Merge tag 'perf-tools-fixes-for-v6.0-2022-08-13' of git://git.kernel.org/pub/scm...
[linux-2.6-block.git] / Documentation / trace / ftrace.rst
CommitLineData
1f198e22
CD
1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author: Steven Rostedt <srostedt@redhat.com>
8:License: The GNU Free Documentation License, Version 1.2
9 (dual licensed under the GPL v2)
10:Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
11 John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
2a1e03ca 27is really a framework of several assorted tracing utilities.
1f198e22
CD
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
2a1e03ca 33Throughout the kernel is hundreds of static event points that
1f198e22
CD
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
3e28c5ca 37See events.rst for more information.
1f198e22
CD
38
39
40Implementation Details
41----------------------
42
81a2d578 43See Documentation/trace/ftrace-design.rst for details for arch porters and such.
1f198e22
CD
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs /sys/kernel/tracing tracefs defaults 0 0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69 Before 4.1, all ftrace tracing control files were within the debugfs
70 file system, which is typically located at /sys/kernel/debug/tracing.
71 For backward compatibility, when mounting the debugfs file system,
72 the tracefs file system will be automatically mounted at:
73
74 /sys/kernel/debug/tracing
75
76 All files located in the tracefs file system will be located in that
77 debugfs file system directory as well.
78
79.. attention::
80
81 Any selected ftrace option will also create the tracefs file system.
82 The rest of the document will assume that you are in the ftrace directory
83 (cd /sys/kernel/tracing) and will only concentrate on the files within that
84 directory and not distract from the content with the extended
85 "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95 current_tracer:
96
97 This is used to set or display the current tracer
d693b288
FCB
98 that is configured. Changing the current tracer clears
99 the ring buffer content as well as the "snapshot" buffer.
1f198e22
CD
100
101 available_tracers:
102
103 This holds the different types of tracers that
104 have been compiled into the kernel. The
105 tracers listed here can be configured by
106 echoing their name into current_tracer.
107
108 tracing_on:
109
110 This sets or displays whether writing to the trace
111 ring buffer is enabled. Echo 0 into this file to disable
112 the tracer or 1 to enable it. Note, this only disables
113 writing to the ring buffer, the tracing overhead may
114 still be occurring.
115
116 The kernel function tracing_off() can be used within the
117 kernel to disable writing to the ring buffer, which will
118 set this file to "0". User space can re-enable tracing by
119 echoing "1" into the file.
120
121 Note, the function and event trigger "traceoff" will also
122 set this file to zero and stop tracing. Which can also
123 be re-enabled by user space using this file.
124
125 trace:
126
127 This file holds the output of the trace in a human
8a815e6b 128 readable format (described below). Opening this file for
d693b288 129 writing with the O_TRUNC flag clears the ring buffer content.
8a815e6b
SRV
130 Note, this file is not a consumer. If tracing is off
131 (no tracer running, or tracing_on is zero), it will produce
132 the same output each time it is read. When tracing is on,
133 it may produce inconsistent results as it tries to read
134 the entire buffer without consuming it.
1f198e22
CD
135
136 trace_pipe:
137
138 The output is the same as the "trace" file but this
139 file is meant to be streamed with live tracing.
140 Reads from this file will block until new data is
141 retrieved. Unlike the "trace" file, this file is a
142 consumer. This means reading from this file causes
143 sequential reads to display more current data. Once
144 data is read from this file, it is consumed, and
145 will not be read again with a sequential read. The
146 "trace" file is static, and if the tracer is not
147 adding more data, it will display the same
8a815e6b 148 information every time it is read.
1f198e22
CD
149
150 trace_options:
151
152 This file lets the user control the amount of data
153 that is displayed in one of the above output
154 files. Options also exist to modify how a tracer
155 or events work (stack traces, timestamps, etc).
156
157 options:
158
159 This is a directory that has a file for every available
160 trace option (also in trace_options). Options may also be set
161 or cleared by writing a "1" or "0" respectively into the
162 corresponding file with the option name.
163
164 tracing_max_latency:
165
166 Some of the tracers record the max latency.
167 For example, the maximum time that interrupts are disabled.
168 The maximum time is saved in this file. The max trace will also be
169 stored, and displayed by "trace". A new max trace will only be
170 recorded if the latency is greater than the value in this file
171 (in microseconds).
172
173 By echoing in a time into this file, no latency will be recorded
174 unless it is greater than the time in this file.
175
176 tracing_thresh:
177
178 Some latency tracers will record a trace whenever the
179 latency is greater than the number in this file.
180 Only active when the file contains a number greater than 0.
181 (in microseconds)
182
183 buffer_size_kb:
184
185 This sets or displays the number of kilobytes each CPU
186 buffer holds. By default, the trace buffers are the same size
187 for each CPU. The displayed number is the size of the
188 CPU buffer and not total size of all buffers. The
189 trace buffers are allocated in pages (blocks of memory
190 that the kernel uses for allocation, usually 4 KB in size).
a65d634e
FCB
191 A few extra pages may be allocated to accommodate buffer management
192 meta-data. If the last page allocated has room for more bytes
1f198e22
CD
193 than requested, the rest of the page will be used,
194 making the actual allocation bigger than requested or shown.
195 ( Note, the size may not be a multiple of the page size
196 due to buffer management meta-data. )
197
198 Buffer sizes for individual CPUs may vary
199 (see "per_cpu/cpu0/buffer_size_kb" below), and if they do
200 this file will show "X".
201
202 buffer_total_size_kb:
203
204 This displays the total combined size of all the trace buffers.
205
206 free_buffer:
207
208 If a process is performing tracing, and the ring buffer should be
209 shrunk "freed" when the process is finished, even if it were to be
210 killed by a signal, this file can be used for that purpose. On close
211 of this file, the ring buffer will be resized to its minimum size.
212 Having a process that is tracing also open this file, when the process
213 exits its file descriptor for this file will be closed, and in doing so,
214 the ring buffer will be "freed".
215
216 It may also stop tracing if disable_on_free option is set.
217
218 tracing_cpumask:
219
220 This is a mask that lets the user only trace on specified CPUs.
221 The format is a hex string representing the CPUs.
222
223 set_ftrace_filter:
224
225 When dynamic ftrace is configured in (see the
226 section below "dynamic ftrace"), the code is dynamically
227 modified (code text rewrite) to disable calling of the
228 function profiler (mcount). This lets tracing be configured
229 in with practically no overhead in performance. This also
230 has a side effect of enabling or disabling specific functions
231 to be traced. Echoing names of functions into this file
232 will limit the trace to only those functions.
32fb7ef6
SM
233 This influences the tracers "function" and "function_graph"
234 and thus also function profiling (see "function_profile_enabled").
1f198e22
CD
235
236 The functions listed in "available_filter_functions" are what
237 can be written into this file.
238
239 This interface also allows for commands to be used. See the
240 "Filter commands" section for more details.
241
5b8914a6 242 As a speed up, since processing strings can be quite expensive
f79b3f33
SRV
243 and requires a check of all functions registered to tracing, instead
244 an index can be written into this file. A number (starting with "1")
245 written will instead select the same corresponding at the line position
246 of the "available_filter_functions" file.
247
1f198e22
CD
248 set_ftrace_notrace:
249
250 This has an effect opposite to that of
251 set_ftrace_filter. Any function that is added here will not
252 be traced. If a function exists in both set_ftrace_filter
253 and set_ftrace_notrace, the function will _not_ be traced.
254
255 set_ftrace_pid:
256
257 Have the function tracer only trace the threads whose PID are
258 listed in this file.
259
260 If the "function-fork" option is set, then when a task whose
261 PID is listed in this file forks, the child's PID will
262 automatically be added to this file, and the child will be
263 traced by the function tracer as well. This option will also
264 cause PIDs of tasks that exit to be removed from the file.
265
2ab2a092
SRV
266 set_ftrace_notrace_pid:
267
268 Have the function tracer ignore threads whose PID are listed in
269 this file.
270
271 If the "function-fork" option is set, then when a task whose
272 PID is listed in this file forks, the child's PID will
273 automatically be added to this file, and the child will not be
274 traced by the function tracer as well. This option will also
275 cause PIDs of tasks that exit to be removed from the file.
276
277 If a PID is in both this file and "set_ftrace_pid", then this
278 file takes precedence, and the thread will not be traced.
279
1f198e22
CD
280 set_event_pid:
281
282 Have the events only trace a task with a PID listed in this file.
283 Note, sched_switch and sched_wake_up will also trace events
284 listed in this file.
285
286 To have the PIDs of children of tasks with their PID in this file
287 added on fork, enable the "event-fork" option. That option will also
288 cause the PIDs of tasks to be removed from this file when the task
289 exits.
290
2ab2a092
SRV
291 set_event_notrace_pid:
292
293 Have the events not trace a task with a PID listed in this file.
294 Note, sched_switch and sched_wakeup will trace threads not listed
295 in this file, even if a thread's PID is in the file if the
296 sched_switch or sched_wakeup events also trace a thread that should
297 be traced.
298
299 To have the PIDs of children of tasks with their PID in this file
300 added on fork, enable the "event-fork" option. That option will also
301 cause the PIDs of tasks to be removed from this file when the task
302 exits.
303
1f198e22
CD
304 set_graph_function:
305
306 Functions listed in this file will cause the function graph
307 tracer to only trace these functions and the functions that
308 they call. (See the section "dynamic ftrace" for more details).
32fb7ef6
SM
309 Note, set_ftrace_filter and set_ftrace_notrace still affects
310 what functions are being traced.
1f198e22
CD
311
312 set_graph_notrace:
313
314 Similar to set_graph_function, but will disable function graph
315 tracing when the function is hit until it exits the function.
316 This makes it possible to ignore tracing functions that are called
317 by a specific function.
318
319 available_filter_functions:
320
321 This lists the functions that ftrace has processed and can trace.
322 These are the function names that you can pass to
32fb7ef6
SM
323 "set_ftrace_filter", "set_ftrace_notrace",
324 "set_graph_function", or "set_graph_notrace".
1f198e22
CD
325 (See the section "dynamic ftrace" below for more details.)
326
327 dyn_ftrace_total_info:
328
329 This file is for debugging purposes. The number of functions that
330 have been converted to nops and are available to be traced.
331
332 enabled_functions:
333
334 This file is more for debugging ftrace, but can also be useful
335 in seeing if any function has a callback attached to it.
336 Not only does the trace infrastructure use ftrace function
337 trace utility, but other subsystems might too. This file
338 displays all functions that have a callback attached to them
339 as well as the number of callbacks that have been attached.
340 Note, a callback may also call multiple functions which will
341 not be listed in this count.
342
343 If the callback registered to be traced by a function with
344 the "save regs" attribute (thus even more overhead), a 'R'
345 will be displayed on the same line as the function that
346 is returning registers.
347
348 If the callback registered to be traced by a function with
349 the "ip modify" attribute (thus the regs->ip can be changed),
350 an 'I' will be displayed on the same line as the function that
351 can be overridden.
352
353 If the architecture supports it, it will also show what callback
354 is being directly called by the function. If the count is greater
355 than 1 it most likely will be ftrace_ops_list_func().
356
6ad18000
HX
357 If the callback of a function jumps to a trampoline that is
358 specific to the callback and which is not the standard trampoline,
1f198e22
CD
359 its address will be printed as well as the function that the
360 trampoline calls.
361
362 function_profile_enabled:
363
364 When set it will enable all functions with either the function
365 tracer, or if configured, the function graph tracer. It will
366 keep a histogram of the number of functions that were called
367 and if the function graph tracer was configured, it will also keep
368 track of the time spent in those functions. The histogram
369 content can be displayed in the files:
370
1fee4f77 371 trace_stat/function<cpu> ( function0, function1, etc).
1f198e22 372
1fee4f77 373 trace_stat:
1f198e22
CD
374
375 A directory that holds different tracing stats.
376
377 kprobe_events:
378
3e28c5ca 379 Enable dynamic trace points. See kprobetrace.rst.
1f198e22
CD
380
381 kprobe_profile:
382
3e28c5ca 383 Dynamic trace points stats. See kprobetrace.rst.
1f198e22
CD
384
385 max_graph_depth:
386
387 Used with the function graph tracer. This is the max depth
388 it will trace into a function. Setting this to a value of
389 one will show only the first kernel function that is called
390 from user space.
391
392 printk_formats:
393
394 This is for tools that read the raw format files. If an event in
395 the ring buffer references a string, only a pointer to the string
396 is recorded into the buffer and not the string itself. This prevents
397 tools from knowing what that string was. This file displays the string
398 and address for the string allowing tools to map the pointers to what
399 the strings were.
400
401 saved_cmdlines:
402
403 Only the pid of the task is recorded in a trace event unless
404 the event specifically saves the task comm as well. Ftrace
405 makes a cache of pid mappings to comms to try to display
406 comms for events. If a pid for a comm is not listed, then
407 "<...>" is displayed in the output.
408
409 If the option "record-cmd" is set to "0", then comms of tasks
410 will not be saved during recording. By default, it is enabled.
411
412 saved_cmdlines_size:
413
414 By default, 128 comms are saved (see "saved_cmdlines" above). To
415 increase or decrease the amount of comms that are cached, echo
5b8914a6 416 the number of comms to cache into this file.
1f198e22
CD
417
418 saved_tgids:
419
420 If the option "record-tgid" is set, on each scheduling context switch
421 the Task Group ID of a task is saved in a table mapping the PID of
422 the thread to its TGID. By default, the "record-tgid" option is
423 disabled.
424
425 snapshot:
426
427 This displays the "snapshot" buffer and also lets the user
428 take a snapshot of the current running trace.
429 See the "Snapshot" section below for more details.
430
431 stack_max_size:
432
433 When the stack tracer is activated, this will display the
434 maximum stack size it has encountered.
435 See the "Stack Trace" section below.
436
437 stack_trace:
438
439 This displays the stack back trace of the largest stack
440 that was encountered when the stack tracer is activated.
