Merge tag 'backlight-next-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/lee...
[linux-block.git] / Documentation / trace / ftrace.rst
CommitLineData
1f198e22
CD
1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author: Steven Rostedt <srostedt@redhat.com>
8:License: The GNU Free Documentation License, Version 1.2
9 (dual licensed under the GPL v2)
10:Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
11 John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
2a1e03ca 27is really a framework of several assorted tracing utilities.
1f198e22
CD
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
2a1e03ca 33Throughout the kernel is hundreds of static event points that
1f198e22
CD
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs /sys/kernel/tracing tracefs defaults 0 0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69 Before 4.1, all ftrace tracing control files were within the debugfs
70 file system, which is typically located at /sys/kernel/debug/tracing.
71 For backward compatibility, when mounting the debugfs file system,
72 the tracefs file system will be automatically mounted at:
73
74 /sys/kernel/debug/tracing
75
76 All files located in the tracefs file system will be located in that
77 debugfs file system directory as well.
78
79.. attention::
80
81 Any selected ftrace option will also create the tracefs file system.
82 The rest of the document will assume that you are in the ftrace directory
83 (cd /sys/kernel/tracing) and will only concentrate on the files within that
84 directory and not distract from the content with the extended
85 "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95 current_tracer:
96
97 This is used to set or display the current tracer
98 that is configured.
99
100 available_tracers:
101
102 This holds the different types of tracers that
103 have been compiled into the kernel. The
104 tracers listed here can be configured by
105 echoing their name into current_tracer.
106
107 tracing_on:
108
109 This sets or displays whether writing to the trace
110 ring buffer is enabled. Echo 0 into this file to disable
111 the tracer or 1 to enable it. Note, this only disables
112 writing to the ring buffer, the tracing overhead may
113 still be occurring.
114
115 The kernel function tracing_off() can be used within the
116 kernel to disable writing to the ring buffer, which will
117 set this file to "0". User space can re-enable tracing by
118 echoing "1" into the file.
119
120 Note, the function and event trigger "traceoff" will also
121 set this file to zero and stop tracing. Which can also
122 be re-enabled by user space using this file.
123
124 trace:
125
126 This file holds the output of the trace in a human
127 readable format (described below). Note, tracing is temporarily
128 disabled while this file is being read (opened).
129
130 trace_pipe:
131
132 The output is the same as the "trace" file but this
133 file is meant to be streamed with live tracing.
134 Reads from this file will block until new data is
135 retrieved. Unlike the "trace" file, this file is a
136 consumer. This means reading from this file causes
137 sequential reads to display more current data. Once
138 data is read from this file, it is consumed, and
139 will not be read again with a sequential read. The
140 "trace" file is static, and if the tracer is not
141 adding more data, it will display the same
142 information every time it is read. This file will not
143 disable tracing while being read.
144
145 trace_options:
146
147 This file lets the user control the amount of data
148 that is displayed in one of the above output
149 files. Options also exist to modify how a tracer
150 or events work (stack traces, timestamps, etc).
151
152 options:
153
154 This is a directory that has a file for every available
155 trace option (also in trace_options). Options may also be set
156 or cleared by writing a "1" or "0" respectively into the
157 corresponding file with the option name.
158
159 tracing_max_latency:
160
161 Some of the tracers record the max latency.
162 For example, the maximum time that interrupts are disabled.
163 The maximum time is saved in this file. The max trace will also be
164 stored, and displayed by "trace". A new max trace will only be
165 recorded if the latency is greater than the value in this file
166 (in microseconds).
167
168 By echoing in a time into this file, no latency will be recorded
169 unless it is greater than the time in this file.
170
171 tracing_thresh:
172
173 Some latency tracers will record a trace whenever the
174 latency is greater than the number in this file.
175 Only active when the file contains a number greater than 0.
176 (in microseconds)
177
178 buffer_size_kb:
179
180 This sets or displays the number of kilobytes each CPU
181 buffer holds. By default, the trace buffers are the same size
182 for each CPU. The displayed number is the size of the
183 CPU buffer and not total size of all buffers. The
184 trace buffers are allocated in pages (blocks of memory
185 that the kernel uses for allocation, usually 4 KB in size).
186 If the last page allocated has room for more bytes
187 than requested, the rest of the page will be used,
188 making the actual allocation bigger than requested or shown.
189 ( Note, the size may not be a multiple of the page size
190 due to buffer management meta-data. )
191
192 Buffer sizes for individual CPUs may vary
193 (see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194 this file will show "X".
195
196 buffer_total_size_kb:
197
198 This displays the total combined size of all the trace buffers.
199
200 free_buffer:
201
202 If a process is performing tracing, and the ring buffer should be
203 shrunk "freed" when the process is finished, even if it were to be
204 killed by a signal, this file can be used for that purpose. On close
205 of this file, the ring buffer will be resized to its minimum size.
206 Having a process that is tracing also open this file, when the process
207 exits its file descriptor for this file will be closed, and in doing so,
208 the ring buffer will be "freed".
209
210 It may also stop tracing if disable_on_free option is set.
211
212 tracing_cpumask:
213
214 This is a mask that lets the user only trace on specified CPUs.
215 The format is a hex string representing the CPUs.
216
217 set_ftrace_filter:
218
219 When dynamic ftrace is configured in (see the
220 section below "dynamic ftrace"), the code is dynamically
221 modified (code text rewrite) to disable calling of the
222 function profiler (mcount). This lets tracing be configured
223 in with practically no overhead in performance. This also
224 has a side effect of enabling or disabling specific functions
225 to be traced. Echoing names of functions into this file
226 will limit the trace to only those functions.
32fb7ef6
SM
227 This influences the tracers "function" and "function_graph"
228 and thus also function profiling (see "function_profile_enabled").
1f198e22
CD
229
230 The functions listed in "available_filter_functions" are what
231 can be written into this file.
232
233 This interface also allows for commands to be used. See the
234 "Filter commands" section for more details.
235
f79b3f33
SRV
236 As a speed up, since processing strings can't be quite expensive
237 and requires a check of all functions registered to tracing, instead
238 an index can be written into this file. A number (starting with "1")
239 written will instead select the same corresponding at the line position
240 of the "available_filter_functions" file.
241
1f198e22
CD
242 set_ftrace_notrace:
243
244 This has an effect opposite to that of
245 set_ftrace_filter. Any function that is added here will not
246 be traced. If a function exists in both set_ftrace_filter
247 and set_ftrace_notrace, the function will _not_ be traced.
248
249 set_ftrace_pid:
250
251 Have the function tracer only trace the threads whose PID are
252 listed in this file.
253
254 If the "function-fork" option is set, then when a task whose
255 PID is listed in this file forks, the child's PID will
256 automatically be added to this file, and the child will be
257 traced by the function tracer as well. This option will also
258 cause PIDs of tasks that exit to be removed from the file.
259
260 set_event_pid:
261
262 Have the events only trace a task with a PID listed in this file.
263 Note, sched_switch and sched_wake_up will also trace events
264 listed in this file.
265
266 To have the PIDs of children of tasks with their PID in this file
267 added on fork, enable the "event-fork" option. That option will also
268 cause the PIDs of tasks to be removed from this file when the task
269 exits.
270
271 set_graph_function:
272
273 Functions listed in this file will cause the function graph
274 tracer to only trace these functions and the functions that
275 they call. (See the section "dynamic ftrace" for more details).
32fb7ef6
SM
276 Note, set_ftrace_filter and set_ftrace_notrace still affects
277 what functions are being traced.
1f198e22
CD
278
279 set_graph_notrace:
280
281 Similar to set_graph_function, but will disable function graph
282 tracing when the function is hit until it exits the function.
283 This makes it possible to ignore tracing functions that are called
284 by a specific function.
285
286 available_filter_functions:
287
288 This lists the functions that ftrace has processed and can trace.
289 These are the function names that you can pass to
32fb7ef6
SM
290 "set_ftrace_filter", "set_ftrace_notrace",
291 "set_graph_function", or "set_graph_notrace".
1f198e22
CD
292 (See the section "dynamic ftrace" below for more details.)
293
294 dyn_ftrace_total_info:
295
296 This file is for debugging purposes. The number of functions that
297 have been converted to nops and are available to be traced.
298
299 enabled_functions:
300
301 This file is more for debugging ftrace, but can also be useful
302 in seeing if any function has a callback attached to it.
303 Not only does the trace infrastructure use ftrace function
304 trace utility, but other subsystems might too. This file
305 displays all functions that have a callback attached to them
306 as well as the number of callbacks that have been attached.
307 Note, a callback may also call multiple functions which will
308 not be listed in this count.
309
310 If the callback registered to be traced by a function with
311 the "save regs" attribute (thus even more overhead), a 'R'
312 will be displayed on the same line as the function that
313 is returning registers.
314
315 If the callback registered to be traced by a function with
316 the "ip modify" attribute (thus the regs->ip can be changed),
317 an 'I' will be displayed on the same line as the function that
318 can be overridden.
319
320 If the architecture supports it, it will also show what callback
321 is being directly called by the function. If the count is greater
322 than 1 it most likely will be ftrace_ops_list_func().
323
324 If the callback of the function jumps to a trampoline that is
325 specific to a the callback and not the standard trampoline,
326 its address will be printed as well as the function that the
327 trampoline calls.
328
329 function_profile_enabled:
330
331 When set it will enable all functions with either the function
332 tracer, or if configured, the function graph tracer. It will
333 keep a histogram of the number of functions that were called
334 and if the function graph tracer was configured, it will also keep
335 track of the time spent in those functions. The histogram
336 content can be displayed in the files:
337
1fee4f77 338 trace_stat/function<cpu> ( function0, function1, etc).
1f198e22 339
1fee4f77 340 trace_stat:
1f198e22
CD
341
342 A directory that holds different tracing stats.
343
344 kprobe_events:
345
346 Enable dynamic trace points. See kprobetrace.txt.
347
348 kprobe_profile:
349
350 Dynamic trace points stats. See kprobetrace.txt.
351
352 max_graph_depth:
353
354 Used with the function graph tracer. This is the max depth
355 it will trace into a function. Setting this to a value of
356 one will show only the first kernel function that is called
357 from user space.
358
359 printk_formats:
360
361 This is for tools that read the raw format files. If an event in
362 the ring buffer references a string, only a pointer to the string
363 is recorded into the buffer and not the string itself. This prevents
364 tools from knowing what that string was. This file displays the string
365 and address for the string allowing tools to map the pointers to what
366 the strings were.
367
368 saved_cmdlines:
369
370 Only the pid of the task is recorded in a trace event unless
371 the event specifically saves the task comm as well. Ftrace
372 makes a cache of pid mappings to comms to try to display
373 comms for events. If a pid for a comm is not listed, then
374 "<...>" is displayed in the output.
375
376 If the option "record-cmd" is set to "0", then comms of tasks
377 will not be saved during recording. By default, it is enabled.
378
379 saved_cmdlines_size:
380
381 By default, 128 comms are saved (see "saved_cmdlines" above). To
382 increase or decrease the amount of comms that are cached, echo
383 in a the number of comms to cache, into this file.
384
385 saved_tgids:
386
387 If the option "record-tgid" is set, on each scheduling context switch
388 the Task Group ID of a task is saved in a table mapping the PID of
389 the thread to its TGID. By default, the "record-tgid" option is
390 disabled.
391
392 snapshot:
393
394 This displays the "snapshot" buffer and also lets the user
395 take a snapshot of the current running trace.
396 See the "Snapshot" section below for more details.
397
398 stack_max_size:
399
400 When the stack tracer is activated, this will display the
401 maximum stack size it has encountered.
402 See the "Stack Trace" section below.
403
404 stack_trace:
405
406 This displays the stack back trace of the largest stack
407 that was encountered when the stack tracer is activated.
408 See the "Stack Trace" section below.
409
410 stack_trace_filter:
411
412 This is similar to "set_ftrace_filter" but it limits what
413 functions the stack tracer will check.
414
415 trace_clock:
416
417 Whenever an event is recorded into the ring buffer, a
418 "timestamp" is added. This stamp comes from a specified
419 clock. By default, ftrace uses the "local" clock. This
420 clock is very fast and strictly per cpu, but on some
421 systems it may not be monotonic with respect to other
422 CPUs. In other words, the local clocks may not be in sync
423 with local clocks on other CPUs.
424
425 Usual clocks for tracing::
426
427 # cat trace_clock
428 [local] global counter x86-tsc
429
430 The clock with the square brackets around it is the one in effect.
431
432 local:
433 Default clock, but may not be in sync across CPUs
434
435 global:
436 This clock is in sync with all CPUs but may
437 be a bit slower than the local clock.
438
439 counter:
440 This is not a clock at all, but literally an atomic
441 counter. It counts up one by one, but is in sync
442 with all CPUs. This is useful when you need to
443 know exactly the order events occurred with respect to
444 each other on different CPUs.
445
446 uptime:
447 This uses the jiffies counter and the time stamp
448 is relative to the time since boot up.
449
450 perf:
451 This makes ftrace use the same clock that perf uses.
452 Eventually perf will be able to read ftrace buffers
453 and this will help out in interleaving the data.
