};
2671
2672This ioctl returns x86 cpuid features which are emulated by
2673kvm.Userspace can use the information returned by this ioctl to query
2674which features are emulated by kvm instead of being present natively.
2675
2676Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2677structure with the 'nent' field indicating the number of entries in
2678the variable-size array 'entries'. If the number of entries is too low
2679to describe the cpu capabilities, an error (E2BIG) is returned. If the
2680number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2681is returned. If the number is just right, the 'nent' field is adjusted
2682to the number of valid entries in the 'entries' array, which is then
2683filled.
2684
2685The entries returned are the set CPUID bits of the respective features
2686which kvm emulates, as returned by the CPUID instruction, with unknown
2687or unsupported feature bits cleared.
2688
2689Features like x2apic, for example, may not be present in the host cpu
2690but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2691emulated efficiently and thus not included here.
2692
2693The fields in each entry are defined as follows:
2694
2695 function: the eax value used to obtain the entry
2696 index: the ecx value used to obtain the entry (for entries that are
2697 affected by ecx)
2698 flags: an OR of zero or more of the following:
2699 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2700 if the index field is valid
2701 KVM_CPUID_FLAG_STATEFUL_FUNC:
2702 if cpuid for this function returns different values for successive
2703 invocations; there will be several entries with the same function,
2704 all with this flag set
2705 KVM_CPUID_FLAG_STATE_READ_NEXT:
2706 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2707 the first entry to be read by a cpu
2708 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2709 this function/index combination
2710
9c1b96e3 27115. The kvm_run structure
414fa985 2712------------------------
9c1b96e3
AK
2713
2714Application code obtains a pointer to the kvm_run structure by
2715mmap()ing a vcpu fd. From that point, application code can control
2716execution by changing fields in kvm_run prior to calling the KVM_RUN
2717ioctl, and obtain information about the reason KVM_RUN returned by
2718looking up structure members.
2719
2720struct kvm_run {
2721 /* in */
2722 __u8 request_interrupt_window;
2723
2724Request that KVM_RUN return when it becomes possible to inject external
2725interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2726
2727 __u8 padding1[7];
2728
2729 /* out */
2730 __u32 exit_reason;
2731
2732When KVM_RUN has returned successfully (return value 0), this informs
2733application code why KVM_RUN has returned. Allowable values for this
2734field are detailed below.
2735
2736 __u8 ready_for_interrupt_injection;
2737
2738If request_interrupt_window has been specified, this field indicates
2739an interrupt can be injected now with KVM_INTERRUPT.
2740
2741 __u8 if_flag;
2742
2743The value of the current interrupt flag. Only valid if in-kernel
2744local APIC is not used.
2745
2746 __u8 padding2[2];
2747
2748 /* in (pre_kvm_run), out (post_kvm_run) */
2749 __u64 cr8;
2750
2751The value of the cr8 register. Only valid if in-kernel local APIC is
2752not used. Both input and output.
2753
2754 __u64 apic_base;
2755
2756The value of the APIC BASE msr. Only valid if in-kernel local
2757APIC is not used. Both input and output.
2758
2759 union {
2760 /* KVM_EXIT_UNKNOWN */
2761 struct {
2762 __u64 hardware_exit_reason;
2763 } hw;
2764
2765If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2766reasons. Further architecture-specific information is available in
2767hardware_exit_reason.
2768
2769 /* KVM_EXIT_FAIL_ENTRY */
2770 struct {
2771 __u64 hardware_entry_failure_reason;
2772 } fail_entry;
2773
2774If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2775to unknown reasons. Further architecture-specific information is
2776available in hardware_entry_failure_reason.
2777
2778 /* KVM_EXIT_EXCEPTION */
2779 struct {
2780 __u32 exception;
2781 __u32 error_code;
2782 } ex;
2783
2784Unused.