441 See the "Stack Trace" section below.
442
443 stack_trace_filter:
444
445 This is similar to "set_ftrace_filter" but it limits what
446 functions the stack tracer will check.
447
448 trace_clock:
449
450 Whenever an event is recorded into the ring buffer, a
451 "timestamp" is added. This stamp comes from a specified
452 clock. By default, ftrace uses the "local" clock. This
453 clock is very fast and strictly per cpu, but on some
454 systems it may not be monotonic with respect to other
455 CPUs. In other words, the local clocks may not be in sync
456 with local clocks on other CPUs.
457
458 Usual clocks for tracing::
459
460 # cat trace_clock
461 [local] global counter x86-tsc
462
463 The clock with the square brackets around it is the one in effect.
464
465 local:
466 Default clock, but may not be in sync across CPUs
467
468 global:
469 This clock is in sync with all CPUs but may
470 be a bit slower than the local clock.
471
472 counter:
473 This is not a clock at all, but literally an atomic
474 counter. It counts up one by one, but is in sync
475 with all CPUs. This is useful when you need to
476 know exactly the order events occurred with respect to
477 each other on different CPUs.
478
479 uptime:
480 This uses the jiffies counter and the time stamp
481 is relative to the time since boot up.
482
483 perf:
484 This makes ftrace use the same clock that perf uses.
485 Eventually perf will be able to read ftrace buffers
486 and this will help out in interleaving the data.
487
488 x86-tsc:
489 Architectures may define their own clocks. For
490 example, x86 uses its own TSC cycle clock here.
491
492 ppc-tb:
493 This uses the powerpc timebase register value.
494 This is in sync across CPUs and can also be used
495 to correlate events across hypervisor/guest if
496 tb_offset is known.
497
498 mono:
499 This uses the fast monotonic clock (CLOCK_MONOTONIC)
500 which is monotonic and is subject to NTP rate adjustments.
501
502 mono_raw:
503 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
2a1e03ca 504 which is monotonic but is not subject to any rate adjustments
1f198e22
CD
505 and ticks at the same rate as the hardware clocksource.
506
507 boot:
a3ed0e43
TG
508 This is the boot clock (CLOCK_BOOTTIME) and is based on the
509 fast monotonic clock, but also accounts for time spent in
510 suspend. Since the clock access is designed for use in
511 tracing in the suspend path, some side effects are possible
512 if clock is accessed after the suspend time is accounted before
513 the fast mono clock is updated. In this case, the clock update
514 appears to happen slightly sooner than it normally would have.
515 Also on 32-bit systems, it's possible that the 64-bit boot offset
516 sees a partial update. These effects are rare and post
517 processing should be able to handle them. See comments in the
518 ktime_get_boot_fast_ns() function for more information.
680014d6 519
4d1257bb
KK
520 tai:
521 This is the tai clock (CLOCK_TAI) and is derived from the wall-
522 clock time. However, this clock does not experience
523 discontinuities and backwards jumps caused by NTP inserting leap
524 seconds. Since the clock access is designed for use in tracing,
525 side effects are possible. The clock access may yield wrong
526 readouts in case the internal TAI offset is updated e.g., caused
527 by setting the system time or using adjtimex() with an offset.
528 These effects are rare and post processing should be able to
529 handle them. See comments in the ktime_get_tai_fast_ns()
530 function for more information.
531
680014d6
LT
532 To set a clock, simply echo the clock name into this file::
533
534 # echo global > trace_clock
1f198e22 535
d693b288
FCB
536 Setting a clock clears the ring buffer content as well as the
537 "snapshot" buffer.
538
1f198e22
CD
539 trace_marker:
540
541 This is a very useful file for synchronizing user space
542 with events happening in the kernel. Writing strings into
543 this file will be written into the ftrace buffer.
544
545 It is useful in applications to open this file at the start
546 of the application and just reference the file descriptor
547 for the file::
548
549 void trace_write(const char *fmt, ...)
550 {
551 va_list ap;
552 char buf[256];
553 int n;
554
555 if (trace_fd < 0)
556 return;
557
558 va_start(ap, fmt);
559 n = vsnprintf(buf, 256, fmt, ap);
560 va_end(ap);
561
562 write(trace_fd, buf, n);
563 }
564
565 start::
566
567 trace_fd = open("trace_marker", WR_ONLY);
568
d3439f9d
SRV
569 Note: Writing into the trace_marker file can also initiate triggers
570 that are written into /sys/kernel/tracing/events/ftrace/print/trigger
571 See "Event triggers" in Documentation/trace/events.rst and an
572 example in Documentation/trace/histogram.rst (Section 3.)
573
1f198e22
CD
574 trace_marker_raw:
575
1747db54 576 This is similar to trace_marker above, but is meant for binary data
1f198e22
CD
577 to be written to it, where a tool can be used to parse the data
578 from trace_pipe_raw.
579
580 uprobe_events:
581
582 Add dynamic tracepoints in programs.
3e28c5ca 583 See uprobetracer.rst
1f198e22
CD
584
585 uprobe_profile:
586
587 Uprobe statistics. See uprobetrace.txt
588
589 instances:
590
591 This is a way to make multiple trace buffers where different
592 events can be recorded in different buffers.
593 See "Instances" section below.
594
595 events:
596
597 This is the trace event directory. It holds event tracepoints
598 (also known as static tracepoints) that have been compiled
599 into the kernel. It shows what event tracepoints exist
600 and how they are grouped by system. There are "enable"
601 files at various levels that can enable the tracepoints
602 when a "1" is written to them.
603
3e28c5ca 604 See events.rst for more information.
1f198e22
CD
605
606 set_event:
607
608 By echoing in the event into this file, will enable that event.
609
3e28c5ca 610 See events.rst for more information.
1f198e22
CD
611
612 available_events:
613
614 A list of events that can be enabled in tracing.
615
3e28c5ca 616 See events.rst for more information.
1f198e22 617
2a56bb59
LT
618 timestamp_mode:
619
620 Certain tracers may change the timestamp mode used when
621 logging trace events into the event buffer. Events with
622 different modes can coexist within a buffer but the mode in
623 effect when an event is logged determines which timestamp mode
624 is used for that event. The default timestamp mode is
625 'delta'.
626
627 Usual timestamp modes for tracing:
628
629 # cat timestamp_mode
630 [delta] absolute
631
632 The timestamp mode with the square brackets around it is the
633 one in effect.
634
635 delta: Default timestamp mode - timestamp is a delta against
636 a per-buffer timestamp.
637
638 absolute: The timestamp is a full timestamp, not a delta
639 against some other value. As such it takes up more
640 space and is less efficient.
641
1f198e22
CD
642 hwlat_detector:
643
644 Directory for the Hardware Latency Detector.
645 See "Hardware Latency Detector" section below.
646
647 per_cpu:
648
649 This is a directory that contains the trace per_cpu information.
650
651 per_cpu/cpu0/buffer_size_kb:
652
653 The ftrace buffer is defined per_cpu. That is, there's a separate
654 buffer for each CPU to allow writes to be done atomically,
655 and free from cache bouncing. These buffers may have different
656 size buffers. This file is similar to the buffer_size_kb
657 file, but it only displays or sets the buffer size for the
658 specific CPU. (here cpu0).
659
660 per_cpu/cpu0/trace:
661
662 This is similar to the "trace" file, but it will only display
663 the data specific for the CPU. If written to, it only clears
664 the specific CPU buffer.
665
666 per_cpu/cpu0/trace_pipe
667
668 This is similar to the "trace_pipe" file, and is a consuming
669 read, but it will only display (and consume) the data specific
670 for the CPU.
671
672 per_cpu/cpu0/trace_pipe_raw
673
674 For tools that can parse the ftrace ring buffer binary format,
675 the trace_pipe_raw file can be used to extract the data
676 from the ring buffer directly. With the use of the splice()
677 system call, the buffer data can be quickly transferred to
678 a file or to the network where a server is collecting the
679 data.
680
681 Like trace_pipe, this is a consuming reader, where multiple
682 reads will always produce different data.
683
684 per_cpu/cpu0/snapshot:
685
686 This is similar to the main "snapshot" file, but will only
687 snapshot the current CPU (if supported). It only displays
688 the content of the snapshot for a given CPU, and if
689 written to, only clears this CPU buffer.
690
691 per_cpu/cpu0/snapshot_raw:
692
693 Similar to the trace_pipe_raw, but will read the binary format
694 from the snapshot buffer for the given CPU.
695
696 per_cpu/cpu0/stats:
697
698 This displays certain stats about the ring buffer:
699
700 entries:
701 The number of events that are still in the buffer.
702
703 overrun:
704 The number of lost events due to overwriting when
705 the buffer was full.
706
707 commit overrun:
708 Should always be zero.
709 This gets set if so many events happened within a nested
710 event (ring buffer is re-entrant), that it fills the
711 buffer and starts dropping events.
712
713 bytes:
714 Bytes actually read (not overwritten).
715
716 oldest event ts:
717 The oldest timestamp in the buffer
718
719 now ts:
720 The current timestamp
721
722 dropped events:
723 Events lost due to overwrite option being off.
724
725 read events:
726 The number of events read.
727
728The Tracers
729-----------
730
731Here is the list of current tracers that may be configured.
732
733 "function"
734
735 Function call tracer to trace all kernel functions.
736
737 "function_graph"
738
739 Similar to the function tracer except that the
740 function tracer probes the functions on their entry
741 whereas the function graph tracer traces on both entry
742 and exit of the functions. It then provides the ability
743 to draw a graph of function calls similar to C code
744 source.
745
746 "blk"
747
748 The block tracer. The tracer used by the blktrace user
749 application.
750
751 "hwlat"
752
753 The Hardware Latency tracer is used to detect if the hardware
754 produces any latency. See "Hardware Latency Detector" section
755 below.
756
757 "irqsoff"
758
759 Traces the areas that disable interrupts and saves
760 the trace with the longest max latency.
761 See tracing_max_latency. When a new max is recorded,
762 it replaces the old trace. It is best to view this
763 trace with the latency-format option enabled, which
764 happens automatically when the tracer is selected.
765
766 "preemptoff"
767
768 Similar to irqsoff but traces and records the amount of
769 time for which preemption is disabled.
770
771 "preemptirqsoff"
772
773 Similar to irqsoff and preemptoff, but traces and
774 records the largest time for which irqs and/or preemption
775 is disabled.
776
777 "wakeup"
778
779 Traces and records the max latency that it takes for
780 the highest priority task to get scheduled after
781 it has been woken up.
782 Traces all tasks as an average developer would expect.
783
784 "wakeup_rt"
785
786 Traces and records the max latency that it takes for just
787 RT tasks (as the current "wakeup" does). This is useful
788 for those interested in wake up timings of RT tasks.
789
790 "wakeup_dl"
791
792 Traces and records the max latency that it takes for
793 a SCHED_DEADLINE task to be woken (as the "wakeup" and
794 "wakeup_rt" does).
795
796 "mmiotrace"
797
798 A special tracer that is used to trace binary module.
799 It will trace all the calls that a module makes to the
800 hardware. Everything it writes and reads from the I/O
801 as well.
802
803 "branch"
804
805 This tracer can be configured when tracing likely/unlikely
806 calls within the kernel. It will trace when a likely and
807 unlikely branch is hit and if it was correct in its prediction
808 of being correct.
809
810 "nop"
811
812 This is the "trace nothing" tracer. To remove all
813 tracers from tracing simply echo "nop" into
814 current_tracer.
815
26a94491
TZ
816Error conditions
817----------------
818
819 For most ftrace commands, failure modes are obvious and communicated
820 using standard return codes.
821
822 For other more involved commands, extended error information may be
823 available via the tracing/error_log file. For the commands that
824 support it, reading the tracing/error_log file after an error will
825 display more detailed information about what went wrong, if
826 information is available. The tracing/error_log file is a circular
827 error log displaying a small number (currently, 8) of ftrace errors
828 for the last (8) failed commands.
829
830 The extended error information and usage takes the form shown in
831 this example::
832
833 # echo xxx > /sys/kernel/debug/tracing/events/sched/sched_wakeup/trigger
834 echo: write error: Invalid argument
835
836 # cat /sys/kernel/debug/tracing/error_log
837 [ 5348.887237] location: error: Couldn't yyy: zzz
838 Command: xxx
839 ^
840 [ 7517.023364] location: error: Bad rrr: sss
841 Command: ppp qqq
842 ^
843
844 To clear the error log, echo the empty string into it::
845
846 # echo > /sys/kernel/debug/tracing/error_log
1f198e22
CD
847
848Examples of using the tracer
849----------------------------
850
851Here are typical examples of using the tracers when controlling
852them only with the tracefs interface (without using any
853user-land utilities).
854
855Output format:
856--------------
857
858Here is an example of the output format of the file "trace"::
859
860 # tracer: function
861 #
862 # entries-in-buffer/entries-written: 140080/250280 #P:4
863 #
864 # _-----=> irqs-off
865 # / _----=> need-resched
866 # | / _---=> hardirq/softirq
867 # || / _--=> preempt-depth
868 # ||| / delay
869 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
870 # | | | |||| | |
871 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
872 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
873 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
874 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
875 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
876 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
877 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
878 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
879 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
880 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
881 ....
882
883A header is printed with the tracer name that is represented by
884the trace. In this case the tracer is "function". Then it shows the
885number of events in the buffer as well as the total number of entries
886that were written. The difference is the number of entries that were
887lost due to the buffer filling up (250280 - 140080 = 110200 events
888lost).
889
890The header explains the content of the events. Task name "bash", the task
891PID "1977", the CPU that it was running on "000", the latency format
892(explained below), the timestamp in <secs>.<usecs> format, the
893function name that was traced "sys_close" and the parent function that
894called this function "system_call_fastpath". The timestamp is the time
895at which the function was entered.