454
455 x86-tsc:
456 Architectures may define their own clocks. For
457 example, x86 uses its own TSC cycle clock here.
458
459 ppc-tb:
460 This uses the powerpc timebase register value.
461 This is in sync across CPUs and can also be used
462 to correlate events across hypervisor/guest if
463 tb_offset is known.
464
465 mono:
466 This uses the fast monotonic clock (CLOCK_MONOTONIC)
467 which is monotonic and is subject to NTP rate adjustments.
468
469 mono_raw:
470 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
2a1e03ca 471 which is monotonic but is not subject to any rate adjustments
1f198e22
CD
472 and ticks at the same rate as the hardware clocksource.
473
474 boot:
a3ed0e43
TG
475 This is the boot clock (CLOCK_BOOTTIME) and is based on the
476 fast monotonic clock, but also accounts for time spent in
477 suspend. Since the clock access is designed for use in
478 tracing in the suspend path, some side effects are possible
479 if clock is accessed after the suspend time is accounted before
480 the fast mono clock is updated. In this case, the clock update
481 appears to happen slightly sooner than it normally would have.
482 Also on 32-bit systems, it's possible that the 64-bit boot offset
483 sees a partial update. These effects are rare and post
484 processing should be able to handle them. See comments in the
485 ktime_get_boot_fast_ns() function for more information.
680014d6
LT
486
487 To set a clock, simply echo the clock name into this file::
488
489 # echo global > trace_clock
1f198e22
CD
490
491 trace_marker:
492
493 This is a very useful file for synchronizing user space
494 with events happening in the kernel. Writing strings into
495 this file will be written into the ftrace buffer.
496
497 It is useful in applications to open this file at the start
498 of the application and just reference the file descriptor
499 for the file::
500
501 void trace_write(const char *fmt, ...)
502 {
503 va_list ap;
504 char buf[256];
505 int n;
506
507 if (trace_fd < 0)
508 return;
509
510 va_start(ap, fmt);
511 n = vsnprintf(buf, 256, fmt, ap);
512 va_end(ap);
513
514 write(trace_fd, buf, n);
515 }
516
517 start::
518
519 trace_fd = open("trace_marker", WR_ONLY);
520
d3439f9d
SRV
521 Note: Writing into the trace_marker file can also initiate triggers
522 that are written into /sys/kernel/tracing/events/ftrace/print/trigger
523 See "Event triggers" in Documentation/trace/events.rst and an
524 example in Documentation/trace/histogram.rst (Section 3.)
525
1f198e22
CD
526 trace_marker_raw:
527
528 This is similar to trace_marker above, but is meant for for binary data
529 to be written to it, where a tool can be used to parse the data
530 from trace_pipe_raw.
531
532 uprobe_events:
533
534 Add dynamic tracepoints in programs.
535 See uprobetracer.txt
536
537 uprobe_profile:
538
539 Uprobe statistics. See uprobetrace.txt
540
541 instances:
542
543 This is a way to make multiple trace buffers where different
544 events can be recorded in different buffers.
545 See "Instances" section below.
546
547 events:
548
549 This is the trace event directory. It holds event tracepoints
550 (also known as static tracepoints) that have been compiled
551 into the kernel. It shows what event tracepoints exist
552 and how they are grouped by system. There are "enable"
553 files at various levels that can enable the tracepoints
554 when a "1" is written to them.
555
556 See events.txt for more information.
557
558 set_event:
559
560 By echoing in the event into this file, will enable that event.
561
562 See events.txt for more information.
563
564 available_events:
565
566 A list of events that can be enabled in tracing.
567
568 See events.txt for more information.
569
2a56bb59
LT
570 timestamp_mode:
571
572 Certain tracers may change the timestamp mode used when
573 logging trace events into the event buffer. Events with
574 different modes can coexist within a buffer but the mode in
575 effect when an event is logged determines which timestamp mode
576 is used for that event. The default timestamp mode is
577 'delta'.
578
579 Usual timestamp modes for tracing:
580
581 # cat timestamp_mode
582 [delta] absolute
583
584 The timestamp mode with the square brackets around it is the
585 one in effect.
586
587 delta: Default timestamp mode - timestamp is a delta against
588 a per-buffer timestamp.
589
590 absolute: The timestamp is a full timestamp, not a delta
591 against some other value. As such it takes up more
592 space and is less efficient.
593
1f198e22
CD
594 hwlat_detector:
595
596 Directory for the Hardware Latency Detector.
597 See "Hardware Latency Detector" section below.
598
599 per_cpu:
600
601 This is a directory that contains the trace per_cpu information.
602
603 per_cpu/cpu0/buffer_size_kb:
604
605 The ftrace buffer is defined per_cpu. That is, there's a separate
606 buffer for each CPU to allow writes to be done atomically,
607 and free from cache bouncing. These buffers may have different
608 size buffers. This file is similar to the buffer_size_kb
609 file, but it only displays or sets the buffer size for the
610 specific CPU. (here cpu0).
611
612 per_cpu/cpu0/trace:
613
614 This is similar to the "trace" file, but it will only display
615 the data specific for the CPU. If written to, it only clears
616 the specific CPU buffer.
617
618 per_cpu/cpu0/trace_pipe
619
620 This is similar to the "trace_pipe" file, and is a consuming
621 read, but it will only display (and consume) the data specific
622 for the CPU.
623
624 per_cpu/cpu0/trace_pipe_raw
625
626 For tools that can parse the ftrace ring buffer binary format,
627 the trace_pipe_raw file can be used to extract the data
628 from the ring buffer directly. With the use of the splice()
629 system call, the buffer data can be quickly transferred to
630 a file or to the network where a server is collecting the
631 data.
632
633 Like trace_pipe, this is a consuming reader, where multiple
634 reads will always produce different data.
635
636 per_cpu/cpu0/snapshot:
637
638 This is similar to the main "snapshot" file, but will only
639 snapshot the current CPU (if supported). It only displays
640 the content of the snapshot for a given CPU, and if
641 written to, only clears this CPU buffer.
642
643 per_cpu/cpu0/snapshot_raw:
644
645 Similar to the trace_pipe_raw, but will read the binary format
646 from the snapshot buffer for the given CPU.
647
648 per_cpu/cpu0/stats:
649
650 This displays certain stats about the ring buffer:
651
652 entries:
653 The number of events that are still in the buffer.
654
655 overrun:
656 The number of lost events due to overwriting when
657 the buffer was full.
658
659 commit overrun:
660 Should always be zero.
661 This gets set if so many events happened within a nested
662 event (ring buffer is re-entrant), that it fills the
663 buffer and starts dropping events.
664
665 bytes:
666 Bytes actually read (not overwritten).
667
668 oldest event ts:
669 The oldest timestamp in the buffer
670
671 now ts:
672 The current timestamp
673
674 dropped events:
675 Events lost due to overwrite option being off.
676
677 read events:
678 The number of events read.
679
680The Tracers
681-----------
682
683Here is the list of current tracers that may be configured.
684
685 "function"
686
687 Function call tracer to trace all kernel functions.
688
689 "function_graph"
690
691 Similar to the function tracer except that the
692 function tracer probes the functions on their entry
693 whereas the function graph tracer traces on both entry
694 and exit of the functions. It then provides the ability
695 to draw a graph of function calls similar to C code
696 source.
697
698 "blk"
699
700 The block tracer. The tracer used by the blktrace user
701 application.
702
703 "hwlat"
704
705 The Hardware Latency tracer is used to detect if the hardware
706 produces any latency. See "Hardware Latency Detector" section
707 below.
708
709 "irqsoff"
710
711 Traces the areas that disable interrupts and saves
712 the trace with the longest max latency.
713 See tracing_max_latency. When a new max is recorded,
714 it replaces the old trace. It is best to view this
715 trace with the latency-format option enabled, which
716 happens automatically when the tracer is selected.
717
718 "preemptoff"
719
720 Similar to irqsoff but traces and records the amount of
721 time for which preemption is disabled.
722
723 "preemptirqsoff"
724
725 Similar to irqsoff and preemptoff, but traces and
726 records the largest time for which irqs and/or preemption
727 is disabled.
728
729 "wakeup"
730
731 Traces and records the max latency that it takes for
732 the highest priority task to get scheduled after
733 it has been woken up.
734 Traces all tasks as an average developer would expect.
735
736 "wakeup_rt"
737
738 Traces and records the max latency that it takes for just
739 RT tasks (as the current "wakeup" does). This is useful
740 for those interested in wake up timings of RT tasks.
741
742 "wakeup_dl"
743
744 Traces and records the max latency that it takes for
745 a SCHED_DEADLINE task to be woken (as the "wakeup" and
746 "wakeup_rt" does).
747
748 "mmiotrace"
749
750 A special tracer that is used to trace binary module.
751 It will trace all the calls that a module makes to the
752 hardware. Everything it writes and reads from the I/O
753 as well.
754
755 "branch"
756
757 This tracer can be configured when tracing likely/unlikely
758 calls within the kernel. It will trace when a likely and
759 unlikely branch is hit and if it was correct in its prediction
760 of being correct.
761
762 "nop"
763
764 This is the "trace nothing" tracer. To remove all
765 tracers from tracing simply echo "nop" into
766 current_tracer.
767
768
769Examples of using the tracer
770----------------------------
771
772Here are typical examples of using the tracers when controlling
773them only with the tracefs interface (without using any
774user-land utilities).
775
776Output format:
777--------------
778
779Here is an example of the output format of the file "trace"::
780
781 # tracer: function
782 #
783 # entries-in-buffer/entries-written: 140080/250280 #P:4
784 #
785 # _-----=> irqs-off
786 # / _----=> need-resched
787 # | / _---=> hardirq/softirq
788 # || / _--=> preempt-depth
789 # ||| / delay
790 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
791 # | | | |||| | |
792 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
793 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
794 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
795 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
796 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
797 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
798 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
799 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
800 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
801 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
802 ....
803
804A header is printed with the tracer name that is represented by
805the trace. In this case the tracer is "function". Then it shows the
806number of events in the buffer as well as the total number of entries
807that were written. The difference is the number of entries that were
808lost due to the buffer filling up (250280 - 140080 = 110200 events
809lost).
810
811The header explains the content of the events. Task name "bash", the task
812PID "1977", the CPU that it was running on "000", the latency format
813(explained below), the timestamp in <secs>.<usecs> format, the
814function name that was traced "sys_close" and the parent function that
815called this function "system_call_fastpath". The timestamp is the time
816at which the function was entered.
817
818Latency trace format
819--------------------
820
821When the latency-format option is enabled or when one of the latency
822tracers is set, the trace file gives somewhat more information to see
823why a latency happened. Here is a typical trace::
824
825 # tracer: irqsoff
826 #
827 # irqsoff latency trace v1.1.5 on 3.8.0-test+
828 # --------------------------------------------------------------------
829 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
830 # -----------------
831 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
832 # -----------------
833 # => started at: __lock_task_sighand
834 # => ended at: _raw_spin_unlock_irqrestore
835 #
836 #
837 # _------=> CPU#
838 # / _-----=> irqs-off
839 # | / _----=> need-resched
840 # || / _---=> hardirq/softirq
841 # ||| / _--=> preempt-depth
842 # |||| / delay
843 # cmd pid ||||| time | caller
844 # \ / ||||| \ | /
845 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
846 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
847 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
848 ps-6143 2d..1 306us : <stack trace>
849 => trace_hardirqs_on_caller
850 => trace_hardirqs_on
851 => _raw_spin_unlock_irqrestore
852 => do_task_stat
853 => proc_tgid_stat
854 => proc_single_show
855 => seq_read
856 => vfs_read
857 => sys_read
858 => system_call_fastpath
859
860
861This shows that the current tracer is "irqsoff" tracing the time
862for which interrupts were disabled. It gives the trace version (which
863never changes) and the version of the kernel upon which this was executed on
864(3.8). Then it displays the max latency in microseconds (259 us). The number
865of trace entries displayed and the total number (both are four: #4/4).
866VP, KP, SP, and HP are always zero and are reserved for later use.
867#P is the number of online CPUs (#P:4).
868
869The task is the process that was running when the latency
870occurred. (ps pid: 6143).
871
872The start and stop (the functions in which the interrupts were
873disabled and enabled respectively) that caused the latencies:
874
875 - __lock_task_sighand is where the interrupts were disabled.
876 - _raw_spin_unlock_irqrestore is where they were enabled again.
877
878The next lines after the header are the trace itself. The header
879explains which is which.
880
881 cmd: The name of the process in the trace.
882
883 pid: The PID of that process.
884
885 CPU#: The CPU which the process was running on.
886
887 irqs-off: 'd' interrupts are disabled. '.' otherwise.
888 .. caution:: If the architecture does not support a way to
889 read the irq flags variable, an 'X' will always
890 be printed here.
891
892 need-resched:
893 - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
894 - 'n' only TIF_NEED_RESCHED is set,
895 - 'p' only PREEMPT_NEED_RESCHED is set,
896 - '.' otherwise.
897
898 hardirq/softirq:
899 - 'Z' - NMI occurred inside a hardirq
900 - 'z' - NMI is running
901 - 'H' - hard irq occurred inside a softirq.
