tracing: Update subbuffer with kilobytes not page order
[linux-2.6-block.git] / Documentation / trace / ftrace.rst
CommitLineData
1f198e22
CD
1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author: Steven Rostedt <srostedt@redhat.com>
8:License: The GNU Free Documentation License, Version 1.2
9 (dual licensed under the GPL v2)
10:Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
11 John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
2a1e03ca 27is really a framework of several assorted tracing utilities.
1f198e22
CD
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
2a1e03ca 33Throughout the kernel is hundreds of static event points that
1f198e22
CD
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
3e28c5ca 37See events.rst for more information.
1f198e22
CD
38
39
40Implementation Details
41----------------------
42
81a2d578 43See Documentation/trace/ftrace-design.rst for details for arch porters and such.
1f198e22
CD
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs /sys/kernel/tracing tracefs defaults 0 0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69 Before 4.1, all ftrace tracing control files were within the debugfs
70 file system, which is typically located at /sys/kernel/debug/tracing.
71 For backward compatibility, when mounting the debugfs file system,
72 the tracefs file system will be automatically mounted at:
73
74 /sys/kernel/debug/tracing
75
76 All files located in the tracefs file system will be located in that
77 debugfs file system directory as well.
78
79.. attention::
80
81 Any selected ftrace option will also create the tracefs file system.
82 The rest of the document will assume that you are in the ftrace directory
83 (cd /sys/kernel/tracing) and will only concentrate on the files within that
84 directory and not distract from the content with the extended
85 "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95 current_tracer:
96
97 This is used to set or display the current tracer
d693b288
FCB
98 that is configured. Changing the current tracer clears
99 the ring buffer content as well as the "snapshot" buffer.
1f198e22
CD
100
101 available_tracers:
102
103 This holds the different types of tracers that
104 have been compiled into the kernel. The
105 tracers listed here can be configured by
106 echoing their name into current_tracer.
107
108 tracing_on:
109
110 This sets or displays whether writing to the trace
111 ring buffer is enabled. Echo 0 into this file to disable
112 the tracer or 1 to enable it. Note, this only disables
113 writing to the ring buffer, the tracing overhead may
114 still be occurring.
115
116 The kernel function tracing_off() can be used within the
117 kernel to disable writing to the ring buffer, which will
118 set this file to "0". User space can re-enable tracing by
119 echoing "1" into the file.
120
121 Note, the function and event trigger "traceoff" will also
122 set this file to zero and stop tracing. Which can also
123 be re-enabled by user space using this file.
124
125 trace:
126
127 This file holds the output of the trace in a human
8a815e6b 128 readable format (described below). Opening this file for
d693b288 129 writing with the O_TRUNC flag clears the ring buffer content.
8a815e6b
SRV
130 Note, this file is not a consumer. If tracing is off
131 (no tracer running, or tracing_on is zero), it will produce
132 the same output each time it is read. When tracing is on,
133 it may produce inconsistent results as it tries to read
134 the entire buffer without consuming it.
1f198e22
CD
135
136 trace_pipe:
137
138 The output is the same as the "trace" file but this
139 file is meant to be streamed with live tracing.
140 Reads from this file will block until new data is
141 retrieved. Unlike the "trace" file, this file is a
142 consumer. This means reading from this file causes
143 sequential reads to display more current data. Once
144 data is read from this file, it is consumed, and
145 will not be read again with a sequential read. The
146 "trace" file is static, and if the tracer is not
147 adding more data, it will display the same
8a815e6b 148 information every time it is read.
1f198e22
CD
149
150 trace_options:
151
152 This file lets the user control the amount of data
153 that is displayed in one of the above output
154 files. Options also exist to modify how a tracer
155 or events work (stack traces, timestamps, etc).
156
157 options:
158
159 This is a directory that has a file for every available
160 trace option (also in trace_options). Options may also be set
161 or cleared by writing a "1" or "0" respectively into the
162 corresponding file with the option name.
163
164 tracing_max_latency:
165
166 Some of the tracers record the max latency.
167 For example, the maximum time that interrupts are disabled.
168 The maximum time is saved in this file. The max trace will also be
169 stored, and displayed by "trace". A new max trace will only be
170 recorded if the latency is greater than the value in this file
171 (in microseconds).
172
173 By echoing in a time into this file, no latency will be recorded
174 unless it is greater than the time in this file.
175
176 tracing_thresh:
177
178 Some latency tracers will record a trace whenever the
179 latency is greater than the number in this file.
180 Only active when the file contains a number greater than 0.
181 (in microseconds)
182
183 buffer_size_kb:
184
185 This sets or displays the number of kilobytes each CPU
186 buffer holds. By default, the trace buffers are the same size
187 for each CPU. The displayed number is the size of the
188 CPU buffer and not total size of all buffers. The
189 trace buffers are allocated in pages (blocks of memory
190 that the kernel uses for allocation, usually 4 KB in size).
a65d634e
FCB
191 A few extra pages may be allocated to accommodate buffer management
192 meta-data. If the last page allocated has room for more bytes
1f198e22
CD
193 than requested, the rest of the page will be used,
194 making the actual allocation bigger than requested or shown.
195 ( Note, the size may not be a multiple of the page size
196 due to buffer management meta-data. )
197
198 Buffer sizes for individual CPUs may vary
199 (see "per_cpu/cpu0/buffer_size_kb" below), and if they do
200 this file will show "X".
201
202 buffer_total_size_kb:
203
204 This displays the total combined size of all the trace buffers.
205
2f84b39f
SRG
206 buffer_subbuf_size_kb:
207
208 This sets or displays the sub buffer size. The ring buffer is broken up
209 into several same size "sub buffers". An event can not be bigger than
210 the size of the sub buffer. Normally, the sub buffer is the size of the
211 architecture's page (4K on x86). The sub buffer also contains meta data
212 at the start which also limits the size of an event. That means when
213 the sub buffer is a page size, no event can be larger than the page
214 size minus the sub buffer meta data.
215
216 Note, the buffer_subbuf_size_kb is a way for the user to specify the
217 minimum size of the subbuffer. The kernel may make it bigger due to the
218 implementation details, or simply fail the operation if the kernel can
219 not handle the request.
220
221 Changing the sub buffer size allows for events to be larger than the
222 page size.
223
224 Note: When changing the sub-buffer size, tracing is stopped and any
225 data in the ring buffer and the snapshot buffer will be discarded.
7c3f4802 226
1f198e22
CD
227 free_buffer:
228
229 If a process is performing tracing, and the ring buffer should be
230 shrunk "freed" when the process is finished, even if it were to be
231 killed by a signal, this file can be used for that purpose. On close
232 of this file, the ring buffer will be resized to its minimum size.
233 Having a process that is tracing also open this file, when the process
234 exits its file descriptor for this file will be closed, and in doing so,
235 the ring buffer will be "freed".
236
237 It may also stop tracing if disable_on_free option is set.
238
239 tracing_cpumask:
240
241 This is a mask that lets the user only trace on specified CPUs.
242 The format is a hex string representing the CPUs.
243
244 set_ftrace_filter:
245
246 When dynamic ftrace is configured in (see the
247 section below "dynamic ftrace"), the code is dynamically
248 modified (code text rewrite) to disable calling of the
249 function profiler (mcount). This lets tracing be configured
250 in with practically no overhead in performance. This also
251 has a side effect of enabling or disabling specific functions
252 to be traced. Echoing names of functions into this file
253 will limit the trace to only those functions.
32fb7ef6
SM
254 This influences the tracers "function" and "function_graph"
255 and thus also function profiling (see "function_profile_enabled").
1f198e22
CD
256
257 The functions listed in "available_filter_functions" are what
258 can be written into this file.
259
260 This interface also allows for commands to be used. See the
261 "Filter commands" section for more details.
262
5b8914a6 263 As a speed up, since processing strings can be quite expensive
f79b3f33
SRV
264 and requires a check of all functions registered to tracing, instead
265 an index can be written into this file. A number (starting with "1")
266 written will instead select the same corresponding at the line position
267 of the "available_filter_functions" file.
268
1f198e22
CD
269 set_ftrace_notrace:
270
271 This has an effect opposite to that of
272 set_ftrace_filter. Any function that is added here will not
273 be traced. If a function exists in both set_ftrace_filter
274 and set_ftrace_notrace, the function will _not_ be traced.
275
276 set_ftrace_pid:
277
278 Have the function tracer only trace the threads whose PID are
279 listed in this file.
280
281 If the "function-fork" option is set, then when a task whose
282 PID is listed in this file forks, the child's PID will
283 automatically be added to this file, and the child will be
284 traced by the function tracer as well. This option will also
285 cause PIDs of tasks that exit to be removed from the file.
286
2ab2a092
SRV
287 set_ftrace_notrace_pid:
288
289 Have the function tracer ignore threads whose PID are listed in
290 this file.
291
292 If the "function-fork" option is set, then when a task whose
293 PID is listed in this file forks, the child's PID will
294 automatically be added to this file, and the child will not be
295 traced by the function tracer as well. This option will also
296 cause PIDs of tasks that exit to be removed from the file.
297
298 If a PID is in both this file and "set_ftrace_pid", then this
299 file takes precedence, and the thread will not be traced.
300
1f198e22
CD
301 set_event_pid:
302
303 Have the events only trace a task with a PID listed in this file.
304 Note, sched_switch and sched_wake_up will also trace events
305 listed in this file.
306
307 To have the PIDs of children of tasks with their PID in this file
308 added on fork, enable the "event-fork" option. That option will also
309 cause the PIDs of tasks to be removed from this file when the task
310 exits.
311
2ab2a092
SRV
312 set_event_notrace_pid:
313
314 Have the events not trace a task with a PID listed in this file.
315 Note, sched_switch and sched_wakeup will trace threads not listed
316 in this file, even if a thread's PID is in the file if the
317 sched_switch or sched_wakeup events also trace a thread that should
318 be traced.
319
320 To have the PIDs of children of tasks with their PID in this file
321 added on fork, enable the "event-fork" option. That option will also
322 cause the PIDs of tasks to be removed from this file when the task
323 exits.
324
1f198e22
CD
325 set_graph_function:
326
327 Functions listed in this file will cause the function graph
328 tracer to only trace these functions and the functions that
329 they call. (See the section "dynamic ftrace" for more details).
32fb7ef6
SM
330 Note, set_ftrace_filter and set_ftrace_notrace still affects
331 what functions are being traced.
1f198e22
CD
332
333 set_graph_notrace:
334
335 Similar to set_graph_function, but will disable function graph
336 tracing when the function is hit until it exits the function.
337 This makes it possible to ignore tracing functions that are called
338 by a specific function.
339
340 available_filter_functions:
341
342 This lists the functions that ftrace has processed and can trace.
343 These are the function names that you can pass to
32fb7ef6
SM
344 "set_ftrace_filter", "set_ftrace_notrace",
345 "set_graph_function", or "set_graph_notrace".
1f198e22
CD
346 (See the section "dynamic ftrace" below for more details.)
347
83f74441
JO
348 available_filter_functions_addrs:
349
350 Similar to available_filter_functions, but with address displayed
351 for each function. The displayed address is the patch-site address
352 and can differ from /proc/kallsyms address.
353
1f198e22
CD
354 dyn_ftrace_total_info:
355
356 This file is for debugging purposes. The number of functions that
357 have been converted to nops and are available to be traced.
358
359 enabled_functions:
360
361 This file is more for debugging ftrace, but can also be useful
362 in seeing if any function has a callback attached to it.
363 Not only does the trace infrastructure use ftrace function
364 trace utility, but other subsystems might too. This file
365 displays all functions that have a callback attached to them
366 as well as the number of callbacks that have been attached.
367 Note, a callback may also call multiple functions which will
368 not be listed in this count.
369
370 If the callback registered to be traced by a function with
371 the "save regs" attribute (thus even more overhead), a 'R'
372 will be displayed on the same line as the function that
373 is returning registers.
374
375 If the callback registered to be traced by a function with
376 the "ip modify" attribute (thus the regs->ip can be changed),
377 an 'I' will be displayed on the same line as the function that
378 can be overridden.
379
6ce2c04f
SRG
380 If a non ftrace trampoline is attached (BPF) a 'D' will be displayed.
381 Note, normal ftrace trampolines can also be attached, but only one
382 "direct" trampoline can be attached to a given function at a time.
383
384 Some architectures can not call direct trampolines, but instead have
385 the ftrace ops function located above the function entry point. In
386 such cases an 'O' will be displayed.
387
388 If a function had either the "ip modify" or a "direct" call attached to
389 it in the past, a 'M' will be shown. This flag is never cleared. It is
390 used to know if a function was every modified by the ftrace infrastructure,
391 and can be used for debugging.
392
1f198e22
CD
393 If the architecture supports it, it will also show what callback
394 is being directly called by the function. If the count is greater
395 than 1 it most likely will be ftrace_ops_list_func().
396
6ad18000
HX
397 If the callback of a function jumps to a trampoline that is
398 specific to the callback and which is not the standard trampoline,
1f198e22
CD
399 its address will be printed as well as the function that the
400 trampoline calls.
401
6ce2c04f
SRG
402 touched_functions:
403
404 This file contains all the functions that ever had a function callback
405 to it via the ftrace infrastructure. It has the same format as
406 enabled_functions but shows all functions that have every been
407 traced.
408
409 To see any function that has every been modified by "ip modify" or a
410 direct trampoline, one can perform the following command:
411
412 grep ' M ' /sys/kernel/tracing/touched_functions
413
1f198e22
CD
414 function_profile_enabled:
415
416 When set it will enable all functions with either the function
417 tracer, or if configured, the function graph tracer. It will
418 keep a histogram of the number of functions that were called
419 and if the function graph tracer was configured, it will also keep
420 track of the time spent in those functions. The histogram
421 content can be displayed in the files:
422
1fee4f77 423 trace_stat/function<cpu> ( function0, function1, etc).
1f198e22 424
1fee4f77 425 trace_stat:
1f198e22
CD
426
427 A directory that holds different tracing stats.
428
429 kprobe_events:
430
3e28c5ca 431 Enable dynamic trace points. See kprobetrace.rst.
1f198e22
CD
432
433 kprobe_profile:
434
3e28c5ca 435 Dynamic trace points stats. See kprobetrace.rst.
1f198e22
CD
436
437 max_graph_depth:
438
439 Used with the function graph tracer. This is the max depth
440 it will trace into a function. Setting this to a value of
441 one will show only the first kernel function that is called
442 from user space.
443
444 printk_formats:
445
446 This is for tools that read the raw format files. If an event in
447 the ring buffer references a string, only a pointer to the string
448 is recorded into the buffer and not the string itself. This prevents
449 tools from knowing what that string was. This file displays the string
450 and address for the string allowing tools to map the pointers to what
451 the strings were.
452
453 saved_cmdlines:
454
455 Only the pid of the task is recorded in a trace event unless
456 the event specifically saves the task comm as well. Ftrace
457 makes a cache of pid mappings to comms to try to display
458 comms for events. If a pid for a comm is not listed, then
459 "<...>" is displayed in the output.