896
897Latency trace format
898--------------------
899
900When the latency-format option is enabled or when one of the latency
901tracers is set, the trace file gives somewhat more information to see
902why a latency happened. Here is a typical trace::
903
904 # tracer: irqsoff
905 #
906 # irqsoff latency trace v1.1.5 on 3.8.0-test+
907 # --------------------------------------------------------------------
908 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
909 # -----------------
910 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
911 # -----------------
912 # => started at: __lock_task_sighand
913 # => ended at: _raw_spin_unlock_irqrestore
914 #
915 #
916 # _------=> CPU#
917 # / _-----=> irqs-off
918 # | / _----=> need-resched
919 # || / _---=> hardirq/softirq
920 # ||| / _--=> preempt-depth
921 # |||| / delay
922 # cmd pid ||||| time | caller
923 # \ / ||||| \ | /
924 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
925 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
926 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
927 ps-6143 2d..1 306us : <stack trace>
928 => trace_hardirqs_on_caller
929 => trace_hardirqs_on
930 => _raw_spin_unlock_irqrestore
931 => do_task_stat
932 => proc_tgid_stat
933 => proc_single_show
934 => seq_read
935 => vfs_read
936 => sys_read
937 => system_call_fastpath
938
939
940This shows that the current tracer is "irqsoff" tracing the time
941for which interrupts were disabled. It gives the trace version (which
942never changes) and the version of the kernel upon which this was executed on
943(3.8). Then it displays the max latency in microseconds (259 us). The number
944of trace entries displayed and the total number (both are four: #4/4).
945VP, KP, SP, and HP are always zero and are reserved for later use.
946#P is the number of online CPUs (#P:4).
947
948The task is the process that was running when the latency
949occurred. (ps pid: 6143).
950
951The start and stop (the functions in which the interrupts were
952disabled and enabled respectively) that caused the latencies:
953
954 - __lock_task_sighand is where the interrupts were disabled.
955 - _raw_spin_unlock_irqrestore is where they were enabled again.
956
957The next lines after the header are the trace itself. The header
958explains which is which.
959
960 cmd: The name of the process in the trace.
961
962 pid: The PID of that process.
963
964 CPU#: The CPU which the process was running on.
965
966 irqs-off: 'd' interrupts are disabled. '.' otherwise.
967 .. caution:: If the architecture does not support a way to
968 read the irq flags variable, an 'X' will always
969 be printed here.
970
971 need-resched:
972 - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
973 - 'n' only TIF_NEED_RESCHED is set,
974 - 'p' only PREEMPT_NEED_RESCHED is set,
975 - '.' otherwise.
976
977 hardirq/softirq:
978 - 'Z' - NMI occurred inside a hardirq
979 - 'z' - NMI is running
980 - 'H' - hard irq occurred inside a softirq.
981 - 'h' - hard irq is running
982 - 's' - soft irq is running
983 - '.' - normal context.
984
985 preempt-depth: The level of preempt_disabled
986
987The above is mostly meaningful for kernel developers.
988
989 time:
990 When the latency-format option is enabled, the trace file
991 output includes a timestamp relative to the start of the
992 trace. This differs from the output when latency-format
993 is disabled, which includes an absolute timestamp.
994
995 delay:
996 This is just to help catch your eye a bit better. And
997 needs to be fixed to be only relative to the same CPU.
998 The marks are determined by the difference between this
999 current trace and the next trace.
1000
1001 - '$' - greater than 1 second
2a1e03ca
AL
1002 - '@' - greater than 100 millisecond
1003 - '*' - greater than 10 millisecond
1f198e22
CD
1004 - '#' - greater than 1000 microsecond
1005 - '!' - greater than 100 microsecond
1006 - '+' - greater than 10 microsecond
1007 - ' ' - less than or equal to 10 microsecond.
1008
1009 The rest is the same as the 'trace' file.
1010
1011 Note, the latency tracers will usually end with a back trace
1012 to easily find where the latency occurred.
1013
1014trace_options
1015-------------
1016
1017The trace_options file (or the options directory) is used to control
1018what gets printed in the trace output, or manipulate the tracers.
1019To see what is available, simply cat the file::
1020
1021 cat trace_options
1022 print-parent
1023 nosym-offset
1024 nosym-addr
1025 noverbose
1026 noraw
1027 nohex
1028 nobin
1029 noblock
1030 trace_printk
1031 annotate
1032 nouserstacktrace
1033 nosym-userobj
1034 noprintk-msg-only
1035 context-info
1036 nolatency-format
1037 record-cmd
1038 norecord-tgid
1039 overwrite
1040 nodisable_on_free
1041 irq-info
1042 markers
1043 noevent-fork
1044 function-trace
1045 nofunction-fork
1046 nodisplay-graph
1047 nostacktrace
1048 nobranch
1049
1050To disable one of the options, echo in the option prepended with
1051"no"::
1052
1053 echo noprint-parent > trace_options
1054
1055To enable an option, leave off the "no"::
1056
1057 echo sym-offset > trace_options
1058
1059Here are the available options:
1060
1061 print-parent
1062 On function traces, display the calling (parent)
1063 function as well as the function being traced.
1064 ::
1065
1066 print-parent:
1067 bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul
1068
1069 noprint-parent:
1070 bash-4000 [01] 1477.606694: simple_strtoul
1071
1072
1073 sym-offset
1074 Display not only the function name, but also the
1075 offset in the function. For example, instead of
1076 seeing just "ktime_get", you will see
1077 "ktime_get+0xb/0x20".
1078 ::
1079
1080 sym-offset:
1081 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
1082
1083 sym-addr
1084 This will also display the function address as well
1085 as the function name.
1086 ::
1087
1088 sym-addr:
1089 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
1090
1091 verbose
1092 This deals with the trace file when the
1093 latency-format option is enabled.
1094 ::
1095
1096 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1097 (+0.000ms): simple_strtoul (kstrtoul)
1098
1099 raw
1100 This will display raw numbers. This option is best for
1101 use with user applications that can translate the raw
1102 numbers better than having it done in the kernel.
1103
1104 hex
1105 Similar to raw, but the numbers will be in a hexadecimal format.
1106
1107 bin
1108 This will print out the formats in raw binary.
1109
1110 block
1111 When set, reading trace_pipe will not block when polled.
1112
1113 trace_printk
1114 Can disable trace_printk() from writing into the buffer.
1115
1116 annotate
1117 It is sometimes confusing when the CPU buffers are full
1118 and one CPU buffer had a lot of events recently, thus
1119 a shorter time frame, were another CPU may have only had
1120 a few events, which lets it have older events. When
1121 the trace is reported, it shows the oldest events first,
1122 and it may look like only one CPU ran (the one with the
1123 oldest events). When the annotate option is set, it will
1124 display when a new CPU buffer started::
1125
1126 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1127 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1128 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1129 ##### CPU 2 buffer started ####
1130 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1131 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1132 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1133
1134 userstacktrace
1135 This option changes the trace. It records a
1136 stacktrace of the current user space thread after
1137 each trace event.
1138
1139 sym-userobj
1140 when user stacktrace are enabled, look up which
1141 object the address belongs to, and print a
1142 relative address. This is especially useful when
1143 ASLR is on, otherwise you don't get a chance to
1144 resolve the address to object/file/line after
1145 the app is no longer running
1146
1147 The lookup is performed when you read
1148 trace,trace_pipe. Example::
1149
1150 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1151 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1152
1153
1154 printk-msg-only
1155 When set, trace_printk()s will only show the format
1156 and not their parameters (if trace_bprintk() or
1157 trace_bputs() was used to save the trace_printk()).
1158
1159 context-info
1160 Show only the event data. Hides the comm, PID,
1161 timestamp, CPU, and other useful data.
1162
1163 latency-format
1164 This option changes the trace output. When it is enabled,
1165 the trace displays additional information about the
1166 latency, as described in "Latency trace format".
1167
06e0a548
SRV
1168 pause-on-trace
1169 When set, opening the trace file for read, will pause
1170 writing to the ring buffer (as if tracing_on was set to zero).
1171 This simulates the original behavior of the trace file.
1172 When the file is closed, tracing will be enabled again.
1173
a345a671
MH
1174 hash-ptr
1175 When set, "%p" in the event printk format displays the
1176 hashed pointer value instead of real address.
1177 This will be useful if you want to find out which hashed
1178 value is corresponding to the real value in trace log.
1179
1f198e22
CD
1180 record-cmd
1181 When any event or tracer is enabled, a hook is enabled
1182 in the sched_switch trace point to fill comm cache
1183 with mapped pids and comms. But this may cause some
1184 overhead, and if you only care about pids, and not the
1185 name of the task, disabling this option can lower the
1186 impact of tracing. See "saved_cmdlines".
1187
1188 record-tgid
1189 When any event or tracer is enabled, a hook is enabled
1190 in the sched_switch trace point to fill the cache of
1191 mapped Thread Group IDs (TGID) mapping to pids. See
1192 "saved_tgids".
1193
1194 overwrite
1195 This controls what happens when the trace buffer is
1196 full. If "1" (default), the oldest events are
1197 discarded and overwritten. If "0", then the newest
1198 events are discarded.
1199 (see per_cpu/cpu0/stats for overrun and dropped)
1200
1201 disable_on_free
1202 When the free_buffer is closed, tracing will
1203 stop (tracing_on set to 0).
1204
1205 irq-info
1206 Shows the interrupt, preempt count, need resched data.
1207 When disabled, the trace looks like::
1208
1209 # tracer: function
1210 #
1211 # entries-in-buffer/entries-written: 144405/9452052 #P:4
1212 #
1213 # TASK-PID CPU# TIMESTAMP FUNCTION
1214 # | | | | |
1215 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1216 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89
1217 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task
1218
1219
1220 markers
1221 When set, the trace_marker is writable (only by root).
1222 When disabled, the trace_marker will error with EINVAL
1223 on write.
1224
1225 event-fork
1226 When set, tasks with PIDs listed in set_event_pid will have
1227 the PIDs of their children added to set_event_pid when those
1228 tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1229 their PIDs will be removed from the file.
1230
2ab2a092
SRV
1231 This affects PIDs listed in set_event_notrace_pid as well.
1232
1f198e22
CD
1233 function-trace
1234 The latency tracers will enable function tracing
1235 if this option is enabled (default it is). When
1236 it is disabled, the latency tracers do not trace
1237 functions. This keeps the overhead of the tracer down
1238 when performing latency tests.
1239
1240 function-fork
1241 When set, tasks with PIDs listed in set_ftrace_pid will
1242 have the PIDs of their children added to set_ftrace_pid
1243 when those tasks fork. Also, when tasks with PIDs in
1244 set_ftrace_pid exit, their PIDs will be removed from the
1245 file.
1246
2ab2a092
SRV
1247 This affects PIDs in set_ftrace_notrace_pid as well.
1248
1f198e22
CD
1249 display-graph
1250 When set, the latency tracers (irqsoff, wakeup, etc) will
1251 use function graph tracing instead of function tracing.
1252
1253 stacktrace
1254 When set, a stack trace is recorded after any trace event
1255 is recorded.
1256
1257 branch
1258 Enable branch tracing with the tracer. This enables branch
1259 tracer along with the currently set tracer. Enabling this
1260 with the "nop" tracer is the same as just enabling the
1261 "branch" tracer.
1262
1263.. tip:: Some tracers have their own options. They only appear in this
1264 file when the tracer is active. They always appear in the
1265 options directory.
1266
1267
1268Here are the per tracer options:
1269
1270Options for function tracer:
1271
1272 func_stack_trace
1273 When set, a stack trace is recorded after every
1274 function that is recorded. NOTE! Limit the functions
1275 that are recorded before enabling this, with
1276 "set_ftrace_filter" otherwise the system performance
1277 will be critically degraded. Remember to disable
1278 this option before clearing the function filter.
1279
1280Options for function_graph tracer:
1281
1282 Since the function_graph tracer has a slightly different output
1283 it has its own options to control what is displayed.
1284
1285 funcgraph-overrun
1286 When set, the "overrun" of the graph stack is
1287 displayed after each function traced. The
1288 overrun, is when the stack depth of the calls
1289 is greater than what is reserved for each task.
1290 Each task has a fixed array of functions to
1291 trace in the call graph. If the depth of the
1292 calls exceeds that, the function is not traced.
1293 The overrun is the number of functions missed
1294 due to exceeding this array.
1295
1296 funcgraph-cpu
1297 When set, the CPU number of the CPU where the trace
1298 occurred is displayed.
1299
1300 funcgraph-overhead
1301 When set, if the function takes longer than
1302 A certain amount, then a delay marker is
1303 displayed. See "delay" above, under the
1304 header description.
1305
1306 funcgraph-proc
1307 Unlike other tracers, the process' command line
1308 is not displayed by default, but instead only
1309 when a task is traced in and out during a context
1310 switch. Enabling this options has the command
1311 of each process displayed at every line.
1312
1313 funcgraph-duration
1314 At the end of each function (the return)
1315 the duration of the amount of time in the
1316 function is displayed in microseconds.
1317
1318 funcgraph-abstime
1319 When set, the timestamp is displayed at each line.
1320
1321 funcgraph-irqs
1322 When disabled, functions that happen inside an
1323 interrupt will not be traced.
1324
1325 funcgraph-tail
1326 When set, the return event will include the function
1327 that it represents. By default this is off, and
1328 only a closing curly bracket "}" is displayed for
1329 the return of a function.
1330
1331 sleep-time
1332 When running function graph tracer, to include
1333 the time a task schedules out in its function.
1334 When enabled, it will account time the task has been
1335 scheduled out as part of the function call.
1336
1337 graph-time
1338 When running function profiler with function graph tracer,
1339 to include the time to call nested functions. When this is
1340 not set, the time reported for the function will only
1341 include the time the function itself executed for, not the
1342 time for functions that it called.
1343
1344Options for blk tracer:
1345
1346 blk_classic
1347 Shows a more minimalistic output.
1348
1349
1350irqsoff
1351-------
1352
1353When interrupts are disabled, the CPU can not react to any other
1354external event (besides NMIs and SMIs). This prevents the timer
1355interrupt from triggering or the mouse interrupt from letting
1356the kernel know of a new mouse event. The result is a latency
1357with the reaction time.