902 - 'h' - hard irq is running
903 - 's' - soft irq is running
904 - '.' - normal context.
905
906 preempt-depth: The level of preempt_disabled
907
908The above is mostly meaningful for kernel developers.
909
910 time:
911 When the latency-format option is enabled, the trace file
912 output includes a timestamp relative to the start of the
913 trace. This differs from the output when latency-format
914 is disabled, which includes an absolute timestamp.
915
916 delay:
917 This is just to help catch your eye a bit better. And
918 needs to be fixed to be only relative to the same CPU.
919 The marks are determined by the difference between this
920 current trace and the next trace.
921
922 - '$' - greater than 1 second
2a1e03ca
AL
923 - '@' - greater than 100 millisecond
924 - '*' - greater than 10 millisecond
1f198e22
CD
925 - '#' - greater than 1000 microsecond
926 - '!' - greater than 100 microsecond
927 - '+' - greater than 10 microsecond
928 - ' ' - less than or equal to 10 microsecond.
929
930 The rest is the same as the 'trace' file.
931
932 Note, the latency tracers will usually end with a back trace
933 to easily find where the latency occurred.
934
935trace_options
936-------------
937
938The trace_options file (or the options directory) is used to control
939what gets printed in the trace output, or manipulate the tracers.
940To see what is available, simply cat the file::
941
942 cat trace_options
943 print-parent
944 nosym-offset
945 nosym-addr
946 noverbose
947 noraw
948 nohex
949 nobin
950 noblock
951 trace_printk
952 annotate
953 nouserstacktrace
954 nosym-userobj
955 noprintk-msg-only
956 context-info
957 nolatency-format
958 record-cmd
959 norecord-tgid
960 overwrite
961 nodisable_on_free
962 irq-info
963 markers
964 noevent-fork
965 function-trace
966 nofunction-fork
967 nodisplay-graph
968 nostacktrace
969 nobranch
970
971To disable one of the options, echo in the option prepended with
972"no"::
973
974 echo noprint-parent > trace_options
975
976To enable an option, leave off the "no"::
977
978 echo sym-offset > trace_options
979
980Here are the available options:
981
982 print-parent
983 On function traces, display the calling (parent)
984 function as well as the function being traced.
985 ::
986
987 print-parent:
988 bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul
989
990 noprint-parent:
991 bash-4000 [01] 1477.606694: simple_strtoul
992
993
994 sym-offset
995 Display not only the function name, but also the
996 offset in the function. For example, instead of
997 seeing just "ktime_get", you will see
998 "ktime_get+0xb/0x20".
999 ::
1000
1001 sym-offset:
1002 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
1003
1004 sym-addr
1005 This will also display the function address as well
1006 as the function name.
1007 ::
1008
1009 sym-addr:
1010 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
1011
1012 verbose
1013 This deals with the trace file when the
1014 latency-format option is enabled.
1015 ::
1016
1017 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1018 (+0.000ms): simple_strtoul (kstrtoul)
1019
1020 raw
1021 This will display raw numbers. This option is best for
1022 use with user applications that can translate the raw
1023 numbers better than having it done in the kernel.
1024
1025 hex
1026 Similar to raw, but the numbers will be in a hexadecimal format.
1027
1028 bin
1029 This will print out the formats in raw binary.
1030
1031 block
1032 When set, reading trace_pipe will not block when polled.
1033
1034 trace_printk
1035 Can disable trace_printk() from writing into the buffer.
1036
1037 annotate
1038 It is sometimes confusing when the CPU buffers are full
1039 and one CPU buffer had a lot of events recently, thus
1040 a shorter time frame, were another CPU may have only had
1041 a few events, which lets it have older events. When
1042 the trace is reported, it shows the oldest events first,
1043 and it may look like only one CPU ran (the one with the
1044 oldest events). When the annotate option is set, it will
1045 display when a new CPU buffer started::
1046
1047 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1048 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1049 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1050 ##### CPU 2 buffer started ####
1051 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1052 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1053 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1054
1055 userstacktrace
1056 This option changes the trace. It records a
1057 stacktrace of the current user space thread after
1058 each trace event.
1059
1060 sym-userobj
1061 when user stacktrace are enabled, look up which
1062 object the address belongs to, and print a
1063 relative address. This is especially useful when
1064 ASLR is on, otherwise you don't get a chance to
1065 resolve the address to object/file/line after
1066 the app is no longer running
1067
1068 The lookup is performed when you read
1069 trace,trace_pipe. Example::
1070
1071 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1072 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1073
1074
1075 printk-msg-only
1076 When set, trace_printk()s will only show the format
1077 and not their parameters (if trace_bprintk() or
1078 trace_bputs() was used to save the trace_printk()).
1079
1080 context-info
1081 Show only the event data. Hides the comm, PID,
1082 timestamp, CPU, and other useful data.
1083
1084 latency-format
1085 This option changes the trace output. When it is enabled,
1086 the trace displays additional information about the
1087 latency, as described in "Latency trace format".
1088
1089 record-cmd
1090 When any event or tracer is enabled, a hook is enabled
1091 in the sched_switch trace point to fill comm cache
1092 with mapped pids and comms. But this may cause some
1093 overhead, and if you only care about pids, and not the
1094 name of the task, disabling this option can lower the
1095 impact of tracing. See "saved_cmdlines".
1096
1097 record-tgid
1098 When any event or tracer is enabled, a hook is enabled
1099 in the sched_switch trace point to fill the cache of
1100 mapped Thread Group IDs (TGID) mapping to pids. See
1101 "saved_tgids".
1102
1103 overwrite
1104 This controls what happens when the trace buffer is
1105 full. If "1" (default), the oldest events are
1106 discarded and overwritten. If "0", then the newest
1107 events are discarded.
1108 (see per_cpu/cpu0/stats for overrun and dropped)
1109
1110 disable_on_free
1111 When the free_buffer is closed, tracing will
1112 stop (tracing_on set to 0).
1113
1114 irq-info
1115 Shows the interrupt, preempt count, need resched data.
1116 When disabled, the trace looks like::
1117
1118 # tracer: function
1119 #
1120 # entries-in-buffer/entries-written: 144405/9452052 #P:4
1121 #
1122 # TASK-PID CPU# TIMESTAMP FUNCTION
1123 # | | | | |
1124 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1125 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89
1126 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task
1127
1128
1129 markers
1130 When set, the trace_marker is writable (only by root).
1131 When disabled, the trace_marker will error with EINVAL
1132 on write.
1133
1134 event-fork
1135 When set, tasks with PIDs listed in set_event_pid will have
1136 the PIDs of their children added to set_event_pid when those
1137 tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1138 their PIDs will be removed from the file.
1139
1140 function-trace
1141 The latency tracers will enable function tracing
1142 if this option is enabled (default it is). When
1143 it is disabled, the latency tracers do not trace
1144 functions. This keeps the overhead of the tracer down
1145 when performing latency tests.
1146
1147 function-fork
1148 When set, tasks with PIDs listed in set_ftrace_pid will
1149 have the PIDs of their children added to set_ftrace_pid
1150 when those tasks fork. Also, when tasks with PIDs in
1151 set_ftrace_pid exit, their PIDs will be removed from the
1152 file.
1153
1154 display-graph
1155 When set, the latency tracers (irqsoff, wakeup, etc) will
1156 use function graph tracing instead of function tracing.
1157
1158 stacktrace
1159 When set, a stack trace is recorded after any trace event
1160 is recorded.
1161
1162 branch
1163 Enable branch tracing with the tracer. This enables branch
1164 tracer along with the currently set tracer. Enabling this
1165 with the "nop" tracer is the same as just enabling the
1166 "branch" tracer.
1167
1168.. tip:: Some tracers have their own options. They only appear in this
1169 file when the tracer is active. They always appear in the
1170 options directory.
1171
1172
1173Here are the per tracer options:
1174
1175Options for function tracer:
1176
1177 func_stack_trace
1178 When set, a stack trace is recorded after every
1179 function that is recorded. NOTE! Limit the functions
1180 that are recorded before enabling this, with
1181 "set_ftrace_filter" otherwise the system performance
1182 will be critically degraded. Remember to disable
1183 this option before clearing the function filter.
1184
1185Options for function_graph tracer:
1186
1187 Since the function_graph tracer has a slightly different output
1188 it has its own options to control what is displayed.
1189
1190 funcgraph-overrun
1191 When set, the "overrun" of the graph stack is
1192 displayed after each function traced. The
1193 overrun, is when the stack depth of the calls
1194 is greater than what is reserved for each task.
1195 Each task has a fixed array of functions to
1196 trace in the call graph. If the depth of the
1197 calls exceeds that, the function is not traced.
1198 The overrun is the number of functions missed
1199 due to exceeding this array.
1200
1201 funcgraph-cpu
1202 When set, the CPU number of the CPU where the trace
1203 occurred is displayed.
1204
1205 funcgraph-overhead
1206 When set, if the function takes longer than
1207 A certain amount, then a delay marker is
1208 displayed. See "delay" above, under the
1209 header description.
1210
1211 funcgraph-proc
1212 Unlike other tracers, the process' command line
1213 is not displayed by default, but instead only
1214 when a task is traced in and out during a context
1215 switch. Enabling this options has the command
1216 of each process displayed at every line.
1217
1218 funcgraph-duration
1219 At the end of each function (the return)
1220 the duration of the amount of time in the
1221 function is displayed in microseconds.
1222
1223 funcgraph-abstime
1224 When set, the timestamp is displayed at each line.
1225
1226 funcgraph-irqs
1227 When disabled, functions that happen inside an
1228 interrupt will not be traced.
1229
1230 funcgraph-tail
1231 When set, the return event will include the function
1232 that it represents. By default this is off, and
1233 only a closing curly bracket "}" is displayed for
1234 the return of a function.
1235
1236 sleep-time
1237 When running function graph tracer, to include
1238 the time a task schedules out in its function.
1239 When enabled, it will account time the task has been
1240 scheduled out as part of the function call.
1241
1242 graph-time
1243 When running function profiler with function graph tracer,
1244 to include the time to call nested functions. When this is
1245 not set, the time reported for the function will only
1246 include the time the function itself executed for, not the
1247 time for functions that it called.
1248
1249Options for blk tracer:
1250
1251 blk_classic
1252 Shows a more minimalistic output.
1253
1254
1255irqsoff
1256-------
1257
1258When interrupts are disabled, the CPU can not react to any other
1259external event (besides NMIs and SMIs). This prevents the timer
1260interrupt from triggering or the mouse interrupt from letting
1261the kernel know of a new mouse event. The result is a latency
1262with the reaction time.
1263
1264The irqsoff tracer tracks the time for which interrupts are
1265disabled. When a new maximum latency is hit, the tracer saves
1266the trace leading up to that latency point so that every time a
1267new maximum is reached, the old saved trace is discarded and the
1268new trace is saved.
1269
1270To reset the maximum, echo 0 into tracing_max_latency. Here is
1271an example::
1272
1273 # echo 0 > options/function-trace
1274 # echo irqsoff > current_tracer
1275 # echo 1 > tracing_on
1276 # echo 0 > tracing_max_latency
1277 # ls -ltr
1278 [...]
1279 # echo 0 > tracing_on
1280 # cat trace
1281 # tracer: irqsoff
1282 #
1283 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1284 # --------------------------------------------------------------------
1285 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1286 # -----------------
1287 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1288 # -----------------
1289 # => started at: run_timer_softirq
1290 # => ended at: run_timer_softirq
1291 #
1292 #
1293 # _------=> CPU#
1294 # / _-----=> irqs-off
1295 # | / _----=> need-resched
1296 # || / _---=> hardirq/softirq
1297 # ||| / _--=> preempt-depth
1298 # |||| / delay
1299 # cmd pid ||||| time | caller
1300 # \ / ||||| \ | /
1301 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
1302 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
1303 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
1304 <idle>-0 0dNs3 25us : <stack trace>
1305 => _raw_spin_unlock_irq
1306 => run_timer_softirq
1307 => __do_softirq
1308 => call_softirq
1309 => do_softirq
1310 => irq_exit
1311 => smp_apic_timer_interrupt
1312 => apic_timer_interrupt
1313 => rcu_idle_exit
1314 => cpu_idle
1315 => rest_init
1316 => start_kernel
1317 => x86_64_start_reservations
1318 => x86_64_start_kernel
1319
1320Here we see that that we had a latency of 16 microseconds (which is
1321very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1322interrupts. The difference between the 16 and the displayed
1323timestamp 25us occurred because the clock was incremented
1324between the time of recording the max latency and the time of
1325recording the function that had that latency.
1326
1327Note the above example had function-trace not set. If we set
1328function-trace, we get a much larger output::
1329
1330 with echo 1 > options/function-trace
1331
1332 # tracer: irqsoff
1333 #
1334 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1335 # --------------------------------------------------------------------
1336 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1337 # -----------------
1338 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1339 # -----------------
1340 # => started at: ata_scsi_queuecmd
1341 # => ended at: ata_scsi_queuecmd
1342 #
1343 #
1344 # _------=> CPU#
1345 # / _-----=> irqs-off
1346 # | / _----=> need-resched
1347 # || / _---=> hardirq/softirq
1348 # ||| / _--=> preempt-depth
1349 # |||| / delay
1350 # cmd pid ||||| time | caller
1351 # \ / ||||| \ | /
1352 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1353 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
1354 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1355 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1356 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1357 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
1358 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
1359 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1360 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1361 [...]
