Merge tag 'pcmcia-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo...
[linux-2.6-block.git] / Documentation / trace / ftrace.rst
CommitLineData
1f198e22
CD
1========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author: Steven Rostedt <srostedt@redhat.com>
8:License: The GNU Free Documentation License, Version 1.2
9 (dual licensed under the GPL v2)
10:Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
11 John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
2a1e03ca 27is really a framework of several assorted tracing utilities.
1f198e22
CD
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
2a1e03ca 33Throughout the kernel is hundreds of static event points that
1f198e22
CD
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
3e28c5ca 37See events.rst for more information.
1f198e22
CD
38
39
40Implementation Details
41----------------------
42
81a2d578 43See Documentation/trace/ftrace-design.rst for details for arch porters and such.
1f198e22
CD
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs /sys/kernel/tracing tracefs defaults 0 0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69 Before 4.1, all ftrace tracing control files were within the debugfs
70 file system, which is typically located at /sys/kernel/debug/tracing.
71 For backward compatibility, when mounting the debugfs file system,
72 the tracefs file system will be automatically mounted at:
73
74 /sys/kernel/debug/tracing
75
76 All files located in the tracefs file system will be located in that
77 debugfs file system directory as well.
78
79.. attention::
80
81 Any selected ftrace option will also create the tracefs file system.
82 The rest of the document will assume that you are in the ftrace directory
83 (cd /sys/kernel/tracing) and will only concentrate on the files within that
84 directory and not distract from the content with the extended
85 "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95 current_tracer:
96
97 This is used to set or display the current tracer
d693b288
FCB
98 that is configured. Changing the current tracer clears
99 the ring buffer content as well as the "snapshot" buffer.
1f198e22
CD
100
101 available_tracers:
102
103 This holds the different types of tracers that
104 have been compiled into the kernel. The
105 tracers listed here can be configured by
106 echoing their name into current_tracer.
107
108 tracing_on:
109
110 This sets or displays whether writing to the trace
111 ring buffer is enabled. Echo 0 into this file to disable
112 the tracer or 1 to enable it. Note, this only disables
113 writing to the ring buffer, the tracing overhead may
114 still be occurring.
115
116 The kernel function tracing_off() can be used within the
117 kernel to disable writing to the ring buffer, which will
118 set this file to "0". User space can re-enable tracing by
119 echoing "1" into the file.
120
121 Note, the function and event trigger "traceoff" will also
122 set this file to zero and stop tracing. Which can also
123 be re-enabled by user space using this file.
124
125 trace:
126
127 This file holds the output of the trace in a human
8a815e6b 128 readable format (described below). Opening this file for
d693b288 129 writing with the O_TRUNC flag clears the ring buffer content.
8a815e6b
SRV
130 Note, this file is not a consumer. If tracing is off
131 (no tracer running, or tracing_on is zero), it will produce
132 the same output each time it is read. When tracing is on,
133 it may produce inconsistent results as it tries to read
134 the entire buffer without consuming it.
1f198e22
CD
135
136 trace_pipe:
137
138 The output is the same as the "trace" file but this
139 file is meant to be streamed with live tracing.
140 Reads from this file will block until new data is
141 retrieved. Unlike the "trace" file, this file is a
142 consumer. This means reading from this file causes
143 sequential reads to display more current data. Once
144 data is read from this file, it is consumed, and
145 will not be read again with a sequential read. The
146 "trace" file is static, and if the tracer is not
147 adding more data, it will display the same
8a815e6b 148 information every time it is read.
1f198e22
CD
149
150 trace_options:
151
152 This file lets the user control the amount of data
153 that is displayed in one of the above output
154 files. Options also exist to modify how a tracer
155 or events work (stack traces, timestamps, etc).
156
157 options:
158
159 This is a directory that has a file for every available
160 trace option (also in trace_options). Options may also be set
161 or cleared by writing a "1" or "0" respectively into the
162 corresponding file with the option name.
163
164 tracing_max_latency:
165
166 Some of the tracers record the max latency.
167 For example, the maximum time that interrupts are disabled.
168 The maximum time is saved in this file. The max trace will also be
169 stored, and displayed by "trace". A new max trace will only be
170 recorded if the latency is greater than the value in this file
171 (in microseconds).
172
173 By echoing in a time into this file, no latency will be recorded
174 unless it is greater than the time in this file.
175
176 tracing_thresh:
177
178 Some latency tracers will record a trace whenever the
179 latency is greater than the number in this file.
180 Only active when the file contains a number greater than 0.
181 (in microseconds)
182
183 buffer_size_kb:
184
185 This sets or displays the number of kilobytes each CPU
186 buffer holds. By default, the trace buffers are the same size
187 for each CPU. The displayed number is the size of the
188 CPU buffer and not total size of all buffers. The
189 trace buffers are allocated in pages (blocks of memory
190 that the kernel uses for allocation, usually 4 KB in size).
a65d634e
FCB
191 A few extra pages may be allocated to accommodate buffer management
192 meta-data. If the last page allocated has room for more bytes
1f198e22
CD
193 than requested, the rest of the page will be used,
194 making the actual allocation bigger than requested or shown.
195 ( Note, the size may not be a multiple of the page size
196 due to buffer management meta-data. )
197
198 Buffer sizes for individual CPUs may vary
199 (see "per_cpu/cpu0/buffer_size_kb" below), and if they do
200 this file will show "X".