460
461 If the option "record-cmd" is set to "0", then comms of tasks
462 will not be saved during recording. By default, it is enabled.
463
464 saved_cmdlines_size:
465
466 By default, 128 comms are saved (see "saved_cmdlines" above). To
467 increase or decrease the amount of comms that are cached, echo
5b8914a6 468 the number of comms to cache into this file.
1f198e22
CD
469
470 saved_tgids:
471
472 If the option "record-tgid" is set, on each scheduling context switch
473 the Task Group ID of a task is saved in a table mapping the PID of
474 the thread to its TGID. By default, the "record-tgid" option is
475 disabled.
476
477 snapshot:
478
479 This displays the "snapshot" buffer and also lets the user
480 take a snapshot of the current running trace.
481 See the "Snapshot" section below for more details.
482
483 stack_max_size:
484
485 When the stack tracer is activated, this will display the
486 maximum stack size it has encountered.
487 See the "Stack Trace" section below.
488
489 stack_trace:
490
491 This displays the stack back trace of the largest stack
492 that was encountered when the stack tracer is activated.
493 See the "Stack Trace" section below.
494
495 stack_trace_filter:
496
497 This is similar to "set_ftrace_filter" but it limits what
498 functions the stack tracer will check.
499
500 trace_clock:
501
502 Whenever an event is recorded into the ring buffer, a
503 "timestamp" is added. This stamp comes from a specified
504 clock. By default, ftrace uses the "local" clock. This
505 clock is very fast and strictly per cpu, but on some
506 systems it may not be monotonic with respect to other
507 CPUs. In other words, the local clocks may not be in sync
508 with local clocks on other CPUs.
509
510 Usual clocks for tracing::
511
512 # cat trace_clock
513 [local] global counter x86-tsc
514
515 The clock with the square brackets around it is the one in effect.
516
517 local:
518 Default clock, but may not be in sync across CPUs
519
520 global:
521 This clock is in sync with all CPUs but may
522 be a bit slower than the local clock.
523
524 counter:
525 This is not a clock at all, but literally an atomic
526 counter. It counts up one by one, but is in sync
527 with all CPUs. This is useful when you need to
528 know exactly the order events occurred with respect to
529 each other on different CPUs.
530
531 uptime:
532 This uses the jiffies counter and the time stamp
533 is relative to the time since boot up.
534
535 perf:
536 This makes ftrace use the same clock that perf uses.
537 Eventually perf will be able to read ftrace buffers
538 and this will help out in interleaving the data.
539
540 x86-tsc:
541 Architectures may define their own clocks. For
542 example, x86 uses its own TSC cycle clock here.
543
544 ppc-tb:
545 This uses the powerpc timebase register value.
546 This is in sync across CPUs and can also be used
547 to correlate events across hypervisor/guest if
548 tb_offset is known.
549
550 mono:
551 This uses the fast monotonic clock (CLOCK_MONOTONIC)
552 which is monotonic and is subject to NTP rate adjustments.
553
554 mono_raw:
555 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
2a1e03ca 556 which is monotonic but is not subject to any rate adjustments
1f198e22
CD
557 and ticks at the same rate as the hardware clocksource.
558
559 boot:
a3ed0e43
TG
560 This is the boot clock (CLOCK_BOOTTIME) and is based on the
561 fast monotonic clock, but also accounts for time spent in
562 suspend. Since the clock access is designed for use in
563 tracing in the suspend path, some side effects are possible
564 if clock is accessed after the suspend time is accounted before
565 the fast mono clock is updated. In this case, the clock update
566 appears to happen slightly sooner than it normally would have.
567 Also on 32-bit systems, it's possible that the 64-bit boot offset
568 sees a partial update. These effects are rare and post
569 processing should be able to handle them. See comments in the
570 ktime_get_boot_fast_ns() function for more information.
680014d6 571
4d1257bb
KK
572 tai:
573 This is the tai clock (CLOCK_TAI) and is derived from the wall-
574 clock time. However, this clock does not experience
575 discontinuities and backwards jumps caused by NTP inserting leap
576 seconds. Since the clock access is designed for use in tracing,
577 side effects are possible. The clock access may yield wrong
578 readouts in case the internal TAI offset is updated e.g., caused
579 by setting the system time or using adjtimex() with an offset.
580 These effects are rare and post processing should be able to
581 handle them. See comments in the ktime_get_tai_fast_ns()
582 function for more information.
583
680014d6
LT
584 To set a clock, simply echo the clock name into this file::
585
586 # echo global > trace_clock
1f198e22 587
d693b288
FCB
588 Setting a clock clears the ring buffer content as well as the
589 "snapshot" buffer.
590
1f198e22
CD
591 trace_marker:
592
593 This is a very useful file for synchronizing user space
594 with events happening in the kernel. Writing strings into
595 this file will be written into the ftrace buffer.
596
597 It is useful in applications to open this file at the start
598 of the application and just reference the file descriptor
599 for the file::
600
601 void trace_write(const char *fmt, ...)
602 {
603 va_list ap;
604 char buf[256];
605 int n;
606
607 if (trace_fd < 0)
608 return;
609
610 va_start(ap, fmt);
611 n = vsnprintf(buf, 256, fmt, ap);
612 va_end(ap);
613
614 write(trace_fd, buf, n);
615 }
616
617 start::
618
9c1ab6d5 619 trace_fd = open("trace_marker", O_WRONLY);
1f198e22 620
d3439f9d
SRV
621 Note: Writing into the trace_marker file can also initiate triggers
622 that are written into /sys/kernel/tracing/events/ftrace/print/trigger
623 See "Event triggers" in Documentation/trace/events.rst and an
624 example in Documentation/trace/histogram.rst (Section 3.)
625
1f198e22
CD
626 trace_marker_raw:
627
1747db54 628 This is similar to trace_marker above, but is meant for binary data
1f198e22
CD
629 to be written to it, where a tool can be used to parse the data
630 from trace_pipe_raw.
631
632 uprobe_events:
633
634 Add dynamic tracepoints in programs.
3e28c5ca 635 See uprobetracer.rst
1f198e22
CD
636
637 uprobe_profile:
638
639 Uprobe statistics. See uprobetrace.txt
640
641 instances:
642
643 This is a way to make multiple trace buffers where different
644 events can be recorded in different buffers.
645 See "Instances" section below.
646
647 events:
648
649 This is the trace event directory. It holds event tracepoints
650 (also known as static tracepoints) that have been compiled
651 into the kernel. It shows what event tracepoints exist
652 and how they are grouped by system. There are "enable"
653 files at various levels that can enable the tracepoints
654 when a "1" is written to them.
655
3e28c5ca 656 See events.rst for more information.
1f198e22
CD
657
658 set_event:
659
660 By echoing in the event into this file, will enable that event.
661
3e28c5ca 662 See events.rst for more information.
1f198e22
CD
663
664 available_events:
665
666 A list of events that can be enabled in tracing.
667
3e28c5ca 668 See events.rst for more information.
1f198e22 669
2a56bb59
LT
670 timestamp_mode:
671
672 Certain tracers may change the timestamp mode used when
673 logging trace events into the event buffer. Events with
674 different modes can coexist within a buffer but the mode in
675 effect when an event is logged determines which timestamp mode
676 is used for that event. The default timestamp mode is
677 'delta'.
678
679 Usual timestamp modes for tracing:
680
681 # cat timestamp_mode
682 [delta] absolute
683
684 The timestamp mode with the square brackets around it is the
685 one in effect.
686
687 delta: Default timestamp mode - timestamp is a delta against
688 a per-buffer timestamp.
689
690 absolute: The timestamp is a full timestamp, not a delta
691 against some other value. As such it takes up more
692 space and is less efficient.
693
1f198e22
CD
694 hwlat_detector:
695
696 Directory for the Hardware Latency Detector.
697 See "Hardware Latency Detector" section below.
698
699 per_cpu:
700
701 This is a directory that contains the trace per_cpu information.
702
703 per_cpu/cpu0/buffer_size_kb:
704
705 The ftrace buffer is defined per_cpu. That is, there's a separate
706 buffer for each CPU to allow writes to be done atomically,
707 and free from cache bouncing. These buffers may have different
708 size buffers. This file is similar to the buffer_size_kb
709 file, but it only displays or sets the buffer size for the
710 specific CPU. (here cpu0).
711
712 per_cpu/cpu0/trace:
713
714 This is similar to the "trace" file, but it will only display
715 the data specific for the CPU. If written to, it only clears
716 the specific CPU buffer.
717
718 per_cpu/cpu0/trace_pipe
719
720 This is similar to the "trace_pipe" file, and is a consuming
721 read, but it will only display (and consume) the data specific
722 for the CPU.
723
724 per_cpu/cpu0/trace_pipe_raw
725
726 For tools that can parse the ftrace ring buffer binary format,
727 the trace_pipe_raw file can be used to extract the data
728 from the ring buffer directly. With the use of the splice()
729 system call, the buffer data can be quickly transferred to
730 a file or to the network where a server is collecting the
731 data.
732
733 Like trace_pipe, this is a consuming reader, where multiple
734 reads will always produce different data.
735
736 per_cpu/cpu0/snapshot:
737
738 This is similar to the main "snapshot" file, but will only
739 snapshot the current CPU (if supported). It only displays
740 the content of the snapshot for a given CPU, and if
741 written to, only clears this CPU buffer.
742
743 per_cpu/cpu0/snapshot_raw:
744
745 Similar to the trace_pipe_raw, but will read the binary format
746 from the snapshot buffer for the given CPU.
747
748 per_cpu/cpu0/stats:
749
750 This displays certain stats about the ring buffer:
751
752 entries:
753 The number of events that are still in the buffer.
754
755 overrun:
756 The number of lost events due to overwriting when
757 the buffer was full.
758
759 commit overrun:
760 Should always be zero.
761 This gets set if so many events happened within a nested
762 event (ring buffer is re-entrant), that it fills the
763 buffer and starts dropping events.
764
765 bytes:
766 Bytes actually read (not overwritten).
767
768 oldest event ts:
769 The oldest timestamp in the buffer
770
771 now ts:
772 The current timestamp
773
774 dropped events:
775 Events lost due to overwrite option being off.
776
777 read events:
778 The number of events read.
779
780The Tracers
781-----------
782
783Here is the list of current tracers that may be configured.
784
785 "function"
786
787 Function call tracer to trace all kernel functions.
788
789 "function_graph"
790
791 Similar to the function tracer except that the
792 function tracer probes the functions on their entry
793 whereas the function graph tracer traces on both entry
794 and exit of the functions. It then provides the ability
795 to draw a graph of function calls similar to C code
796 source.
797
798 "blk"
799
800 The block tracer. The tracer used by the blktrace user
801 application.
802
803 "hwlat"
804
805 The Hardware Latency tracer is used to detect if the hardware
806 produces any latency. See "Hardware Latency Detector" section
807 below.
808
809 "irqsoff"
810
811 Traces the areas that disable interrupts and saves
812 the trace with the longest max latency.
813 See tracing_max_latency. When a new max is recorded,
814 it replaces the old trace. It is best to view this
815 trace with the latency-format option enabled, which
816 happens automatically when the tracer is selected.
817
818 "preemptoff"
819
820 Similar to irqsoff but traces and records the amount of
821 time for which preemption is disabled.
822
823 "preemptirqsoff"
824
825 Similar to irqsoff and preemptoff, but traces and
826 records the largest time for which irqs and/or preemption
827 is disabled.
828
829 "wakeup"
830
831 Traces and records the max latency that it takes for
832 the highest priority task to get scheduled after
833 it has been woken up.
834 Traces all tasks as an average developer would expect.
835
836 "wakeup_rt"
837
838 Traces and records the max latency that it takes for just
839 RT tasks (as the current "wakeup" does). This is useful
840 for those interested in wake up timings of RT tasks.
841
842 "wakeup_dl"
843
844 Traces and records the max latency that it takes for
845 a SCHED_DEADLINE task to be woken (as the "wakeup" and
846 "wakeup_rt" does).
847
848 "mmiotrace"
849
850 A special tracer that is used to trace binary module.
851 It will trace all the calls that a module makes to the
852 hardware. Everything it writes and reads from the I/O
853 as well.
854
855 "branch"
856
857 This tracer can be configured when tracing likely/unlikely
858 calls within the kernel. It will trace when a likely and
859 unlikely branch is hit and if it was correct in its prediction
860 of being correct.
861
862 "nop"
863
864 This is the "trace nothing" tracer. To remove all
865 tracers from tracing simply echo "nop" into
866 current_tracer.
867
26a94491
TZ
868Error conditions
869----------------
870
871 For most ftrace commands, failure modes are obvious and communicated
872 using standard return codes.
873
874 For other more involved commands, extended error information may be
875 available via the tracing/error_log file. For the commands that
876 support it, reading the tracing/error_log file after an error will
877 display more detailed information about what went wrong, if
878 information is available. The tracing/error_log file is a circular
879 error log displaying a small number (currently, 8) of ftrace errors
880 for the last (8) failed commands.
881
882 The extended error information and usage takes the form shown in
883 this example::
884
2abfcd29 885 # echo xxx > /sys/kernel/tracing/events/sched/sched_wakeup/trigger
26a94491
TZ
886 echo: write error: Invalid argument
887
2abfcd29 888 # cat /sys/kernel/tracing/error_log
26a94491
TZ
889 [ 5348.887237] location: error: Couldn't yyy: zzz
890 Command: xxx
891 ^
892 [ 7517.023364] location: error: Bad rrr: sss
893 Command: ppp qqq
894 ^
895
896 To clear the error log, echo the empty string into it::
897
2abfcd29 898 # echo > /sys/kernel/tracing/error_log
1f198e22
CD
899
900Examples of using the tracer
901----------------------------
902
903Here are typical examples of using the tracers when controlling
904them only with the tracefs interface (without using any
905user-land utilities).
906
907Output format:
908--------------
909
910Here is an example of the output format of the file "trace"::
911
912 # tracer: function
913 #
914 # entries-in-buffer/entries-written: 140080/250280 #P:4
915 #
916 # _-----=> irqs-off
917 # / _----=> need-resched
918 # | / _---=> hardirq/softirq
919 # || / _--=> preempt-depth
920 # ||| / delay
921 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
922 # | | | |||| | |
923 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
924 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
925 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
926 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
927 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
928 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
929 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
930 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
931 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
932 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
933 ....
934
935A header is printed with the tracer name that is represented by
936the trace. In this case the tracer is "function". Then it shows the
937number of events in the buffer as well as the total number of entries
938that were written. The difference is the number of entries that were
939lost due to the buffer filling up (250280 - 140080 = 110200 events
940lost).
941
942The header explains the content of the events. Task name "bash", the task
943PID "1977", the CPU that it was running on "000", the latency format
944(explained below), the timestamp in <secs>.<usecs> format, the
945function name that was traced "sys_close" and the parent function that
946called this function "system_call_fastpath". The timestamp is the time
947at which the function was entered.