1362 bash-2042 3d..1 67us : delay_tsc <-__delay
1363 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1364 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
1365 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1366 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
1367 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1368 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1369 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1370 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1371 bash-2042 3d..1 120us : <stack trace>
1372 => _raw_spin_unlock_irqrestore
1373 => ata_scsi_queuecmd
1374 => scsi_dispatch_cmd
1375 => scsi_request_fn
1376 => __blk_run_queue_uncond
1377 => __blk_run_queue
1378 => blk_queue_bio
1379 => generic_make_request
1380 => submit_bio
1381 => submit_bh
1382 => __ext3_get_inode_loc
1383 => ext3_iget
1384 => ext3_lookup
1385 => lookup_real
1386 => __lookup_hash
1387 => walk_component
1388 => lookup_last
1389 => path_lookupat
1390 => filename_lookup
1391 => user_path_at_empty
1392 => user_path_at
1393 => vfs_fstatat
1394 => vfs_stat
1395 => sys_newstat
1396 => system_call_fastpath
1397
1398
1399Here we traced a 71 microsecond latency. But we also see all the
1400functions that were called during that time. Note that by
1401enabling function tracing, we incur an added overhead. This
1402overhead may extend the latency times. But nevertheless, this
1403trace has provided some very helpful debugging information.
1404
88d380eb
CD
1405If we prefer function graph output instead of function, we can set
1406display-graph option::
3df5ffd2 1407
88d380eb
CD
1408 with echo 1 > options/display-graph
1409
1410 # tracer: irqsoff
1411 #
1412 # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
1413 # --------------------------------------------------------------------
1414 # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
1415 # -----------------
1416 # | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
1417 # -----------------
1418 # => started at: free_debug_processing
1419 # => ended at: return_to_handler
1420 #
1421 #
1422 # _-----=> irqs-off
1423 # / _----=> need-resched
1424 # | / _---=> hardirq/softirq
1425 # || / _--=> preempt-depth
1426 # ||| /
1427 # REL TIME CPU TASK/PID |||| DURATION FUNCTION CALLS
1428 # | | | | |||| | | | | | |
1429 0 us | 0) bash-1507 | d... | 0.000 us | _raw_spin_lock_irqsave();
1430 0 us | 0) bash-1507 | d..1 | 0.378 us | do_raw_spin_trylock();
1431 1 us | 0) bash-1507 | d..2 | | set_track() {
1432 2 us | 0) bash-1507 | d..2 | | save_stack_trace() {
1433 2 us | 0) bash-1507 | d..2 | | __save_stack_trace() {
1434 3 us | 0) bash-1507 | d..2 | | __unwind_start() {
1435 3 us | 0) bash-1507 | d..2 | | get_stack_info() {
1436 3 us | 0) bash-1507 | d..2 | 0.351 us | in_task_stack();
1437 4 us | 0) bash-1507 | d..2 | 1.107 us | }
1438 [...]
1439 3750 us | 0) bash-1507 | d..1 | 0.516 us | do_raw_spin_unlock();
1440 3750 us | 0) bash-1507 | d..1 | 0.000 us | _raw_spin_unlock_irqrestore();
1441 3764 us | 0) bash-1507 | d..1 | 0.000 us | tracer_hardirqs_on();
1442 bash-1507 0d..1 3792us : <stack trace>
1443 => free_debug_processing
1444 => __slab_free
1445 => kmem_cache_free
1446 => vm_area_free
1447 => remove_vma
1448 => exit_mmap
1449 => mmput
1450 => flush_old_exec
1451 => load_elf_binary
1452 => search_binary_handler
1453 => __do_execve_file.isra.32
1454 => __x64_sys_execve
1455 => do_syscall_64
1456 => entry_SYSCALL_64_after_hwframe
1f198e22
CD
1457
1458preemptoff
1459----------
1460
1461When preemption is disabled, we may be able to receive
1462interrupts but the task cannot be preempted and a higher
1463priority task must wait for preemption to be enabled again
1464before it can preempt a lower priority task.
1465
1466The preemptoff tracer traces the places that disable preemption.
1467Like the irqsoff tracer, it records the maximum latency for
1468which preemption was disabled. The control of preemptoff tracer
1469is much like the irqsoff tracer.
1470::
1471
1472 # echo 0 > options/function-trace
1473 # echo preemptoff > current_tracer
1474 # echo 1 > tracing_on
1475 # echo 0 > tracing_max_latency
1476 # ls -ltr
1477 [...]
1478 # echo 0 > tracing_on
1479 # cat trace
1480 # tracer: preemptoff
1481 #
1482 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1483 # --------------------------------------------------------------------
1484 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1485 # -----------------
1486 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1487 # -----------------
1488 # => started at: do_IRQ
1489 # => ended at: do_IRQ
1490 #
1491 #
1492 # _------=> CPU#
1493 # / _-----=> irqs-off
1494 # | / _----=> need-resched
1495 # || / _---=> hardirq/softirq
1496 # ||| / _--=> preempt-depth
1497 # |||| / delay
1498 # cmd pid ||||| time | caller
1499 # \ / ||||| \ | /
1500 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
1501 sshd-1991 1d..1 46us : irq_exit <-do_IRQ
1502 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
1503 sshd-1991 1d..1 52us : <stack trace>
1504 => sub_preempt_count
1505 => irq_exit
1506 => do_IRQ
1507 => ret_from_intr
1508
1509
1510This has some more changes. Preemption was disabled when an
1511interrupt came in (notice the 'h'), and was enabled on exit.
1512But we also see that interrupts have been disabled when entering
1513the preempt off section and leaving it (the 'd'). We do not know if
1514interrupts were enabled in the mean time or shortly after this
1515was over.
1516::
1517
1518 # tracer: preemptoff
1519 #
1520 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1521 # --------------------------------------------------------------------
1522 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1523 # -----------------
1524 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1525 # -----------------
1526 # => started at: wake_up_new_task
1527 # => ended at: task_rq_unlock
1528 #
1529 #
1530 # _------=> CPU#
1531 # / _-----=> irqs-off
1532 # | / _----=> need-resched
1533 # || / _---=> hardirq/softirq
1534 # ||| / _--=> preempt-depth
1535 # |||| / delay
1536 # cmd pid ||||| time | caller
1537 # \ / ||||| \ | /
1538 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
1539 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
1540 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
1541 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1542 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1543 [...]
1544 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
1545 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
1546 bash-1994 1d..1 13us : add_preempt_count <-irq_enter
1547 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
1548 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1549 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
1550 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
1551 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt
1552 [...]
1553 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event
1554 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
1555 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
1556 bash-1994 1d..2 36us : do_softirq <-irq_exit
1557 bash-1994 1d..2 36us : __do_softirq <-call_softirq
1558 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
1559 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
1560 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
1561 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
1562 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq
1563 [...]
1564 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks
1565 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
1566 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
1567 bash-1994 1dN.2 82us : idle_cpu <-irq_exit
1568 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
1569 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
1570 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1571 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
1572 bash-1994 1.N.1 104us : <stack trace>
1573 => sub_preempt_count
1574 => _raw_spin_unlock_irqrestore
1575 => task_rq_unlock
1576 => wake_up_new_task
1577 => do_fork
1578 => sys_clone
1579 => stub_clone
1580
1581
1582The above is an example of the preemptoff trace with
1583function-trace set. Here we see that interrupts were not disabled
1584the entire time. The irq_enter code lets us know that we entered
1585an interrupt 'h'. Before that, the functions being traced still
1586show that it is not in an interrupt, but we can see from the
1587functions themselves that this is not the case.
1588
1589preemptirqsoff
1590--------------
1591
1592Knowing the locations that have interrupts disabled or
1593preemption disabled for the longest times is helpful. But
1594sometimes we would like to know when either preemption and/or
1595interrupts are disabled.
1596
1597Consider the following code::
1598
1599 local_irq_disable();
1600 call_function_with_irqs_off();
1601 preempt_disable();
1602 call_function_with_irqs_and_preemption_off();
1603 local_irq_enable();
1604 call_function_with_preemption_off();
1605 preempt_enable();
1606
1607The irqsoff tracer will record the total length of
1608call_function_with_irqs_off() and
1609call_function_with_irqs_and_preemption_off().
1610
1611The preemptoff tracer will record the total length of
1612call_function_with_irqs_and_preemption_off() and
1613call_function_with_preemption_off().
1614
1615But neither will trace the time that interrupts and/or
1616preemption is disabled. This total time is the time that we can
1617not schedule. To record this time, use the preemptirqsoff
1618tracer.
1619
1620Again, using this trace is much like the irqsoff and preemptoff
1621tracers.
1622::
1623
1624 # echo 0 > options/function-trace
1625 # echo preemptirqsoff > current_tracer
1626 # echo 1 > tracing_on
1627 # echo 0 > tracing_max_latency
1628 # ls -ltr
1629 [...]
1630 # echo 0 > tracing_on
1631 # cat trace
1632 # tracer: preemptirqsoff
1633 #
1634 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1635 # --------------------------------------------------------------------
1636 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1637 # -----------------
1638 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1639 # -----------------
1640 # => started at: ata_scsi_queuecmd
1641 # => ended at: ata_scsi_queuecmd
1642 #
1643 #
1644 # _------=> CPU#
1645 # / _-----=> irqs-off
1646 # | / _----=> need-resched
1647 # || / _---=> hardirq/softirq
1648 # ||| / _--=> preempt-depth
1649 # |||| / delay
1650 # cmd pid ||||| time | caller
1651 # \ / ||||| \ | /
1652 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1653 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1654 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
1655 ls-2230 3...1 111us : <stack trace>
1656 => sub_preempt_count
1657 => _raw_spin_unlock_irqrestore
1658 => ata_scsi_queuecmd
1659 => scsi_dispatch_cmd
1660 => scsi_request_fn
1661 => __blk_run_queue_uncond
1662 => __blk_run_queue
1663 => blk_queue_bio
1664 => generic_make_request
1665 => submit_bio
1666 => submit_bh
1667 => ext3_bread
1668 => ext3_dir_bread
1669 => htree_dirblock_to_tree
1670 => ext3_htree_fill_tree
1671 => ext3_readdir
1672 => vfs_readdir
1673 => sys_getdents
1674 => system_call_fastpath
1675
1676
1677The trace_hardirqs_off_thunk is called from assembly on x86 when
1678interrupts are disabled in the assembly code. Without the
1679function tracing, we do not know if interrupts were enabled
1680within the preemption points. We do see that it started with
1681preemption enabled.
1682
1683Here is a trace with function-trace set::
1684
1685 # tracer: preemptirqsoff
1686 #
1687 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1688 # --------------------------------------------------------------------
1689 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1690 # -----------------
1691 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1692 # -----------------
1693 # => started at: schedule
1694 # => ended at: mutex_unlock
1695 #
1696 #
1697 # _------=> CPU#
1698 # / _-----=> irqs-off
1699 # | / _----=> need-resched
1700 # || / _---=> hardirq/softirq
1701 # ||| / _--=> preempt-depth
1702 # |||| / delay
1703 # cmd pid ||||| time | caller
1704 # \ / ||||| \ | /
1705 kworker/-59 3...1 0us : __schedule <-schedule
1706 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
1707 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
1708 kworker/-59 3d..2 1us : deactivate_task <-__schedule
1709 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
1710 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
1711 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
1712 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
1713 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
1714 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
1715 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
1716 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
1717 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1718 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
1719 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
1720 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
1721 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
1722 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
1723 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
1724 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
1725 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
1726 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
1727 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
1728 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
1729 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity
1730 ls-2269 3d..2 7us : finish_task_switch <-__schedule
1731 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
1732 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
1733 ls-2269 3d..2 8us : irq_enter <-do_IRQ
1734 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
1735 ls-2269 3d..2 9us : add_preempt_count <-irq_enter
1736 ls-2269 3d.h2 9us : exit_idle <-do_IRQ
1737 [...]
1738 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
1739 ls-2269 3d.h2 20us : irq_exit <-do_IRQ
1740 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
1741 ls-2269 3d..3 21us : do_softirq <-irq_exit
1742 ls-2269 3d..3 21us : __do_softirq <-call_softirq
1743 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
1744 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
1745 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
1746 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
1747 ls-2269 3d.s5 31us : irq_enter <-do_IRQ
1748 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1749 [...]
1750 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1751 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
1752 ls-2269 3d.H5 32us : exit_idle <-do_IRQ
1753 ls-2269 3d.H5 32us : handle_irq <-do_IRQ
1754 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
1755 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq
1756 [...]