1358
1359The irqsoff tracer tracks the time for which interrupts are
1360disabled. When a new maximum latency is hit, the tracer saves
1361the trace leading up to that latency point so that every time a
1362new maximum is reached, the old saved trace is discarded and the
1363new trace is saved.
1364
1365To reset the maximum, echo 0 into tracing_max_latency. Here is
1366an example::
1367
1368 # echo 0 > options/function-trace
1369 # echo irqsoff > current_tracer
1370 # echo 1 > tracing_on
1371 # echo 0 > tracing_max_latency
1372 # ls -ltr
1373 [...]
1374 # echo 0 > tracing_on
1375 # cat trace
1376 # tracer: irqsoff
1377 #
1378 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1379 # --------------------------------------------------------------------
1380 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1381 # -----------------
1382 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1383 # -----------------
1384 # => started at: run_timer_softirq
1385 # => ended at: run_timer_softirq
1386 #
1387 #
1388 # _------=> CPU#
1389 # / _-----=> irqs-off
1390 # | / _----=> need-resched
1391 # || / _---=> hardirq/softirq
1392 # ||| / _--=> preempt-depth
1393 # |||| / delay
1394 # cmd pid ||||| time | caller
1395 # \ / ||||| \ | /
1396 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
1397 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
1398 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
1399 <idle>-0 0dNs3 25us : <stack trace>
1400 => _raw_spin_unlock_irq
1401 => run_timer_softirq
1402 => __do_softirq
1403 => call_softirq
1404 => do_softirq
1405 => irq_exit
1406 => smp_apic_timer_interrupt
1407 => apic_timer_interrupt
1408 => rcu_idle_exit
1409 => cpu_idle
1410 => rest_init
1411 => start_kernel
1412 => x86_64_start_reservations
1413 => x86_64_start_kernel
1414
1747db54 1415Here we see that we had a latency of 16 microseconds (which is
1f198e22
CD
1416very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1417interrupts. The difference between the 16 and the displayed
1418timestamp 25us occurred because the clock was incremented
1419between the time of recording the max latency and the time of
1420recording the function that had that latency.
1421
1422Note the above example had function-trace not set. If we set
1423function-trace, we get a much larger output::
1424
1425 with echo 1 > options/function-trace
1426
1427 # tracer: irqsoff
1428 #
1429 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1430 # --------------------------------------------------------------------
1431 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1432 # -----------------
1433 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1434 # -----------------
1435 # => started at: ata_scsi_queuecmd
1436 # => ended at: ata_scsi_queuecmd
1437 #
1438 #
1439 # _------=> CPU#
1440 # / _-----=> irqs-off
1441 # | / _----=> need-resched
1442 # || / _---=> hardirq/softirq
1443 # ||| / _--=> preempt-depth
1444 # |||| / delay
1445 # cmd pid ||||| time | caller
1446 # \ / ||||| \ | /
1447 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1448 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
1449 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1450 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1451 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1452 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
1453 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
1454 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1455 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1456 [...]
1457 bash-2042 3d..1 67us : delay_tsc <-__delay
1458 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1459 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
1460 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1461 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
1462 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1463 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1464 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1465 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1466 bash-2042 3d..1 120us : <stack trace>
1467 => _raw_spin_unlock_irqrestore
1468 => ata_scsi_queuecmd
1469 => scsi_dispatch_cmd
1470 => scsi_request_fn
1471 => __blk_run_queue_uncond
1472 => __blk_run_queue
1473 => blk_queue_bio
ed00aabd 1474 => submit_bio_noacct
1f198e22
CD
1475 => submit_bio
1476 => submit_bh
1477 => __ext3_get_inode_loc
1478 => ext3_iget
1479 => ext3_lookup
1480 => lookup_real
1481 => __lookup_hash
1482 => walk_component
1483 => lookup_last
1484 => path_lookupat
1485 => filename_lookup
1486 => user_path_at_empty
1487 => user_path_at
1488 => vfs_fstatat
1489 => vfs_stat
1490 => sys_newstat
1491 => system_call_fastpath
1492
1493
1494Here we traced a 71 microsecond latency. But we also see all the
1495functions that were called during that time. Note that by
1496enabling function tracing, we incur an added overhead. This
1497overhead may extend the latency times. But nevertheless, this
1498trace has provided some very helpful debugging information.
1499
88d380eb
CD
1500If we prefer function graph output instead of function, we can set
1501display-graph option::
3df5ffd2 1502
88d380eb
CD
1503 with echo 1 > options/display-graph
1504
1505 # tracer: irqsoff
1506 #
1507 # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
1508 # --------------------------------------------------------------------
1509 # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
1510 # -----------------
1511 # | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
1512 # -----------------
1513 # => started at: free_debug_processing
1514 # => ended at: return_to_handler
1515 #
1516 #
1517 # _-----=> irqs-off
1518 # / _----=> need-resched
1519 # | / _---=> hardirq/softirq
1520 # || / _--=> preempt-depth
1521 # ||| /
1522 # REL TIME CPU TASK/PID |||| DURATION FUNCTION CALLS
1523 # | | | | |||| | | | | | |
1524 0 us | 0) bash-1507 | d... | 0.000 us | _raw_spin_lock_irqsave();
1525 0 us | 0) bash-1507 | d..1 | 0.378 us | do_raw_spin_trylock();
1526 1 us | 0) bash-1507 | d..2 | | set_track() {
1527 2 us | 0) bash-1507 | d..2 | | save_stack_trace() {
1528 2 us | 0) bash-1507 | d..2 | | __save_stack_trace() {
1529 3 us | 0) bash-1507 | d..2 | | __unwind_start() {
1530 3 us | 0) bash-1507 | d..2 | | get_stack_info() {
1531 3 us | 0) bash-1507 | d..2 | 0.351 us | in_task_stack();
1532 4 us | 0) bash-1507 | d..2 | 1.107 us | }
1533 [...]
1534 3750 us | 0) bash-1507 | d..1 | 0.516 us | do_raw_spin_unlock();
1535 3750 us | 0) bash-1507 | d..1 | 0.000 us | _raw_spin_unlock_irqrestore();
1536 3764 us | 0) bash-1507 | d..1 | 0.000 us | tracer_hardirqs_on();
1537 bash-1507 0d..1 3792us : <stack trace>
1538 => free_debug_processing
1539 => __slab_free
1540 => kmem_cache_free
1541 => vm_area_free
1542 => remove_vma
1543 => exit_mmap
1544 => mmput
2388777a 1545 => begin_new_exec
88d380eb
CD
1546 => load_elf_binary
1547 => search_binary_handler
1548 => __do_execve_file.isra.32
1549 => __x64_sys_execve
1550 => do_syscall_64
1551 => entry_SYSCALL_64_after_hwframe
1f198e22
CD
1552
1553preemptoff
1554----------
1555
1556When preemption is disabled, we may be able to receive
1557interrupts but the task cannot be preempted and a higher
1558priority task must wait for preemption to be enabled again
1559before it can preempt a lower priority task.
1560
1561The preemptoff tracer traces the places that disable preemption.
1562Like the irqsoff tracer, it records the maximum latency for
1563which preemption was disabled. The control of preemptoff tracer
1564is much like the irqsoff tracer.
1565::
1566
1567 # echo 0 > options/function-trace
1568 # echo preemptoff > current_tracer
1569 # echo 1 > tracing_on
1570 # echo 0 > tracing_max_latency
1571 # ls -ltr
1572 [...]
1573 # echo 0 > tracing_on
1574 # cat trace
1575 # tracer: preemptoff
1576 #
1577 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1578 # --------------------------------------------------------------------
1579 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1580 # -----------------
1581 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1582 # -----------------
1583 # => started at: do_IRQ
1584 # => ended at: do_IRQ
1585 #
1586 #
1587 # _------=> CPU#
1588 # / _-----=> irqs-off
1589 # | / _----=> need-resched
1590 # || / _---=> hardirq/softirq
1591 # ||| / _--=> preempt-depth
1592 # |||| / delay
1593 # cmd pid ||||| time | caller
1594 # \ / ||||| \ | /
1595 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
1596 sshd-1991 1d..1 46us : irq_exit <-do_IRQ
1597 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
1598 sshd-1991 1d..1 52us : <stack trace>
1599 => sub_preempt_count
1600 => irq_exit
1601 => do_IRQ
1602 => ret_from_intr
1603
1604
1605This has some more changes. Preemption was disabled when an
1606interrupt came in (notice the 'h'), and was enabled on exit.
1607But we also see that interrupts have been disabled when entering
1608the preempt off section and leaving it (the 'd'). We do not know if
1609interrupts were enabled in the mean time or shortly after this
1610was over.
1611::
1612
1613 # tracer: preemptoff
1614 #
1615 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1616 # --------------------------------------------------------------------
1617 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1618 # -----------------
1619 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1620 # -----------------
1621 # => started at: wake_up_new_task
1622 # => ended at: task_rq_unlock
1623 #
1624 #
1625 # _------=> CPU#
1626 # / _-----=> irqs-off
1627 # | / _----=> need-resched
1628 # || / _---=> hardirq/softirq
1629 # ||| / _--=> preempt-depth
1630 # |||| / delay
1631 # cmd pid ||||| time | caller
1632 # \ / ||||| \ | /
1633 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
1634 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
1635 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
1636 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1637 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1638 [...]
1639 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
1640 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
1641 bash-1994 1d..1 13us : add_preempt_count <-irq_enter
1642 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
1643 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1644 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
1645 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
1646 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt
1647 [...]
1648 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event
1649 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
1650 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
1651 bash-1994 1d..2 36us : do_softirq <-irq_exit
1652 bash-1994 1d..2 36us : __do_softirq <-call_softirq
1653 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
1654 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
1655 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
1656 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
1657 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq
1658 [...]
1659 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks
1660 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
1661 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
1662 bash-1994 1dN.2 82us : idle_cpu <-irq_exit
1663 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
1664 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
1665 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1666 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
1667 bash-1994 1.N.1 104us : <stack trace>
1668 => sub_preempt_count
1669 => _raw_spin_unlock_irqrestore
1670 => task_rq_unlock
1671 => wake_up_new_task
1672 => do_fork
1673 => sys_clone
1674 => stub_clone
1675
1676
1677The above is an example of the preemptoff trace with
1678function-trace set. Here we see that interrupts were not disabled
1679the entire time. The irq_enter code lets us know that we entered
1680an interrupt 'h'. Before that, the functions being traced still
1681show that it is not in an interrupt, but we can see from the
1682functions themselves that this is not the case.
1683
1684preemptirqsoff
1685--------------
1686
1687Knowing the locations that have interrupts disabled or
1688preemption disabled for the longest times is helpful. But
1689sometimes we would like to know when either preemption and/or
1690interrupts are disabled.
1691
1692Consider the following code::
1693
1694 local_irq_disable();
1695 call_function_with_irqs_off();
1696 preempt_disable();
1697 call_function_with_irqs_and_preemption_off();
1698 local_irq_enable();
1699 call_function_with_preemption_off();
1700 preempt_enable();
1701
1702The irqsoff tracer will record the total length of
1703call_function_with_irqs_off() and
1704call_function_with_irqs_and_preemption_off().
1705
1706The preemptoff tracer will record the total length of
1707call_function_with_irqs_and_preemption_off() and
1708call_function_with_preemption_off().
1709
1710But neither will trace the time that interrupts and/or
1711preemption is disabled. This total time is the time that we can
1712not schedule. To record this time, use the preemptirqsoff
1713tracer.
1714
1715Again, using this trace is much like the irqsoff and preemptoff
1716tracers.
1717::
1718
1719 # echo 0 > options/function-trace
1720 # echo preemptirqsoff > current_tracer
1721 # echo 1 > tracing_on
1722 # echo 0 > tracing_max_latency
1723 # ls -ltr
1724 [...]
1725 # echo 0 > tracing_on
1726 # cat trace
1727 # tracer: preemptirqsoff
1728 #
1729 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1730 # --------------------------------------------------------------------
1731 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1732 # -----------------
1733 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1734 # -----------------
1735 # => started at: ata_scsi_queuecmd
1736 # => ended at: ata_scsi_queuecmd
1737 #
1738 #
1739 # _------=> CPU#
1740 # / _-----=> irqs-off
1741 # | / _----=> need-resched
1742 # || / _---=> hardirq/softirq
1743 # ||| / _--=> preempt-depth
1744 # |||| / delay
1745 # cmd pid ||||| time | caller
1746 # \ / ||||| \ | /
1747 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1748 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1749 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
1750 ls-2230 3...1 111us : <stack trace>
1751 => sub_preempt_count
1752 => _raw_spin_unlock_irqrestore
1753 => ata_scsi_queuecmd
1754 => scsi_dispatch_cmd
1755 => scsi_request_fn
1756 => __blk_run_queue_uncond
1757 => __blk_run_queue
1758 => blk_queue_bio
ed00aabd 1759 => submit_bio_noacct
1f198e22
CD
1760 => submit_bio
1761 => submit_bh
1762 => ext3_bread
1763 => ext3_dir_bread
1764 => htree_dirblock_to_tree
1765 => ext3_htree_fill_tree
1766 => ext3_readdir
1767 => vfs_readdir
1768 => sys_getdents
1769 => system_call_fastpath
1770
1771
1772The trace_hardirqs_off_thunk is called from assembly on x86 when
1773interrupts are disabled in the assembly code. Without the
1774function tracing, we do not know if interrupts were enabled
1775within the preemption points. We do see that it started with
1776preemption enabled.