2785
2786 /* KVM_EXIT_IO */
2787 struct {
2788#define KVM_EXIT_IO_IN 0
2789#define KVM_EXIT_IO_OUT 1
2790 __u8 direction;
2791 __u8 size; /* bytes */
2792 __u16 port;
2793 __u32 count;
2794 __u64 data_offset; /* relative to kvm_run start */
2795 } io;
2796
2044892d 2797If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2798executed a port I/O instruction which could not be satisfied by kvm.
2799data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2800where kvm expects application code to place the data for the next
2044892d 2801KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2802
2803 struct {
2804 struct kvm_debug_exit_arch arch;
2805 } debug;
2806
2807Unused.
2808
2809 /* KVM_EXIT_MMIO */
2810 struct {
2811 __u64 phys_addr;
2812 __u8 data[8];
2813 __u32 len;
2814 __u8 is_write;
2815 } mmio;
2816
2044892d 2817If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2818executed a memory-mapped I/O instruction which could not be satisfied
2819by kvm. The 'data' member contains the written data if 'is_write' is
2820true, and should be filled by application code otherwise.
2821
6acdb160
CD
2822The 'data' member contains, in its first 'len' bytes, the value as it would
2823appear if the VCPU performed a load or store of the appropriate width directly
2824to the byte array.
2825
cc568ead 2826NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
ce91ddc4 2827 KVM_EXIT_EPR the corresponding
ad0a048b
AG
2828operations are complete (and guest state is consistent) only after userspace
2829has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2830incomplete operations and then check for pending signals. Userspace
2831can re-enter the guest with an unmasked signal pending to complete
2832pending operations.
2833
9c1b96e3
AK
2834 /* KVM_EXIT_HYPERCALL */
2835 struct {
2836 __u64 nr;
2837 __u64 args[6];
2838 __u64 ret;
2839 __u32 longmode;
2840 __u32 pad;
2841 } hypercall;
2842
647dc49e
AK
2843Unused. This was once used for 'hypercall to userspace'. To implement
2844such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2845Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2846
2847 /* KVM_EXIT_TPR_ACCESS */
2848 struct {
2849 __u64 rip;
2850 __u32 is_write;
2851 __u32 pad;
2852 } tpr_access;
2853
2854To be documented (KVM_TPR_ACCESS_REPORTING).
2855
2856 /* KVM_EXIT_S390_SIEIC */
2857 struct {
2858 __u8 icptcode;
2859 __u64 mask; /* psw upper half */
2860 __u64 addr; /* psw lower half */
2861 __u16 ipa;
2862 __u32 ipb;
2863 } s390_sieic;
2864
2865s390 specific.
2866
2867 /* KVM_EXIT_S390_RESET */
2868#define KVM_S390_RESET_POR 1
2869#define KVM_S390_RESET_CLEAR 2
2870#define KVM_S390_RESET_SUBSYSTEM 4
2871#define KVM_S390_RESET_CPU_INIT 8
2872#define KVM_S390_RESET_IPL 16
2873 __u64 s390_reset_flags;
2874
2875s390 specific.
2876
e168bf8d
CO
2877 /* KVM_EXIT_S390_UCONTROL */
2878 struct {
2879 __u64 trans_exc_code;
2880 __u32 pgm_code;
2881 } s390_ucontrol;
2882
2883s390 specific. A page fault has occurred for a user controlled virtual
2884machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2885resolved by the kernel.
2886The program code and the translation exception code that were placed
2887in the cpu's lowcore are presented here as defined by the z Architecture
2888Principles of Operation Book in the Chapter for Dynamic Address Translation
2889(DAT)
2890
9c1b96e3
AK
2891 /* KVM_EXIT_DCR */
2892 struct {
2893 __u32 dcrn;
2894 __u32 data;
2895 __u8 is_write;
2896 } dcr;
2897
ce91ddc4 2898Deprecated - was used for 440 KVM.