1757 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1758 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1759 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
1760 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
1761 ls-2269 3d..3 159us : idle_cpu <-irq_exit
1762 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit
1763 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
1764 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
1765 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
1766 ls-2269 3d... 186us : <stack trace>
1767 => __mutex_unlock_slowpath
1768 => mutex_unlock
1769 => process_output
1770 => n_tty_write
1771 => tty_write
1772 => vfs_write
1773 => sys_write
1774 => system_call_fastpath
1775
1776This is an interesting trace. It started with kworker running and
1777scheduling out and ls taking over. But as soon as ls released the
1778rq lock and enabled interrupts (but not preemption) an interrupt
1779triggered. When the interrupt finished, it started running softirqs.
1780But while the softirq was running, another interrupt triggered.
1781When an interrupt is running inside a softirq, the annotation is 'H'.
1782
1783
1784wakeup
1785------
1786
1787One common case that people are interested in tracing is the
1788time it takes for a task that is woken to actually wake up.
1789Now for non Real-Time tasks, this can be arbitrary. But tracing
1790it none the less can be interesting.
1791
1792Without function tracing::
1793
1794 # echo 0 > options/function-trace
1795 # echo wakeup > current_tracer
1796 # echo 1 > tracing_on
1797 # echo 0 > tracing_max_latency
1798 # chrt -f 5 sleep 1
1799 # echo 0 > tracing_on
1800 # cat trace
1801 # tracer: wakeup
1802 #
1803 # wakeup latency trace v1.1.5 on 3.8.0-test+
1804 # --------------------------------------------------------------------
1805 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1806 # -----------------
1807 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1808 # -----------------
1809 #
1810 # _------=> CPU#
1811 # / _-----=> irqs-off
1812 # | / _----=> need-resched
1813 # || / _---=> hardirq/softirq
1814 # ||| / _--=> preempt-depth
1815 # |||| / delay
1816 # cmd pid ||||| time | caller
1817 # \ / ||||| \ | /
1818 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H
1819 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1820 <idle>-0 3d..3 15us : __schedule <-schedule
1821 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H
1822
1823The tracer only traces the highest priority task in the system
1824to avoid tracing the normal circumstances. Here we see that
1825the kworker with a nice priority of -20 (not very nice), took
1826just 15 microseconds from the time it woke up, to the time it
1827ran.
1828
1829Non Real-Time tasks are not that interesting. A more interesting
1830trace is to concentrate only on Real-Time tasks.
1831
1832wakeup_rt
1833---------
1834
1835In a Real-Time environment it is very important to know the
1836wakeup time it takes for the highest priority task that is woken
1837up to the time that it executes. This is also known as "schedule
1838latency". I stress the point that this is about RT tasks. It is
1839also important to know the scheduling latency of non-RT tasks,
1840but the average schedule latency is better for non-RT tasks.
1841Tools like LatencyTop are more appropriate for such
1842measurements.
1843
1844Real-Time environments are interested in the worst case latency.
1845That is the longest latency it takes for something to happen,
1846and not the average. We can have a very fast scheduler that may
1847only have a large latency once in a while, but that would not
1848work well with Real-Time tasks. The wakeup_rt tracer was designed
1849to record the worst case wakeups of RT tasks. Non-RT tasks are
1850not recorded because the tracer only records one worst case and
1851tracing non-RT tasks that are unpredictable will overwrite the
1852worst case latency of RT tasks (just run the normal wakeup
1853tracer for a while to see that effect).
1854
1855Since this tracer only deals with RT tasks, we will run this
1856slightly differently than we did with the previous tracers.
1857Instead of performing an 'ls', we will run 'sleep 1' under
1858'chrt' which changes the priority of the task.
1859::
1860
1861 # echo 0 > options/function-trace
1862 # echo wakeup_rt > current_tracer
1863 # echo 1 > tracing_on
1864 # echo 0 > tracing_max_latency
1865 # chrt -f 5 sleep 1
1866 # echo 0 > tracing_on
1867 # cat trace
1868 # tracer: wakeup
1869 #
1870 # tracer: wakeup_rt
1871 #
1872 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1873 # --------------------------------------------------------------------
1874 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1875 # -----------------
1876 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1877 # -----------------
1878 #
1879 # _------=> CPU#
1880 # / _-----=> irqs-off
1881 # | / _----=> need-resched
1882 # || / _---=> hardirq/softirq
1883 # ||| / _--=> preempt-depth
1884 # |||| / delay
1885 # cmd pid ||||| time | caller
1886 # \ / ||||| \ | /
1887 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
1888 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1889 <idle>-0 3d..3 5us : __schedule <-schedule
1890 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1891
1892
1893Running this on an idle system, we see that it only took 5 microseconds
1894to perform the task switch. Note, since the trace point in the schedule
1895is before the actual "switch", we stop the tracing when the recorded task
1896is about to schedule in. This may change if we add a new marker at the
1897end of the scheduler.
1898
1899Notice that the recorded task is 'sleep' with the PID of 2389
1900and it has an rt_prio of 5. This priority is user-space priority
1901and not the internal kernel priority. The policy is 1 for
1902SCHED_FIFO and 2 for SCHED_RR.
1903
1904Note, that the trace data shows the internal priority (99 - rtprio).
1905::
1906
1907 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1908
1909The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1910and in the running state 'R'. The sleep task was scheduled in with
19112389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1912and it too is in the running state.
1913
1914Doing the same with chrt -r 5 and function-trace set.
1915::
1916
1917 echo 1 > options/function-trace
1918
1919 # tracer: wakeup_rt
1920 #
1921 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1922 # --------------------------------------------------------------------
1923 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1924 # -----------------
1925 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1926 # -----------------
1927 #
1928 # _------=> CPU#
1929 # / _-----=> irqs-off
1930 # | / _----=> need-resched
1931 # || / _---=> hardirq/softirq
1932 # ||| / _--=> preempt-depth
1933 # |||| / delay
1934 # cmd pid ||||| time | caller
1935 # \ / ||||| \ | /
1936 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep
1937 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1938 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
1939 <idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr
1940 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
1941 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
1942 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
1943 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
1944 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1945 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1946 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
1947 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
1948 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
1949 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
1950 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
1951 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event
1952 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
1953 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event
1954 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
1955 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
1956 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit
1957 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
1958 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1959 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
1960 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
1961 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1962 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
1963 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1964 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
1965 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1966 <idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1967 <idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz
1968 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
1969 <idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz
1970 <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update
1971 <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz
1972 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
1973 <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1974 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1975 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
1976 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
1977 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1978 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1979 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
1980 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
1981 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
1982 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram
1983 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event
1984 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
1985 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event
1986 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1987 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1988 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
1989 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1990 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1991 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1992 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1993 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1994 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1995 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
1996 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
1997 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1998 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns
1999 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event
2000 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
2001 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event
2002 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
2003 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2004 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
2005 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
2006 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
2007 <idle>-0 3.N.. 25us : schedule <-cpu_idle
2008 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule
2009 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule
2010 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
2011 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
2012 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
2013 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
2014 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
2015 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
2016 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
2017 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
2018 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
2019 <idle>-0 3d..3 29us : __schedule <-preempt_schedule
2020 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep
2021
2022This isn't that big of a trace, even with function tracing enabled,
2023so I included the entire trace.
2024
2025The interrupt went off while when the system was idle. Somewhere
2026before task_woken_rt() was called, the NEED_RESCHED flag was set,
2027this is indicated by the first occurrence of the 'N' flag.
2028
2029Latency tracing and events
2030--------------------------
2031As function tracing can induce a much larger latency, but without
2032seeing what happens within the latency it is hard to know what
2033caused it. There is a middle ground, and that is with enabling
2034events.
2035::
2036
2037 # echo 0 > options/function-trace
2038 # echo wakeup_rt > current_tracer
2039 # echo 1 > events/enable
2040 # echo 1 > tracing_on
2041 # echo 0 > tracing_max_latency
2042 # chrt -f 5 sleep 1
2043 # echo 0 > tracing_on
2044 # cat trace
2045 # tracer: wakeup_rt
2046 #
2047 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2048 # --------------------------------------------------------------------
2049 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2050 # -----------------
2051 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
2052 # -----------------
2053 #
2054 # _------=> CPU#
2055 # / _-----=> irqs-off
2056 # | / _----=> need-resched
2057 # || / _---=> hardirq/softirq
2058 # ||| / _--=> preempt-depth
2059 # |||| / delay
2060 # cmd pid ||||| time | caller
2061 # \ / ||||| \ | /
2062 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
2063 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2064 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2065 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2066 <idle>-0 2.N.2 2us : power_end: cpu_id=2
2067 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
2068 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2069 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2070 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch
2071 <idle>-0 2.N.2 5us : rcu_utilization: End context switch
2072 <idle>-0 2d..3 6us : __schedule <-schedule
2073 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
2074
2075
2076Hardware Latency Detector
2077-------------------------
2078
2079The hardware latency detector is executed by enabling the "hwlat" tracer.
2080
2081NOTE, this tracer will affect the performance of the system as it will
2082periodically make a CPU constantly busy with interrupts disabled.
2083::
2084
2085 # echo hwlat > current_tracer
2086 # sleep 100
2087 # cat trace
2088 # tracer: hwlat
2089 #
2090 # _-----=> irqs-off
2091 # / _----=> need-resched
2092 # | / _---=> hardirq/softirq
2093 # || / _--=> preempt-depth
2094 # ||| / delay
2095 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2096 # | | | |||| | |
2097 <...>-3638 [001] d... 19452.055471: #1 inner/outer(us): 12/14 ts:1499801089.066141940
2098 <...>-3638 [003] d... 19454.071354: #2 inner/outer(us): 11/9 ts:1499801091.082164365
2099 <...>-3638 [002] dn.. 19461.126852: #3 inner/outer(us): 12/9 ts:1499801098.138150062
2100 <...>-3638 [001] d... 19488.340960: #4 inner/outer(us): 8/12 ts:1499801125.354139633
2101 <...>-3638 [003] d... 19494.388553: #5 inner/outer(us): 8/12 ts:1499801131.402150961
2102 <...>-3638 [003] d... 19501.283419: #6 inner/outer(us): 0/12 ts:1499801138.297435289 nmi-total:4 nmi-count:1
2103
2104
2105The above output is somewhat the same in the header. All events will have
2106interrupts disabled 'd'. Under the FUNCTION title there is:
2107
2108 #1
2109 This is the count of events recorded that were greater than the
2110 tracing_threshold (See below).
2111
2112 inner/outer(us): 12/14
2113
2114 This shows two numbers as "inner latency" and "outer latency". The test
2115 runs in a loop checking a timestamp twice. The latency detected within
2116 the two timestamps is the "inner latency" and the latency detected
2117 after the previous timestamp and the next timestamp in the loop is
2118 the "outer latency".
2119
2120 ts:1499801089.066141940
2121
2122 The absolute timestamp that the event happened.
2123
2124 nmi-total:4 nmi-count:1
2125
2126 On architectures that support it, if an NMI comes in during the
2127 test, the time spent in NMI is reported in "nmi-total" (in
2128 microseconds).
2129
2130 All architectures that have NMIs will show the "nmi-count" if an
2131 NMI comes in during the test.
2132
2133hwlat files:
2134
2135 tracing_threshold
2136 This gets automatically set to "10" to represent 10
2137 microseconds. This is the threshold of latency that
2138 needs to be detected before the trace will be recorded.
2139
2140 Note, when hwlat tracer is finished (another tracer is
2141 written into "current_tracer"), the original value for
2142 tracing_threshold is placed back into this file.
2143
2144 hwlat_detector/width
2145 The length of time the test runs with interrupts disabled.
2146
2147 hwlat_detector/window
2148 The length of time of the window which the test
2149 runs. That is, the test will run for "width"
2150 microseconds per "window" microseconds
2151
2152 tracing_cpumask
2153 When the test is started. A kernel thread is created that
2154 runs the test. This thread will alternate between CPUs
2155 listed in the tracing_cpumask between each period
2156 (one "window"). To limit the test to specific CPUs
2157 set the mask in this file to only the CPUs that the test
2158 should run on.
2159
2160function
2161--------
2162
2163This tracer is the function tracer. Enabling the function tracer
2164can be done from the debug file system. Make sure the
2165ftrace_enabled is set; otherwise this tracer is a nop.
2166See the "ftrace_enabled" section below.
2167::
2168
2169 # sysctl kernel.ftrace_enabled=1
2170 # echo function > current_tracer
2171 # echo 1 > tracing_on
2172 # usleep 1
2173 # echo 0 > tracing_on
2174 # cat trace
2175 # tracer: function
2176 #
2177 # entries-in-buffer/entries-written: 24799/24799 #P:4
2178 #
2179 # _-----=> irqs-off
2180 # / _----=> need-resched
2181 # | / _---=> hardirq/softirq
2182 # || / _--=> preempt-depth
2183 # ||| / delay
2184 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2185 # | | | |||| | |
2186 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write
2187 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2188 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify
2189 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
2190 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
2191 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock
2192 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock
2193 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify
2194 [...]
2195
2196
2197Note: function tracer uses ring buffers to store the above
2198entries. The newest data may overwrite the oldest data.
2199Sometimes using echo to stop the trace is not sufficient because
2200the tracing could have overwritten the data that you wanted to
2201record. For this reason, it is sometimes better to disable
2202tracing directly from a program. This allows you to stop the
2203tracing at the point that you hit the part that you are
2204interested in. To disable the tracing directly from a C program,
2205something like following code snippet can be used::
2206
2207 int trace_fd;
2208 [...]