201
202 buffer_total_size_kb:
203
204 This displays the total combined size of all the trace buffers.
205
206 free_buffer:
207
208 If a process is performing tracing, and the ring buffer should be
209 shrunk "freed" when the process is finished, even if it were to be
210 killed by a signal, this file can be used for that purpose. On close
211 of this file, the ring buffer will be resized to its minimum size.
212 Having a process that is tracing also open this file, when the process
213 exits its file descriptor for this file will be closed, and in doing so,
214 the ring buffer will be "freed".
215
216 It may also stop tracing if disable_on_free option is set.
217
218 tracing_cpumask:
219
220 This is a mask that lets the user only trace on specified CPUs.
221 The format is a hex string representing the CPUs.
222
223 set_ftrace_filter:
224
225 When dynamic ftrace is configured in (see the
226 section below "dynamic ftrace"), the code is dynamically
227 modified (code text rewrite) to disable calling of the
228 function profiler (mcount). This lets tracing be configured
229 in with practically no overhead in performance. This also
230 has a side effect of enabling or disabling specific functions
231 to be traced. Echoing names of functions into this file
232 will limit the trace to only those functions.
32fb7ef6
SM
233 This influences the tracers "function" and "function_graph"
234 and thus also function profiling (see "function_profile_enabled").
1f198e22
CD
235
236 The functions listed in "available_filter_functions" are what
237 can be written into this file.
238
239 This interface also allows for commands to be used. See the
240 "Filter commands" section for more details.
241
5b8914a6 242 As a speed up, since processing strings can be quite expensive
f79b3f33
SRV
243 and requires a check of all functions registered to tracing, instead
244 an index can be written into this file. A number (starting with "1")
245 written will instead select the same corresponding at the line position
246 of the "available_filter_functions" file.
247
1f198e22
CD
248 set_ftrace_notrace:
249
250 This has an effect opposite to that of
251 set_ftrace_filter. Any function that is added here will not
252 be traced. If a function exists in both set_ftrace_filter
253 and set_ftrace_notrace, the function will _not_ be traced.
254
255 set_ftrace_pid:
256
257 Have the function tracer only trace the threads whose PID are
258 listed in this file.
259
260 If the "function-fork" option is set, then when a task whose
261 PID is listed in this file forks, the child's PID will
262 automatically be added to this file, and the child will be
263 traced by the function tracer as well. This option will also
264 cause PIDs of tasks that exit to be removed from the file.
265
2ab2a092
SRV
266 set_ftrace_notrace_pid:
267
268 Have the function tracer ignore threads whose PID are listed in
269 this file.
270
271 If the "function-fork" option is set, then when a task whose
272 PID is listed in this file forks, the child's PID will
273 automatically be added to this file, and the child will not be
274 traced by the function tracer as well. This option will also
275 cause PIDs of tasks that exit to be removed from the file.
276
277 If a PID is in both this file and "set_ftrace_pid", then this
278 file takes precedence, and the thread will not be traced.
279
1f198e22
CD
280 set_event_pid:
281
282 Have the events only trace a task with a PID listed in this file.
283 Note, sched_switch and sched_wake_up will also trace events
284 listed in this file.
285
286 To have the PIDs of children of tasks with their PID in this file
287 added on fork, enable the "event-fork" option. That option will also
288 cause the PIDs of tasks to be removed from this file when the task
289 exits.
290
2ab2a092
SRV
291 set_event_notrace_pid:
292
293 Have the events not trace a task with a PID listed in this file.
294 Note, sched_switch and sched_wakeup will trace threads not listed
295 in this file, even if a thread's PID is in the file if the
296 sched_switch or sched_wakeup events also trace a thread that should
297 be traced.
298
299 To have the PIDs of children of tasks with their PID in this file
300 added on fork, enable the "event-fork" option. That option will also
301 cause the PIDs of tasks to be removed from this file when the task
302 exits.
303
1f198e22
CD
304 set_graph_function:
305
306 Functions listed in this file will cause the function graph
307 tracer to only trace these functions and the functions that
308 they call. (See the section "dynamic ftrace" for more details).
32fb7ef6
SM
309 Note, set_ftrace_filter and set_ftrace_notrace still affects
310 what functions are being traced.
1f198e22
CD
311
312 set_graph_notrace:
313
314 Similar to set_graph_function, but will disable function graph
315 tracing when the function is hit until it exits the function.
316 This makes it possible to ignore tracing functions that are called
317 by a specific function.
318
319 available_filter_functions:
320
321 This lists the functions that ftrace has processed and can trace.
322 These are the function names that you can pass to
32fb7ef6
SM
323 "set_ftrace_filter", "set_ftrace_notrace",
324 "set_graph_function", or "set_graph_notrace".
1f198e22
CD
325 (See the section "dynamic ftrace" below for more details.)
326
83f74441
JO
327 available_filter_functions_addrs:
328
329 Similar to available_filter_functions, but with address displayed
330 for each function. The displayed address is the patch-site address
331 and can differ from /proc/kallsyms address.
332
1f198e22
CD
333 dyn_ftrace_total_info:
334
335 This file is for debugging purposes. The number of functions that
336 have been converted to nops and are available to be traced.
337
338 enabled_functions:
339
340 This file is more for debugging ftrace, but can also be useful
341 in seeing if any function has a callback attached to it.
342 Not only does the trace infrastructure use ftrace function
343 trace utility, but other subsystems might too. This file
344 displays all functions that have a callback attached to them
345 as well as the number of callbacks that have been attached.
346 Note, a callback may also call multiple functions which will
347 not be listed in this count.