9c1b96e3 2899
ad0a048b
AG
2900 /* KVM_EXIT_OSI */
2901 struct {
2902 __u64 gprs[32];
2903 } osi;
2904
2905MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2906hypercalls and exit with this exit struct that contains all the guest gprs.
2907
2908If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2909Userspace can now handle the hypercall and when it's done modify the gprs as
2910necessary. Upon guest entry all guest GPRs will then be replaced by the values
2911in this struct.
2912
de56a948
PM
2913 /* KVM_EXIT_PAPR_HCALL */
2914 struct {
2915 __u64 nr;
2916 __u64 ret;
2917 __u64 args[9];
2918 } papr_hcall;
2919
2920This is used on 64-bit PowerPC when emulating a pSeries partition,
2921e.g. with the 'pseries' machine type in qemu. It occurs when the
2922guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2923contains the hypercall number (from the guest R3), and 'args' contains
2924the arguments (from the guest R4 - R12). Userspace should put the
2925return code in 'ret' and any extra returned values in args[].
2926The possible hypercalls are defined in the Power Architecture Platform
2927Requirements (PAPR) document available from www.power.org (free
2928developer registration required to access it).
2929
fa6b7fe9
CH
2930 /* KVM_EXIT_S390_TSCH */
2931 struct {
2932 __u16 subchannel_id;
2933 __u16 subchannel_nr;
2934 __u32 io_int_parm;
2935 __u32 io_int_word;
2936 __u32 ipb;
2937 __u8 dequeued;
2938 } s390_tsch;
2939
2940s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
2941and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
2942interrupt for the target subchannel has been dequeued and subchannel_id,
2943subchannel_nr, io_int_parm and io_int_word contain the parameters for that
2944interrupt. ipb is needed for instruction parameter decoding.
2945
1c810636
AG
2946 /* KVM_EXIT_EPR */
2947 struct {
2948 __u32 epr;
2949 } epr;
2950
2951On FSL BookE PowerPC chips, the interrupt controller has a fast patch
2952interrupt acknowledge path to the core. When the core successfully
2953delivers an interrupt, it automatically populates the EPR register with
2954the interrupt vector number and acknowledges the interrupt inside
2955the interrupt controller.
2956
2957In case the interrupt controller lives in user space, we need to do
2958the interrupt acknowledge cycle through it to fetch the next to be
2959delivered interrupt vector using this exit.
2960
2961It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
2962external interrupt has just been delivered into the guest. User space
2963should put the acknowledged interrupt vector into the 'epr' field.
2964
8ad6b634
AP
2965 /* KVM_EXIT_SYSTEM_EVENT */
2966 struct {
2967#define KVM_SYSTEM_EVENT_SHUTDOWN 1
2968#define KVM_SYSTEM_EVENT_RESET 2
2969 __u32 type;
2970 __u64 flags;
2971 } system_event;
2972
2973If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
2974a system-level event using some architecture specific mechanism (hypercall
2975or some special instruction). In case of ARM/ARM64, this is triggered using
2976HVC instruction based PSCI call from the vcpu. The 'type' field describes
2977the system-level event type. The 'flags' field describes architecture
2978specific flags for the system-level event.
2979
9c1b96e3
AK
2980 /* Fix the size of the union. */
2981 char padding[256];
2982 };
b9e5dc8d
CB
2983
2984 /*
2985 * shared registers between kvm and userspace.
2986 * kvm_valid_regs specifies the register classes set by the host
2987 * kvm_dirty_regs specified the register classes dirtied by userspace
2988 * struct kvm_sync_regs is architecture specific, as well as the
2989 * bits for kvm_valid_regs and kvm_dirty_regs
2990 */
2991 __u64 kvm_valid_regs;
2992 __u64 kvm_dirty_regs;
2993 union {
2994 struct kvm_sync_regs regs;
2995 char padding[1024];
2996 } s;
2997
2998If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2999certain guest registers without having to call SET/GET_*REGS. Thus we can
3000avoid some system call overhead if userspace has to handle the exit.