1777
1778Here is a trace with function-trace set::
1779
1780 # tracer: preemptirqsoff
1781 #
1782 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1783 # --------------------------------------------------------------------
1784 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1785 # -----------------
1786 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1787 # -----------------
1788 # => started at: schedule
1789 # => ended at: mutex_unlock
1790 #
1791 #
1792 # _------=> CPU#
1793 # / _-----=> irqs-off
1794 # | / _----=> need-resched
1795 # || / _---=> hardirq/softirq
1796 # ||| / _--=> preempt-depth
1797 # |||| / delay
1798 # cmd pid ||||| time | caller
1799 # \ / ||||| \ | /
1800 kworker/-59 3...1 0us : __schedule <-schedule
1801 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
1802 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
1803 kworker/-59 3d..2 1us : deactivate_task <-__schedule
1804 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
1805 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
1806 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
1807 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
1808 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
1809 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
1810 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
1811 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
1812 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1813 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
1814 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
1815 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
1816 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
1817 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
1818 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
1819 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
1820 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
1821 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
1822 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
1823 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
1824 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity
1825 ls-2269 3d..2 7us : finish_task_switch <-__schedule
1826 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
1827 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
1828 ls-2269 3d..2 8us : irq_enter <-do_IRQ
1829 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
1830 ls-2269 3d..2 9us : add_preempt_count <-irq_enter
1831 ls-2269 3d.h2 9us : exit_idle <-do_IRQ
1832 [...]
1833 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
1834 ls-2269 3d.h2 20us : irq_exit <-do_IRQ
1835 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
1836 ls-2269 3d..3 21us : do_softirq <-irq_exit
1837 ls-2269 3d..3 21us : __do_softirq <-call_softirq
1838 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
1839 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
1840 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
1841 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
1842 ls-2269 3d.s5 31us : irq_enter <-do_IRQ
1843 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1844 [...]
1845 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1846 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
1847 ls-2269 3d.H5 32us : exit_idle <-do_IRQ
1848 ls-2269 3d.H5 32us : handle_irq <-do_IRQ
1849 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
1850 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq
1851 [...]
1852 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1853 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1854 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
1855 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
1856 ls-2269 3d..3 159us : idle_cpu <-irq_exit
1857 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit
1858 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
1859 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
1860 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
1861 ls-2269 3d... 186us : <stack trace>
1862 => __mutex_unlock_slowpath
1863 => mutex_unlock
1864 => process_output
1865 => n_tty_write
1866 => tty_write
1867 => vfs_write
1868 => sys_write
1869 => system_call_fastpath
1870
1871This is an interesting trace. It started with kworker running and
1872scheduling out and ls taking over. But as soon as ls released the
1873rq lock and enabled interrupts (but not preemption) an interrupt
1874triggered. When the interrupt finished, it started running softirqs.
1875But while the softirq was running, another interrupt triggered.
1876When an interrupt is running inside a softirq, the annotation is 'H'.
1877
1878
1879wakeup
1880------
1881
1882One common case that people are interested in tracing is the
1883time it takes for a task that is woken to actually wake up.
1884Now for non Real-Time tasks, this can be arbitrary. But tracing
1885it none the less can be interesting.
1886
1887Without function tracing::
1888
1889 # echo 0 > options/function-trace
1890 # echo wakeup > current_tracer
1891 # echo 1 > tracing_on
1892 # echo 0 > tracing_max_latency
1893 # chrt -f 5 sleep 1
1894 # echo 0 > tracing_on
1895 # cat trace
1896 # tracer: wakeup
1897 #
1898 # wakeup latency trace v1.1.5 on 3.8.0-test+
1899 # --------------------------------------------------------------------
1900 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1901 # -----------------
1902 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1903 # -----------------
1904 #
1905 # _------=> CPU#
1906 # / _-----=> irqs-off
1907 # | / _----=> need-resched
1908 # || / _---=> hardirq/softirq
1909 # ||| / _--=> preempt-depth
1910 # |||| / delay
1911 # cmd pid ||||| time | caller
1912 # \ / ||||| \ | /
1913 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H
1914 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1915 <idle>-0 3d..3 15us : __schedule <-schedule
1916 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H
1917
1918The tracer only traces the highest priority task in the system
1919to avoid tracing the normal circumstances. Here we see that
1920the kworker with a nice priority of -20 (not very nice), took
1921just 15 microseconds from the time it woke up, to the time it
1922ran.
1923
1924Non Real-Time tasks are not that interesting. A more interesting
1925trace is to concentrate only on Real-Time tasks.
1926
1927wakeup_rt
1928---------
1929
1930In a Real-Time environment it is very important to know the
1931wakeup time it takes for the highest priority task that is woken
1932up to the time that it executes. This is also known as "schedule
1933latency". I stress the point that this is about RT tasks. It is
1934also important to know the scheduling latency of non-RT tasks,
1935but the average schedule latency is better for non-RT tasks.
1936Tools like LatencyTop are more appropriate for such
1937measurements.
1938
1939Real-Time environments are interested in the worst case latency.
1940That is the longest latency it takes for something to happen,
1941and not the average. We can have a very fast scheduler that may
1942only have a large latency once in a while, but that would not
1943work well with Real-Time tasks. The wakeup_rt tracer was designed
1944to record the worst case wakeups of RT tasks. Non-RT tasks are
1945not recorded because the tracer only records one worst case and
1946tracing non-RT tasks that are unpredictable will overwrite the
1947worst case latency of RT tasks (just run the normal wakeup
1948tracer for a while to see that effect).
1949
1950Since this tracer only deals with RT tasks, we will run this
1951slightly differently than we did with the previous tracers.
1952Instead of performing an 'ls', we will run 'sleep 1' under
1953'chrt' which changes the priority of the task.
1954::
1955
1956 # echo 0 > options/function-trace
1957 # echo wakeup_rt > current_tracer
1958 # echo 1 > tracing_on
1959 # echo 0 > tracing_max_latency
1960 # chrt -f 5 sleep 1
1961 # echo 0 > tracing_on
1962 # cat trace
1963 # tracer: wakeup
1964 #
1965 # tracer: wakeup_rt
1966 #
1967 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1968 # --------------------------------------------------------------------
1969 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1970 # -----------------
1971 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1972 # -----------------
1973 #
1974 # _------=> CPU#
1975 # / _-----=> irqs-off
1976 # | / _----=> need-resched
1977 # || / _---=> hardirq/softirq
1978 # ||| / _--=> preempt-depth
1979 # |||| / delay
1980 # cmd pid ||||| time | caller
1981 # \ / ||||| \ | /
1982 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
1983 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1984 <idle>-0 3d..3 5us : __schedule <-schedule
1985 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1986
1987
1988Running this on an idle system, we see that it only took 5 microseconds
1989to perform the task switch. Note, since the trace point in the schedule
1990is before the actual "switch", we stop the tracing when the recorded task
1991is about to schedule in. This may change if we add a new marker at the
1992end of the scheduler.
1993
1994Notice that the recorded task is 'sleep' with the PID of 2389
1995and it has an rt_prio of 5. This priority is user-space priority
1996and not the internal kernel priority. The policy is 1 for
1997SCHED_FIFO and 2 for SCHED_RR.
1998
1999Note, that the trace data shows the internal priority (99 - rtprio).
2000::
2001
2002 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
2003
2004The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
2005and in the running state 'R'. The sleep task was scheduled in with
20062389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
2007and it too is in the running state.
2008
2009Doing the same with chrt -r 5 and function-trace set.
2010::
2011
2012 echo 1 > options/function-trace
2013
2014 # tracer: wakeup_rt
2015 #
2016 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2017 # --------------------------------------------------------------------
2018 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2019 # -----------------
2020 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
2021 # -----------------
2022 #
2023 # _------=> CPU#
2024 # / _-----=> irqs-off
2025 # | / _----=> need-resched
2026 # || / _---=> hardirq/softirq
2027 # ||| / _--=> preempt-depth
2028 # |||| / delay
2029 # cmd pid ||||| time | caller
2030 # \ / ||||| \ | /
2031 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep
2032 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2033 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
2034 <idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr
2035 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
2036 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
2037 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
2038 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
2039 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
2040 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2041 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
2042 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
2043 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
2044 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
2045 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
2046 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event
2047 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
2048 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event
2049 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
2050 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
2051 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit
2052 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
2053 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
2054 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
2055 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
2056 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
2057 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
2058 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
2059 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
2060 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
2061 <idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit
2062 <idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz
2063 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
2064 <idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz
2065 <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update
2066 <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz
2067 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
2068 <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit
2069 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
2070 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
2071 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
2072 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
2073 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2074 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
2075 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
2076 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
2077 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram
2078 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event
2079 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
2080 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event
2081 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
2082 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2083 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
2084 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
2085 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
2086 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2087 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
2088 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
2089 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2090 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
2091 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
2092 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
2093 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns
2094 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event
2095 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
2096 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event
2097 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
2098 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2099 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
2100 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
2101 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
2102 <idle>-0 3.N.. 25us : schedule <-cpu_idle
2103 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule
2104 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule
2105 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
2106 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
2107 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
2108 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
2109 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
2110 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
2111 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
2112 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
2113 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
2114 <idle>-0 3d..3 29us : __schedule <-preempt_schedule
2115 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep
2116
2117This isn't that big of a trace, even with function tracing enabled,
2118so I included the entire trace.
2119
2120The interrupt went off while when the system was idle. Somewhere
2121before task_woken_rt() was called, the NEED_RESCHED flag was set,
2122this is indicated by the first occurrence of the 'N' flag.
2123
2124Latency tracing and events
2125--------------------------
2126As function tracing can induce a much larger latency, but without
2127seeing what happens within the latency it is hard to know what
2128caused it. There is a middle ground, and that is with enabling
2129events.
2130::
2131
2132 # echo 0 > options/function-trace
2133 # echo wakeup_rt > current_tracer
2134 # echo 1 > events/enable
2135 # echo 1 > tracing_on
2136 # echo 0 > tracing_max_latency
2137 # chrt -f 5 sleep 1
2138 # echo 0 > tracing_on
2139 # cat trace
2140 # tracer: wakeup_rt
2141 #
2142 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2143 # --------------------------------------------------------------------
2144 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2145 # -----------------
2146 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
2147 # -----------------
2148 #
2149 # _------=> CPU#
2150 # / _-----=> irqs-off
2151 # | / _----=> need-resched
2152 # || / _---=> hardirq/softirq
2153 # ||| / _--=> preempt-depth
2154 # |||| / delay
2155 # cmd pid ||||| time | caller
2156 # \ / ||||| \ | /
2157 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
2158 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2159 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2160 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2161 <idle>-0 2.N.2 2us : power_end: cpu_id=2
2162 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
2163 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2164 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2165 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch
2166 <idle>-0 2.N.2 5us : rcu_utilization: End context switch
2167 <idle>-0 2d..3 6us : __schedule <-schedule
2168 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
2169
2170
2171Hardware Latency Detector
2172-------------------------
2173
2174The hardware latency detector is executed by enabling the "hwlat" tracer.
2175
2176NOTE, this tracer will affect the performance of the system as it will
2177periodically make a CPU constantly busy with interrupts disabled.
2178::
2179
2180 # echo hwlat > current_tracer
2181 # sleep 100
2182 # cat trace
2183 # tracer: hwlat
2184 #
b396bfde
SRV
2185 # entries-in-buffer/entries-written: 13/13 #P:8
2186 #
1f198e22
CD
2187 # _-----=> irqs-off
2188 # / _----=> need-resched
2189 # | / _---=> hardirq/softirq
2190 # || / _--=> preempt-depth
2191 # ||| / delay
2192 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2193 # | | | |||| | |
b396bfde
SRV
2194 <...>-1729 [001] d... 678.473449: #1 inner/outer(us): 11/12 ts:1581527483.343962693 count:6
2195 <...>-1729 [004] d... 689.556542: #2 inner/outer(us): 16/9 ts:1581527494.889008092 count:1
2196 <...>-1729 [005] d... 714.756290: #3 inner/outer(us): 16/16 ts:1581527519.678961629 count:5
2197 <...>-1729 [001] d... 718.788247: #4 inner/outer(us): 9/17 ts:1581527523.889012713 count:1
2198 <...>-1729 [002] d... 719.796341: #5 inner/outer(us): 13/9 ts:1581527524.912872606 count:1
2199 <...>-1729 [006] d... 844.787091: #6 inner/outer(us): 9/12 ts:1581527649.889048502 count:2
2200 <...>-1729 [003] d... 849.827033: #7 inner/outer(us): 18/9 ts:1581527654.889013793 count:1
2201 <...>-1729 [007] d... 853.859002: #8 inner/outer(us): 9/12 ts:1581527658.889065736 count:1
2202 <...>-1729 [001] d... 855.874978: #9 inner/outer(us): 9/11 ts:1581527660.861991877 count:1
2203 <...>-1729 [001] d... 863.938932: #10 inner/outer(us): 9/11 ts:1581527668.970010500 count:1 nmi-total:7 nmi-count:1
2204 <...>-1729 [007] d... 878.050780: #11 inner/outer(us): 9/12 ts:1581527683.385002600 count:1 nmi-total:5 nmi-count:1
2205 <...>-1729 [007] d... 886.114702: #12 inner/outer(us): 9/12 ts:1581527691.385001600 count:1
1f198e22
CD
2206
2207
2208The above output is somewhat the same in the header. All events will have
2209interrupts disabled 'd'. Under the FUNCTION title there is:
2210
2211 #1
2212 This is the count of events recorded that were greater than the
2213 tracing_threshold (See below).
2214
b396bfde 2215 inner/outer(us): 11/11
1f198e22
CD
2216
2217 This shows two numbers as "inner latency" and "outer latency". The test
2218 runs in a loop checking a timestamp twice. The latency detected within
2219 the two timestamps is the "inner latency" and the latency detected
2220 after the previous timestamp and the next timestamp in the loop is
2221 the "outer latency".
2222
b396bfde
SRV
2223 ts:1581527483.343962693
2224
2225 The absolute timestamp that the first latency was recorded in the window.
2226
2227 count:6
1f198e22 2228
b396bfde 2229 The number of times a latency was detected during the window.
1f198e22 2230
b396bfde 2231 nmi-total:7 nmi-count:1
1f198e22
CD
2232
2233 On architectures that support it, if an NMI comes in during the
2234 test, the time spent in NMI is reported in "nmi-total" (in
2235 microseconds).