348
349 If the callback registered to be traced by a function with
350 the "save regs" attribute (thus even more overhead), a 'R'
351 will be displayed on the same line as the function that
352 is returning registers.
353
354 If the callback registered to be traced by a function with
355 the "ip modify" attribute (thus the regs->ip can be changed),
356 an 'I' will be displayed on the same line as the function that
357 can be overridden.
358
6ce2c04f
SRG
359 If a non ftrace trampoline is attached (BPF) a 'D' will be displayed.
360 Note, normal ftrace trampolines can also be attached, but only one
361 "direct" trampoline can be attached to a given function at a time.
362
363 Some architectures can not call direct trampolines, but instead have
364 the ftrace ops function located above the function entry point. In
365 such cases an 'O' will be displayed.
366
367 If a function had either the "ip modify" or a "direct" call attached to
368 it in the past, a 'M' will be shown. This flag is never cleared. It is
369 used to know if a function was every modified by the ftrace infrastructure,
370 and can be used for debugging.
371
1f198e22
CD
372 If the architecture supports it, it will also show what callback
373 is being directly called by the function. If the count is greater
374 than 1 it most likely will be ftrace_ops_list_func().
375
6ad18000
HX
376 If the callback of a function jumps to a trampoline that is
377 specific to the callback and which is not the standard trampoline,
1f198e22
CD
378 its address will be printed as well as the function that the
379 trampoline calls.
380
6ce2c04f
SRG
381 touched_functions:
382
383 This file contains all the functions that ever had a function callback
384 to it via the ftrace infrastructure. It has the same format as
385 enabled_functions but shows all functions that have every been
386 traced.
387
388 To see any function that has every been modified by "ip modify" or a
389 direct trampoline, one can perform the following command:
390
391 grep ' M ' /sys/kernel/tracing/touched_functions
392
1f198e22
CD
393 function_profile_enabled:
394
395 When set it will enable all functions with either the function
396 tracer, or if configured, the function graph tracer. It will
397 keep a histogram of the number of functions that were called
398 and if the function graph tracer was configured, it will also keep
399 track of the time spent in those functions. The histogram
400 content can be displayed in the files:
401
1fee4f77 402 trace_stat/function<cpu> ( function0, function1, etc).
1f198e22 403
1fee4f77 404 trace_stat:
1f198e22
CD
405
406 A directory that holds different tracing stats.
407
408 kprobe_events:
409
3e28c5ca 410 Enable dynamic trace points. See kprobetrace.rst.
1f198e22
CD
411
412 kprobe_profile:
413
3e28c5ca 414 Dynamic trace points stats. See kprobetrace.rst.
1f198e22
CD
415
416 max_graph_depth:
417
418 Used with the function graph tracer. This is the max depth
419 it will trace into a function. Setting this to a value of
420 one will show only the first kernel function that is called
421 from user space.
422
423 printk_formats:
424
425 This is for tools that read the raw format files. If an event in
426 the ring buffer references a string, only a pointer to the string
427 is recorded into the buffer and not the string itself. This prevents
428 tools from knowing what that string was. This file displays the string
429 and address for the string allowing tools to map the pointers to what
430 the strings were.
431
432 saved_cmdlines:
433
434 Only the pid of the task is recorded in a trace event unless
435 the event specifically saves the task comm as well. Ftrace
436 makes a cache of pid mappings to comms to try to display
437 comms for events. If a pid for a comm is not listed, then
438 "<...>" is displayed in the output.
439
440 If the option "record-cmd" is set to "0", then comms of tasks
441 will not be saved during recording. By default, it is enabled.
442
443 saved_cmdlines_size:
444
445 By default, 128 comms are saved (see "saved_cmdlines" above). To
446 increase or decrease the amount of comms that are cached, echo
5b8914a6 447 the number of comms to cache into this file.
1f198e22
CD
448
449 saved_tgids:
450
451 If the option "record-tgid" is set, on each scheduling context switch
452 the Task Group ID of a task is saved in a table mapping the PID of
453 the thread to its TGID. By default, the "record-tgid" option is
454 disabled.
455
456 snapshot:
457
458 This displays the "snapshot" buffer and also lets the user
459 take a snapshot of the current running trace.
460 See the "Snapshot" section below for more details.
461
462 stack_max_size:
463
464 When the stack tracer is activated, this will display the
465 maximum stack size it has encountered.
466 See the "Stack Trace" section below.
467
468 stack_trace:
469
470 This displays the stack back trace of the largest stack
471 that was encountered when the stack tracer is activated.
472 See the "Stack Trace" section below.
473
474 stack_trace_filter:
475
476 This is similar to "set_ftrace_filter" but it limits what
477 functions the stack tracer will check.
478
479 trace_clock:
480
481 Whenever an event is recorded into the ring buffer, a
482 "timestamp" is added. This stamp comes from a specified
483 clock. By default, ftrace uses the "local" clock. This
484 clock is very fast and strictly per cpu, but on some
485 systems it may not be monotonic with respect to other
486 CPUs. In other words, the local clocks may not be in sync
487 with local clocks on other CPUs.
488
489 Usual clocks for tracing::
490
491 # cat trace_clock
492 [local] global counter x86-tsc
493
494 The clock with the square brackets around it is the one in effect.
495
496 local:
497 Default clock, but may not be in sync across CPUs
498
499 global:
500 This clock is in sync with all CPUs but may
501 be a bit slower than the local clock.