3001Userspace can query the validity of the structure by checking
3002kvm_valid_regs for specific bits. These bits are architecture specific
3003and usually define the validity of a groups of registers. (e.g. one bit
3004 for general purpose registers)
3005
d8482c0d
DH
3006Please note that the kernel is allowed to use the kvm_run structure as the
3007primary storage for certain register types. Therefore, the kernel may use the
3008values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3009
9c1b96e3 3010};
821246a5 3011
414fa985 3012
9c15bb1d 3013
699a0ea0
PM
30146. Capabilities that can be enabled on vCPUs
3015--------------------------------------------
821246a5 3016
0907c855
CH
3017There are certain capabilities that change the behavior of the virtual CPU or
3018the virtual machine when enabled. To enable them, please see section 4.37.
3019Below you can find a list of capabilities and what their effect on the vCPU or
3020the virtual machine is when enabling them.
821246a5
AG
3021
3022The following information is provided along with the description:
3023
3024 Architectures: which instruction set architectures provide this ioctl.
3025 x86 includes both i386 and x86_64.
3026
0907c855
CH
3027 Target: whether this is a per-vcpu or per-vm capability.
3028
821246a5
AG
3029 Parameters: what parameters are accepted by the capability.
3030
3031 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3032 are not detailed, but errors with specific meanings are.
3033
414fa985 3034
821246a5
AG
30356.1 KVM_CAP_PPC_OSI
3036
3037Architectures: ppc
0907c855 3038Target: vcpu
821246a5
AG
3039Parameters: none
3040Returns: 0 on success; -1 on error
3041
3042This capability enables interception of OSI hypercalls that otherwise would
3043be treated as normal system calls to be injected into the guest. OSI hypercalls
3044were invented by Mac-on-Linux to have a standardized communication mechanism
3045between the guest and the host.
3046
3047When this capability is enabled, KVM_EXIT_OSI can occur.
3048
414fa985 3049
821246a5
AG
30506.2 KVM_CAP_PPC_PAPR
3051
3052Architectures: ppc
0907c855 3053Target: vcpu
821246a5
AG
3054Parameters: none
3055Returns: 0 on success; -1 on error
3056
3057This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3058done using the hypercall instruction "sc 1".
3059
3060It also sets the guest privilege level to "supervisor" mode. Usually the guest
3061runs in "hypervisor" privilege mode with a few missing features.
3062
3063In addition to the above, it changes the semantics of SDR1. In this mode, the
3064HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3065HTAB invisible to the guest.
3066
3067When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 3068
414fa985 3069
dc83b8bc
SW
30706.3 KVM_CAP_SW_TLB
3071
3072Architectures: ppc
0907c855 3073Target: vcpu
dc83b8bc
SW
3074Parameters: args[0] is the address of a struct kvm_config_tlb
3075Returns: 0 on success; -1 on error
3076
3077struct kvm_config_tlb {
3078 __u64 params;
3079 __u64 array;
3080 __u32 mmu_type;
3081 __u32 array_len;
3082};
3083
3084Configures the virtual CPU's TLB array, establishing a shared memory area
3085between userspace and KVM. The "params" and "array" fields are userspace
3086addresses of mmu-type-specific data structures. The "array_len" field is an
3087safety mechanism, and should be set to the size in bytes of the memory that
3088userspace has reserved for the array. It must be at least the size dictated
3089by "mmu_type" and "params".
3090
3091While KVM_RUN is active, the shared region is under control of KVM. Its
3092contents are undefined, and any modification by userspace results in
3093boundedly undefined behavior.
3094
3095On return from KVM_RUN, the shared region will reflect the current state of
3096the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3097to tell KVM which entries have been changed, prior to calling KVM_RUN again
3098on this vcpu.
3099
3100For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3101 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3102 - The "array" field points to an array of type "struct
3103 kvm_book3e_206_tlb_entry".