948
949Latency trace format
950--------------------
951
952When the latency-format option is enabled or when one of the latency
953tracers is set, the trace file gives somewhat more information to see
954why a latency happened. Here is a typical trace::
955
956 # tracer: irqsoff
957 #
958 # irqsoff latency trace v1.1.5 on 3.8.0-test+
959 # --------------------------------------------------------------------
960 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
961 # -----------------
962 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
963 # -----------------
964 # => started at: __lock_task_sighand
965 # => ended at: _raw_spin_unlock_irqrestore
966 #
967 #
968 # _------=> CPU#
969 # / _-----=> irqs-off
970 # | / _----=> need-resched
971 # || / _---=> hardirq/softirq
972 # ||| / _--=> preempt-depth
973 # |||| / delay
974 # cmd pid ||||| time | caller
975 # \ / ||||| \ | /
976 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
977 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
978 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
979 ps-6143 2d..1 306us : <stack trace>
980 => trace_hardirqs_on_caller
981 => trace_hardirqs_on
982 => _raw_spin_unlock_irqrestore
983 => do_task_stat
984 => proc_tgid_stat
985 => proc_single_show
986 => seq_read
987 => vfs_read
988 => sys_read
989 => system_call_fastpath
990
991
992This shows that the current tracer is "irqsoff" tracing the time
993for which interrupts were disabled. It gives the trace version (which
994never changes) and the version of the kernel upon which this was executed on
995(3.8). Then it displays the max latency in microseconds (259 us). The number
996of trace entries displayed and the total number (both are four: #4/4).
997VP, KP, SP, and HP are always zero and are reserved for later use.
998#P is the number of online CPUs (#P:4).
999
1000The task is the process that was running when the latency
1001occurred. (ps pid: 6143).
1002
1003The start and stop (the functions in which the interrupts were
1004disabled and enabled respectively) that caused the latencies:
1005
1006 - __lock_task_sighand is where the interrupts were disabled.
1007 - _raw_spin_unlock_irqrestore is where they were enabled again.
1008
1009The next lines after the header are the trace itself. The header
1010explains which is which.
1011
1012 cmd: The name of the process in the trace.
1013
1014 pid: The PID of that process.
1015
1016 CPU#: The CPU which the process was running on.
1017
1018 irqs-off: 'd' interrupts are disabled. '.' otherwise.
1019 .. caution:: If the architecture does not support a way to
1020 read the irq flags variable, an 'X' will always
1021 be printed here.
1022
1023 need-resched:
1024 - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
1025 - 'n' only TIF_NEED_RESCHED is set,
1026 - 'p' only PREEMPT_NEED_RESCHED is set,
1027 - '.' otherwise.
1028
1029 hardirq/softirq:
1030 - 'Z' - NMI occurred inside a hardirq
1031 - 'z' - NMI is running
1032 - 'H' - hard irq occurred inside a softirq.
1033 - 'h' - hard irq is running
1034 - 's' - soft irq is running
1035 - '.' - normal context.
1036
1037 preempt-depth: The level of preempt_disabled
1038
1039The above is mostly meaningful for kernel developers.
1040
1041 time:
1042 When the latency-format option is enabled, the trace file
1043 output includes a timestamp relative to the start of the
1044 trace. This differs from the output when latency-format
1045 is disabled, which includes an absolute timestamp.
1046
1047 delay:
1048 This is just to help catch your eye a bit better. And
1049 needs to be fixed to be only relative to the same CPU.
1050 The marks are determined by the difference between this
1051 current trace and the next trace.
1052
1053 - '$' - greater than 1 second
2a1e03ca
AL
1054 - '@' - greater than 100 millisecond
1055 - '*' - greater than 10 millisecond
1f198e22
CD
1056 - '#' - greater than 1000 microsecond
1057 - '!' - greater than 100 microsecond
1058 - '+' - greater than 10 microsecond
1059 - ' ' - less than or equal to 10 microsecond.
1060
1061 The rest is the same as the 'trace' file.
1062
1063 Note, the latency tracers will usually end with a back trace
1064 to easily find where the latency occurred.
1065
1066trace_options
1067-------------
1068
1069The trace_options file (or the options directory) is used to control
1070what gets printed in the trace output, or manipulate the tracers.
1071To see what is available, simply cat the file::
1072
1073 cat trace_options
1074 print-parent
1075 nosym-offset
1076 nosym-addr
1077 noverbose
1078 noraw
1079 nohex
1080 nobin
1081 noblock
80a76994 1082 nofields
1f198e22
CD
1083 trace_printk
1084 annotate
1085 nouserstacktrace
1086 nosym-userobj
1087 noprintk-msg-only
1088 context-info
1089 nolatency-format
1090 record-cmd
1091 norecord-tgid
1092 overwrite
1093 nodisable_on_free
1094 irq-info
1095 markers
1096 noevent-fork
1097 function-trace
1098 nofunction-fork
1099 nodisplay-graph
1100 nostacktrace
1101 nobranch
1102
1103To disable one of the options, echo in the option prepended with
1104"no"::
1105
1106 echo noprint-parent > trace_options
1107
1108To enable an option, leave off the "no"::
1109
1110 echo sym-offset > trace_options
1111
1112Here are the available options:
1113
1114 print-parent
1115 On function traces, display the calling (parent)
1116 function as well as the function being traced.
1117 ::
1118
1119 print-parent:
1120 bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul
1121
1122 noprint-parent:
1123 bash-4000 [01] 1477.606694: simple_strtoul
1124
1125
1126 sym-offset
1127 Display not only the function name, but also the
1128 offset in the function. For example, instead of
1129 seeing just "ktime_get", you will see
1130 "ktime_get+0xb/0x20".
1131 ::
1132
1133 sym-offset:
1134 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
1135
1136 sym-addr
1137 This will also display the function address as well
1138 as the function name.
1139 ::
1140
1141 sym-addr:
1142 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
1143
1144 verbose
1145 This deals with the trace file when the
1146 latency-format option is enabled.
1147 ::
1148
1149 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1150 (+0.000ms): simple_strtoul (kstrtoul)
1151
1152 raw
1153 This will display raw numbers. This option is best for
1154 use with user applications that can translate the raw
1155 numbers better than having it done in the kernel.
1156
1157 hex
1158 Similar to raw, but the numbers will be in a hexadecimal format.
1159
1160 bin
1161 This will print out the formats in raw binary.
1162
1163 block
1164 When set, reading trace_pipe will not block when polled.
1165
80a76994
SRG
1166 fields
1167 Print the fields as described by their types. This is a better
1168 option than using hex, bin or raw, as it gives a better parsing
1169 of the content of the event.
1170
1f198e22
CD
1171 trace_printk
1172 Can disable trace_printk() from writing into the buffer.
1173
1174 annotate
1175 It is sometimes confusing when the CPU buffers are full
1176 and one CPU buffer had a lot of events recently, thus
1177 a shorter time frame, were another CPU may have only had
1178 a few events, which lets it have older events. When
1179 the trace is reported, it shows the oldest events first,
1180 and it may look like only one CPU ran (the one with the
1181 oldest events). When the annotate option is set, it will
1182 display when a new CPU buffer started::
1183
1184 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1185 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1186 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1187 ##### CPU 2 buffer started ####
1188 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1189 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1190 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1191
1192 userstacktrace
1193 This option changes the trace. It records a
1194 stacktrace of the current user space thread after
1195 each trace event.
1196
1197 sym-userobj
1198 when user stacktrace are enabled, look up which
1199 object the address belongs to, and print a
1200 relative address. This is especially useful when
1201 ASLR is on, otherwise you don't get a chance to
1202 resolve the address to object/file/line after
1203 the app is no longer running
1204
1205 The lookup is performed when you read
1206 trace,trace_pipe. Example::
1207
1208 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1209 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1210
1211
1212 printk-msg-only
1213 When set, trace_printk()s will only show the format
1214 and not their parameters (if trace_bprintk() or
1215 trace_bputs() was used to save the trace_printk()).
1216
1217 context-info
1218 Show only the event data. Hides the comm, PID,
1219 timestamp, CPU, and other useful data.
1220
1221 latency-format
1222 This option changes the trace output. When it is enabled,
1223 the trace displays additional information about the
1224 latency, as described in "Latency trace format".
1225
06e0a548
SRV
1226 pause-on-trace
1227 When set, opening the trace file for read, will pause
1228 writing to the ring buffer (as if tracing_on was set to zero).
1229 This simulates the original behavior of the trace file.
1230 When the file is closed, tracing will be enabled again.
1231
a345a671
MH
1232 hash-ptr
1233 When set, "%p" in the event printk format displays the
1234 hashed pointer value instead of real address.
1235 This will be useful if you want to find out which hashed
1236 value is corresponding to the real value in trace log.
1237
1f198e22
CD
1238 record-cmd
1239 When any event or tracer is enabled, a hook is enabled
1240 in the sched_switch trace point to fill comm cache
1241 with mapped pids and comms. But this may cause some
1242 overhead, and if you only care about pids, and not the
1243 name of the task, disabling this option can lower the
1244 impact of tracing. See "saved_cmdlines".
1245
1246 record-tgid
1247 When any event or tracer is enabled, a hook is enabled
1248 in the sched_switch trace point to fill the cache of
1249 mapped Thread Group IDs (TGID) mapping to pids. See
1250 "saved_tgids".
1251
1252 overwrite
1253 This controls what happens when the trace buffer is
1254 full. If "1" (default), the oldest events are
1255 discarded and overwritten. If "0", then the newest
1256 events are discarded.
1257 (see per_cpu/cpu0/stats for overrun and dropped)
1258
1259 disable_on_free
1260 When the free_buffer is closed, tracing will
1261 stop (tracing_on set to 0).
1262
1263 irq-info
1264 Shows the interrupt, preempt count, need resched data.
1265 When disabled, the trace looks like::
1266
1267 # tracer: function
1268 #
1269 # entries-in-buffer/entries-written: 144405/9452052 #P:4
1270 #
1271 # TASK-PID CPU# TIMESTAMP FUNCTION
1272 # | | | | |
1273 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1274 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89
1275 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task
1276
1277
1278 markers
1279 When set, the trace_marker is writable (only by root).
1280 When disabled, the trace_marker will error with EINVAL
1281 on write.
1282
1283 event-fork
1284 When set, tasks with PIDs listed in set_event_pid will have
1285 the PIDs of their children added to set_event_pid when those
1286 tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1287 their PIDs will be removed from the file.
1288
2ab2a092
SRV
1289 This affects PIDs listed in set_event_notrace_pid as well.
1290
1f198e22
CD
1291 function-trace
1292 The latency tracers will enable function tracing
1293 if this option is enabled (default it is). When
1294 it is disabled, the latency tracers do not trace
1295 functions. This keeps the overhead of the tracer down
1296 when performing latency tests.
1297
1298 function-fork
1299 When set, tasks with PIDs listed in set_ftrace_pid will
1300 have the PIDs of their children added to set_ftrace_pid
1301 when those tasks fork. Also, when tasks with PIDs in
1302 set_ftrace_pid exit, their PIDs will be removed from the
1303 file.
1304
2ab2a092
SRV
1305 This affects PIDs in set_ftrace_notrace_pid as well.
1306
1f198e22
CD
1307 display-graph
1308 When set, the latency tracers (irqsoff, wakeup, etc) will
1309 use function graph tracing instead of function tracing.
1310
1311 stacktrace
1312 When set, a stack trace is recorded after any trace event
1313 is recorded.
1314
1315 branch
1316 Enable branch tracing with the tracer. This enables branch
1317 tracer along with the currently set tracer. Enabling this
1318 with the "nop" tracer is the same as just enabling the
1319 "branch" tracer.
1320
1321.. tip:: Some tracers have their own options. They only appear in this
1322 file when the tracer is active. They always appear in the
1323 options directory.
1324
1325
1326Here are the per tracer options:
1327
1328Options for function tracer:
1329
1330 func_stack_trace
1331 When set, a stack trace is recorded after every
1332 function that is recorded. NOTE! Limit the functions
1333 that are recorded before enabling this, with
1334 "set_ftrace_filter" otherwise the system performance
1335 will be critically degraded. Remember to disable
1336 this option before clearing the function filter.
1337
1338Options for function_graph tracer:
1339
1340 Since the function_graph tracer has a slightly different output
1341 it has its own options to control what is displayed.
1342
1343 funcgraph-overrun
1344 When set, the "overrun" of the graph stack is
1345 displayed after each function traced. The
1346 overrun, is when the stack depth of the calls
1347 is greater than what is reserved for each task.
1348 Each task has a fixed array of functions to
1349 trace in the call graph. If the depth of the
1350 calls exceeds that, the function is not traced.
1351 The overrun is the number of functions missed
1352 due to exceeding this array.
1353
1354 funcgraph-cpu
1355 When set, the CPU number of the CPU where the trace
1356 occurred is displayed.
1357
1358 funcgraph-overhead
1359 When set, if the function takes longer than
1360 A certain amount, then a delay marker is
1361 displayed. See "delay" above, under the
1362 header description.
1363
1364 funcgraph-proc
1365 Unlike other tracers, the process' command line
1366 is not displayed by default, but instead only
1367 when a task is traced in and out during a context
1368 switch. Enabling this options has the command
1369 of each process displayed at every line.
1370
1371 funcgraph-duration
1372 At the end of each function (the return)
1373 the duration of the amount of time in the
1374 function is displayed in microseconds.
1375
1376 funcgraph-abstime
1377 When set, the timestamp is displayed at each line.
1378
1379 funcgraph-irqs
1380 When disabled, functions that happen inside an
1381 interrupt will not be traced.
1382
1383 funcgraph-tail
1384 When set, the return event will include the function
1385 that it represents. By default this is off, and
1386 only a closing curly bracket "}" is displayed for
1387 the return of a function.
1388
21c094d3
DP
1389 funcgraph-retval
1390 When set, the return value of each traced function
1391 will be printed after an equal sign "=". By default
1392 this is off.
1393
1394 funcgraph-retval-hex
1395 When set, the return value will always be printed
1396 in hexadecimal format. If the option is not set and
1397 the return value is an error code, it will be printed
1398 in signed decimal format; otherwise it will also be
1399 printed in hexadecimal format. By default, this option
1400 is off.
1401
1f198e22
CD
1402 sleep-time
1403 When running function graph tracer, to include
1404 the time a task schedules out in its function.
1405 When enabled, it will account time the task has been
1406 scheduled out as part of the function call.
1407
1408 graph-time
1409 When running function profiler with function graph tracer,
1410 to include the time to call nested functions. When this is
1411 not set, the time reported for the function will only
1412 include the time the function itself executed for, not the
1413 time for functions that it called.
1414
1415Options for blk tracer:
1416
1417 blk_classic
1418 Shows a more minimalistic output.
1419
1420
1421irqsoff
1422-------
1423
1424When interrupts are disabled, the CPU can not react to any other
1425external event (besides NMIs and SMIs). This prevents the timer
1426interrupt from triggering or the mouse interrupt from letting
1427the kernel know of a new mouse event. The result is a latency
1428with the reaction time.