2209 int main(int argc, char *argv[]) {
2210 [...]
2211 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2212 [...]
2213 if (condition_hit()) {
2214 write(trace_fd, "0", 1);
2215 }
2216 [...]
2217 }
2218
2219
2220Single thread tracing
2221---------------------
2222
2223By writing into set_ftrace_pid you can trace a
2224single thread. For example::
2225
2226 # cat set_ftrace_pid
2227 no pid
2228 # echo 3111 > set_ftrace_pid
2229 # cat set_ftrace_pid
2230 3111
2231 # echo function > current_tracer
2232 # cat trace | head
2233 # tracer: function
2234 #
2235 # TASK-PID CPU# TIMESTAMP FUNCTION
2236 # | | | | |
2237 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
2238 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2239 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2240 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2241 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
2242 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
2243 # echo > set_ftrace_pid
2244 # cat trace |head
2245 # tracer: function
2246 #
2247 # TASK-PID CPU# TIMESTAMP FUNCTION
2248 # | | | | |
2249 ##### CPU 3 buffer started ####
2250 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
2251 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
2252 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
2253 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
2254 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
2255
2256If you want to trace a function when executing, you could use
2257something like this simple program.
2258::
2259
2260 #include <stdio.h>
2261 #include <stdlib.h>
2262 #include <sys/types.h>
2263 #include <sys/stat.h>
2264 #include <fcntl.h>
2265 #include <unistd.h>
2266 #include <string.h>
2267
2268 #define _STR(x) #x
2269 #define STR(x) _STR(x)
2270 #define MAX_PATH 256
2271
2272 const char *find_tracefs(void)
2273 {
2274 static char tracefs[MAX_PATH+1];
2275 static int tracefs_found;
2276 char type[100];
2277 FILE *fp;
2278
2279 if (tracefs_found)
2280 return tracefs;
2281
2282 if ((fp = fopen("/proc/mounts","r")) == NULL) {
2283 perror("/proc/mounts");
2284 return NULL;
2285 }
2286
2287 while (fscanf(fp, "%*s %"
2288 STR(MAX_PATH)
2289 "s %99s %*s %*d %*d\n",
2290 tracefs, type) == 2) {
2291 if (strcmp(type, "tracefs") == 0)
2292 break;
2293 }
2294 fclose(fp);
2295
2296 if (strcmp(type, "tracefs") != 0) {
2297 fprintf(stderr, "tracefs not mounted");
2298 return NULL;
2299 }
2300
2301 strcat(tracefs, "/tracing/");
2302 tracefs_found = 1;
2303
2304 return tracefs;
2305 }
2306
2307 const char *tracing_file(const char *file_name)
2308 {
2309 static char trace_file[MAX_PATH+1];
2310 snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2311 return trace_file;
2312 }
2313
2314 int main (int argc, char **argv)
2315 {
2316 if (argc < 1)
2317 exit(-1);
2318
2319 if (fork() > 0) {
2320 int fd, ffd;
2321 char line[64];
2322 int s;
2323
2324 ffd = open(tracing_file("current_tracer"), O_WRONLY);
2325 if (ffd < 0)
2326 exit(-1);
2327 write(ffd, "nop", 3);
2328
2329 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2330 s = sprintf(line, "%d\n", getpid());
2331 write(fd, line, s);
2332
2333 write(ffd, "function", 8);
2334
2335 close(fd);
2336 close(ffd);
2337
2338 execvp(argv[1], argv+1);
2339 }
2340
2341 return 0;
2342 }
2343
2344Or this simple script!
2345::
2346
2347 #!/bin/bash
2348
2349 tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2350 echo nop > $tracefs/tracing/current_tracer
2351 echo 0 > $tracefs/tracing/tracing_on
2352 echo $$ > $tracefs/tracing/set_ftrace_pid
2353 echo function > $tracefs/tracing/current_tracer
2354 echo 1 > $tracefs/tracing/tracing_on
2355 exec "$@"
2356
2357
2358function graph tracer
2359---------------------------
2360
2361This tracer is similar to the function tracer except that it
2362probes a function on its entry and its exit. This is done by
2363using a dynamically allocated stack of return addresses in each
2364task_struct. On function entry the tracer overwrites the return
2365address of each function traced to set a custom probe. Thus the
2366original return address is stored on the stack of return address
2367in the task_struct.
2368
2369Probing on both ends of a function leads to special features
2370such as:
2371
2372- measure of a function's time execution
2373- having a reliable call stack to draw function calls graph
2374
2375This tracer is useful in several situations:
2376
2377- you want to find the reason of a strange kernel behavior and
2378 need to see what happens in detail on any areas (or specific
2379 ones).
2380
2381- you are experiencing weird latencies but it's difficult to
2382 find its origin.
2383
2384- you want to find quickly which path is taken by a specific
2385 function
2386
2387- you just want to peek inside a working kernel and want to see
2388 what happens there.
2389
2390::
2391
2392 # tracer: function_graph
2393 #
2394 # CPU DURATION FUNCTION CALLS
2395 # | | | | | | |
2396
2397 0) | sys_open() {
2398 0) | do_sys_open() {
2399 0) | getname() {
2400 0) | kmem_cache_alloc() {
2401 0) 1.382 us | __might_sleep();
2402 0) 2.478 us | }
2403 0) | strncpy_from_user() {
2404 0) | might_fault() {
2405 0) 1.389 us | __might_sleep();
2406 0) 2.553 us | }
2407 0) 3.807 us | }
2408 0) 7.876 us | }
2409 0) | alloc_fd() {
2410 0) 0.668 us | _spin_lock();
2411 0) 0.570 us | expand_files();
2412 0) 0.586 us | _spin_unlock();
2413
2414
2415There are several columns that can be dynamically
2416enabled/disabled. You can use every combination of options you
2417want, depending on your needs.
2418
2419- The cpu number on which the function executed is default
2420 enabled. It is sometimes better to only trace one cpu (see
2421 tracing_cpu_mask file) or you might sometimes see unordered
2422 function calls while cpu tracing switch.
2423
2424 - hide: echo nofuncgraph-cpu > trace_options
2425 - show: echo funcgraph-cpu > trace_options
2426
2427- The duration (function's time of execution) is displayed on
2428 the closing bracket line of a function or on the same line
2429 than the current function in case of a leaf one. It is default
2430 enabled.
2431
2432 - hide: echo nofuncgraph-duration > trace_options
2433 - show: echo funcgraph-duration > trace_options
2434
2435- The overhead field precedes the duration field in case of
2436 reached duration thresholds.
2437
2438 - hide: echo nofuncgraph-overhead > trace_options
2439 - show: echo funcgraph-overhead > trace_options
2440 - depends on: funcgraph-duration
2441
2442 ie::
2443
2444 3) # 1837.709 us | } /* __switch_to */
2445 3) | finish_task_switch() {
2446 3) 0.313 us | _raw_spin_unlock_irq();
2447 3) 3.177 us | }
2448 3) # 1889.063 us | } /* __schedule */
2449 3) ! 140.417 us | } /* __schedule */
2450 3) # 2034.948 us | } /* schedule */
2451 3) * 33998.59 us | } /* schedule_preempt_disabled */
2452
2453 [...]
2454
2455 1) 0.260 us | msecs_to_jiffies();
2456 1) 0.313 us | __rcu_read_unlock();
2457 1) + 61.770 us | }
2458 1) + 64.479 us | }
2459 1) 0.313 us | rcu_bh_qs();
2460 1) 0.313 us | __local_bh_enable();
2461 1) ! 217.240 us | }
2462 1) 0.365 us | idle_cpu();
2463 1) | rcu_irq_exit() {
2464 1) 0.417 us | rcu_eqs_enter_common.isra.47();
2465 1) 3.125 us | }
2466 1) ! 227.812 us | }
2467 1) ! 457.395 us | }
2468 1) @ 119760.2 us | }
2469
2470 [...]
2471
2472 2) | handle_IPI() {
2473 1) 6.979 us | }
2474 2) 0.417 us | scheduler_ipi();
2475 1) 9.791 us | }
2476 1) + 12.917 us | }
2477 2) 3.490 us | }
2478 1) + 15.729 us | }
2479 1) + 18.542 us | }
2480 2) $ 3594274 us | }
2481
2482Flags::
2483
2484 + means that the function exceeded 10 usecs.
2485 ! means that the function exceeded 100 usecs.
2486 # means that the function exceeded 1000 usecs.
2487 * means that the function exceeded 10 msecs.
2488 @ means that the function exceeded 100 msecs.
2489 $ means that the function exceeded 1 sec.
2490
2491
2492- The task/pid field displays the thread cmdline and pid which
2493 executed the function. It is default disabled.
2494
2495 - hide: echo nofuncgraph-proc > trace_options
2496 - show: echo funcgraph-proc > trace_options
2497
2498 ie::
2499
2500 # tracer: function_graph
2501 #
2502 # CPU TASK/PID DURATION FUNCTION CALLS
2503 # | | | | | | | | |
2504 0) sh-4802 | | d_free() {
2505 0) sh-4802 | | call_rcu() {
2506 0) sh-4802 | | __call_rcu() {
2507 0) sh-4802 | 0.616 us | rcu_process_gp_end();
2508 0) sh-4802 | 0.586 us | check_for_new_grace_period();
2509 0) sh-4802 | 2.899 us | }
2510 0) sh-4802 | 4.040 us | }
2511 0) sh-4802 | 5.151 us | }
2512 0) sh-4802 | + 49.370 us | }
2513
2514
2515- The absolute time field is an absolute timestamp given by the
2516 system clock since it started. A snapshot of this time is
2517 given on each entry/exit of functions
2518
2519 - hide: echo nofuncgraph-abstime > trace_options
2520 - show: echo funcgraph-abstime > trace_options
2521
2522 ie::
2523
2524 #
2525 # TIME CPU DURATION FUNCTION CALLS
2526 # | | | | | | | |
2527 360.774522 | 1) 0.541 us | }
2528 360.774522 | 1) 4.663 us | }
2529 360.774523 | 1) 0.541 us | __wake_up_bit();
2530 360.774524 | 1) 6.796 us | }
2531 360.774524 | 1) 7.952 us | }
2532 360.774525 | 1) 9.063 us | }
2533 360.774525 | 1) 0.615 us | journal_mark_dirty();
2534 360.774527 | 1) 0.578 us | __brelse();
2535 360.774528 | 1) | reiserfs_prepare_for_journal() {
2536 360.774528 | 1) | unlock_buffer() {
2537 360.774529 | 1) | wake_up_bit() {
2538 360.774529 | 1) | bit_waitqueue() {
2539 360.774530 | 1) 0.594 us | __phys_addr();
2540
2541
2542The function name is always displayed after the closing bracket
2543for a function if the start of that function is not in the
2544trace buffer.
2545
2546Display of the function name after the closing bracket may be
2547enabled for functions whose start is in the trace buffer,
2548allowing easier searching with grep for function durations.
2549It is default disabled.
2550
2551 - hide: echo nofuncgraph-tail > trace_options
2552 - show: echo funcgraph-tail > trace_options
2553
2554 Example with nofuncgraph-tail (default)::
2555
2556 0) | putname() {
2557 0) | kmem_cache_free() {
2558 0) 0.518 us | __phys_addr();
2559 0) 1.757 us | }
2560 0) 2.861 us | }
2561
2562 Example with funcgraph-tail::
2563
2564 0) | putname() {
2565 0) | kmem_cache_free() {
2566 0) 0.518 us | __phys_addr();
2567 0) 1.757 us | } /* kmem_cache_free() */
2568 0) 2.861 us | } /* putname() */
2569
2570You can put some comments on specific functions by using
2571trace_printk() For example, if you want to put a comment inside
2572the __might_sleep() function, you just have to include
2573<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2574
2575 trace_printk("I'm a comment!\n")
2576
2577will produce::
2578
2579 1) | __might_sleep() {
2580 1) | /* I'm a comment! */
2581 1) 1.449 us | }
2582
2583
2584You might find other useful features for this tracer in the
2585following "dynamic ftrace" section such as tracing only specific
2586functions or tasks.
2587
2588dynamic ftrace
2589--------------
2590
2591If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2592virtually no overhead when function tracing is disabled. The way
2593this works is the mcount function call (placed at the start of
2594every kernel function, produced by the -pg switch in gcc),
2595starts of pointing to a simple return. (Enabling FTRACE will
2596include the -pg switch in the compiling of the kernel.)
2597
2598At compile time every C file object is run through the
2599recordmcount program (located in the scripts directory). This
2600program will parse the ELF headers in the C object to find all
2601the locations in the .text section that call mcount. Starting
2a1e03ca 2602with gcc version 4.6, the -mfentry has been added for x86, which
1f198e22
CD
2603calls "__fentry__" instead of "mcount". Which is called before
2604the creation of the stack frame.
2605
2606Note, not all sections are traced. They may be prevented by either
2607a notrace, or blocked another way and all inline functions are not
2608traced. Check the "available_filter_functions" file to see what functions
2609can be traced.