502
503 counter:
504 This is not a clock at all, but literally an atomic
505 counter. It counts up one by one, but is in sync
506 with all CPUs. This is useful when you need to
507 know exactly the order events occurred with respect to
508 each other on different CPUs.
509
510 uptime:
511 This uses the jiffies counter and the time stamp
512 is relative to the time since boot up.
513
514 perf:
515 This makes ftrace use the same clock that perf uses.
516 Eventually perf will be able to read ftrace buffers
517 and this will help out in interleaving the data.
518
519 x86-tsc:
520 Architectures may define their own clocks. For
521 example, x86 uses its own TSC cycle clock here.
522
523 ppc-tb:
524 This uses the powerpc timebase register value.
525 This is in sync across CPUs and can also be used
526 to correlate events across hypervisor/guest if
527 tb_offset is known.
528
529 mono:
530 This uses the fast monotonic clock (CLOCK_MONOTONIC)
531 which is monotonic and is subject to NTP rate adjustments.
532
533 mono_raw:
534 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
2a1e03ca 535 which is monotonic but is not subject to any rate adjustments
1f198e22
CD
536 and ticks at the same rate as the hardware clocksource.
537
538 boot:
a3ed0e43
TG
539 This is the boot clock (CLOCK_BOOTTIME) and is based on the
540 fast monotonic clock, but also accounts for time spent in
541 suspend. Since the clock access is designed for use in
542 tracing in the suspend path, some side effects are possible
543 if clock is accessed after the suspend time is accounted before
544 the fast mono clock is updated. In this case, the clock update
545 appears to happen slightly sooner than it normally would have.
546 Also on 32-bit systems, it's possible that the 64-bit boot offset
547 sees a partial update. These effects are rare and post
548 processing should be able to handle them. See comments in the
549 ktime_get_boot_fast_ns() function for more information.
680014d6 550
4d1257bb
KK
551 tai:
552 This is the tai clock (CLOCK_TAI) and is derived from the wall-
553 clock time. However, this clock does not experience
554 discontinuities and backwards jumps caused by NTP inserting leap
555 seconds. Since the clock access is designed for use in tracing,
556 side effects are possible. The clock access may yield wrong
557 readouts in case the internal TAI offset is updated e.g., caused
558 by setting the system time or using adjtimex() with an offset.
559 These effects are rare and post processing should be able to
560 handle them. See comments in the ktime_get_tai_fast_ns()
561 function for more information.
562
680014d6
LT
563 To set a clock, simply echo the clock name into this file::
564
565 # echo global > trace_clock
1f198e22 566
d693b288
FCB
567 Setting a clock clears the ring buffer content as well as the
568 "snapshot" buffer.
569
1f198e22
CD
570 trace_marker:
571
572 This is a very useful file for synchronizing user space
573 with events happening in the kernel. Writing strings into
574 this file will be written into the ftrace buffer.
575
576 It is useful in applications to open this file at the start
577 of the application and just reference the file descriptor
578 for the file::
579
580 void trace_write(const char *fmt, ...)
581 {
582 va_list ap;
583 char buf[256];
584 int n;
585
586 if (trace_fd < 0)
587 return;
588
589 va_start(ap, fmt);
590 n = vsnprintf(buf, 256, fmt, ap);
591 va_end(ap);
592
593 write(trace_fd, buf, n);
594 }
595
596 start::
597
9c1ab6d5 598 trace_fd = open("trace_marker", O_WRONLY);
1f198e22 599
d3439f9d
SRV
600 Note: Writing into the trace_marker file can also initiate triggers
601 that are written into /sys/kernel/tracing/events/ftrace/print/trigger
602 See "Event triggers" in Documentation/trace/events.rst and an
603 example in Documentation/trace/histogram.rst (Section 3.)
604
1f198e22
CD
605 trace_marker_raw:
606
1747db54 607 This is similar to trace_marker above, but is meant for binary data
1f198e22
CD
608 to be written to it, where a tool can be used to parse the data
609 from trace_pipe_raw.
610
611 uprobe_events:
612
613 Add dynamic tracepoints in programs.
3e28c5ca 614 See uprobetracer.rst
1f198e22
CD
615
616 uprobe_profile:
617
618 Uprobe statistics. See uprobetrace.txt
619
620 instances:
621
622 This is a way to make multiple trace buffers where different
623 events can be recorded in different buffers.
624 See "Instances" section below.
625
626 events:
627
628 This is the trace event directory. It holds event tracepoints
629 (also known as static tracepoints) that have been compiled
630 into the kernel. It shows what event tracepoints exist
631 and how they are grouped by system. There are "enable"
632 files at various levels that can enable the tracepoints
633 when a "1" is written to them.
634
3e28c5ca 635 See events.rst for more information.
1f198e22
CD
636
637 set_event:
638
639 By echoing in the event into this file, will enable that event.
640
3e28c5ca 641 See events.rst for more information.
1f198e22
CD
642
643 available_events:
644
645 A list of events that can be enabled in tracing.
646
3e28c5ca 647 See events.rst for more information.
1f198e22 648
2a56bb59
LT
649 timestamp_mode:
650
651 Certain tracers may change the timestamp mode used when
652 logging trace events into the event buffer. Events with
653 different modes can coexist within a buffer but the mode in
654 effect when an event is logged determines which timestamp mode
655 is used for that event. The default timestamp mode is
656 'delta'.
657
658 Usual timestamp modes for tracing:
659
660 # cat timestamp_mode
661 [delta] absolute
662
663 The timestamp mode with the square brackets around it is the
664 one in effect.