1429
1430The irqsoff tracer tracks the time for which interrupts are
1431disabled. When a new maximum latency is hit, the tracer saves
1432the trace leading up to that latency point so that every time a
1433new maximum is reached, the old saved trace is discarded and the
1434new trace is saved.
1435
1436To reset the maximum, echo 0 into tracing_max_latency. Here is
1437an example::
1438
1439 # echo 0 > options/function-trace
1440 # echo irqsoff > current_tracer
1441 # echo 1 > tracing_on
1442 # echo 0 > tracing_max_latency
1443 # ls -ltr
1444 [...]
1445 # echo 0 > tracing_on
1446 # cat trace
1447 # tracer: irqsoff
1448 #
1449 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1450 # --------------------------------------------------------------------
1451 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1452 # -----------------
1453 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1454 # -----------------
1455 # => started at: run_timer_softirq
1456 # => ended at: run_timer_softirq
1457 #
1458 #
1459 # _------=> CPU#
1460 # / _-----=> irqs-off
1461 # | / _----=> need-resched
1462 # || / _---=> hardirq/softirq
1463 # ||| / _--=> preempt-depth
1464 # |||| / delay
1465 # cmd pid ||||| time | caller
1466 # \ / ||||| \ | /
1467 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
1468 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
1469 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
1470 <idle>-0 0dNs3 25us : <stack trace>
1471 => _raw_spin_unlock_irq
1472 => run_timer_softirq
1473 => __do_softirq
1474 => call_softirq
1475 => do_softirq
1476 => irq_exit
1477 => smp_apic_timer_interrupt
1478 => apic_timer_interrupt
1479 => rcu_idle_exit
1480 => cpu_idle
1481 => rest_init
1482 => start_kernel
1483 => x86_64_start_reservations
1484 => x86_64_start_kernel
1485
1747db54 1486Here we see that we had a latency of 16 microseconds (which is
1f198e22
CD
1487very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1488interrupts. The difference between the 16 and the displayed
1489timestamp 25us occurred because the clock was incremented
1490between the time of recording the max latency and the time of
1491recording the function that had that latency.
1492
1493Note the above example had function-trace not set. If we set
1494function-trace, we get a much larger output::
1495
1496 with echo 1 > options/function-trace
1497
1498 # tracer: irqsoff
1499 #
1500 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1501 # --------------------------------------------------------------------
1502 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1503 # -----------------
1504 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1505 # -----------------
1506 # => started at: ata_scsi_queuecmd
1507 # => ended at: ata_scsi_queuecmd
1508 #
1509 #
1510 # _------=> CPU#
1511 # / _-----=> irqs-off
1512 # | / _----=> need-resched
1513 # || / _---=> hardirq/softirq
1514 # ||| / _--=> preempt-depth
1515 # |||| / delay
1516 # cmd pid ||||| time | caller
1517 # \ / ||||| \ | /
1518 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1519 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
1520 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1521 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1522 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1523 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
1524 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
1525 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1526 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1527 [...]
1528 bash-2042 3d..1 67us : delay_tsc <-__delay
1529 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1530 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
1531 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1532 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
1533 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1534 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1535 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1536 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1537 bash-2042 3d..1 120us : <stack trace>
1538 => _raw_spin_unlock_irqrestore
1539 => ata_scsi_queuecmd
1540 => scsi_dispatch_cmd
1541 => scsi_request_fn
1542 => __blk_run_queue_uncond
1543 => __blk_run_queue
1544 => blk_queue_bio
ed00aabd 1545 => submit_bio_noacct
1f198e22
CD
1546 => submit_bio
1547 => submit_bh
1548 => __ext3_get_inode_loc
1549 => ext3_iget
1550 => ext3_lookup
1551 => lookup_real
1552 => __lookup_hash
1553 => walk_component
1554 => lookup_last
1555 => path_lookupat
1556 => filename_lookup
1557 => user_path_at_empty
1558 => user_path_at
1559 => vfs_fstatat
1560 => vfs_stat
1561 => sys_newstat
1562 => system_call_fastpath
1563
1564
1565Here we traced a 71 microsecond latency. But we also see all the
1566functions that were called during that time. Note that by
1567enabling function tracing, we incur an added overhead. This
1568overhead may extend the latency times. But nevertheless, this
1569trace has provided some very helpful debugging information.
1570
88d380eb
CD
1571If we prefer function graph output instead of function, we can set
1572display-graph option::
3df5ffd2 1573
88d380eb
CD
1574 with echo 1 > options/display-graph
1575
1576 # tracer: irqsoff
1577 #
1578 # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
1579 # --------------------------------------------------------------------
1580 # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
1581 # -----------------
1582 # | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
1583 # -----------------
1584 # => started at: free_debug_processing
1585 # => ended at: return_to_handler
1586 #
1587 #
1588 # _-----=> irqs-off
1589 # / _----=> need-resched
1590 # | / _---=> hardirq/softirq
1591 # || / _--=> preempt-depth
1592 # ||| /
1593 # REL TIME CPU TASK/PID |||| DURATION FUNCTION CALLS
1594 # | | | | |||| | | | | | |
1595 0 us | 0) bash-1507 | d... | 0.000 us | _raw_spin_lock_irqsave();
1596 0 us | 0) bash-1507 | d..1 | 0.378 us | do_raw_spin_trylock();
1597 1 us | 0) bash-1507 | d..2 | | set_track() {
1598 2 us | 0) bash-1507 | d..2 | | save_stack_trace() {
1599 2 us | 0) bash-1507 | d..2 | | __save_stack_trace() {
1600 3 us | 0) bash-1507 | d..2 | | __unwind_start() {
1601 3 us | 0) bash-1507 | d..2 | | get_stack_info() {
1602 3 us | 0) bash-1507 | d..2 | 0.351 us | in_task_stack();
1603 4 us | 0) bash-1507 | d..2 | 1.107 us | }
1604 [...]
1605 3750 us | 0) bash-1507 | d..1 | 0.516 us | do_raw_spin_unlock();
1606 3750 us | 0) bash-1507 | d..1 | 0.000 us | _raw_spin_unlock_irqrestore();
1607 3764 us | 0) bash-1507 | d..1 | 0.000 us | tracer_hardirqs_on();
1608 bash-1507 0d..1 3792us : <stack trace>
1609 => free_debug_processing
1610 => __slab_free
1611 => kmem_cache_free
1612 => vm_area_free
1613 => remove_vma
1614 => exit_mmap
1615 => mmput
2388777a 1616 => begin_new_exec
88d380eb
CD
1617 => load_elf_binary
1618 => search_binary_handler
1619 => __do_execve_file.isra.32
1620 => __x64_sys_execve
1621 => do_syscall_64
1622 => entry_SYSCALL_64_after_hwframe
1f198e22
CD
1623
1624preemptoff
1625----------
1626
1627When preemption is disabled, we may be able to receive
1628interrupts but the task cannot be preempted and a higher
1629priority task must wait for preemption to be enabled again
1630before it can preempt a lower priority task.
1631
1632The preemptoff tracer traces the places that disable preemption.
1633Like the irqsoff tracer, it records the maximum latency for
1634which preemption was disabled. The control of preemptoff tracer
1635is much like the irqsoff tracer.
1636::
1637
1638 # echo 0 > options/function-trace
1639 # echo preemptoff > current_tracer
1640 # echo 1 > tracing_on
1641 # echo 0 > tracing_max_latency
1642 # ls -ltr
1643 [...]
1644 # echo 0 > tracing_on
1645 # cat trace
1646 # tracer: preemptoff
1647 #
1648 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1649 # --------------------------------------------------------------------
1650 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1651 # -----------------
1652 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1653 # -----------------
1654 # => started at: do_IRQ
1655 # => ended at: do_IRQ
1656 #
1657 #
1658 # _------=> CPU#
1659 # / _-----=> irqs-off
1660 # | / _----=> need-resched
1661 # || / _---=> hardirq/softirq
1662 # ||| / _--=> preempt-depth
1663 # |||| / delay
1664 # cmd pid ||||| time | caller
1665 # \ / ||||| \ | /
1666 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
1667 sshd-1991 1d..1 46us : irq_exit <-do_IRQ
1668 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
1669 sshd-1991 1d..1 52us : <stack trace>
1670 => sub_preempt_count
1671 => irq_exit
1672 => do_IRQ
1673 => ret_from_intr
1674
1675
1676This has some more changes. Preemption was disabled when an
1677interrupt came in (notice the 'h'), and was enabled on exit.
1678But we also see that interrupts have been disabled when entering
1679the preempt off section and leaving it (the 'd'). We do not know if
1680interrupts were enabled in the mean time or shortly after this
1681was over.
1682::
1683
1684 # tracer: preemptoff
1685 #
1686 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1687 # --------------------------------------------------------------------
1688 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1689 # -----------------
1690 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1691 # -----------------
1692 # => started at: wake_up_new_task
1693 # => ended at: task_rq_unlock
1694 #
1695 #
1696 # _------=> CPU#
1697 # / _-----=> irqs-off
1698 # | / _----=> need-resched
1699 # || / _---=> hardirq/softirq
1700 # ||| / _--=> preempt-depth
1701 # |||| / delay
1702 # cmd pid ||||| time | caller
1703 # \ / ||||| \ | /
1704 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
1705 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
1706 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
1707 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1708 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1709 [...]
1710 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
1711 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
1712 bash-1994 1d..1 13us : add_preempt_count <-irq_enter
1713 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
1714 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1715 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
1716 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
1717 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt
1718 [...]
1719 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event
1720 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
1721 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
1722 bash-1994 1d..2 36us : do_softirq <-irq_exit
1723 bash-1994 1d..2 36us : __do_softirq <-call_softirq
1724 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
1725 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
1726 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
1727 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
1728 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq
1729 [...]
1730 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks
1731 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
1732 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
1733 bash-1994 1dN.2 82us : idle_cpu <-irq_exit
1734 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
1735 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
1736 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1737 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
1738 bash-1994 1.N.1 104us : <stack trace>
1739 => sub_preempt_count
1740 => _raw_spin_unlock_irqrestore
1741 => task_rq_unlock
1742 => wake_up_new_task
1743 => do_fork
1744 => sys_clone
1745 => stub_clone
1746
1747
1748The above is an example of the preemptoff trace with
1749function-trace set. Here we see that interrupts were not disabled
1750the entire time. The irq_enter code lets us know that we entered
1751an interrupt 'h'. Before that, the functions being traced still
1752show that it is not in an interrupt, but we can see from the
1753functions themselves that this is not the case.
1754
1755preemptirqsoff
1756--------------
1757
1758Knowing the locations that have interrupts disabled or
1759preemption disabled for the longest times is helpful. But
1760sometimes we would like to know when either preemption and/or
1761interrupts are disabled.
1762
1763Consider the following code::
1764
1765 local_irq_disable();
1766 call_function_with_irqs_off();
1767 preempt_disable();
1768 call_function_with_irqs_and_preemption_off();
1769 local_irq_enable();
1770 call_function_with_preemption_off();
1771 preempt_enable();
1772
1773The irqsoff tracer will record the total length of
1774call_function_with_irqs_off() and
1775call_function_with_irqs_and_preemption_off().
1776
1777The preemptoff tracer will record the total length of
1778call_function_with_irqs_and_preemption_off() and
1779call_function_with_preemption_off().
1780
1781But neither will trace the time that interrupts and/or
1782preemption is disabled. This total time is the time that we can
1783not schedule. To record this time, use the preemptirqsoff
1784tracer.
1785
1786Again, using this trace is much like the irqsoff and preemptoff
1787tracers.
1788::
1789
1790 # echo 0 > options/function-trace
1791 # echo preemptirqsoff > current_tracer
1792 # echo 1 > tracing_on
1793 # echo 0 > tracing_max_latency
1794 # ls -ltr
1795 [...]
1796 # echo 0 > tracing_on
1797 # cat trace
1798 # tracer: preemptirqsoff
1799 #
1800 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1801 # --------------------------------------------------------------------
1802 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1803 # -----------------
1804 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1805 # -----------------
1806 # => started at: ata_scsi_queuecmd
1807 # => ended at: ata_scsi_queuecmd
1808 #
1809 #
1810 # _------=> CPU#
1811 # / _-----=> irqs-off
1812 # | / _----=> need-resched
1813 # || / _---=> hardirq/softirq
1814 # ||| / _--=> preempt-depth
1815 # |||| / delay
1816 # cmd pid ||||| time | caller
1817 # \ / ||||| \ | /
1818 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1819 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1820 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
1821 ls-2230 3...1 111us : <stack trace>
1822 => sub_preempt_count
1823 => _raw_spin_unlock_irqrestore
1824 => ata_scsi_queuecmd
1825 => scsi_dispatch_cmd
1826 => scsi_request_fn
1827 => __blk_run_queue_uncond
1828 => __blk_run_queue
1829 => blk_queue_bio
ed00aabd 1830 => submit_bio_noacct
1f198e22
CD
1831 => submit_bio
1832 => submit_bh
1833 => ext3_bread
1834 => ext3_dir_bread
1835 => htree_dirblock_to_tree
1836 => ext3_htree_fill_tree
1837 => ext3_readdir
1838 => vfs_readdir
1839 => sys_getdents
1840 => system_call_fastpath
1841
1842
1843The trace_hardirqs_off_thunk is called from assembly on x86 when
1844interrupts are disabled in the assembly code. Without the
1845function tracing, we do not know if interrupts were enabled
1846within the preemption points. We do see that it started with
1847preemption enabled.
1848
1849Here is a trace with function-trace set::
1850
1851 # tracer: preemptirqsoff
1852 #
1853 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1854 # --------------------------------------------------------------------
1855 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1856 # -----------------
1857 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1858 # -----------------
1859 # => started at: schedule
1860 # => ended at: mutex_unlock
1861 #
1862 #
1863 # _------=> CPU#
1864 # / _-----=> irqs-off
1865 # | / _----=> need-resched
1866 # || / _---=> hardirq/softirq
1867 # ||| / _--=> preempt-depth
1868 # |||| / delay
1869 # cmd pid ||||| time | caller
1870 # \ / ||||| \ | /
1871 kworker/-59 3...1 0us : __schedule <-schedule
1872 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
1873 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
1874 kworker/-59 3d..2 1us : deactivate_task <-__schedule
1875 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
1876 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
1877 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
1878 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
1879 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
1880 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
1881 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
1882 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
1883 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1884 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
1885 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
1886 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
1887 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
1888 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
1889 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
1890 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
1891 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
1892 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
1893 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
1894 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
1895 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity
1896 ls-2269 3d..2 7us : finish_task_switch <-__schedule
1897 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
1898 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
1899 ls-2269 3d..2 8us : irq_enter <-do_IRQ
1900 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
1901 ls-2269 3d..2 9us : add_preempt_count <-irq_enter
1902 ls-2269 3d.h2 9us : exit_idle <-do_IRQ
1903 [...]
1904 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
1905 ls-2269 3d.h2 20us : irq_exit <-do_IRQ
1906 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
1907 ls-2269 3d..3 21us : do_softirq <-irq_exit
1908 ls-2269 3d..3 21us : __do_softirq <-call_softirq
1909 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
1910 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
1911 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
1912 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
1913 ls-2269 3d.s5 31us : irq_enter <-do_IRQ
1914 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1915 [...]