3104 - The array consists of all entries in the first TLB, followed by all
3105 entries in the second TLB.
3106 - Within a TLB, entries are ordered first by increasing set number. Within a
3107 set, entries are ordered by way (increasing ESEL).
3108 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3109 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3110 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3111 hardware ignores this value for TLB0.
fa6b7fe9
CH
3112
31136.4 KVM_CAP_S390_CSS_SUPPORT
3114
3115Architectures: s390
0907c855 3116Target: vcpu
fa6b7fe9
CH
3117Parameters: none
3118Returns: 0 on success; -1 on error
3119
3120This capability enables support for handling of channel I/O instructions.
3121
3122TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3123handled in-kernel, while the other I/O instructions are passed to userspace.
3124
3125When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3126SUBCHANNEL intercepts.
1c810636 3127
0907c855
CH
3128Note that even though this capability is enabled per-vcpu, the complete
3129virtual machine is affected.
3130
1c810636
AG
31316.5 KVM_CAP_PPC_EPR
3132
3133Architectures: ppc
0907c855 3134Target: vcpu
1c810636
AG
3135Parameters: args[0] defines whether the proxy facility is active
3136Returns: 0 on success; -1 on error
3137
3138This capability enables or disables the delivery of interrupts through the
3139external proxy facility.
3140
3141When enabled (args[0] != 0), every time the guest gets an external interrupt
3142delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3143to receive the topmost interrupt vector.
3144
3145When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3146
3147When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
3148
31496.6 KVM_CAP_IRQ_MPIC
3150
3151Architectures: ppc
3152Parameters: args[0] is the MPIC device fd
3153 args[1] is the MPIC CPU number for this vcpu
3154
3155This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3156
31576.7 KVM_CAP_IRQ_XICS
3158
3159Architectures: ppc
0907c855 3160Target: vcpu
5975a2e0
PM
3161Parameters: args[0] is the XICS device fd
3162 args[1] is the XICS CPU number (server ID) for this vcpu
3163
3164This capability connects the vcpu to an in-kernel XICS device.
8a366a4b
CH
3165
31666.8 KVM_CAP_S390_IRQCHIP
3167
3168Architectures: s390
3169Target: vm
3170Parameters: none
3171
3172This capability enables the in-kernel irqchip for s390. Please refer to
3173"4.24 KVM_CREATE_IRQCHIP" for details.
699a0ea0
PM
3174
31757. Capabilities that can be enabled on VMs
3176------------------------------------------
3177
3178There are certain capabilities that change the behavior of the virtual
3179machine when enabled. To enable them, please see section 4.37. Below
3180you can find a list of capabilities and what their effect on the VM
3181is when enabling them.
3182
3183The following information is provided along with the description:
3184
3185 Architectures: which instruction set architectures provide this ioctl.
3186 x86 includes both i386 and x86_64.
3187
3188 Parameters: what parameters are accepted by the capability.
3189
3190 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3191 are not detailed, but errors with specific meanings are.
3192
3193
31947.1 KVM_CAP_PPC_ENABLE_HCALL
3195
3196Architectures: ppc
3197Parameters: args[0] is the sPAPR hcall number
3198 args[1] is 0 to disable, 1 to enable in-kernel handling
3199
3200This capability controls whether individual sPAPR hypercalls (hcalls)
3201get handled by the kernel or not. Enabling or disabling in-kernel
3202handling of an hcall is effective across the VM. On creation, an
3203initial set of hcalls are enabled for in-kernel handling, which
3204consists of those hcalls for which in-kernel handlers were implemented
3205before this capability was implemented. If disabled, the kernel will
3206not to attempt to handle the hcall, but will always exit to userspace
3207to handle it. Note that it may not make sense to enable some and
3208disable others of a group of related hcalls, but KVM does not prevent
3209userspace from doing that.
ae2113a4
PM
3210
3211If the hcall number specified is not one that has an in-kernel
3212implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3213error.