665
666 delta: Default timestamp mode - timestamp is a delta against
667 a per-buffer timestamp.
668
669 absolute: The timestamp is a full timestamp, not a delta
670 against some other value. As such it takes up more
671 space and is less efficient.
672
1f198e22
CD
673 hwlat_detector:
674
675 Directory for the Hardware Latency Detector.
676 See "Hardware Latency Detector" section below.
677
678 per_cpu:
679
680 This is a directory that contains the trace per_cpu information.
681
682 per_cpu/cpu0/buffer_size_kb:
683
684 The ftrace buffer is defined per_cpu. That is, there's a separate
685 buffer for each CPU to allow writes to be done atomically,
686 and free from cache bouncing. These buffers may have different
687 size buffers. This file is similar to the buffer_size_kb
688 file, but it only displays or sets the buffer size for the
689 specific CPU. (here cpu0).
690
691 per_cpu/cpu0/trace:
692
693 This is similar to the "trace" file, but it will only display
694 the data specific for the CPU. If written to, it only clears
695 the specific CPU buffer.
696
697 per_cpu/cpu0/trace_pipe
698
699 This is similar to the "trace_pipe" file, and is a consuming
700 read, but it will only display (and consume) the data specific
701 for the CPU.
702
703 per_cpu/cpu0/trace_pipe_raw
704
705 For tools that can parse the ftrace ring buffer binary format,
706 the trace_pipe_raw file can be used to extract the data
707 from the ring buffer directly. With the use of the splice()
708 system call, the buffer data can be quickly transferred to
709 a file or to the network where a server is collecting the
710 data.
711
712 Like trace_pipe, this is a consuming reader, where multiple
713 reads will always produce different data.
714
715 per_cpu/cpu0/snapshot:
716
717 This is similar to the main "snapshot" file, but will only
718 snapshot the current CPU (if supported). It only displays
719 the content of the snapshot for a given CPU, and if
720 written to, only clears this CPU buffer.
721
722 per_cpu/cpu0/snapshot_raw:
723
724 Similar to the trace_pipe_raw, but will read the binary format
725 from the snapshot buffer for the given CPU.
726
727 per_cpu/cpu0/stats:
728
729 This displays certain stats about the ring buffer:
730
731 entries:
732 The number of events that are still in the buffer.
733
734 overrun:
735 The number of lost events due to overwriting when
736 the buffer was full.
737
738 commit overrun:
739 Should always be zero.
740 This gets set if so many events happened within a nested
741 event (ring buffer is re-entrant), that it fills the
742 buffer and starts dropping events.
743
744 bytes:
745 Bytes actually read (not overwritten).
746
747 oldest event ts:
748 The oldest timestamp in the buffer
749
750 now ts:
751 The current timestamp
752
753 dropped events:
754 Events lost due to overwrite option being off.
755
756 read events:
757 The number of events read.
758
759The Tracers
760-----------
761
762Here is the list of current tracers that may be configured.
763
764 "function"
765
766 Function call tracer to trace all kernel functions.
767
768 "function_graph"
769
770 Similar to the function tracer except that the
771 function tracer probes the functions on their entry
772 whereas the function graph tracer traces on both entry
773 and exit of the functions. It then provides the ability
774 to draw a graph of function calls similar to C code
775 source.
776
777 "blk"
778
779 The block tracer. The tracer used by the blktrace user
780 application.
781
782 "hwlat"
783
784 The Hardware Latency tracer is used to detect if the hardware
785 produces any latency. See "Hardware Latency Detector" section
786 below.
787
788 "irqsoff"
789
790 Traces the areas that disable interrupts and saves
791 the trace with the longest max latency.
792 See tracing_max_latency. When a new max is recorded,
793 it replaces the old trace. It is best to view this
794 trace with the latency-format option enabled, which
795 happens automatically when the tracer is selected.
796
797 "preemptoff"
798
799 Similar to irqsoff but traces and records the amount of
800 time for which preemption is disabled.
801
802 "preemptirqsoff"
803
804 Similar to irqsoff and preemptoff, but traces and
805 records the largest time for which irqs and/or preemption
806 is disabled.
807
808 "wakeup"
809
810 Traces and records the max latency that it takes for
811 the highest priority task to get scheduled after
812 it has been woken up.
813 Traces all tasks as an average developer would expect.
814
815 "wakeup_rt"
816
817 Traces and records the max latency that it takes for just
818 RT tasks (as the current "wakeup" does). This is useful
819 for those interested in wake up timings of RT tasks.
820
821 "wakeup_dl"
822
823 Traces and records the max latency that it takes for
824 a SCHED_DEADLINE task to be woken (as the "wakeup" and
825 "wakeup_rt" does).
826
827 "mmiotrace"
828
829 A special tracer that is used to trace binary module.
830 It will trace all the calls that a module makes to the
831 hardware. Everything it writes and reads from the I/O
832 as well.
833
834 "branch"
835
836 This tracer can be configured when tracing likely/unlikely
837 calls within the kernel. It will trace when a likely and
838 unlikely branch is hit and if it was correct in its prediction
839 of being correct.
840
841 "nop"
842
843 This is the "trace nothing" tracer. To remove all
844 tracers from tracing simply echo "nop" into
845 current_tracer.
846
26a94491
TZ
847Error conditions
848----------------
849
850 For most ftrace commands, failure modes are obvious and communicated
851 using standard return codes.