1916 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1917 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
1918 ls-2269 3d.H5 32us : exit_idle <-do_IRQ
1919 ls-2269 3d.H5 32us : handle_irq <-do_IRQ
1920 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
1921 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq
1922 [...]
1923 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1924 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1925 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
1926 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
1927 ls-2269 3d..3 159us : idle_cpu <-irq_exit
1928 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit
1929 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
1930 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
1931 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
1932 ls-2269 3d... 186us : <stack trace>
1933 => __mutex_unlock_slowpath
1934 => mutex_unlock
1935 => process_output
1936 => n_tty_write
1937 => tty_write
1938 => vfs_write
1939 => sys_write
1940 => system_call_fastpath
1941
1942This is an interesting trace. It started with kworker running and
1943scheduling out and ls taking over. But as soon as ls released the
1944rq lock and enabled interrupts (but not preemption) an interrupt
1945triggered. When the interrupt finished, it started running softirqs.
1946But while the softirq was running, another interrupt triggered.
1947When an interrupt is running inside a softirq, the annotation is 'H'.
1948
1949
1950wakeup
1951------
1952
1953One common case that people are interested in tracing is the
1954time it takes for a task that is woken to actually wake up.
1955Now for non Real-Time tasks, this can be arbitrary. But tracing
1956it none the less can be interesting.
1957
1958Without function tracing::
1959
1960 # echo 0 > options/function-trace
1961 # echo wakeup > current_tracer
1962 # echo 1 > tracing_on
1963 # echo 0 > tracing_max_latency
1964 # chrt -f 5 sleep 1
1965 # echo 0 > tracing_on
1966 # cat trace
1967 # tracer: wakeup
1968 #
1969 # wakeup latency trace v1.1.5 on 3.8.0-test+
1970 # --------------------------------------------------------------------
1971 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1972 # -----------------
1973 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1974 # -----------------
1975 #
1976 # _------=> CPU#
1977 # / _-----=> irqs-off
1978 # | / _----=> need-resched
1979 # || / _---=> hardirq/softirq
1980 # ||| / _--=> preempt-depth
1981 # |||| / delay
1982 # cmd pid ||||| time | caller
1983 # \ / ||||| \ | /
1984 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H
1985 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1986 <idle>-0 3d..3 15us : __schedule <-schedule
1987 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H
1988
1989The tracer only traces the highest priority task in the system
1990to avoid tracing the normal circumstances. Here we see that
1991the kworker with a nice priority of -20 (not very nice), took
1992just 15 microseconds from the time it woke up, to the time it
1993ran.
1994
1995Non Real-Time tasks are not that interesting. A more interesting
1996trace is to concentrate only on Real-Time tasks.
1997
1998wakeup_rt
1999---------
2000
2001In a Real-Time environment it is very important to know the
2002wakeup time it takes for the highest priority task that is woken
2003up to the time that it executes. This is also known as "schedule
2004latency". I stress the point that this is about RT tasks. It is
2005also important to know the scheduling latency of non-RT tasks,
2006but the average schedule latency is better for non-RT tasks.
2007Tools like LatencyTop are more appropriate for such
2008measurements.
2009
2010Real-Time environments are interested in the worst case latency.
2011That is the longest latency it takes for something to happen,
2012and not the average. We can have a very fast scheduler that may
2013only have a large latency once in a while, but that would not
2014work well with Real-Time tasks. The wakeup_rt tracer was designed
2015to record the worst case wakeups of RT tasks. Non-RT tasks are
2016not recorded because the tracer only records one worst case and
2017tracing non-RT tasks that are unpredictable will overwrite the
2018worst case latency of RT tasks (just run the normal wakeup
2019tracer for a while to see that effect).
2020
2021Since this tracer only deals with RT tasks, we will run this
2022slightly differently than we did with the previous tracers.
2023Instead of performing an 'ls', we will run 'sleep 1' under
2024'chrt' which changes the priority of the task.
2025::
2026
2027 # echo 0 > options/function-trace
2028 # echo wakeup_rt > current_tracer
2029 # echo 1 > tracing_on
2030 # echo 0 > tracing_max_latency
2031 # chrt -f 5 sleep 1
2032 # echo 0 > tracing_on
2033 # cat trace
2034 # tracer: wakeup
2035 #
2036 # tracer: wakeup_rt
2037 #
2038 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2039 # --------------------------------------------------------------------
2040 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2041 # -----------------
2042 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
2043 # -----------------
2044 #
2045 # _------=> CPU#
2046 # / _-----=> irqs-off
2047 # | / _----=> need-resched
2048 # || / _---=> hardirq/softirq
2049 # ||| / _--=> preempt-depth
2050 # |||| / delay
2051 # cmd pid ||||| time | caller
2052 # \ / ||||| \ | /
2053 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
2054 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
2055 <idle>-0 3d..3 5us : __schedule <-schedule
2056 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
2057
2058
2059Running this on an idle system, we see that it only took 5 microseconds
2060to perform the task switch. Note, since the trace point in the schedule
2061is before the actual "switch", we stop the tracing when the recorded task
2062is about to schedule in. This may change if we add a new marker at the
2063end of the scheduler.
2064
2065Notice that the recorded task is 'sleep' with the PID of 2389
2066and it has an rt_prio of 5. This priority is user-space priority
2067and not the internal kernel priority. The policy is 1 for
2068SCHED_FIFO and 2 for SCHED_RR.
2069
2070Note, that the trace data shows the internal priority (99 - rtprio).
2071::
2072
2073 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
2074
2075The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
2076and in the running state 'R'. The sleep task was scheduled in with
20772389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
2078and it too is in the running state.
2079
2080Doing the same with chrt -r 5 and function-trace set.
2081::
2082
2083 echo 1 > options/function-trace
2084
2085 # tracer: wakeup_rt
2086 #
2087 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2088 # --------------------------------------------------------------------
2089 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2090 # -----------------
2091 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
2092 # -----------------
2093 #
2094 # _------=> CPU#
2095 # / _-----=> irqs-off
2096 # | / _----=> need-resched
2097 # || / _---=> hardirq/softirq
2098 # ||| / _--=> preempt-depth
2099 # |||| / delay
2100 # cmd pid ||||| time | caller
2101 # \ / ||||| \ | /
2102 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep
2103 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2104 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
2105 <idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr
2106 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
2107 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
2108 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
2109 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
2110 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
2111 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2112 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
2113 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
2114 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
2115 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
2116 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
2117 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event
2118 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
2119 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event
2120 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
2121 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
2122 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit
2123 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
2124 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
2125 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
2126 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
2127 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
2128 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
2129 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
2130 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
2131 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
2132 <idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit
2133 <idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz
2134 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
2135 <idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz
2136 <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update
2137 <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz
2138 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
2139 <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit
2140 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
2141 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
2142 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
2143 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
2144 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2145 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
2146 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
2147 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
2148 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram
2149 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event
2150 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
2151 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event
2152 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
2153 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2154 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
2155 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
2156 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
2157 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2158 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
2159 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
2160 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2161 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
2162 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
2163 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
2164 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns
2165 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event
2166 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
2167 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event
2168 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
2169 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2170 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
2171 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
2172 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
2173 <idle>-0 3.N.. 25us : schedule <-cpu_idle
2174 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule
2175 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule
2176 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
2177 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
2178 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
2179 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
2180 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
2181 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
2182 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
2183 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
2184 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
2185 <idle>-0 3d..3 29us : __schedule <-preempt_schedule
2186 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep
2187
2188This isn't that big of a trace, even with function tracing enabled,
2189so I included the entire trace.
2190
2191The interrupt went off while when the system was idle. Somewhere
2192before task_woken_rt() was called, the NEED_RESCHED flag was set,
2193this is indicated by the first occurrence of the 'N' flag.
2194
2195Latency tracing and events
2196--------------------------
2197As function tracing can induce a much larger latency, but without
2198seeing what happens within the latency it is hard to know what
2199caused it. There is a middle ground, and that is with enabling
2200events.
2201::
2202
2203 # echo 0 > options/function-trace
2204 # echo wakeup_rt > current_tracer
2205 # echo 1 > events/enable
2206 # echo 1 > tracing_on
2207 # echo 0 > tracing_max_latency
2208 # chrt -f 5 sleep 1
2209 # echo 0 > tracing_on
2210 # cat trace
2211 # tracer: wakeup_rt
2212 #
2213 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2214 # --------------------------------------------------------------------
2215 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2216 # -----------------
2217 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
2218 # -----------------
2219 #
2220 # _------=> CPU#
2221 # / _-----=> irqs-off
2222 # | / _----=> need-resched
2223 # || / _---=> hardirq/softirq
2224 # ||| / _--=> preempt-depth
2225 # |||| / delay
2226 # cmd pid ||||| time | caller
2227 # \ / ||||| \ | /
2228 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
2229 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2230 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2231 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2232 <idle>-0 2.N.2 2us : power_end: cpu_id=2
2233 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
2234 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2235 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2236 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch
2237 <idle>-0 2.N.2 5us : rcu_utilization: End context switch
2238 <idle>-0 2d..3 6us : __schedule <-schedule
2239 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
2240
2241
2242Hardware Latency Detector
2243-------------------------
2244
2245The hardware latency detector is executed by enabling the "hwlat" tracer.
2246
2247NOTE, this tracer will affect the performance of the system as it will
2248periodically make a CPU constantly busy with interrupts disabled.
2249::
2250
2251 # echo hwlat > current_tracer
2252 # sleep 100
2253 # cat trace
2254 # tracer: hwlat
2255 #
b396bfde
SRV
2256 # entries-in-buffer/entries-written: 13/13 #P:8
2257 #
1f198e22
CD
2258 # _-----=> irqs-off
2259 # / _----=> need-resched
2260 # | / _---=> hardirq/softirq
2261 # || / _--=> preempt-depth
2262 # ||| / delay
2263 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2264 # | | | |||| | |
b396bfde
SRV
2265 <...>-1729 [001] d... 678.473449: #1 inner/outer(us): 11/12 ts:1581527483.343962693 count:6
2266 <...>-1729 [004] d... 689.556542: #2 inner/outer(us): 16/9 ts:1581527494.889008092 count:1
2267 <...>-1729 [005] d... 714.756290: #3 inner/outer(us): 16/16 ts:1581527519.678961629 count:5
2268 <...>-1729 [001] d... 718.788247: #4 inner/outer(us): 9/17 ts:1581527523.889012713 count:1
2269 <...>-1729 [002] d... 719.796341: #5 inner/outer(us): 13/9 ts:1581527524.912872606 count:1
2270 <...>-1729 [006] d... 844.787091: #6 inner/outer(us): 9/12 ts:1581527649.889048502 count:2
2271 <...>-1729 [003] d... 849.827033: #7 inner/outer(us): 18/9 ts:1581527654.889013793 count:1
2272 <...>-1729 [007] d... 853.859002: #8 inner/outer(us): 9/12 ts:1581527658.889065736 count:1
2273 <...>-1729 [001] d... 855.874978: #9 inner/outer(us): 9/11 ts:1581527660.861991877 count:1
2274 <...>-1729 [001] d... 863.938932: #10 inner/outer(us): 9/11 ts:1581527668.970010500 count:1 nmi-total:7 nmi-count:1
2275 <...>-1729 [007] d... 878.050780: #11 inner/outer(us): 9/12 ts:1581527683.385002600 count:1 nmi-total:5 nmi-count:1
2276 <...>-1729 [007] d... 886.114702: #12 inner/outer(us): 9/12 ts:1581527691.385001600 count:1
1f198e22
CD
2277
2278
2279The above output is somewhat the same in the header. All events will have
2280interrupts disabled 'd'. Under the FUNCTION title there is:
2281
2282 #1
2283 This is the count of events recorded that were greater than the
2284 tracing_threshold (See below).
2285
b396bfde 2286 inner/outer(us): 11/11
1f198e22
CD
2287
2288 This shows two numbers as "inner latency" and "outer latency". The test
2289 runs in a loop checking a timestamp twice. The latency detected within
2290 the two timestamps is the "inner latency" and the latency detected
2291 after the previous timestamp and the next timestamp in the loop is
2292 the "outer latency".
2293
b396bfde
SRV
2294 ts:1581527483.343962693
2295
2296 The absolute timestamp that the first latency was recorded in the window.
2297
2298 count:6
1f198e22 2299
b396bfde 2300 The number of times a latency was detected during the window.
1f198e22 2301
b396bfde 2302 nmi-total:7 nmi-count:1
1f198e22
CD
2303
2304 On architectures that support it, if an NMI comes in during the
2305 test, the time spent in NMI is reported in "nmi-total" (in
2306 microseconds).
2307
2308 All architectures that have NMIs will show the "nmi-count" if an
2309 NMI comes in during the test.
2310
2311hwlat files:
2312
2313 tracing_threshold
2314 This gets automatically set to "10" to represent 10
2315 microseconds. This is the threshold of latency that
2316 needs to be detected before the trace will be recorded.
2317
2318 Note, when hwlat tracer is finished (another tracer is
2319 written into "current_tracer"), the original value for
2320 tracing_threshold is placed back into this file.
2321
2322 hwlat_detector/width
2323 The length of time the test runs with interrupts disabled.
2324
2325 hwlat_detector/window
2326 The length of time of the window which the test
2327 runs. That is, the test will run for "width"
2328 microseconds per "window" microseconds
2329
2330 tracing_cpumask
2331 When the test is started. A kernel thread is created that
2332 runs the test. This thread will alternate between CPUs
2333 listed in the tracing_cpumask between each period
2334 (one "window"). To limit the test to specific CPUs
2335 set the mask in this file to only the CPUs that the test
2336 should run on.
2337
2338function
2339--------
2340
2341This tracer is the function tracer. Enabling the function tracer
2342can be done from the debug file system. Make sure the
2343ftrace_enabled is set; otherwise this tracer is a nop.
2344See the "ftrace_enabled" section below.
2345::
2346
2347 # sysctl kernel.ftrace_enabled=1
2348 # echo function > current_tracer
2349 # echo 1 > tracing_on
2350 # usleep 1
2351 # echo 0 > tracing_on
2352 # cat trace
2353 # tracer: function
2354 #
2355 # entries-in-buffer/entries-written: 24799/24799 #P:4
2356 #
2357 # _-----=> irqs-off
2358 # / _----=> need-resched
2359 # | / _---=> hardirq/softirq
2360 # || / _--=> preempt-depth
2361 # ||| / delay
2362 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2363 # | | | |||| | |
2364 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write
2365 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2366 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify
2367 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
2368 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
2369 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock
2370 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock
2371 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify
2372 [...]
2373
2374
2375Note: function tracer uses ring buffers to store the above
2376entries. The newest data may overwrite the oldest data.