2236
2237 All architectures that have NMIs will show the "nmi-count" if an
2238 NMI comes in during the test.
2239
2240hwlat files:
2241
2242 tracing_threshold
2243 This gets automatically set to "10" to represent 10
2244 microseconds. This is the threshold of latency that
2245 needs to be detected before the trace will be recorded.
2246
2247 Note, when hwlat tracer is finished (another tracer is
2248 written into "current_tracer"), the original value for
2249 tracing_threshold is placed back into this file.
2250
2251 hwlat_detector/width
2252 The length of time the test runs with interrupts disabled.
2253
2254 hwlat_detector/window
2255 The length of time of the window which the test
2256 runs. That is, the test will run for "width"
2257 microseconds per "window" microseconds
2258
2259 tracing_cpumask
2260 When the test is started. A kernel thread is created that
2261 runs the test. This thread will alternate between CPUs
2262 listed in the tracing_cpumask between each period
2263 (one "window"). To limit the test to specific CPUs
2264 set the mask in this file to only the CPUs that the test
2265 should run on.
2266
2267function
2268--------
2269
2270This tracer is the function tracer. Enabling the function tracer
2271can be done from the debug file system. Make sure the
2272ftrace_enabled is set; otherwise this tracer is a nop.
2273See the "ftrace_enabled" section below.
2274::
2275
2276 # sysctl kernel.ftrace_enabled=1
2277 # echo function > current_tracer
2278 # echo 1 > tracing_on
2279 # usleep 1
2280 # echo 0 > tracing_on
2281 # cat trace
2282 # tracer: function
2283 #
2284 # entries-in-buffer/entries-written: 24799/24799 #P:4
2285 #
2286 # _-----=> irqs-off
2287 # / _----=> need-resched
2288 # | / _---=> hardirq/softirq
2289 # || / _--=> preempt-depth
2290 # ||| / delay
2291 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2292 # | | | |||| | |
2293 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write
2294 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2295 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify
2296 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
2297 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
2298 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock
2299 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock
2300 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify
2301 [...]
2302
2303
2304Note: function tracer uses ring buffers to store the above
2305entries. The newest data may overwrite the oldest data.
2306Sometimes using echo to stop the trace is not sufficient because
2307the tracing could have overwritten the data that you wanted to
2308record. For this reason, it is sometimes better to disable
2309tracing directly from a program. This allows you to stop the
2310tracing at the point that you hit the part that you are
2311interested in. To disable the tracing directly from a C program,
2312something like following code snippet can be used::
2313
2314 int trace_fd;
2315 [...]
2316 int main(int argc, char *argv[]) {
2317 [...]
2318 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2319 [...]
2320 if (condition_hit()) {
2321 write(trace_fd, "0", 1);
2322 }
2323 [...]
2324 }
2325
2326
2327Single thread tracing
2328---------------------
2329
2330By writing into set_ftrace_pid you can trace a
2331single thread. For example::
2332
2333 # cat set_ftrace_pid
2334 no pid
2335 # echo 3111 > set_ftrace_pid
2336 # cat set_ftrace_pid
2337 3111
2338 # echo function > current_tracer
2339 # cat trace | head
2340 # tracer: function
2341 #
2342 # TASK-PID CPU# TIMESTAMP FUNCTION
2343 # | | | | |
2344 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
2345 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2346 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2347 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2348 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
2349 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
2350 # echo > set_ftrace_pid
2351 # cat trace |head
2352 # tracer: function
2353 #
2354 # TASK-PID CPU# TIMESTAMP FUNCTION
2355 # | | | | |
2356 ##### CPU 3 buffer started ####
2357 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
2358 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
2359 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
2360 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
2361 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
2362
2363If you want to trace a function when executing, you could use
2364something like this simple program.
2365::
2366
2367 #include <stdio.h>
2368 #include <stdlib.h>
2369 #include <sys/types.h>
2370 #include <sys/stat.h>
2371 #include <fcntl.h>
2372 #include <unistd.h>
2373 #include <string.h>
2374
2375 #define _STR(x) #x
2376 #define STR(x) _STR(x)
2377 #define MAX_PATH 256
2378
2379 const char *find_tracefs(void)
2380 {
2381 static char tracefs[MAX_PATH+1];
2382 static int tracefs_found;
2383 char type[100];
2384 FILE *fp;
2385
2386 if (tracefs_found)
2387 return tracefs;
2388
2389 if ((fp = fopen("/proc/mounts","r")) == NULL) {
2390 perror("/proc/mounts");
2391 return NULL;
2392 }
2393
2394 while (fscanf(fp, "%*s %"
2395 STR(MAX_PATH)
2396 "s %99s %*s %*d %*d\n",
2397 tracefs, type) == 2) {
2398 if (strcmp(type, "tracefs") == 0)
2399 break;
2400 }
2401 fclose(fp);
2402
2403 if (strcmp(type, "tracefs") != 0) {
2404 fprintf(stderr, "tracefs not mounted");
2405 return NULL;
2406 }
2407
2408 strcat(tracefs, "/tracing/");
2409 tracefs_found = 1;
2410
2411 return tracefs;
2412 }
2413
2414 const char *tracing_file(const char *file_name)
2415 {
2416 static char trace_file[MAX_PATH+1];
2417 snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2418 return trace_file;
2419 }
2420
2421 int main (int argc, char **argv)
2422 {
2423 if (argc < 1)
2424 exit(-1);
2425
2426 if (fork() > 0) {
2427 int fd, ffd;
2428 char line[64];
2429 int s;
2430
2431 ffd = open(tracing_file("current_tracer"), O_WRONLY);
2432 if (ffd < 0)
2433 exit(-1);
2434 write(ffd, "nop", 3);
2435
2436 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2437 s = sprintf(line, "%d\n", getpid());
2438 write(fd, line, s);
2439
2440 write(ffd, "function", 8);
2441
2442 close(fd);
2443 close(ffd);
2444
2445 execvp(argv[1], argv+1);
2446 }
2447
2448 return 0;
2449 }
2450
2451Or this simple script!
2452::
2453
2454 #!/bin/bash
2455
2456 tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
951e0d00
ZL
2457 echo 0 > $tracefs/tracing_on
2458 echo $$ > $tracefs/set_ftrace_pid
2459 echo function > $tracefs/current_tracer
2460 echo 1 > $tracefs/tracing_on
1f198e22
CD
2461 exec "$@"
2462
2463
2464function graph tracer
2465---------------------------
2466
2467This tracer is similar to the function tracer except that it
2468probes a function on its entry and its exit. This is done by
2469using a dynamically allocated stack of return addresses in each
2470task_struct. On function entry the tracer overwrites the return
2471address of each function traced to set a custom probe. Thus the
2472original return address is stored on the stack of return address
2473in the task_struct.
2474
2475Probing on both ends of a function leads to special features
2476such as:
2477
2478- measure of a function's time execution
2479- having a reliable call stack to draw function calls graph
2480
2481This tracer is useful in several situations:
2482
2483- you want to find the reason of a strange kernel behavior and
2484 need to see what happens in detail on any areas (or specific
2485 ones).
2486
2487- you are experiencing weird latencies but it's difficult to
2488 find its origin.
2489
2490- you want to find quickly which path is taken by a specific
2491 function
2492
2493- you just want to peek inside a working kernel and want to see
2494 what happens there.
2495
2496::
2497
2498 # tracer: function_graph
2499 #
2500 # CPU DURATION FUNCTION CALLS
2501 # | | | | | | |
2502
2503 0) | sys_open() {
2504 0) | do_sys_open() {
2505 0) | getname() {
2506 0) | kmem_cache_alloc() {
2507 0) 1.382 us | __might_sleep();
2508 0) 2.478 us | }
2509 0) | strncpy_from_user() {
2510 0) | might_fault() {
2511 0) 1.389 us | __might_sleep();
2512 0) 2.553 us | }
2513 0) 3.807 us | }
2514 0) 7.876 us | }
2515 0) | alloc_fd() {
2516 0) 0.668 us | _spin_lock();
2517 0) 0.570 us | expand_files();
2518 0) 0.586 us | _spin_unlock();
2519
2520
2521There are several columns that can be dynamically
2522enabled/disabled. You can use every combination of options you
2523want, depending on your needs.
2524
2525- The cpu number on which the function executed is default
2526 enabled. It is sometimes better to only trace one cpu (see
2527 tracing_cpu_mask file) or you might sometimes see unordered
2528 function calls while cpu tracing switch.
2529
2530 - hide: echo nofuncgraph-cpu > trace_options
2531 - show: echo funcgraph-cpu > trace_options
2532
2533- The duration (function's time of execution) is displayed on
2534 the closing bracket line of a function or on the same line
2535 than the current function in case of a leaf one. It is default
2536 enabled.
2537
2538 - hide: echo nofuncgraph-duration > trace_options
2539 - show: echo funcgraph-duration > trace_options
2540
2541- The overhead field precedes the duration field in case of
2542 reached duration thresholds.
2543
2544 - hide: echo nofuncgraph-overhead > trace_options
2545 - show: echo funcgraph-overhead > trace_options
2546 - depends on: funcgraph-duration
2547
2548 ie::
2549
2550 3) # 1837.709 us | } /* __switch_to */
2551 3) | finish_task_switch() {
2552 3) 0.313 us | _raw_spin_unlock_irq();
2553 3) 3.177 us | }
2554 3) # 1889.063 us | } /* __schedule */
2555 3) ! 140.417 us | } /* __schedule */
2556 3) # 2034.948 us | } /* schedule */
2557 3) * 33998.59 us | } /* schedule_preempt_disabled */
2558
2559 [...]
2560
2561 1) 0.260 us | msecs_to_jiffies();
2562 1) 0.313 us | __rcu_read_unlock();
2563 1) + 61.770 us | }
2564 1) + 64.479 us | }
2565 1) 0.313 us | rcu_bh_qs();
2566 1) 0.313 us | __local_bh_enable();
2567 1) ! 217.240 us | }
2568 1) 0.365 us | idle_cpu();
2569 1) | rcu_irq_exit() {
2570 1) 0.417 us | rcu_eqs_enter_common.isra.47();
2571 1) 3.125 us | }
2572 1) ! 227.812 us | }
2573 1) ! 457.395 us | }
2574 1) @ 119760.2 us | }
2575
2576 [...]
2577
2578 2) | handle_IPI() {
2579 1) 6.979 us | }
2580 2) 0.417 us | scheduler_ipi();
2581 1) 9.791 us | }
2582 1) + 12.917 us | }
2583 2) 3.490 us | }
2584 1) + 15.729 us | }
2585 1) + 18.542 us | }
2586 2) $ 3594274 us | }
2587
2588Flags::
2589
2590 + means that the function exceeded 10 usecs.
2591 ! means that the function exceeded 100 usecs.
2592 # means that the function exceeded 1000 usecs.
2593 * means that the function exceeded 10 msecs.
2594 @ means that the function exceeded 100 msecs.
2595 $ means that the function exceeded 1 sec.
2596
2597
2598- The task/pid field displays the thread cmdline and pid which
2599 executed the function. It is default disabled.
2600
2601 - hide: echo nofuncgraph-proc > trace_options
2602 - show: echo funcgraph-proc > trace_options
2603
2604 ie::
2605
2606 # tracer: function_graph
2607 #
2608 # CPU TASK/PID DURATION FUNCTION CALLS
2609 # | | | | | | | | |
2610 0) sh-4802 | | d_free() {
2611 0) sh-4802 | | call_rcu() {
2612 0) sh-4802 | | __call_rcu() {
2613 0) sh-4802 | 0.616 us | rcu_process_gp_end();
2614 0) sh-4802 | 0.586 us | check_for_new_grace_period();
2615 0) sh-4802 | 2.899 us | }
2616 0) sh-4802 | 4.040 us | }
2617 0) sh-4802 | 5.151 us | }
2618 0) sh-4802 | + 49.370 us | }
2619
2620
2621- The absolute time field is an absolute timestamp given by the
2622 system clock since it started. A snapshot of this time is
2623 given on each entry/exit of functions
2624
2625 - hide: echo nofuncgraph-abstime > trace_options
2626 - show: echo funcgraph-abstime > trace_options
2627
2628 ie::
2629
2630 #
2631 # TIME CPU DURATION FUNCTION CALLS
2632 # | | | | | | | |
2633 360.774522 | 1) 0.541 us | }
2634 360.774522 | 1) 4.663 us | }
2635 360.774523 | 1) 0.541 us | __wake_up_bit();
2636 360.774524 | 1) 6.796 us | }
2637 360.774524 | 1) 7.952 us | }
2638 360.774525 | 1) 9.063 us | }
2639 360.774525 | 1) 0.615 us | journal_mark_dirty();
2640 360.774527 | 1) 0.578 us | __brelse();
2641 360.774528 | 1) | reiserfs_prepare_for_journal() {
2642 360.774528 | 1) | unlock_buffer() {
2643 360.774529 | 1) | wake_up_bit() {
2644 360.774529 | 1) | bit_waitqueue() {
2645 360.774530 | 1) 0.594 us | __phys_addr();
2646
2647
2648The function name is always displayed after the closing bracket
2649for a function if the start of that function is not in the
2650trace buffer.
2651
2652Display of the function name after the closing bracket may be
2653enabled for functions whose start is in the trace buffer,
2654allowing easier searching with grep for function durations.
2655It is default disabled.
2656
2657 - hide: echo nofuncgraph-tail > trace_options
2658 - show: echo funcgraph-tail > trace_options
2659
2660 Example with nofuncgraph-tail (default)::
2661
2662 0) | putname() {
2663 0) | kmem_cache_free() {
2664 0) 0.518 us | __phys_addr();
2665 0) 1.757 us | }
2666 0) 2.861 us | }
2667
2668 Example with funcgraph-tail::
2669
2670 0) | putname() {
2671 0) | kmem_cache_free() {
2672 0) 0.518 us | __phys_addr();
2673 0) 1.757 us | } /* kmem_cache_free() */
2674 0) 2.861 us | } /* putname() */
2675
2676You can put some comments on specific functions by using
2677trace_printk() For example, if you want to put a comment inside
2678the __might_sleep() function, you just have to include
2679<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2680
2681 trace_printk("I'm a comment!\n")
2682
2683will produce::
2684
2685 1) | __might_sleep() {
2686 1) | /* I'm a comment! */
2687 1) 1.449 us | }
2688
2689
2690You might find other useful features for this tracer in the
2691following "dynamic ftrace" section such as tracing only specific
2692functions or tasks.