2610
2611A section called "__mcount_loc" is created that holds
2612references to all the mcount/fentry call sites in the .text section.
2613The recordmcount program re-links this section back into the
2614original object. The final linking stage of the kernel will add all these
2615references into a single table.
2616
2617On boot up, before SMP is initialized, the dynamic ftrace code
2618scans this table and updates all the locations into nops. It
2619also records the locations, which are added to the
2620available_filter_functions list. Modules are processed as they
2621are loaded and before they are executed. When a module is
2622unloaded, it also removes its functions from the ftrace function
2623list. This is automatic in the module unload code, and the
2624module author does not need to worry about it.
2625
2626When tracing is enabled, the process of modifying the function
2627tracepoints is dependent on architecture. The old method is to use
2628kstop_machine to prevent races with the CPUs executing code being
2629modified (which can cause the CPU to do undesirable things, especially
2630if the modified code crosses cache (or page) boundaries), and the nops are
2631patched back to calls. But this time, they do not call mcount
2632(which is just a function stub). They now call into the ftrace
2633infrastructure.
2634
2635The new method of modifying the function tracepoints is to place
2636a breakpoint at the location to be modified, sync all CPUs, modify
2637the rest of the instruction not covered by the breakpoint. Sync
2638all CPUs again, and then remove the breakpoint with the finished
2639version to the ftrace call site.
2640
2641Some archs do not even need to monkey around with the synchronization,
2642and can just slap the new code on top of the old without any
2643problems with other CPUs executing it at the same time.
2644
2645One special side-effect to the recording of the functions being
2646traced is that we can now selectively choose which functions we
2647wish to trace and which ones we want the mcount calls to remain
2648as nops.
2649
2650Two files are used, one for enabling and one for disabling the
2651tracing of specified functions. They are:
2652
2653 set_ftrace_filter
2654
2655and
2656
2657 set_ftrace_notrace
2658
2659A list of available functions that you can add to these files is
2660listed in:
2661
2662 available_filter_functions
2663
2664::
2665
2666 # cat available_filter_functions
2667 put_prev_task_idle
2668 kmem_cache_create
2669 pick_next_task_rt
2670 get_online_cpus
2671 pick_next_task_fair
2672 mutex_lock
2673 [...]
2674
2675If I am only interested in sys_nanosleep and hrtimer_interrupt::
2676
2677 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2678 # echo function > current_tracer
2679 # echo 1 > tracing_on
2680 # usleep 1
2681 # echo 0 > tracing_on
2682 # cat trace
2683 # tracer: function
2684 #
2685 # entries-in-buffer/entries-written: 5/5 #P:4
2686 #
2687 # _-----=> irqs-off
2688 # / _----=> need-resched
2689 # | / _---=> hardirq/softirq
2690 # || / _--=> preempt-depth
2691 # ||| / delay
2692 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2693 # | | | |||| | |
2694 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath
2695 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2696 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2697 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2698 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2699
2700To see which functions are being traced, you can cat the file:
2701::
2702
2703 # cat set_ftrace_filter
2704 hrtimer_interrupt
2705 sys_nanosleep
2706
2707
2708Perhaps this is not enough. The filters also allow glob(7) matching.
2709
6234c7bd 2710 ``<match>*``
1f198e22 2711 will match functions that begin with <match>
6234c7bd 2712 ``*<match>``
1f198e22 2713 will match functions that end with <match>
6234c7bd 2714 ``*<match>*``
1f198e22 2715 will match functions that have <match> in it
6234c7bd 2716 ``<match1>*<match2>``
1f198e22
CD
2717 will match functions that begin with <match1> and end with <match2>
2718
2719.. note::
2720 It is better to use quotes to enclose the wild cards,
2721 otherwise the shell may expand the parameters into names
2722 of files in the local directory.
2723
2724::
2725
2726 # echo 'hrtimer_*' > set_ftrace_filter
2727
2728Produces::
2729
2730 # tracer: function
2731 #
2732 # entries-in-buffer/entries-written: 897/897 #P:4
2733 #
2734 # _-----=> irqs-off
2735 # / _----=> need-resched
2736 # | / _---=> hardirq/softirq
2737 # || / _--=> preempt-depth
2738 # ||| / delay
2739 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2740 # | | | |||| | |
2741 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2742 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2743 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2744 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2745 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2746 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2747 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2748 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem
2749
2750Notice that we lost the sys_nanosleep.
2751::
2752
2753 # cat set_ftrace_filter
2754 hrtimer_run_queues
2755 hrtimer_run_pending
2756 hrtimer_init
2757 hrtimer_cancel
2758 hrtimer_try_to_cancel
2759 hrtimer_forward
2760 hrtimer_start
2761 hrtimer_reprogram
2762 hrtimer_force_reprogram
2763 hrtimer_get_next_event
2764 hrtimer_interrupt
2765 hrtimer_nanosleep
2766 hrtimer_wakeup
2767 hrtimer_get_remaining
2768 hrtimer_get_res
2769 hrtimer_init_sleeper
2770
2771
2772This is because the '>' and '>>' act just like they do in bash.
2773To rewrite the filters, use '>'
2774To append to the filters, use '>>'
2775
2776To clear out a filter so that all functions will be recorded
2777again::
2778
2779 # echo > set_ftrace_filter
2780 # cat set_ftrace_filter
2781 #
2782
2783Again, now we want to append.
2784
2785::
2786
2787 # echo sys_nanosleep > set_ftrace_filter
2788 # cat set_ftrace_filter
2789 sys_nanosleep
2790 # echo 'hrtimer_*' >> set_ftrace_filter
2791 # cat set_ftrace_filter
2792 hrtimer_run_queues
2793 hrtimer_run_pending
2794 hrtimer_init
2795 hrtimer_cancel
2796 hrtimer_try_to_cancel
2797 hrtimer_forward
2798 hrtimer_start
2799 hrtimer_reprogram
2800 hrtimer_force_reprogram
2801 hrtimer_get_next_event
2802 hrtimer_interrupt
2803 sys_nanosleep
2804 hrtimer_nanosleep
2805 hrtimer_wakeup
2806 hrtimer_get_remaining
2807 hrtimer_get_res
2808 hrtimer_init_sleeper
2809
2810
2811The set_ftrace_notrace prevents those functions from being
2812traced.
2813::
2814
2815 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2816
2817Produces::
2818
2819 # tracer: function
2820 #
2821 # entries-in-buffer/entries-written: 39608/39608 #P:4
2822 #
2823 # _-----=> irqs-off
2824 # / _----=> need-resched
2825 # | / _---=> hardirq/softirq
2826 # || / _--=> preempt-depth
2827 # ||| / delay
2828 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2829 # | | | |||| | |
2830 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open
2831 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last
2832 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
2833 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check
2834 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement
2835 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action
2836 bash-1994 [000] .... 4342.324899: do_truncate <-do_last
2837 bash-1994 [000] .... 4342.324899: should_remove_suid <-do_truncate
2838 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
2839 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change
2840 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time
2841 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time
2842
2843We can see that there's no more lock or preempt tracing.
2844
f79b3f33
SRV
2845Selecting function filters via index
2846------------------------------------
2847
2848Because processing of strings is expensive (the address of the function
2849needs to be looked up before comparing to the string being passed in),
2850an index can be used as well to enable functions. This is useful in the
2851case of setting thousands of specific functions at a time. By passing
2852in a list of numbers, no string processing will occur. Instead, the function
2853at the specific location in the internal array (which corresponds to the
2854functions in the "available_filter_functions" file), is selected.
2855
2856::
2857
2858 # echo 1 > set_ftrace_filter
2859
2860Will select the first function listed in "available_filter_functions"
2861
2862::
2863
2864 # head -1 available_filter_functions
2865 trace_initcall_finish_cb
2866
2867 # cat set_ftrace_filter
2868 trace_initcall_finish_cb
2869
2870 # head -50 available_filter_functions | tail -1
2871 x86_pmu_commit_txn
2872
2873 # echo 1 50 > set_ftrace_filter
2874 # cat set_ftrace_filter
2875 trace_initcall_finish_cb
2876 x86_pmu_commit_txn
1f198e22
CD
2877
2878Dynamic ftrace with the function graph tracer
2879---------------------------------------------
2880
2881Although what has been explained above concerns both the
2882function tracer and the function-graph-tracer, there are some
2883special features only available in the function-graph tracer.
2884
2885If you want to trace only one function and all of its children,
2886you just have to echo its name into set_graph_function::
2887
2888 echo __do_fault > set_graph_function
2889
2890will produce the following "expanded" trace of the __do_fault()
2891function::
2892
2893 0) | __do_fault() {
2894 0) | filemap_fault() {
2895 0) | find_lock_page() {
2896 0) 0.804 us | find_get_page();
2897 0) | __might_sleep() {
2898 0) 1.329 us | }
2899 0) 3.904 us | }
2900 0) 4.979 us | }
2901 0) 0.653 us | _spin_lock();
2902 0) 0.578 us | page_add_file_rmap();
2903 0) 0.525 us | native_set_pte_at();
2904 0) 0.585 us | _spin_unlock();
2905 0) | unlock_page() {
2906 0) 0.541 us | page_waitqueue();
2907 0) 0.639 us | __wake_up_bit();
2908 0) 2.786 us | }
2909 0) + 14.237 us | }
2910 0) | __do_fault() {
2911 0) | filemap_fault() {
2912 0) | find_lock_page() {
2913 0) 0.698 us | find_get_page();
2914 0) | __might_sleep() {
2915 0) 1.412 us | }
2916 0) 3.950 us | }
2917 0) 5.098 us | }
2918 0) 0.631 us | _spin_lock();
2919 0) 0.571 us | page_add_file_rmap();
2920 0) 0.526 us | native_set_pte_at();
2921 0) 0.586 us | _spin_unlock();
2922 0) | unlock_page() {
2923 0) 0.533 us | page_waitqueue();
2924 0) 0.638 us | __wake_up_bit();
2925 0) 2.793 us | }
2926 0) + 14.012 us | }
2927
2928You can also expand several functions at once::
2929
2930 echo sys_open > set_graph_function
2931 echo sys_close >> set_graph_function
2932
2933Now if you want to go back to trace all functions you can clear
2934this special filter via::
2935
2936 echo > set_graph_function
2937
2938
2939ftrace_enabled
2940--------------
2941
2942Note, the proc sysctl ftrace_enable is a big on/off switch for the
2943function tracer. By default it is enabled (when function tracing is
2944enabled in the kernel). If it is disabled, all function tracing is
2945disabled. This includes not only the function tracers for ftrace, but
2946also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2947
2948Please disable this with care.
2949
2950This can be disable (and enabled) with::
2951
2952 sysctl kernel.ftrace_enabled=0
2953 sysctl kernel.ftrace_enabled=1
2954
2955 or
2956
2957 echo 0 > /proc/sys/kernel/ftrace_enabled
2958 echo 1 > /proc/sys/kernel/ftrace_enabled
2959
2960
2961Filter commands
2962---------------
2963
2964A few commands are supported by the set_ftrace_filter interface.
2965Trace commands have the following format::
2966
2967 <function>:<command>:<parameter>
2968
2969The following commands are supported:
2970
2971- mod:
2972 This command enables function filtering per module. The
2973 parameter defines the module. For example, if only the write*
2974 functions in the ext3 module are desired, run:
2975
2976 echo 'write*:mod:ext3' > set_ftrace_filter
2977
2978 This command interacts with the filter in the same way as
2979 filtering based on function names. Thus, adding more functions
2980 in a different module is accomplished by appending (>>) to the
2981 filter file. Remove specific module functions by prepending
2982 '!'::
2983
2984 echo '!writeback*:mod:ext3' >> set_ftrace_filter
2985
2986 Mod command supports module globbing. Disable tracing for all
2987 functions except a specific module::
2988
2989 echo '!*:mod:!ext3' >> set_ftrace_filter
2990
2991 Disable tracing for all modules, but still trace kernel::
2992
2993 echo '!*:mod:*' >> set_ftrace_filter
2994
2995 Enable filter only for kernel::
2996
2997 echo '*write*:mod:!*' >> set_ftrace_filter
2998
2999 Enable filter for module globbing::
3000
3001 echo '*write*:mod:*snd*' >> set_ftrace_filter
3002
3003- traceon/traceoff:
3004 These commands turn tracing on and off when the specified
3005 functions are hit. The parameter determines how many times the
3006 tracing system is turned on and off. If unspecified, there is
3007 no limit. For example, to disable tracing when a schedule bug
3008 is hit the first 5 times, run::
3009
3010 echo '__schedule_bug:traceoff:5' > set_ftrace_filter
3011
3012 To always disable tracing when __schedule_bug is hit::
3013
3014 echo '__schedule_bug:traceoff' > set_ftrace_filter
3015
3016 These commands are cumulative whether or not they are appended
3017 to set_ftrace_filter. To remove a command, prepend it by '!'