2377Sometimes using echo to stop the trace is not sufficient because
2378the tracing could have overwritten the data that you wanted to
2379record. For this reason, it is sometimes better to disable
2380tracing directly from a program. This allows you to stop the
2381tracing at the point that you hit the part that you are
2382interested in. To disable the tracing directly from a C program,
2383something like following code snippet can be used::
2384
2385 int trace_fd;
2386 [...]
2387 int main(int argc, char *argv[]) {
2388 [...]
2389 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2390 [...]
2391 if (condition_hit()) {
2392 write(trace_fd, "0", 1);
2393 }
2394 [...]
2395 }
2396
2397
2398Single thread tracing
2399---------------------
2400
2401By writing into set_ftrace_pid you can trace a
2402single thread. For example::
2403
2404 # cat set_ftrace_pid
2405 no pid
2406 # echo 3111 > set_ftrace_pid
2407 # cat set_ftrace_pid
2408 3111
2409 # echo function > current_tracer
2410 # cat trace | head
2411 # tracer: function
2412 #
2413 # TASK-PID CPU# TIMESTAMP FUNCTION
2414 # | | | | |
2415 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
2416 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2417 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2418 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2419 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
2420 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
2421 # echo > set_ftrace_pid
2422 # cat trace |head
2423 # tracer: function
2424 #
2425 # TASK-PID CPU# TIMESTAMP FUNCTION
2426 # | | | | |
2427 ##### CPU 3 buffer started ####
2428 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
2429 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
2430 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
2431 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
2432 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
2433
2434If you want to trace a function when executing, you could use
2435something like this simple program.
2436::
2437
2438 #include <stdio.h>
2439 #include <stdlib.h>
2440 #include <sys/types.h>
2441 #include <sys/stat.h>
2442 #include <fcntl.h>
2443 #include <unistd.h>
2444 #include <string.h>
2445
2446 #define _STR(x) #x
2447 #define STR(x) _STR(x)
2448 #define MAX_PATH 256
2449
2450 const char *find_tracefs(void)
2451 {
2452 static char tracefs[MAX_PATH+1];
2453 static int tracefs_found;
2454 char type[100];
2455 FILE *fp;
2456
2457 if (tracefs_found)
2458 return tracefs;
2459
2460 if ((fp = fopen("/proc/mounts","r")) == NULL) {
2461 perror("/proc/mounts");
2462 return NULL;
2463 }
2464
2465 while (fscanf(fp, "%*s %"
2466 STR(MAX_PATH)
2467 "s %99s %*s %*d %*d\n",
2468 tracefs, type) == 2) {
2469 if (strcmp(type, "tracefs") == 0)
2470 break;
2471 }
2472 fclose(fp);
2473
2474 if (strcmp(type, "tracefs") != 0) {
2475 fprintf(stderr, "tracefs not mounted");
2476 return NULL;
2477 }
2478
2479 strcat(tracefs, "/tracing/");
2480 tracefs_found = 1;
2481
2482 return tracefs;
2483 }
2484
2485 const char *tracing_file(const char *file_name)
2486 {
2487 static char trace_file[MAX_PATH+1];
2488 snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2489 return trace_file;
2490 }
2491
2492 int main (int argc, char **argv)
2493 {
2494 if (argc < 1)
2495 exit(-1);
2496
2497 if (fork() > 0) {
2498 int fd, ffd;
2499 char line[64];
2500 int s;
2501
2502 ffd = open(tracing_file("current_tracer"), O_WRONLY);
2503 if (ffd < 0)
2504 exit(-1);
2505 write(ffd, "nop", 3);
2506
2507 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2508 s = sprintf(line, "%d\n", getpid());
2509 write(fd, line, s);
2510
2511 write(ffd, "function", 8);
2512
2513 close(fd);
2514 close(ffd);
2515
2516 execvp(argv[1], argv+1);
2517 }
2518
2519 return 0;
2520 }
2521
2522Or this simple script!
2523::
2524
2525 #!/bin/bash
2526
2527 tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
951e0d00
ZL
2528 echo 0 > $tracefs/tracing_on
2529 echo $$ > $tracefs/set_ftrace_pid
2530 echo function > $tracefs/current_tracer
2531 echo 1 > $tracefs/tracing_on
1f198e22
CD
2532 exec "$@"
2533
2534
2535function graph tracer
2536---------------------------
2537
2538This tracer is similar to the function tracer except that it
2539probes a function on its entry and its exit. This is done by
2540using a dynamically allocated stack of return addresses in each
2541task_struct. On function entry the tracer overwrites the return
2542address of each function traced to set a custom probe. Thus the
2543original return address is stored on the stack of return address
2544in the task_struct.
2545
2546Probing on both ends of a function leads to special features
2547such as:
2548
2549- measure of a function's time execution
2550- having a reliable call stack to draw function calls graph
2551
2552This tracer is useful in several situations:
2553
2554- you want to find the reason of a strange kernel behavior and
2555 need to see what happens in detail on any areas (or specific
2556 ones).
2557
2558- you are experiencing weird latencies but it's difficult to
2559 find its origin.
2560
2561- you want to find quickly which path is taken by a specific
2562 function
2563
2564- you just want to peek inside a working kernel and want to see
2565 what happens there.
2566
2567::
2568
2569 # tracer: function_graph
2570 #
2571 # CPU DURATION FUNCTION CALLS
2572 # | | | | | | |
2573
2574 0) | sys_open() {
2575 0) | do_sys_open() {
2576 0) | getname() {
2577 0) | kmem_cache_alloc() {
2578 0) 1.382 us | __might_sleep();
2579 0) 2.478 us | }
2580 0) | strncpy_from_user() {
2581 0) | might_fault() {
2582 0) 1.389 us | __might_sleep();
2583 0) 2.553 us | }
2584 0) 3.807 us | }
2585 0) 7.876 us | }
2586 0) | alloc_fd() {
2587 0) 0.668 us | _spin_lock();
2588 0) 0.570 us | expand_files();
2589 0) 0.586 us | _spin_unlock();
2590
2591
2592There are several columns that can be dynamically
2593enabled/disabled. You can use every combination of options you
2594want, depending on your needs.
2595
2596- The cpu number on which the function executed is default
2597 enabled. It is sometimes better to only trace one cpu (see
2598 tracing_cpu_mask file) or you might sometimes see unordered
2599 function calls while cpu tracing switch.
2600
2601 - hide: echo nofuncgraph-cpu > trace_options
2602 - show: echo funcgraph-cpu > trace_options
2603
2604- The duration (function's time of execution) is displayed on
2605 the closing bracket line of a function or on the same line
2606 than the current function in case of a leaf one. It is default
2607 enabled.
2608
2609 - hide: echo nofuncgraph-duration > trace_options
2610 - show: echo funcgraph-duration > trace_options
2611
2612- The overhead field precedes the duration field in case of
2613 reached duration thresholds.
2614
2615 - hide: echo nofuncgraph-overhead > trace_options
2616 - show: echo funcgraph-overhead > trace_options
2617 - depends on: funcgraph-duration
2618
2619 ie::
2620
2621 3) # 1837.709 us | } /* __switch_to */
2622 3) | finish_task_switch() {
2623 3) 0.313 us | _raw_spin_unlock_irq();
2624 3) 3.177 us | }
2625 3) # 1889.063 us | } /* __schedule */
2626 3) ! 140.417 us | } /* __schedule */
2627 3) # 2034.948 us | } /* schedule */
2628 3) * 33998.59 us | } /* schedule_preempt_disabled */
2629
2630 [...]
2631
2632 1) 0.260 us | msecs_to_jiffies();
2633 1) 0.313 us | __rcu_read_unlock();
2634 1) + 61.770 us | }
2635 1) + 64.479 us | }
2636 1) 0.313 us | rcu_bh_qs();
2637 1) 0.313 us | __local_bh_enable();
2638 1) ! 217.240 us | }
2639 1) 0.365 us | idle_cpu();
2640 1) | rcu_irq_exit() {
2641 1) 0.417 us | rcu_eqs_enter_common.isra.47();
2642 1) 3.125 us | }
2643 1) ! 227.812 us | }
2644 1) ! 457.395 us | }
2645 1) @ 119760.2 us | }
2646
2647 [...]
2648
2649 2) | handle_IPI() {
2650 1) 6.979 us | }
2651 2) 0.417 us | scheduler_ipi();
2652 1) 9.791 us | }
2653 1) + 12.917 us | }
2654 2) 3.490 us | }
2655 1) + 15.729 us | }
2656 1) + 18.542 us | }
2657 2) $ 3594274 us | }
2658
2659Flags::
2660
2661 + means that the function exceeded 10 usecs.
2662 ! means that the function exceeded 100 usecs.
2663 # means that the function exceeded 1000 usecs.
2664 * means that the function exceeded 10 msecs.
2665 @ means that the function exceeded 100 msecs.
2666 $ means that the function exceeded 1 sec.
2667
2668
2669- The task/pid field displays the thread cmdline and pid which
2670 executed the function. It is default disabled.
2671
2672 - hide: echo nofuncgraph-proc > trace_options
2673 - show: echo funcgraph-proc > trace_options
2674
2675 ie::
2676
2677 # tracer: function_graph
2678 #
2679 # CPU TASK/PID DURATION FUNCTION CALLS
2680 # | | | | | | | | |
2681 0) sh-4802 | | d_free() {
2682 0) sh-4802 | | call_rcu() {
2683 0) sh-4802 | | __call_rcu() {
2684 0) sh-4802 | 0.616 us | rcu_process_gp_end();
2685 0) sh-4802 | 0.586 us | check_for_new_grace_period();
2686 0) sh-4802 | 2.899 us | }
2687 0) sh-4802 | 4.040 us | }
2688 0) sh-4802 | 5.151 us | }
2689 0) sh-4802 | + 49.370 us | }
2690
2691
2692- The absolute time field is an absolute timestamp given by the
2693 system clock since it started. A snapshot of this time is
2694 given on each entry/exit of functions
2695
2696 - hide: echo nofuncgraph-abstime > trace_options
2697 - show: echo funcgraph-abstime > trace_options
2698
2699 ie::
2700
2701 #
2702 # TIME CPU DURATION FUNCTION CALLS
2703 # | | | | | | | |
2704 360.774522 | 1) 0.541 us | }
2705 360.774522 | 1) 4.663 us | }
2706 360.774523 | 1) 0.541 us | __wake_up_bit();
2707 360.774524 | 1) 6.796 us | }
2708 360.774524 | 1) 7.952 us | }
2709 360.774525 | 1) 9.063 us | }
2710 360.774525 | 1) 0.615 us | journal_mark_dirty();
2711 360.774527 | 1) 0.578 us | __brelse();
2712 360.774528 | 1) | reiserfs_prepare_for_journal() {
2713 360.774528 | 1) | unlock_buffer() {
2714 360.774529 | 1) | wake_up_bit() {
2715 360.774529 | 1) | bit_waitqueue() {
2716 360.774530 | 1) 0.594 us | __phys_addr();
2717
2718
2719The function name is always displayed after the closing bracket
2720for a function if the start of that function is not in the
2721trace buffer.
2722
2723Display of the function name after the closing bracket may be
2724enabled for functions whose start is in the trace buffer,
2725allowing easier searching with grep for function durations.
2726It is default disabled.
2727
2728 - hide: echo nofuncgraph-tail > trace_options
2729 - show: echo funcgraph-tail > trace_options
2730
2731 Example with nofuncgraph-tail (default)::
2732
2733 0) | putname() {
2734 0) | kmem_cache_free() {
2735 0) 0.518 us | __phys_addr();
2736 0) 1.757 us | }
2737 0) 2.861 us | }
2738
2739 Example with funcgraph-tail::
2740
2741 0) | putname() {
2742 0) | kmem_cache_free() {
2743 0) 0.518 us | __phys_addr();
2744 0) 1.757 us | } /* kmem_cache_free() */
2745 0) 2.861 us | } /* putname() */
2746
21c094d3
DP
2747The return value of each traced function can be displayed after
2748an equal sign "=". When encountering system call failures, it
d56b699d 2749can be very helpful to quickly locate the function that first
21c094d3
DP
2750returns an error code.
2751
2752 - hide: echo nofuncgraph-retval > trace_options
2753 - show: echo funcgraph-retval > trace_options
2754
2755 Example with funcgraph-retval::
2756
2757 1) | cgroup_migrate() {
2758 1) 0.651 us | cgroup_migrate_add_task(); /* = 0xffff93fcfd346c00 */
2759 1) | cgroup_migrate_execute() {
2760 1) | cpu_cgroup_can_attach() {
2761 1) | cgroup_taskset_first() {
2762 1) 0.732 us | cgroup_taskset_next(); /* = 0xffff93fc8fb20000 */
2763 1) 1.232 us | } /* cgroup_taskset_first = 0xffff93fc8fb20000 */
2764 1) 0.380 us | sched_rt_can_attach(); /* = 0x0 */
2765 1) 2.335 us | } /* cpu_cgroup_can_attach = -22 */
2766 1) 4.369 us | } /* cgroup_migrate_execute = -22 */
2767 1) 7.143 us | } /* cgroup_migrate = -22 */
2768
2769The above example shows that the function cpu_cgroup_can_attach
2770returned the error code -22 firstly, then we can read the code
2771of this function to get the root cause.
2772
2773When the option funcgraph-retval-hex is not set, the return value can
2774be displayed in a smart way. Specifically, if it is an error code,
2775it will be printed in signed decimal format, otherwise it will
2776printed in hexadecimal format.
2777
2778 - smart: echo nofuncgraph-retval-hex > trace_options
2779 - hexadecimal: echo funcgraph-retval-hex > trace_options
2780
2781 Example with funcgraph-retval-hex::
2782
2783 1) | cgroup_migrate() {
2784 1) 0.651 us | cgroup_migrate_add_task(); /* = 0xffff93fcfd346c00 */
2785 1) | cgroup_migrate_execute() {
2786 1) | cpu_cgroup_can_attach() {
2787 1) | cgroup_taskset_first() {
2788 1) 0.732 us | cgroup_taskset_next(); /* = 0xffff93fc8fb20000 */
2789 1) 1.232 us | } /* cgroup_taskset_first = 0xffff93fc8fb20000 */
2790 1) 0.380 us | sched_rt_can_attach(); /* = 0x0 */
2791 1) 2.335 us | } /* cpu_cgroup_can_attach = 0xffffffea */
2792 1) 4.369 us | } /* cgroup_migrate_execute = 0xffffffea */
2793 1) 7.143 us | } /* cgroup_migrate = 0xffffffea */
2794
2795At present, there are some limitations when using the funcgraph-retval
2796option, and these limitations will be eliminated in the future:
2797
2798- Even if the function return type is void, a return value will still
2799 be printed, and you can just ignore it.
2800
2801- Even if return values are stored in multiple registers, only the
2802 value contained in the first register will be recorded and printed.
2803 To illustrate, in the x86 architecture, eax and edx are used to store
2804 a 64-bit return value, with the lower 32 bits saved in eax and the
2805 upper 32 bits saved in edx. However, only the value stored in eax
2806 will be recorded and printed.