2693
2694dynamic ftrace
2695--------------
2696
2697If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2698virtually no overhead when function tracing is disabled. The way
2699this works is the mcount function call (placed at the start of
2700every kernel function, produced by the -pg switch in gcc),
2701starts of pointing to a simple return. (Enabling FTRACE will
2702include the -pg switch in the compiling of the kernel.)
2703
2704At compile time every C file object is run through the
2705recordmcount program (located in the scripts directory). This
2706program will parse the ELF headers in the C object to find all
2707the locations in the .text section that call mcount. Starting
2a1e03ca 2708with gcc version 4.6, the -mfentry has been added for x86, which
1f198e22
CD
2709calls "__fentry__" instead of "mcount". Which is called before
2710the creation of the stack frame.
2711
2712Note, not all sections are traced. They may be prevented by either
2713a notrace, or blocked another way and all inline functions are not
2714traced. Check the "available_filter_functions" file to see what functions
2715can be traced.
2716
2717A section called "__mcount_loc" is created that holds
2718references to all the mcount/fentry call sites in the .text section.
2719The recordmcount program re-links this section back into the
2720original object. The final linking stage of the kernel will add all these
2721references into a single table.
2722
2723On boot up, before SMP is initialized, the dynamic ftrace code
2724scans this table and updates all the locations into nops. It
2725also records the locations, which are added to the
2726available_filter_functions list. Modules are processed as they
2727are loaded and before they are executed. When a module is
2728unloaded, it also removes its functions from the ftrace function
2729list. This is automatic in the module unload code, and the
2730module author does not need to worry about it.
2731
2732When tracing is enabled, the process of modifying the function
2733tracepoints is dependent on architecture. The old method is to use
2734kstop_machine to prevent races with the CPUs executing code being
2735modified (which can cause the CPU to do undesirable things, especially
2736if the modified code crosses cache (or page) boundaries), and the nops are
2737patched back to calls. But this time, they do not call mcount
2738(which is just a function stub). They now call into the ftrace
2739infrastructure.
2740
2741The new method of modifying the function tracepoints is to place
2742a breakpoint at the location to be modified, sync all CPUs, modify
2743the rest of the instruction not covered by the breakpoint. Sync
2744all CPUs again, and then remove the breakpoint with the finished
2745version to the ftrace call site.
2746
2747Some archs do not even need to monkey around with the synchronization,
2748and can just slap the new code on top of the old without any
2749problems with other CPUs executing it at the same time.
2750
2751One special side-effect to the recording of the functions being
2752traced is that we can now selectively choose which functions we
2753wish to trace and which ones we want the mcount calls to remain
2754as nops.
2755
2756Two files are used, one for enabling and one for disabling the
2757tracing of specified functions. They are:
2758
2759 set_ftrace_filter
2760
2761and
2762
2763 set_ftrace_notrace
2764
2765A list of available functions that you can add to these files is
2766listed in:
2767
2768 available_filter_functions
2769
2770::
2771
2772 # cat available_filter_functions
2773 put_prev_task_idle
2774 kmem_cache_create
2775 pick_next_task_rt
c7483d82 2776 cpus_read_lock
1f198e22
CD
2777 pick_next_task_fair
2778 mutex_lock
2779 [...]
2780
2781If I am only interested in sys_nanosleep and hrtimer_interrupt::
2782
2783 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2784 # echo function > current_tracer
2785 # echo 1 > tracing_on
2786 # usleep 1
2787 # echo 0 > tracing_on
2788 # cat trace
2789 # tracer: function
2790 #
2791 # entries-in-buffer/entries-written: 5/5 #P:4
2792 #
2793 # _-----=> irqs-off
2794 # / _----=> need-resched
2795 # | / _---=> hardirq/softirq
2796 # || / _--=> preempt-depth
2797 # ||| / delay
2798 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2799 # | | | |||| | |
2800 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath
2801 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2802 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2803 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2804 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2805
2806To see which functions are being traced, you can cat the file:
2807::
2808
2809 # cat set_ftrace_filter
2810 hrtimer_interrupt
2811 sys_nanosleep
2812
2813
2814Perhaps this is not enough. The filters also allow glob(7) matching.
2815
6234c7bd 2816 ``<match>*``
1f198e22 2817 will match functions that begin with <match>
6234c7bd 2818 ``*<match>``
1f198e22 2819 will match functions that end with <match>
6234c7bd 2820 ``*<match>*``
1f198e22 2821 will match functions that have <match> in it
6234c7bd 2822 ``<match1>*<match2>``
1f198e22
CD
2823 will match functions that begin with <match1> and end with <match2>
2824
2825.. note::
2826 It is better to use quotes to enclose the wild cards,
2827 otherwise the shell may expand the parameters into names
2828 of files in the local directory.
2829
2830::
2831
2832 # echo 'hrtimer_*' > set_ftrace_filter
2833
2834Produces::
2835
2836 # tracer: function
2837 #
2838 # entries-in-buffer/entries-written: 897/897 #P:4
2839 #
2840 # _-----=> irqs-off
2841 # / _----=> need-resched
2842 # | / _---=> hardirq/softirq
2843 # || / _--=> preempt-depth
2844 # ||| / delay
2845 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2846 # | | | |||| | |
2847 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2848 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2849 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2850 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2851 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2852 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2853 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2854 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem
2855
2856Notice that we lost the sys_nanosleep.
2857::
2858
2859 # cat set_ftrace_filter
2860 hrtimer_run_queues
2861 hrtimer_run_pending
2862 hrtimer_init
2863 hrtimer_cancel
2864 hrtimer_try_to_cancel
2865 hrtimer_forward
2866 hrtimer_start
2867 hrtimer_reprogram
2868 hrtimer_force_reprogram
2869 hrtimer_get_next_event
2870 hrtimer_interrupt
2871 hrtimer_nanosleep
2872 hrtimer_wakeup
2873 hrtimer_get_remaining
2874 hrtimer_get_res
2875 hrtimer_init_sleeper
2876
2877
2878This is because the '>' and '>>' act just like they do in bash.
2879To rewrite the filters, use '>'
2880To append to the filters, use '>>'
2881
2882To clear out a filter so that all functions will be recorded
2883again::
2884
2885 # echo > set_ftrace_filter
2886 # cat set_ftrace_filter
2887 #
2888
2889Again, now we want to append.
2890
2891::
2892
2893 # echo sys_nanosleep > set_ftrace_filter
2894 # cat set_ftrace_filter
2895 sys_nanosleep
2896 # echo 'hrtimer_*' >> set_ftrace_filter
2897 # cat set_ftrace_filter
2898 hrtimer_run_queues
2899 hrtimer_run_pending
2900 hrtimer_init
2901 hrtimer_cancel
2902 hrtimer_try_to_cancel
2903 hrtimer_forward
2904 hrtimer_start
2905 hrtimer_reprogram
2906 hrtimer_force_reprogram
2907 hrtimer_get_next_event
2908 hrtimer_interrupt
2909 sys_nanosleep
2910 hrtimer_nanosleep
2911 hrtimer_wakeup
2912 hrtimer_get_remaining
2913 hrtimer_get_res
2914 hrtimer_init_sleeper
2915
2916
2917The set_ftrace_notrace prevents those functions from being
2918traced.
2919::
2920
2921 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2922
2923Produces::
2924
2925 # tracer: function
2926 #
2927 # entries-in-buffer/entries-written: 39608/39608 #P:4
2928 #
2929 # _-----=> irqs-off
2930 # / _----=> need-resched
2931 # | / _---=> hardirq/softirq
2932 # || / _--=> preempt-depth
2933 # ||| / delay
2934 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2935 # | | | |||| | |
2936 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open
2937 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last
2938 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
2939 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check
2940 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement
2941 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action
2942 bash-1994 [000] .... 4342.324899: do_truncate <-do_last
2943 bash-1994 [000] .... 4342.324899: should_remove_suid <-do_truncate
2944 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
2945 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change
2946 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time
2947 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time
2948
2949We can see that there's no more lock or preempt tracing.
2950
f79b3f33
SRV
2951Selecting function filters via index
2952------------------------------------
2953
2954Because processing of strings is expensive (the address of the function
2955needs to be looked up before comparing to the string being passed in),
2956an index can be used as well to enable functions. This is useful in the
2957case of setting thousands of specific functions at a time. By passing
2958in a list of numbers, no string processing will occur. Instead, the function
2959at the specific location in the internal array (which corresponds to the
2960functions in the "available_filter_functions" file), is selected.
2961
2962::
2963
2964 # echo 1 > set_ftrace_filter
2965
2966Will select the first function listed in "available_filter_functions"
2967
2968::
2969
2970 # head -1 available_filter_functions
2971 trace_initcall_finish_cb
2972
2973 # cat set_ftrace_filter
2974 trace_initcall_finish_cb
2975
2976 # head -50 available_filter_functions | tail -1
2977 x86_pmu_commit_txn
2978
2979 # echo 1 50 > set_ftrace_filter
2980 # cat set_ftrace_filter
2981 trace_initcall_finish_cb
2982 x86_pmu_commit_txn
1f198e22
CD
2983
2984Dynamic ftrace with the function graph tracer
2985---------------------------------------------
2986
2987Although what has been explained above concerns both the
2988function tracer and the function-graph-tracer, there are some
2989special features only available in the function-graph tracer.
2990
2991If you want to trace only one function and all of its children,
2992you just have to echo its name into set_graph_function::
2993
2994 echo __do_fault > set_graph_function
2995
2996will produce the following "expanded" trace of the __do_fault()
2997function::
2998
2999 0) | __do_fault() {
3000 0) | filemap_fault() {
3001 0) | find_lock_page() {
3002 0) 0.804 us | find_get_page();
3003 0) | __might_sleep() {
3004 0) 1.329 us | }
3005 0) 3.904 us | }
3006 0) 4.979 us | }
3007 0) 0.653 us | _spin_lock();
3008 0) 0.578 us | page_add_file_rmap();
3009 0) 0.525 us | native_set_pte_at();
3010 0) 0.585 us | _spin_unlock();
3011 0) | unlock_page() {
3012 0) 0.541 us | page_waitqueue();
3013 0) 0.639 us | __wake_up_bit();
3014 0) 2.786 us | }
3015 0) + 14.237 us | }
3016 0) | __do_fault() {
3017 0) | filemap_fault() {
3018 0) | find_lock_page() {
3019 0) 0.698 us | find_get_page();
3020 0) | __might_sleep() {
3021 0) 1.412 us | }
3022 0) 3.950 us | }
3023 0) 5.098 us | }
3024 0) 0.631 us | _spin_lock();
3025 0) 0.571 us | page_add_file_rmap();
3026 0) 0.526 us | native_set_pte_at();
3027 0) 0.586 us | _spin_unlock();
3028 0) | unlock_page() {
3029 0) 0.533 us | page_waitqueue();
3030 0) 0.638 us | __wake_up_bit();
3031 0) 2.793 us | }
3032 0) + 14.012 us | }
3033
3034You can also expand several functions at once::
3035
3036 echo sys_open > set_graph_function
3037 echo sys_close >> set_graph_function
3038
3039Now if you want to go back to trace all functions you can clear
3040this special filter via::
3041
3042 echo > set_graph_function
3043
3044
3045ftrace_enabled
3046--------------
3047
3048Note, the proc sysctl ftrace_enable is a big on/off switch for the
3049function tracer. By default it is enabled (when function tracing is
3050enabled in the kernel). If it is disabled, all function tracing is
3051disabled. This includes not only the function tracers for ftrace, but
7162431d
MB
3052also for any other uses (perf, kprobes, stack tracing, profiling, etc). It
3053cannot be disabled if there is a callback with FTRACE_OPS_FL_PERMANENT set
3054registered.
1f198e22
CD
3055
3056Please disable this with care.
3057
3058This can be disable (and enabled) with::
3059
3060 sysctl kernel.ftrace_enabled=0
3061 sysctl kernel.ftrace_enabled=1
3062
3063 or
3064
3065 echo 0 > /proc/sys/kernel/ftrace_enabled
3066 echo 1 > /proc/sys/kernel/ftrace_enabled
3067
3068
3069Filter commands
3070---------------
3071
3072A few commands are supported by the set_ftrace_filter interface.
3073Trace commands have the following format::
3074
3075 <function>:<command>:<parameter>
3076
3077The following commands are supported:
3078
3079- mod:
3080 This command enables function filtering per module. The
3081 parameter defines the module. For example, if only the write*
3082 functions in the ext3 module are desired, run:
3083
3084 echo 'write*:mod:ext3' > set_ftrace_filter
3085
3086 This command interacts with the filter in the same way as
3087 filtering based on function names. Thus, adding more functions
3088 in a different module is accomplished by appending (>>) to the
3089 filter file. Remove specific module functions by prepending
3090 '!'::
3091
3092 echo '!writeback*:mod:ext3' >> set_ftrace_filter
3093
3094 Mod command supports module globbing. Disable tracing for all
3095 functions except a specific module::
3096
3097 echo '!*:mod:!ext3' >> set_ftrace_filter
3098
3099 Disable tracing for all modules, but still trace kernel::
3100
3101 echo '!*:mod:*' >> set_ftrace_filter
3102
3103 Enable filter only for kernel::
3104
3105 echo '*write*:mod:!*' >> set_ftrace_filter
3106
3107 Enable filter for module globbing::
3108
3109 echo '*write*:mod:*snd*' >> set_ftrace_filter
3110
3111- traceon/traceoff:
3112 These commands turn tracing on and off when the specified
3113 functions are hit. The parameter determines how many times the
3114 tracing system is turned on and off. If unspecified, there is
3115 no limit. For example, to disable tracing when a schedule bug
3116 is hit the first 5 times, run::
3117
3118 echo '__schedule_bug:traceoff:5' > set_ftrace_filter
3119
3120 To always disable tracing when __schedule_bug is hit::
3121
3122 echo '__schedule_bug:traceoff' > set_ftrace_filter
3123
3124 These commands are cumulative whether or not they are appended
3125 to set_ftrace_filter. To remove a command, prepend it by '!'