852
853 For other more involved commands, extended error information may be
854 available via the tracing/error_log file. For the commands that
855 support it, reading the tracing/error_log file after an error will
856 display more detailed information about what went wrong, if
857 information is available. The tracing/error_log file is a circular
858 error log displaying a small number (currently, 8) of ftrace errors
859 for the last (8) failed commands.
860
861 The extended error information and usage takes the form shown in
862 this example::
863
2abfcd29 864 # echo xxx > /sys/kernel/tracing/events/sched/sched_wakeup/trigger
26a94491
TZ
865 echo: write error: Invalid argument
866
2abfcd29 867 # cat /sys/kernel/tracing/error_log
26a94491
TZ
868 [ 5348.887237] location: error: Couldn't yyy: zzz
869 Command: xxx
870 ^
871 [ 7517.023364] location: error: Bad rrr: sss
872 Command: ppp qqq
873 ^
874
875 To clear the error log, echo the empty string into it::
876
2abfcd29 877 # echo > /sys/kernel/tracing/error_log
1f198e22
CD
878
879Examples of using the tracer
880----------------------------
881
882Here are typical examples of using the tracers when controlling
883them only with the tracefs interface (without using any
884user-land utilities).
885
886Output format:
887--------------
888
889Here is an example of the output format of the file "trace"::
890
891 # tracer: function
892 #
893 # entries-in-buffer/entries-written: 140080/250280 #P:4
894 #
895 # _-----=> irqs-off
896 # / _----=> need-resched
897 # | / _---=> hardirq/softirq
898 # || / _--=> preempt-depth
899 # ||| / delay
900 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
901 # | | | |||| | |
902 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
903 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
904 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
905 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
906 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
907 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
908 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
909 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
910 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
911 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
912 ....
913
914A header is printed with the tracer name that is represented by
915the trace. In this case the tracer is "function". Then it shows the
916number of events in the buffer as well as the total number of entries
917that were written. The difference is the number of entries that were
918lost due to the buffer filling up (250280 - 140080 = 110200 events
919lost).
920
921The header explains the content of the events. Task name "bash", the task
922PID "1977", the CPU that it was running on "000", the latency format
923(explained below), the timestamp in <secs>.<usecs> format, the
924function name that was traced "sys_close" and the parent function that
925called this function "system_call_fastpath". The timestamp is the time
926at which the function was entered.
927
928Latency trace format
929--------------------
930
931When the latency-format option is enabled or when one of the latency
932tracers is set, the trace file gives somewhat more information to see
933why a latency happened. Here is a typical trace::
934
935 # tracer: irqsoff
936 #
937 # irqsoff latency trace v1.1.5 on 3.8.0-test+
938 # --------------------------------------------------------------------
939 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
940 # -----------------
941 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
942 # -----------------
943 # => started at: __lock_task_sighand
944 # => ended at: _raw_spin_unlock_irqrestore
945 #
946 #
947 # _------=> CPU#
948 # / _-----=> irqs-off
949 # | / _----=> need-resched
950 # || / _---=> hardirq/softirq
951 # ||| / _--=> preempt-depth
952 # |||| / delay
953 # cmd pid ||||| time | caller
954 # \ / ||||| \ | /
955 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
956 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
957 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
958 ps-6143 2d..1 306us : <stack trace>
959 => trace_hardirqs_on_caller
960 => trace_hardirqs_on
961 => _raw_spin_unlock_irqrestore
962 => do_task_stat
963 => proc_tgid_stat
964 => proc_single_show
965 => seq_read
966 => vfs_read
967 => sys_read
968 => system_call_fastpath
969
970
971This shows that the current tracer is "irqsoff" tracing the time
972for which interrupts were disabled. It gives the trace version (which
973never changes) and the version of the kernel upon which this was executed on
974(3.8). Then it displays the max latency in microseconds (259 us). The number
975of trace entries displayed and the total number (both are four: #4/4).
976VP, KP, SP, and HP are always zero and are reserved for later use.
977#P is the number of online CPUs (#P:4).
978
979The task is the process that was running when the latency
980occurred. (ps pid: 6143).
981
982The start and stop (the functions in which the interrupts were
983disabled and enabled respectively) that caused the latencies:
984
985 - __lock_task_sighand is where the interrupts were disabled.
986 - _raw_spin_unlock_irqrestore is where they were enabled again.
987
988The next lines after the header are the trace itself. The header
989explains which is which.
990
991 cmd: The name of the process in the trace.
992
993 pid: The PID of that process.
994
995 CPU#: The CPU which the process was running on.
996
997 irqs-off: 'd' interrupts are disabled. '.' otherwise.
998 .. caution:: If the architecture does not support a way to
999 read the irq flags variable, an 'X' will always
1000 be printed here.
1001
1002 need-resched:
1003 - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
1004 - 'n' only TIF_NEED_RESCHED is set,
1005 - 'p' only PREEMPT_NEED_RESCHED is set,
1006 - '.' otherwise.
1007
1008 hardirq/softirq:
1009 - 'Z' - NMI occurred inside a hardirq
1010 - 'z' - NMI is running
1011 - 'H' - hard irq occurred inside a softirq.
1012 - 'h' - hard irq is running
1013 - 's' - soft irq is running
1014 - '.' - normal context.
1015
1016 preempt-depth: The level of preempt_disabled
1017
1018The above is mostly meaningful for kernel developers.
1019
1020 time:
1021 When the latency-format option is enabled, the trace file
1022 output includes a timestamp relative to the start of the
1023 trace. This differs from the output when latency-format
1024 is disabled, which includes an absolute timestamp.