2807
2808- In certain procedure call standards, such as arm64's AAPCS64, when a
2809 type is smaller than a GPR, it is the responsibility of the consumer
2810 to perform the narrowing, and the upper bits may contain UNKNOWN values.
2811 Therefore, it is advisable to check the code for such cases. For instance,
2812 when using a u8 in a 64-bit GPR, bits [63:8] may contain arbitrary values,
2813 especially when larger types are truncated, whether explicitly or implicitly.
2814 Here are some specific cases to illustrate this point:
2815
fc30ace0 2816 **Case One**:
21c094d3
DP
2817
2818 The function narrow_to_u8 is defined as follows::
2819
2820 u8 narrow_to_u8(u64 val)
2821 {
2822 // implicitly truncated
2823 return val;
2824 }
2825
2826 It may be compiled to::
2827
2828 narrow_to_u8:
2829 < ... ftrace instrumentation ... >
2830 RET
2831
2832 If you pass 0x123456789abcdef to this function and want to narrow it,
2833 it may be recorded as 0x123456789abcdef instead of 0xef.
2834
fc30ace0 2835 **Case Two**:
21c094d3
DP
2836
2837 The function error_if_not_4g_aligned is defined as follows::
2838
2839 int error_if_not_4g_aligned(u64 val)
2840 {
2841 if (val & GENMASK(31, 0))
2842 return -EINVAL;
2843
2844 return 0;
2845 }
2846
2847 It could be compiled to::
2848
2849 error_if_not_4g_aligned:
2850 CBNZ w0, .Lnot_aligned
2851 RET // bits [31:0] are zero, bits
2852 // [63:32] are UNKNOWN
2853 .Lnot_aligned:
2854 MOV x0, #-EINVAL
2855 RET
2856
2857 When passing 0x2_0000_0000 to it, the return value may be recorded as
2858 0x2_0000_0000 instead of 0.
2859
1f198e22
CD
2860You can put some comments on specific functions by using
2861trace_printk() For example, if you want to put a comment inside
2862the __might_sleep() function, you just have to include
2863<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2864
2865 trace_printk("I'm a comment!\n")
2866
2867will produce::
2868
2869 1) | __might_sleep() {
2870 1) | /* I'm a comment! */
2871 1) 1.449 us | }
2872
2873
2874You might find other useful features for this tracer in the
2875following "dynamic ftrace" section such as tracing only specific
2876functions or tasks.
2877
2878dynamic ftrace
2879--------------
2880
2881If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2882virtually no overhead when function tracing is disabled. The way
2883this works is the mcount function call (placed at the start of
2884every kernel function, produced by the -pg switch in gcc),
2885starts of pointing to a simple return. (Enabling FTRACE will
2886include the -pg switch in the compiling of the kernel.)
2887
2888At compile time every C file object is run through the
2889recordmcount program (located in the scripts directory). This
2890program will parse the ELF headers in the C object to find all
2891the locations in the .text section that call mcount. Starting
2a1e03ca 2892with gcc version 4.6, the -mfentry has been added for x86, which
1f198e22
CD
2893calls "__fentry__" instead of "mcount". Which is called before
2894the creation of the stack frame.
2895
2896Note, not all sections are traced. They may be prevented by either
2897a notrace, or blocked another way and all inline functions are not
2898traced. Check the "available_filter_functions" file to see what functions
2899can be traced.
2900
2901A section called "__mcount_loc" is created that holds
2902references to all the mcount/fentry call sites in the .text section.
2903The recordmcount program re-links this section back into the
2904original object. The final linking stage of the kernel will add all these
2905references into a single table.
2906
2907On boot up, before SMP is initialized, the dynamic ftrace code
2908scans this table and updates all the locations into nops. It
2909also records the locations, which are added to the
2910available_filter_functions list. Modules are processed as they
2911are loaded and before they are executed. When a module is
2912unloaded, it also removes its functions from the ftrace function
2913list. This is automatic in the module unload code, and the
2914module author does not need to worry about it.
2915
2916When tracing is enabled, the process of modifying the function
2917tracepoints is dependent on architecture. The old method is to use
2918kstop_machine to prevent races with the CPUs executing code being
2919modified (which can cause the CPU to do undesirable things, especially
2920if the modified code crosses cache (or page) boundaries), and the nops are
2921patched back to calls. But this time, they do not call mcount
2922(which is just a function stub). They now call into the ftrace
2923infrastructure.
2924
2925The new method of modifying the function tracepoints is to place
2926a breakpoint at the location to be modified, sync all CPUs, modify
2927the rest of the instruction not covered by the breakpoint. Sync
2928all CPUs again, and then remove the breakpoint with the finished
2929version to the ftrace call site.
2930
2931Some archs do not even need to monkey around with the synchronization,
2932and can just slap the new code on top of the old without any
2933problems with other CPUs executing it at the same time.
2934
2935One special side-effect to the recording of the functions being
2936traced is that we can now selectively choose which functions we
2937wish to trace and which ones we want the mcount calls to remain
2938as nops.
2939
2940Two files are used, one for enabling and one for disabling the
2941tracing of specified functions. They are:
2942
2943 set_ftrace_filter
2944
2945and
2946
2947 set_ftrace_notrace
2948
2949A list of available functions that you can add to these files is
2950listed in:
2951
2952 available_filter_functions
2953
2954::
2955
2956 # cat available_filter_functions
2957 put_prev_task_idle
2958 kmem_cache_create
2959 pick_next_task_rt
c7483d82 2960 cpus_read_lock
1f198e22
CD
2961 pick_next_task_fair
2962 mutex_lock
2963 [...]
2964
2965If I am only interested in sys_nanosleep and hrtimer_interrupt::
2966
2967 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2968 # echo function > current_tracer
2969 # echo 1 > tracing_on
2970 # usleep 1
2971 # echo 0 > tracing_on
2972 # cat trace
2973 # tracer: function
2974 #
2975 # entries-in-buffer/entries-written: 5/5 #P:4
2976 #
2977 # _-----=> irqs-off
2978 # / _----=> need-resched
2979 # | / _---=> hardirq/softirq
2980 # || / _--=> preempt-depth
2981 # ||| / delay
2982 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2983 # | | | |||| | |
2984 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath
2985 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2986 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2987 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2988 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2989
2990To see which functions are being traced, you can cat the file:
2991::
2992
2993 # cat set_ftrace_filter
2994 hrtimer_interrupt
2995 sys_nanosleep
2996
2997
2998Perhaps this is not enough. The filters also allow glob(7) matching.
2999
6234c7bd 3000 ``<match>*``
1f198e22 3001 will match functions that begin with <match>
6234c7bd 3002 ``*<match>``
1f198e22 3003 will match functions that end with <match>
6234c7bd 3004 ``*<match>*``
1f198e22 3005 will match functions that have <match> in it
6234c7bd 3006 ``<match1>*<match2>``
1f198e22
CD
3007 will match functions that begin with <match1> and end with <match2>
3008
3009.. note::
3010 It is better to use quotes to enclose the wild cards,
3011 otherwise the shell may expand the parameters into names
3012 of files in the local directory.
3013
3014::
3015
3016 # echo 'hrtimer_*' > set_ftrace_filter
3017
3018Produces::
3019
3020 # tracer: function
3021 #
3022 # entries-in-buffer/entries-written: 897/897 #P:4
3023 #
3024 # _-----=> irqs-off
3025 # / _----=> need-resched
3026 # | / _---=> hardirq/softirq
3027 # || / _--=> preempt-depth
3028 # ||| / delay
3029 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3030 # | | | |||| | |
3031 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
3032 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
3033 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
3034 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit
3035 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
3036 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
3037 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter
3038 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem
3039
3040Notice that we lost the sys_nanosleep.
3041::
3042
3043 # cat set_ftrace_filter
3044 hrtimer_run_queues
3045 hrtimer_run_pending
3046 hrtimer_init
3047 hrtimer_cancel
3048 hrtimer_try_to_cancel
3049 hrtimer_forward
3050 hrtimer_start
3051 hrtimer_reprogram
3052 hrtimer_force_reprogram
3053 hrtimer_get_next_event
3054 hrtimer_interrupt
3055 hrtimer_nanosleep
3056 hrtimer_wakeup
3057 hrtimer_get_remaining
3058 hrtimer_get_res
3059 hrtimer_init_sleeper
3060
3061
3062This is because the '>' and '>>' act just like they do in bash.
3063To rewrite the filters, use '>'
3064To append to the filters, use '>>'
3065
3066To clear out a filter so that all functions will be recorded
3067again::
3068
3069 # echo > set_ftrace_filter
3070 # cat set_ftrace_filter
3071 #
3072
3073Again, now we want to append.
3074
3075::
3076
3077 # echo sys_nanosleep > set_ftrace_filter
3078 # cat set_ftrace_filter
3079 sys_nanosleep
3080 # echo 'hrtimer_*' >> set_ftrace_filter
3081 # cat set_ftrace_filter
3082 hrtimer_run_queues
3083 hrtimer_run_pending
3084 hrtimer_init
3085 hrtimer_cancel
3086 hrtimer_try_to_cancel
3087 hrtimer_forward
3088 hrtimer_start
3089 hrtimer_reprogram
3090 hrtimer_force_reprogram
3091 hrtimer_get_next_event
3092 hrtimer_interrupt
3093 sys_nanosleep
3094 hrtimer_nanosleep
3095 hrtimer_wakeup
3096 hrtimer_get_remaining
3097 hrtimer_get_res
3098 hrtimer_init_sleeper
3099
3100
3101The set_ftrace_notrace prevents those functions from being
3102traced.
3103::
3104
3105 # echo '*preempt*' '*lock*' > set_ftrace_notrace
3106
3107Produces::
3108
3109 # tracer: function
3110 #
3111 # entries-in-buffer/entries-written: 39608/39608 #P:4
3112 #
3113 # _-----=> irqs-off
3114 # / _----=> need-resched
3115 # | / _---=> hardirq/softirq
3116 # || / _--=> preempt-depth
3117 # ||| / delay
3118 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3119 # | | | |||| | |
3120 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open
3121 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last
3122 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
3123 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check
3124 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement
3125 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action
3126 bash-1994 [000] .... 4342.324899: do_truncate <-do_last
ed5a7047 3127 bash-1994 [000] .... 4342.324899: setattr_should_drop_suidgid <-do_truncate
1f198e22
CD
3128 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
3129 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change
3130 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time
3131 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time
3132
3133We can see that there's no more lock or preempt tracing.
3134
f79b3f33
SRV
3135Selecting function filters via index
3136------------------------------------
3137
3138Because processing of strings is expensive (the address of the function
3139needs to be looked up before comparing to the string being passed in),
3140an index can be used as well to enable functions. This is useful in the
3141case of setting thousands of specific functions at a time. By passing
3142in a list of numbers, no string processing will occur. Instead, the function
3143at the specific location in the internal array (which corresponds to the
3144functions in the "available_filter_functions" file), is selected.
3145
3146::
3147
3148 # echo 1 > set_ftrace_filter
3149
3150Will select the first function listed in "available_filter_functions"
3151
3152::
3153
3154 # head -1 available_filter_functions
3155 trace_initcall_finish_cb
3156
3157 # cat set_ftrace_filter
3158 trace_initcall_finish_cb
3159
3160 # head -50 available_filter_functions | tail -1
3161 x86_pmu_commit_txn
3162
3163 # echo 1 50 > set_ftrace_filter
3164 # cat set_ftrace_filter
3165 trace_initcall_finish_cb
3166 x86_pmu_commit_txn
1f198e22
CD
3167
3168Dynamic ftrace with the function graph tracer
3169---------------------------------------------
3170
3171Although what has been explained above concerns both the
3172function tracer and the function-graph-tracer, there are some
3173special features only available in the function-graph tracer.
3174
3175If you want to trace only one function and all of its children,
3176you just have to echo its name into set_graph_function::
3177
3178 echo __do_fault > set_graph_function
3179
3180will produce the following "expanded" trace of the __do_fault()
3181function::
3182
3183 0) | __do_fault() {
3184 0) | filemap_fault() {
3185 0) | find_lock_page() {
3186 0) 0.804 us | find_get_page();
3187 0) | __might_sleep() {
3188 0) 1.329 us | }
3189 0) 3.904 us | }
3190 0) 4.979 us | }
3191 0) 0.653 us | _spin_lock();
3192 0) 0.578 us | page_add_file_rmap();
3193 0) 0.525 us | native_set_pte_at();
3194 0) 0.585 us | _spin_unlock();
3195 0) | unlock_page() {
3196 0) 0.541 us | page_waitqueue();
3197 0) 0.639 us | __wake_up_bit();
3198 0) 2.786 us | }
3199 0) + 14.237 us | }
3200 0) | __do_fault() {
3201 0) | filemap_fault() {
3202 0) | find_lock_page() {
3203 0) 0.698 us | find_get_page();
3204 0) | __might_sleep() {
3205 0) 1.412 us | }
3206 0) 3.950 us | }
3207 0) 5.098 us | }
3208 0) 0.631 us | _spin_lock();
3209 0) 0.571 us | page_add_file_rmap();
3210 0) 0.526 us | native_set_pte_at();
3211 0) 0.586 us | _spin_unlock();
3212 0) | unlock_page() {
3213 0) 0.533 us | page_waitqueue();
3214 0) 0.638 us | __wake_up_bit();
3215 0) 2.793 us | }
3216 0) + 14.012 us | }
3217
3218You can also expand several functions at once::
3219
3220 echo sys_open > set_graph_function
3221 echo sys_close >> set_graph_function
3222
3223Now if you want to go back to trace all functions you can clear
3224this special filter via::
3225
3226 echo > set_graph_function
3227
3228
3229ftrace_enabled
3230--------------
3231
3232Note, the proc sysctl ftrace_enable is a big on/off switch for the
3233function tracer. By default it is enabled (when function tracing is
3234enabled in the kernel). If it is disabled, all function tracing is
3235disabled. This includes not only the function tracers for ftrace, but
7162431d
MB
3236also for any other uses (perf, kprobes, stack tracing, profiling, etc). It
3237cannot be disabled if there is a callback with FTRACE_OPS_FL_PERMANENT set
3238registered.
1f198e22
CD
3239
3240Please disable this with care.
3241
3242This can be disable (and enabled) with::
3243
3244 sysctl kernel.ftrace_enabled=0
3245 sysctl kernel.ftrace_enabled=1
3246
3247 or
3248
3249 echo 0 > /proc/sys/kernel/ftrace_enabled
3250 echo 1 > /proc/sys/kernel/ftrace_enabled
3251
3252
3253Filter commands
3254---------------
3255
3256A few commands are supported by the set_ftrace_filter interface.