3126 and drop the parameter::
3127
3128 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
3129
3130 The above removes the traceoff command for __schedule_bug
3131 that have a counter. To remove commands without counters::
3132
3133 echo '!__schedule_bug:traceoff' > set_ftrace_filter
3134
3135- snapshot:
3136 Will cause a snapshot to be triggered when the function is hit.
3137 ::
3138
3139 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
3140
3141 To only snapshot once:
3142 ::
3143
3144 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
3145
3146 To remove the above commands::
3147
3148 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
3149 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
3150
3151- enable_event/disable_event:
3152 These commands can enable or disable a trace event. Note, because
3153 function tracing callbacks are very sensitive, when these commands
3154 are registered, the trace point is activated, but disabled in
3155 a "soft" mode. That is, the tracepoint will be called, but
3156 just will not be traced. The event tracepoint stays in this mode
3157 as long as there's a command that triggers it.
3158 ::
3159
3160 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
3161 set_ftrace_filter
3162
3163 The format is::
3164
3165 <function>:enable_event:<system>:<event>[:count]
3166 <function>:disable_event:<system>:<event>[:count]
3167
3168 To remove the events commands::
3169
3170 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
3171 set_ftrace_filter
3172 echo '!schedule:disable_event:sched:sched_switch' > \
3173 set_ftrace_filter
3174
3175- dump:
3176 When the function is hit, it will dump the contents of the ftrace
3177 ring buffer to the console. This is useful if you need to debug
3178 something, and want to dump the trace when a certain function
2a1e03ca 3179 is hit. Perhaps it's a function that is called before a triple
1f198e22
CD
3180 fault happens and does not allow you to get a regular dump.
3181
3182- cpudump:
3183 When the function is hit, it will dump the contents of the ftrace
3184 ring buffer for the current CPU to the console. Unlike the "dump"
3185 command, it only prints out the contents of the ring buffer for the
3186 CPU that executed the function that triggered the dump.
3187
8a2933cf
MH
3188- stacktrace:
3189 When the function is hit, a stack trace is recorded.
3190
1f198e22
CD
3191trace_pipe
3192----------
3193
3194The trace_pipe outputs the same content as the trace file, but
3195the effect on the tracing is different. Every read from
3196trace_pipe is consumed. This means that subsequent reads will be
3197different. The trace is live.
3198::
3199
3200 # echo function > current_tracer
3201 # cat trace_pipe > /tmp/trace.out &
3202 [1] 4153
3203 # echo 1 > tracing_on
3204 # usleep 1
3205 # echo 0 > tracing_on
3206 # cat trace
3207 # tracer: function
3208 #
3209 # entries-in-buffer/entries-written: 0/0 #P:4
3210 #
3211 # _-----=> irqs-off
3212 # / _----=> need-resched
3213 # | / _---=> hardirq/softirq
3214 # || / _--=> preempt-depth
3215 # ||| / delay
3216 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3217 # | | | |||| | |
3218
3219 #
3220 # cat /tmp/trace.out
3221 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write
3222 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3223 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify
3224 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
3225 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
3226 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock
3227 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock
3228 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify
3229 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath
3230
3231
3232Note, reading the trace_pipe file will block until more input is
f12fcca6
PW
3233added. This is contrary to the trace file. If any process opened
3234the trace file for reading, it will actually disable tracing and
3235prevent new entries from being added. The trace_pipe file does
3236not have this limitation.
1f198e22
CD
3237
3238trace entries
3239-------------
3240
3241Having too much or not enough data can be troublesome in
3242diagnosing an issue in the kernel. The file buffer_size_kb is
3243used to modify the size of the internal trace buffers. The
3244number listed is the number of entries that can be recorded per
3245CPU. To know the full size, multiply the number of possible CPUs
3246with the number of entries.
3247::
3248
3249 # cat buffer_size_kb
3250 1408 (units kilobytes)
3251
3252Or simply read buffer_total_size_kb
3253::
3254
3255 # cat buffer_total_size_kb
3256 5632
3257
3258To modify the buffer, simple echo in a number (in 1024 byte segments).
3259::
3260
3261 # echo 10000 > buffer_size_kb
3262 # cat buffer_size_kb
3263 10000 (units kilobytes)
3264
3265It will try to allocate as much as possible. If you allocate too
3266much, it can cause Out-Of-Memory to trigger.
3267::
3268
3269 # echo 1000000000000 > buffer_size_kb
3270 -bash: echo: write error: Cannot allocate memory
3271 # cat buffer_size_kb
3272 85
3273
3274The per_cpu buffers can be changed individually as well:
3275::
3276
3277 # echo 10000 > per_cpu/cpu0/buffer_size_kb
3278 # echo 100 > per_cpu/cpu1/buffer_size_kb
3279
3280When the per_cpu buffers are not the same, the buffer_size_kb
3281at the top level will just show an X
3282::
3283
3284 # cat buffer_size_kb
3285 X
3286
3287This is where the buffer_total_size_kb is useful:
3288::
3289
3290 # cat buffer_total_size_kb
3291 12916
3292
3293Writing to the top level buffer_size_kb will reset all the buffers
3294to be the same again.
3295
3296Snapshot
3297--------
3298CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3299available to all non latency tracers. (Latency tracers which
3300record max latency, such as "irqsoff" or "wakeup", can't use
3301this feature, since those are already using the snapshot
3302mechanism internally.)
3303
3304Snapshot preserves a current trace buffer at a particular point
3305in time without stopping tracing. Ftrace swaps the current
3306buffer with a spare buffer, and tracing continues in the new
3307current (=previous spare) buffer.
3308
3309The following tracefs files in "tracing" are related to this
3310feature:
3311
3312 snapshot:
3313
3314 This is used to take a snapshot and to read the output
3315 of the snapshot. Echo 1 into this file to allocate a
3316 spare buffer and to take a snapshot (swap), then read
3317 the snapshot from this file in the same format as
3318 "trace" (described above in the section "The File
3319 System"). Both reads snapshot and tracing are executable
3320 in parallel. When the spare buffer is allocated, echoing
3321 0 frees it, and echoing else (positive) values clear the
3322 snapshot contents.
3323 More details are shown in the table below.
3324
3325 +--------------+------------+------------+------------+
3326 |status\\input | 0 | 1 | else |
3327 +==============+============+============+============+
3328 |not allocated |(do nothing)| alloc+swap |(do nothing)|
3329 +--------------+------------+------------+------------+
3330 |allocated | free | swap | clear |
3331 +--------------+------------+------------+------------+
3332
3333Here is an example of using the snapshot feature.
3334::
3335
3336 # echo 1 > events/sched/enable
3337 # echo 1 > snapshot
3338 # cat snapshot
3339 # tracer: nop
3340 #
3341 # entries-in-buffer/entries-written: 71/71 #P:8
3342 #
3343 # _-----=> irqs-off
3344 # / _----=> need-resched
3345 # | / _---=> hardirq/softirq
3346 # || / _--=> preempt-depth
3347 # ||| / delay
3348 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3349 # | | | |||| | |
3350 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3351 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3352 [...]
3353 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3354
3355 # cat trace
3356 # tracer: nop
3357 #
3358 # entries-in-buffer/entries-written: 77/77 #P:8
3359 #
3360 # _-----=> irqs-off
3361 # / _----=> need-resched
3362 # | / _---=> hardirq/softirq
3363 # || / _--=> preempt-depth
3364 # ||| / delay
3365 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3366 # | | | |||| | |
3367 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3368 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3369 [...]
3370
3371
3372If you try to use this snapshot feature when current tracer is
3373one of the latency tracers, you will get the following results.
3374::
3375
3376 # echo wakeup > current_tracer
3377 # echo 1 > snapshot
3378 bash: echo: write error: Device or resource busy
3379 # cat snapshot
3380 cat: snapshot: Device or resource busy
3381
3382
3383Instances
3384---------
cc2cf679 3385In the tracefs tracing directory, there is a directory called "instances".
1f198e22
CD
3386This directory can have new directories created inside of it using
3387mkdir, and removing directories with rmdir. The directory created
3388with mkdir in this directory will already contain files and other
3389directories after it is created.
3390::
3391
3392 # mkdir instances/foo
3393 # ls instances/foo
3394 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
3395 set_event snapshot trace trace_clock trace_marker trace_options
3396 trace_pipe tracing_on
3397
3398As you can see, the new directory looks similar to the tracing directory
3399itself. In fact, it is very similar, except that the buffer and
5b8914a6 3400events are agnostic from the main directory, or from any other
1f198e22
CD
3401instances that are created.
3402
3403The files in the new directory work just like the files with the
3404same name in the tracing directory except the buffer that is used
3405is a separate and new buffer. The files affect that buffer but do not
3406affect the main buffer with the exception of trace_options. Currently,
3407the trace_options affect all instances and the top level buffer
3408the same, but this may change in future releases. That is, options
3409may become specific to the instance they reside in.
3410
3411Notice that none of the function tracer files are there, nor is
3412current_tracer and available_tracers. This is because the buffers
3413can currently only have events enabled for them.
3414::
3415
3416 # mkdir instances/foo
3417 # mkdir instances/bar
3418 # mkdir instances/zoot
3419 # echo 100000 > buffer_size_kb
3420 # echo 1000 > instances/foo/buffer_size_kb
3421 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3422 # echo function > current_trace
3423 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3424 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3425 # echo 1 > instances/foo/events/sched/sched_switch/enable
3426 # echo 1 > instances/bar/events/irq/enable
3427 # echo 1 > instances/zoot/events/syscalls/enable
3428 # cat trace_pipe
3429 CPU:2 [LOST 11745 EVENTS]
3430 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3431 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3432 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3433 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3434 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3435 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3436 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3437 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3438 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3439 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3440 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3441 [...]
3442
3443 # cat instances/foo/trace_pipe
3444 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3445 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3446 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3447 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3448 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3449 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3450 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3451 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3452 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3453 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3454 [...]
3455
3456 # cat instances/bar/trace_pipe
3457 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX]
3458 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX]
3459 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER]
3460 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU]
3461 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER]
3462 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER]
3463 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU]
3464 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU]
3465 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3466 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled
3467 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0
3468 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled
3469 [...]
3470
3471 # cat instances/zoot/trace
3472 # tracer: nop
3473 #
3474 # entries-in-buffer/entries-written: 18996/18996 #P:4
3475 #
3476 # _-----=> irqs-off
3477 # / _----=> need-resched
3478 # | / _---=> hardirq/softirq
3479 # || / _--=> preempt-depth
3480 # ||| / delay
3481 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3482 # | | | |||| | |
3483 bash-1998 [000] d... 140.733501: sys_write -> 0x2
3484 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1)
3485 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
3486 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3487 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
3488 bash-1998 [000] d... 140.733510: sys_close(fd: a)
3489 bash-1998 [000] d... 140.733510: sys_close -> 0x0
3490 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3491 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
3492 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3493 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0
3494
3495You can see that the trace of the top most trace buffer shows only
3496the function tracing. The foo instance displays wakeups and task
3497switches.
3498
3499To remove the instances, simply delete their directories:
3500::
3501
3502 # rmdir instances/foo
3503 # rmdir instances/bar
3504 # rmdir instances/zoot
3505
3506Note, if a process has a trace file open in one of the instance
3507directories, the rmdir will fail with EBUSY.
3508
3509
3510Stack trace
3511-----------
3512Since the kernel has a fixed sized stack, it is important not to
3513waste it in functions. A kernel developer must be conscience of
3514what they allocate on the stack. If they add too much, the system
3515can be in danger of a stack overflow, and corruption will occur,
3516usually leading to a system panic.
3517
3518There are some tools that check this, usually with interrupts
3519periodically checking usage. But if you can perform a check
3520at every function call that will become very useful. As ftrace provides
3521a function tracer, it makes it convenient to check the stack size
3522at every function call. This is enabled via the stack tracer.
3523
3524CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3525To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3526::
3527
3528 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3529
3530You can also enable it from the kernel command line to trace
3531the stack size of the kernel during boot up, by adding "stacktrace"
3532to the kernel command line parameter.
3533
3534After running it for a few minutes, the output looks like:
3535::
3536
3537 # cat stack_max_size
3538 2928
3539
3540 # cat stack_trace
3541 Depth Size Location (18 entries)
3542 ----- ---- --------
3543 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
3544 1) 2704 160 find_busiest_group+0x31/0x1f1
3545 2) 2544 256 load_balance+0xd9/0x662
3546 3) 2288 80 idle_balance+0xbb/0x130
3547 4) 2208 128 __schedule+0x26e/0x5b9
3548 5) 2080 16 schedule+0x64/0x66
3549 6) 2064 128 schedule_timeout+0x34/0xe0
3550 7) 1936 112 wait_for_common+0x97/0xf1
3551 8) 1824 16 wait_for_completion+0x1d/0x1f
3552 9) 1808 128 flush_work+0xfe/0x119
3553 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
3554 11) 1664 48 input_available_p+0x1d/0x5c
3555 12) 1616 48 n_tty_poll+0x6d/0x134
3556 13) 1568 64 tty_poll+0x64/0x7f
3557 14) 1504 880 do_select+0x31e/0x511
3558 15) 624 400 core_sys_select+0x177/0x216
3559 16) 224 96 sys_select+0x91/0xb9
3560 17) 128 128 system_call_fastpath+0x16/0x1b
3561
3562Note, if -mfentry is being used by gcc, functions get traced before
3563they set up the stack frame. This means that leaf level functions
3564are not tested by the stack tracer when -mfentry is used.
3565
3566Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3567
3568More
3569----
3570More details can be found in the source code, in the `kernel/trace/*.c` files.