1025
1026 delay:
1027 This is just to help catch your eye a bit better. And
1028 needs to be fixed to be only relative to the same CPU.
1029 The marks are determined by the difference between this
1030 current trace and the next trace.
1031
1032 - '$' - greater than 1 second
2a1e03ca
AL
1033 - '@' - greater than 100 millisecond
1034 - '*' - greater than 10 millisecond
1f198e22
CD
1035 - '#' - greater than 1000 microsecond
1036 - '!' - greater than 100 microsecond
1037 - '+' - greater than 10 microsecond
1038 - ' ' - less than or equal to 10 microsecond.
1039
1040 The rest is the same as the 'trace' file.
1041
1042 Note, the latency tracers will usually end with a back trace
1043 to easily find where the latency occurred.
1044
1045trace_options
1046-------------
1047
1048The trace_options file (or the options directory) is used to control
1049what gets printed in the trace output, or manipulate the tracers.
1050To see what is available, simply cat the file::
1051
1052 cat trace_options
1053 print-parent
1054 nosym-offset
1055 nosym-addr
1056 noverbose
1057 noraw
1058 nohex
1059 nobin
1060 noblock
80a76994 1061 nofields
1f198e22
CD
1062 trace_printk
1063 annotate
1064 nouserstacktrace
1065 nosym-userobj
1066 noprintk-msg-only
1067 context-info
1068 nolatency-format
1069 record-cmd
1070 norecord-tgid
1071 overwrite
1072 nodisable_on_free
1073 irq-info
1074 markers
1075 noevent-fork
1076 function-trace
1077 nofunction-fork
1078 nodisplay-graph
1079 nostacktrace
1080 nobranch
1081
1082To disable one of the options, echo in the option prepended with
1083"no"::
1084
1085 echo noprint-parent > trace_options
1086
1087To enable an option, leave off the "no"::
1088
1089 echo sym-offset > trace_options
1090
1091Here are the available options:
1092
1093 print-parent
1094 On function traces, display the calling (parent)
1095 function as well as the function being traced.
1096 ::
1097
1098 print-parent:
1099 bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul
1100
1101 noprint-parent:
1102 bash-4000 [01] 1477.606694: simple_strtoul
1103
1104
1105 sym-offset
1106 Display not only the function name, but also the
1107 offset in the function. For example, instead of
1108 seeing just "ktime_get", you will see
1109 "ktime_get+0xb/0x20".
1110 ::
1111
1112 sym-offset:
1113 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
1114
1115 sym-addr
1116 This will also display the function address as well
1117 as the function name.
1118 ::
1119
1120 sym-addr:
1121 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
1122
1123 verbose
1124 This deals with the trace file when the
1125 latency-format option is enabled.
1126 ::
1127
1128 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
1129 (+0.000ms): simple_strtoul (kstrtoul)
1130
1131 raw
1132 This will display raw numbers. This option is best for
1133 use with user applications that can translate the raw
1134 numbers better than having it done in the kernel.
1135
1136 hex
1137 Similar to raw, but the numbers will be in a hexadecimal format.
1138
1139 bin
1140 This will print out the formats in raw binary.
1141
1142 block
1143 When set, reading trace_pipe will not block when polled.
1144
80a76994
SRG
1145 fields
1146 Print the fields as described by their types. This is a better
1147 option than using hex, bin or raw, as it gives a better parsing
1148 of the content of the event.
1149
1f198e22
CD
1150 trace_printk
1151 Can disable trace_printk() from writing into the buffer.
1152
1153 annotate
1154 It is sometimes confusing when the CPU buffers are full
1155 and one CPU buffer had a lot of events recently, thus
1156 a shorter time frame, were another CPU may have only had
1157 a few events, which lets it have older events. When
1158 the trace is reported, it shows the oldest events first,
1159 and it may look like only one CPU ran (the one with the
1160 oldest events). When the annotate option is set, it will
1161 display when a new CPU buffer started::
1162
1163 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1164 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1165 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1166 ##### CPU 2 buffer started ####
1167 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1168 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1169 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1170
1171 userstacktrace
1172 This option changes the trace. It records a
1173 stacktrace of the current user space thread after
1174 each trace event.
1175
1176 sym-userobj
1177 when user stacktrace are enabled, look up which
1178 object the address belongs to, and print a
1179 relative address. This is especially useful when
1180 ASLR is on, otherwise you don't get a chance to
1181 resolve the address to object/file/line after
1182 the app is no longer running
1183
1184 The lookup is performed when you read
1185 trace,trace_pipe. Example::
1186
1187 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1188 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1189
1190
1191 printk-msg-only
1192 When set, trace_printk()s will only show the format
1193 and not their parameters (if trace_bprintk() or
1194 trace_bputs() was used to save the trace_printk()).
1195
1196 context-info
1197 Show only the event data. Hides the comm, PID,
1198 timestamp, CPU, and other useful data.
1199
1200 latency-format
1201 This option changes the trace output. When it is enabled,
1202 the trace displays additional information about the
1203 latency, as described in "Latency trace format".
1204
06e0a548
SRV
1205 pause-on-trace
1206 When set, opening the trace file for read, will pause
1207 writing to the ring buffer (as if tracing_on was set to zero).
1208 This simulates the original behavior of the trace file.
1209 When the file is closed, tracing will be enabled again.
1210
a345a671
MH
1211 hash-ptr
1212 When set, "%p" in the event printk format displays the
1213 hashed pointer value instead of real address.