3257Trace commands have the following format::
3258
3259 <function>:<command>:<parameter>
3260
3261The following commands are supported:
3262
3263- mod:
3264 This command enables function filtering per module. The
3265 parameter defines the module. For example, if only the write*
3266 functions in the ext3 module are desired, run:
3267
3268 echo 'write*:mod:ext3' > set_ftrace_filter
3269
3270 This command interacts with the filter in the same way as
3271 filtering based on function names. Thus, adding more functions
3272 in a different module is accomplished by appending (>>) to the
3273 filter file. Remove specific module functions by prepending
3274 '!'::
3275
3276 echo '!writeback*:mod:ext3' >> set_ftrace_filter
3277
3278 Mod command supports module globbing. Disable tracing for all
3279 functions except a specific module::
3280
3281 echo '!*:mod:!ext3' >> set_ftrace_filter
3282
3283 Disable tracing for all modules, but still trace kernel::
3284
3285 echo '!*:mod:*' >> set_ftrace_filter
3286
3287 Enable filter only for kernel::
3288
3289 echo '*write*:mod:!*' >> set_ftrace_filter
3290
3291 Enable filter for module globbing::
3292
3293 echo '*write*:mod:*snd*' >> set_ftrace_filter
3294
3295- traceon/traceoff:
3296 These commands turn tracing on and off when the specified
3297 functions are hit. The parameter determines how many times the
3298 tracing system is turned on and off. If unspecified, there is
3299 no limit. For example, to disable tracing when a schedule bug
3300 is hit the first 5 times, run::
3301
3302 echo '__schedule_bug:traceoff:5' > set_ftrace_filter
3303
3304 To always disable tracing when __schedule_bug is hit::
3305
3306 echo '__schedule_bug:traceoff' > set_ftrace_filter
3307
3308 These commands are cumulative whether or not they are appended
3309 to set_ftrace_filter. To remove a command, prepend it by '!'
3310 and drop the parameter::
3311
3312 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
3313
3314 The above removes the traceoff command for __schedule_bug
3315 that have a counter. To remove commands without counters::
3316
3317 echo '!__schedule_bug:traceoff' > set_ftrace_filter
3318
3319- snapshot:
3320 Will cause a snapshot to be triggered when the function is hit.
3321 ::
3322
3323 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
3324
3325 To only snapshot once:
3326 ::
3327
3328 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
3329
3330 To remove the above commands::
3331
3332 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
3333 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
3334
3335- enable_event/disable_event:
3336 These commands can enable or disable a trace event. Note, because
3337 function tracing callbacks are very sensitive, when these commands
3338 are registered, the trace point is activated, but disabled in
3339 a "soft" mode. That is, the tracepoint will be called, but
3340 just will not be traced. The event tracepoint stays in this mode
3341 as long as there's a command that triggers it.
3342 ::
3343
3344 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
3345 set_ftrace_filter
3346
3347 The format is::
3348
3349 <function>:enable_event:<system>:<event>[:count]
3350 <function>:disable_event:<system>:<event>[:count]
3351
3352 To remove the events commands::
3353
3354 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
3355 set_ftrace_filter
3356 echo '!schedule:disable_event:sched:sched_switch' > \
3357 set_ftrace_filter
3358
3359- dump:
3360 When the function is hit, it will dump the contents of the ftrace
3361 ring buffer to the console. This is useful if you need to debug
3362 something, and want to dump the trace when a certain function
2a1e03ca 3363 is hit. Perhaps it's a function that is called before a triple
1f198e22
CD
3364 fault happens and does not allow you to get a regular dump.
3365
3366- cpudump:
3367 When the function is hit, it will dump the contents of the ftrace
3368 ring buffer for the current CPU to the console. Unlike the "dump"
3369 command, it only prints out the contents of the ring buffer for the
3370 CPU that executed the function that triggered the dump.
3371
8a2933cf
MH
3372- stacktrace:
3373 When the function is hit, a stack trace is recorded.
3374
1f198e22
CD
3375trace_pipe
3376----------
3377
3378The trace_pipe outputs the same content as the trace file, but
3379the effect on the tracing is different. Every read from
3380trace_pipe is consumed. This means that subsequent reads will be
3381different. The trace is live.
3382::
3383
3384 # echo function > current_tracer
3385 # cat trace_pipe > /tmp/trace.out &
3386 [1] 4153
3387 # echo 1 > tracing_on
3388 # usleep 1
3389 # echo 0 > tracing_on
3390 # cat trace
3391 # tracer: function
3392 #
3393 # entries-in-buffer/entries-written: 0/0 #P:4
3394 #
3395 # _-----=> irqs-off
3396 # / _----=> need-resched
3397 # | / _---=> hardirq/softirq
3398 # || / _--=> preempt-depth
3399 # ||| / delay
3400 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3401 # | | | |||| | |
3402
3403 #
3404 # cat /tmp/trace.out
3405 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write
3406 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3407 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify
3408 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
3409 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
3410 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock
3411 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock
3412 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify
3413 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath
3414
3415
3416Note, reading the trace_pipe file will block until more input is
f12fcca6
PW
3417added. This is contrary to the trace file. If any process opened
3418the trace file for reading, it will actually disable tracing and
3419prevent new entries from being added. The trace_pipe file does
3420not have this limitation.
1f198e22
CD
3421
3422trace entries
3423-------------
3424
3425Having too much or not enough data can be troublesome in
3426diagnosing an issue in the kernel. The file buffer_size_kb is
3427used to modify the size of the internal trace buffers. The
3428number listed is the number of entries that can be recorded per
3429CPU. To know the full size, multiply the number of possible CPUs
3430with the number of entries.
3431::
3432
3433 # cat buffer_size_kb
3434 1408 (units kilobytes)
3435
3436Or simply read buffer_total_size_kb
3437::
3438
3439 # cat buffer_total_size_kb
3440 5632
3441
3442To modify the buffer, simple echo in a number (in 1024 byte segments).
3443::
3444
3445 # echo 10000 > buffer_size_kb
3446 # cat buffer_size_kb
3447 10000 (units kilobytes)
3448
3449It will try to allocate as much as possible. If you allocate too
3450much, it can cause Out-Of-Memory to trigger.
3451::
3452
3453 # echo 1000000000000 > buffer_size_kb
3454 -bash: echo: write error: Cannot allocate memory
3455 # cat buffer_size_kb
3456 85
3457
3458The per_cpu buffers can be changed individually as well:
3459::
3460
3461 # echo 10000 > per_cpu/cpu0/buffer_size_kb
3462 # echo 100 > per_cpu/cpu1/buffer_size_kb
3463
3464When the per_cpu buffers are not the same, the buffer_size_kb
3465at the top level will just show an X
3466::
3467
3468 # cat buffer_size_kb
3469 X
3470
3471This is where the buffer_total_size_kb is useful:
3472::
3473
3474 # cat buffer_total_size_kb
3475 12916
3476
3477Writing to the top level buffer_size_kb will reset all the buffers
3478to be the same again.
3479
3480Snapshot
3481--------
3482CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3483available to all non latency tracers. (Latency tracers which
3484record max latency, such as "irqsoff" or "wakeup", can't use
3485this feature, since those are already using the snapshot
3486mechanism internally.)
3487
3488Snapshot preserves a current trace buffer at a particular point
3489in time without stopping tracing. Ftrace swaps the current
3490buffer with a spare buffer, and tracing continues in the new
3491current (=previous spare) buffer.
3492
3493The following tracefs files in "tracing" are related to this
3494feature:
3495
3496 snapshot:
3497
3498 This is used to take a snapshot and to read the output
3499 of the snapshot. Echo 1 into this file to allocate a
3500 spare buffer and to take a snapshot (swap), then read
3501 the snapshot from this file in the same format as
3502 "trace" (described above in the section "The File
3503 System"). Both reads snapshot and tracing are executable
3504 in parallel. When the spare buffer is allocated, echoing
3505 0 frees it, and echoing else (positive) values clear the
3506 snapshot contents.
3507 More details are shown in the table below.
3508
3509 +--------------+------------+------------+------------+
3510 |status\\input | 0 | 1 | else |
3511 +==============+============+============+============+
3512 |not allocated |(do nothing)| alloc+swap |(do nothing)|
3513 +--------------+------------+------------+------------+
3514 |allocated | free | swap | clear |
3515 +--------------+------------+------------+------------+
3516
3517Here is an example of using the snapshot feature.
3518::
3519
3520 # echo 1 > events/sched/enable
3521 # echo 1 > snapshot
3522 # cat snapshot
3523 # tracer: nop
3524 #
3525 # entries-in-buffer/entries-written: 71/71 #P:8
3526 #
3527 # _-----=> irqs-off
3528 # / _----=> need-resched
3529 # | / _---=> hardirq/softirq
3530 # || / _--=> preempt-depth
3531 # ||| / delay
3532 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3533 # | | | |||| | |
3534 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3535 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3536 [...]
3537 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3538
3539 # cat trace
3540 # tracer: nop
3541 #
3542 # entries-in-buffer/entries-written: 77/77 #P:8
3543 #
3544 # _-----=> irqs-off
3545 # / _----=> need-resched
3546 # | / _---=> hardirq/softirq
3547 # || / _--=> preempt-depth
3548 # ||| / delay
3549 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3550 # | | | |||| | |
3551 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3552 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3553 [...]
3554
3555
3556If you try to use this snapshot feature when current tracer is
3557one of the latency tracers, you will get the following results.
3558::
3559
3560 # echo wakeup > current_tracer
3561 # echo 1 > snapshot
3562 bash: echo: write error: Device or resource busy
3563 # cat snapshot
3564 cat: snapshot: Device or resource busy
3565
3566
3567Instances
3568---------
cc2cf679 3569In the tracefs tracing directory, there is a directory called "instances".
1f198e22
CD
3570This directory can have new directories created inside of it using
3571mkdir, and removing directories with rmdir. The directory created
3572with mkdir in this directory will already contain files and other
3573directories after it is created.
3574::
3575
3576 # mkdir instances/foo
3577 # ls instances/foo
3578 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
3579 set_event snapshot trace trace_clock trace_marker trace_options
3580 trace_pipe tracing_on
3581
3582As you can see, the new directory looks similar to the tracing directory
3583itself. In fact, it is very similar, except that the buffer and
5b8914a6 3584events are agnostic from the main directory, or from any other
1f198e22
CD
3585instances that are created.
3586
3587The files in the new directory work just like the files with the
3588same name in the tracing directory except the buffer that is used
3589is a separate and new buffer. The files affect that buffer but do not
3590affect the main buffer with the exception of trace_options. Currently,
3591the trace_options affect all instances and the top level buffer
3592the same, but this may change in future releases. That is, options
3593may become specific to the instance they reside in.
3594
3595Notice that none of the function tracer files are there, nor is
3596current_tracer and available_tracers. This is because the buffers
3597can currently only have events enabled for them.
3598::
3599
3600 # mkdir instances/foo
3601 # mkdir instances/bar
3602 # mkdir instances/zoot
3603 # echo 100000 > buffer_size_kb
3604 # echo 1000 > instances/foo/buffer_size_kb
3605 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3606 # echo function > current_trace
3607 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3608 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3609 # echo 1 > instances/foo/events/sched/sched_switch/enable
3610 # echo 1 > instances/bar/events/irq/enable
3611 # echo 1 > instances/zoot/events/syscalls/enable
3612 # cat trace_pipe
3613 CPU:2 [LOST 11745 EVENTS]
3614 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3615 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3616 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3617 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3618 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3619 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3620 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3621 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3622 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3623 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3624 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3625 [...]
3626
3627 # cat instances/foo/trace_pipe
3628 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3629 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3630 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3631 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3632 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3633 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3634 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3635 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3636 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3637 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3638 [...]
3639
3640 # cat instances/bar/trace_pipe
3641 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX]
3642 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX]
3643 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER]
3644 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU]
3645 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER]
3646 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER]
3647 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU]
3648 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU]
3649 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3650 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled
3651 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0
3652 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled
3653 [...]
3654
3655 # cat instances/zoot/trace
3656 # tracer: nop
3657 #
3658 # entries-in-buffer/entries-written: 18996/18996 #P:4
3659 #
3660 # _-----=> irqs-off
3661 # / _----=> need-resched
3662 # | / _---=> hardirq/softirq
3663 # || / _--=> preempt-depth
3664 # ||| / delay
3665 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3666 # | | | |||| | |
3667 bash-1998 [000] d... 140.733501: sys_write -> 0x2
3668 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1)
3669 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
3670 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3671 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
3672 bash-1998 [000] d... 140.733510: sys_close(fd: a)
3673 bash-1998 [000] d... 140.733510: sys_close -> 0x0
3674 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3675 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
3676 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3677 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0
3678
3679You can see that the trace of the top most trace buffer shows only
3680the function tracing. The foo instance displays wakeups and task
3681switches.
3682
3683To remove the instances, simply delete their directories:
3684::
3685
3686 # rmdir instances/foo
3687 # rmdir instances/bar
3688 # rmdir instances/zoot
3689
3690Note, if a process has a trace file open in one of the instance
3691directories, the rmdir will fail with EBUSY.
3692
3693
3694Stack trace
3695-----------
3696Since the kernel has a fixed sized stack, it is important not to
c9b951c3 3697waste it in functions. A kernel developer must be conscious of
1f198e22
CD
3698what they allocate on the stack. If they add too much, the system
3699can be in danger of a stack overflow, and corruption will occur,
3700usually leading to a system panic.
3701
3702There are some tools that check this, usually with interrupts
3703periodically checking usage. But if you can perform a check
3704at every function call that will become very useful. As ftrace provides
3705a function tracer, it makes it convenient to check the stack size
3706at every function call. This is enabled via the stack tracer.
3707
3708CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3709To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3710::
3711
3712 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3713
3714You can also enable it from the kernel command line to trace
3715the stack size of the kernel during boot up, by adding "stacktrace"
3716to the kernel command line parameter.
3717
3718After running it for a few minutes, the output looks like:
3719::
3720
3721 # cat stack_max_size
3722 2928
3723
3724 # cat stack_trace
3725 Depth Size Location (18 entries)
3726 ----- ---- --------
3727 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
3728 1) 2704 160 find_busiest_group+0x31/0x1f1
3729 2) 2544 256 load_balance+0xd9/0x662
3730 3) 2288 80 idle_balance+0xbb/0x130
3731 4) 2208 128 __schedule+0x26e/0x5b9
3732 5) 2080 16 schedule+0x64/0x66
3733 6) 2064 128 schedule_timeout+0x34/0xe0
3734 7) 1936 112 wait_for_common+0x97/0xf1
3735 8) 1824 16 wait_for_completion+0x1d/0x1f
3736 9) 1808 128 flush_work+0xfe/0x119
3737 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
3738 11) 1664 48 input_available_p+0x1d/0x5c
3739 12) 1616 48 n_tty_poll+0x6d/0x134
3740 13) 1568 64 tty_poll+0x64/0x7f
3741 14) 1504 880 do_select+0x31e/0x511
3742 15) 624 400 core_sys_select+0x177/0x216
3743 16) 224 96 sys_select+0x91/0xb9
3744 17) 128 128 system_call_fastpath+0x16/0x1b
3745
3746Note, if -mfentry is being used by gcc, functions get traced before
3747they set up the stack frame. This means that leaf level functions
3748are not tested by the stack tracer when -mfentry is used.
3749
3750Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3751
3752More
3753----
3754More details can be found in the source code, in the `kernel/trace/*.c` files.