3018 and drop the parameter::
3019
3020 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
3021
3022 The above removes the traceoff command for __schedule_bug
3023 that have a counter. To remove commands without counters::
3024
3025 echo '!__schedule_bug:traceoff' > set_ftrace_filter
3026
3027- snapshot:
3028 Will cause a snapshot to be triggered when the function is hit.
3029 ::
3030
3031 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
3032
3033 To only snapshot once:
3034 ::
3035
3036 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
3037
3038 To remove the above commands::
3039
3040 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
3041 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
3042
3043- enable_event/disable_event:
3044 These commands can enable or disable a trace event. Note, because
3045 function tracing callbacks are very sensitive, when these commands
3046 are registered, the trace point is activated, but disabled in
3047 a "soft" mode. That is, the tracepoint will be called, but
3048 just will not be traced. The event tracepoint stays in this mode
3049 as long as there's a command that triggers it.
3050 ::
3051
3052 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
3053 set_ftrace_filter
3054
3055 The format is::
3056
3057 <function>:enable_event:<system>:<event>[:count]
3058 <function>:disable_event:<system>:<event>[:count]
3059
3060 To remove the events commands::
3061
3062 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
3063 set_ftrace_filter
3064 echo '!schedule:disable_event:sched:sched_switch' > \
3065 set_ftrace_filter
3066
3067- dump:
3068 When the function is hit, it will dump the contents of the ftrace
3069 ring buffer to the console. This is useful if you need to debug
3070 something, and want to dump the trace when a certain function
2a1e03ca 3071 is hit. Perhaps it's a function that is called before a triple
1f198e22
CD
3072 fault happens and does not allow you to get a regular dump.
3073
3074- cpudump:
3075 When the function is hit, it will dump the contents of the ftrace
3076 ring buffer for the current CPU to the console. Unlike the "dump"
3077 command, it only prints out the contents of the ring buffer for the
3078 CPU that executed the function that triggered the dump.
3079
8a2933cf
MH
3080- stacktrace:
3081 When the function is hit, a stack trace is recorded.
3082
1f198e22
CD
3083trace_pipe
3084----------
3085
3086The trace_pipe outputs the same content as the trace file, but
3087the effect on the tracing is different. Every read from
3088trace_pipe is consumed. This means that subsequent reads will be
3089different. The trace is live.
3090::
3091
3092 # echo function > current_tracer
3093 # cat trace_pipe > /tmp/trace.out &
3094 [1] 4153
3095 # echo 1 > tracing_on
3096 # usleep 1
3097 # echo 0 > tracing_on
3098 # cat trace
3099 # tracer: function
3100 #
3101 # entries-in-buffer/entries-written: 0/0 #P:4
3102 #
3103 # _-----=> irqs-off
3104 # / _----=> need-resched
3105 # | / _---=> hardirq/softirq
3106 # || / _--=> preempt-depth
3107 # ||| / delay
3108 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3109 # | | | |||| | |
3110
3111 #
3112 # cat /tmp/trace.out
3113 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write
3114 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3115 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify
3116 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
3117 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
3118 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock
3119 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock
3120 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify
3121 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath
3122
3123
3124Note, reading the trace_pipe file will block until more input is
3125added.
3126
3127trace entries
3128-------------
3129
3130Having too much or not enough data can be troublesome in
3131diagnosing an issue in the kernel. The file buffer_size_kb is
3132used to modify the size of the internal trace buffers. The
3133number listed is the number of entries that can be recorded per
3134CPU. To know the full size, multiply the number of possible CPUs
3135with the number of entries.
3136::
3137
3138 # cat buffer_size_kb
3139 1408 (units kilobytes)
3140
3141Or simply read buffer_total_size_kb
3142::
3143
3144 # cat buffer_total_size_kb
3145 5632
3146
3147To modify the buffer, simple echo in a number (in 1024 byte segments).
3148::
3149
3150 # echo 10000 > buffer_size_kb
3151 # cat buffer_size_kb
3152 10000 (units kilobytes)
3153
3154It will try to allocate as much as possible. If you allocate too
3155much, it can cause Out-Of-Memory to trigger.
3156::
3157
3158 # echo 1000000000000 > buffer_size_kb
3159 -bash: echo: write error: Cannot allocate memory
3160 # cat buffer_size_kb
3161 85
3162
3163The per_cpu buffers can be changed individually as well:
3164::
3165
3166 # echo 10000 > per_cpu/cpu0/buffer_size_kb
3167 # echo 100 > per_cpu/cpu1/buffer_size_kb
3168
3169When the per_cpu buffers are not the same, the buffer_size_kb
3170at the top level will just show an X
3171::
3172
3173 # cat buffer_size_kb
3174 X
3175
3176This is where the buffer_total_size_kb is useful:
3177::
3178
3179 # cat buffer_total_size_kb
3180 12916
3181
3182Writing to the top level buffer_size_kb will reset all the buffers
3183to be the same again.
3184
3185Snapshot
3186--------
3187CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3188available to all non latency tracers. (Latency tracers which
3189record max latency, such as "irqsoff" or "wakeup", can't use
3190this feature, since those are already using the snapshot
3191mechanism internally.)
3192
3193Snapshot preserves a current trace buffer at a particular point
3194in time without stopping tracing. Ftrace swaps the current
3195buffer with a spare buffer, and tracing continues in the new
3196current (=previous spare) buffer.
3197
3198The following tracefs files in "tracing" are related to this
3199feature:
3200
3201 snapshot:
3202
3203 This is used to take a snapshot and to read the output
3204 of the snapshot. Echo 1 into this file to allocate a
3205 spare buffer and to take a snapshot (swap), then read
3206 the snapshot from this file in the same format as
3207 "trace" (described above in the section "The File
3208 System"). Both reads snapshot and tracing are executable
3209 in parallel. When the spare buffer is allocated, echoing
3210 0 frees it, and echoing else (positive) values clear the
3211 snapshot contents.
3212 More details are shown in the table below.
3213
3214 +--------------+------------+------------+------------+
3215 |status\\input | 0 | 1 | else |
3216 +==============+============+============+============+
3217 |not allocated |(do nothing)| alloc+swap |(do nothing)|
3218 +--------------+------------+------------+------------+
3219 |allocated | free | swap | clear |
3220 +--------------+------------+------------+------------+
3221
3222Here is an example of using the snapshot feature.
3223::
3224
3225 # echo 1 > events/sched/enable
3226 # echo 1 > snapshot
3227 # cat snapshot
3228 # tracer: nop
3229 #
3230 # entries-in-buffer/entries-written: 71/71 #P:8
3231 #
3232 # _-----=> irqs-off
3233 # / _----=> need-resched
3234 # | / _---=> hardirq/softirq
3235 # || / _--=> preempt-depth
3236 # ||| / delay
3237 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3238 # | | | |||| | |
3239 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3240 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3241 [...]
3242 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3243
3244 # cat trace
3245 # tracer: nop
3246 #
3247 # entries-in-buffer/entries-written: 77/77 #P:8
3248 #
3249 # _-----=> irqs-off
3250 # / _----=> need-resched
3251 # | / _---=> hardirq/softirq
3252 # || / _--=> preempt-depth
3253 # ||| / delay
3254 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3255 # | | | |||| | |
3256 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3257 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3258 [...]
3259
3260
3261If you try to use this snapshot feature when current tracer is
3262one of the latency tracers, you will get the following results.
3263::
3264
3265 # echo wakeup > current_tracer
3266 # echo 1 > snapshot
3267 bash: echo: write error: Device or resource busy
3268 # cat snapshot
3269 cat: snapshot: Device or resource busy
3270
3271
3272Instances
3273---------
3274In the tracefs tracing directory is a directory called "instances".
3275This directory can have new directories created inside of it using
3276mkdir, and removing directories with rmdir. The directory created
3277with mkdir in this directory will already contain files and other
3278directories after it is created.
3279::
3280
3281 # mkdir instances/foo
3282 # ls instances/foo
3283 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
3284 set_event snapshot trace trace_clock trace_marker trace_options
3285 trace_pipe tracing_on
3286
3287As you can see, the new directory looks similar to the tracing directory
3288itself. In fact, it is very similar, except that the buffer and
3289events are agnostic from the main director, or from any other
3290instances that are created.
3291
3292The files in the new directory work just like the files with the
3293same name in the tracing directory except the buffer that is used
3294is a separate and new buffer. The files affect that buffer but do not
3295affect the main buffer with the exception of trace_options. Currently,
3296the trace_options affect all instances and the top level buffer
3297the same, but this may change in future releases. That is, options
3298may become specific to the instance they reside in.
3299
3300Notice that none of the function tracer files are there, nor is
3301current_tracer and available_tracers. This is because the buffers
3302can currently only have events enabled for them.
3303::
3304
3305 # mkdir instances/foo
3306 # mkdir instances/bar
3307 # mkdir instances/zoot
3308 # echo 100000 > buffer_size_kb
3309 # echo 1000 > instances/foo/buffer_size_kb
3310 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3311 # echo function > current_trace
3312 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3313 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3314 # echo 1 > instances/foo/events/sched/sched_switch/enable
3315 # echo 1 > instances/bar/events/irq/enable
3316 # echo 1 > instances/zoot/events/syscalls/enable
3317 # cat trace_pipe
3318 CPU:2 [LOST 11745 EVENTS]
3319 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3320 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3321 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3322 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3323 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3324 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3325 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3326 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3327 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3328 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3329 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3330 [...]
3331
3332 # cat instances/foo/trace_pipe
3333 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3334 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3335 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3336 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3337 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3338 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3339 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3340 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3341 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3342 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3343 [...]
3344
3345 # cat instances/bar/trace_pipe
3346 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX]
3347 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX]
3348 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER]
3349 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU]
3350 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER]
3351 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER]
3352 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU]
3353 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU]
3354 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3355 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled
3356 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0
3357 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled
3358 [...]
3359
3360 # cat instances/zoot/trace
3361 # tracer: nop
3362 #
3363 # entries-in-buffer/entries-written: 18996/18996 #P:4
3364 #
3365 # _-----=> irqs-off
3366 # / _----=> need-resched
3367 # | / _---=> hardirq/softirq
3368 # || / _--=> preempt-depth
3369 # ||| / delay
3370 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3371 # | | | |||| | |
3372 bash-1998 [000] d... 140.733501: sys_write -> 0x2
3373 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1)
3374 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
3375 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3376 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
3377 bash-1998 [000] d... 140.733510: sys_close(fd: a)
3378 bash-1998 [000] d... 140.733510: sys_close -> 0x0
3379 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3380 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
3381 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3382 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0
3383
3384You can see that the trace of the top most trace buffer shows only
3385the function tracing. The foo instance displays wakeups and task
3386switches.
3387
3388To remove the instances, simply delete their directories:
3389::
3390
3391 # rmdir instances/foo
3392 # rmdir instances/bar
3393 # rmdir instances/zoot
3394
3395Note, if a process has a trace file open in one of the instance
3396directories, the rmdir will fail with EBUSY.
3397
3398
3399Stack trace
3400-----------
3401Since the kernel has a fixed sized stack, it is important not to
3402waste it in functions. A kernel developer must be conscience of
3403what they allocate on the stack. If they add too much, the system
3404can be in danger of a stack overflow, and corruption will occur,
3405usually leading to a system panic.
3406
3407There are some tools that check this, usually with interrupts
3408periodically checking usage. But if you can perform a check
3409at every function call that will become very useful. As ftrace provides
3410a function tracer, it makes it convenient to check the stack size
3411at every function call. This is enabled via the stack tracer.
3412
3413CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3414To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3415::
3416
3417 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3418
3419You can also enable it from the kernel command line to trace
3420the stack size of the kernel during boot up, by adding "stacktrace"
3421to the kernel command line parameter.
3422
3423After running it for a few minutes, the output looks like:
3424::
3425
3426 # cat stack_max_size
3427 2928
3428
3429 # cat stack_trace
3430 Depth Size Location (18 entries)
3431 ----- ---- --------
3432 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
3433 1) 2704 160 find_busiest_group+0x31/0x1f1
3434 2) 2544 256 load_balance+0xd9/0x662
3435 3) 2288 80 idle_balance+0xbb/0x130
3436 4) 2208 128 __schedule+0x26e/0x5b9
3437 5) 2080 16 schedule+0x64/0x66
3438 6) 2064 128 schedule_timeout+0x34/0xe0
3439 7) 1936 112 wait_for_common+0x97/0xf1
3440 8) 1824 16 wait_for_completion+0x1d/0x1f
3441 9) 1808 128 flush_work+0xfe/0x119
3442 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
3443 11) 1664 48 input_available_p+0x1d/0x5c
3444 12) 1616 48 n_tty_poll+0x6d/0x134
3445 13) 1568 64 tty_poll+0x64/0x7f
3446 14) 1504 880 do_select+0x31e/0x511
3447 15) 624 400 core_sys_select+0x177/0x216
3448 16) 224 96 sys_select+0x91/0xb9
3449 17) 128 128 system_call_fastpath+0x16/0x1b
3450
3451Note, if -mfentry is being used by gcc, functions get traced before
3452they set up the stack frame. This means that leaf level functions
3453are not tested by the stack tracer when -mfentry is used.
3454
3455Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3456
3457More
3458----
3459More details can be found in the source code, in the `kernel/trace/*.c` files.