1214 This will be useful if you want to find out which hashed
1215 value is corresponding to the real value in trace log.
1216
1f198e22
CD
1217 record-cmd
1218 When any event or tracer is enabled, a hook is enabled
1219 in the sched_switch trace point to fill comm cache
1220 with mapped pids and comms. But this may cause some
1221 overhead, and if you only care about pids, and not the
1222 name of the task, disabling this option can lower the
1223 impact of tracing. See "saved_cmdlines".
1224
1225 record-tgid
1226 When any event or tracer is enabled, a hook is enabled
1227 in the sched_switch trace point to fill the cache of
1228 mapped Thread Group IDs (TGID) mapping to pids. See
1229 "saved_tgids".
1230
1231 overwrite
1232 This controls what happens when the trace buffer is
1233 full. If "1" (default), the oldest events are
1234 discarded and overwritten. If "0", then the newest
1235 events are discarded.
1236 (see per_cpu/cpu0/stats for overrun and dropped)
1237
1238 disable_on_free
1239 When the free_buffer is closed, tracing will
1240 stop (tracing_on set to 0).
1241
1242 irq-info
1243 Shows the interrupt, preempt count, need resched data.
1244 When disabled, the trace looks like::
1245
1246 # tracer: function
1247 #
1248 # entries-in-buffer/entries-written: 144405/9452052 #P:4
1249 #
1250 # TASK-PID CPU# TIMESTAMP FUNCTION
1251 # | | | | |
1252 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1253 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89
1254 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task
1255
1256
1257 markers
1258 When set, the trace_marker is writable (only by root).
1259 When disabled, the trace_marker will error with EINVAL
1260 on write.
1261
1262 event-fork
1263 When set, tasks with PIDs listed in set_event_pid will have
1264 the PIDs of their children added to set_event_pid when those
1265 tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1266 their PIDs will be removed from the file.
1267
2ab2a092
SRV
1268 This affects PIDs listed in set_event_notrace_pid as well.
1269
1f198e22
CD
1270 function-trace
1271 The latency tracers will enable function tracing
1272 if this option is enabled (default it is). When
1273 it is disabled, the latency tracers do not trace
1274 functions. This keeps the overhead of the tracer down
1275 when performing latency tests.
1276
1277 function-fork
1278 When set, tasks with PIDs listed in set_ftrace_pid will
1279 have the PIDs of their children added to set_ftrace_pid
1280 when those tasks fork. Also, when tasks with PIDs in
1281 set_ftrace_pid exit, their PIDs will be removed from the
1282 file.
1283
2ab2a092
SRV
1284 This affects PIDs in set_ftrace_notrace_pid as well.
1285
1f198e22
CD
1286 display-graph
1287 When set, the latency tracers (irqsoff, wakeup, etc) will
1288 use function graph tracing instead of function tracing.
1289
1290 stacktrace
1291 When set, a stack trace is recorded after any trace event
1292 is recorded.
1293
1294 branch
1295 Enable branch tracing with the tracer. This enables branch
1296 tracer along with the currently set tracer. Enabling this
1297 with the "nop" tracer is the same as just enabling the
1298 "branch" tracer.
1299
1300.. tip:: Some tracers have their own options. They only appear in this
1301 file when the tracer is active. They always appear in the
1302 options directory.
1303
1304
1305Here are the per tracer options:
1306
1307Options for function tracer:
1308
1309 func_stack_trace
1310 When set, a stack trace is recorded after every
1311 function that is recorded. NOTE! Limit the functions
1312 that are recorded before enabling this, with
1313 "set_ftrace_filter" otherwise the system performance
1314 will be critically degraded. Remember to disable
1315 this option before clearing the function filter.
1316
1317Options for function_graph tracer:
1318
1319 Since the function_graph tracer has a slightly different output
1320 it has its own options to control what is displayed.
1321
1322 funcgraph-overrun
1323 When set, the "overrun" of the graph stack is
1324 displayed after each function traced. The
1325 overrun, is when the stack depth of the calls
1326 is greater than what is reserved for each task.
1327 Each task has a fixed array of functions to
1328 trace in the call graph. If the depth of the
1329 calls exceeds that, the function is not traced.
1330 The overrun is the number of functions missed
1331 due to exceeding this array.
1332
1333 funcgraph-cpu
1334 When set, the CPU number of the CPU where the trace
1335 occurred is displayed.
1336
1337 funcgraph-overhead
1338 When set, if the function takes longer than
1339 A certain amount, then a delay marker is
1340 displayed. See "delay" above, under the
1341 header description.
1342
1343 funcgraph-proc
1344 Unlike other tracers, the process' command line
1345 is not displayed by default, but instead only
1346 when a task is traced in and out during a context
1347 switch. Enabling this options has the command
1348 of each process displayed at every line.
1349
1350 funcgraph-duration
1351 At the end of each function (the return)
1352 the duration of the amount of time in the
1353 function is displayed in microseconds.
1354
1355 funcgraph-abstime
1356 When set, the timestamp is displayed at each line.
1357
1358 funcgraph-irqs
1359 When disabled, functions that happen inside an
1360 interrupt will not be traced.
1361
1362 funcgraph-tail
1363 When set, the return event will include the function
1364 that it represents. By default this is off, and
1365 only a closing curly bracket "}" is displayed for
1366 the return of a function.
1367
21c094d3
DP
1368 funcgraph-retval
1369 When set, the return value of each traced function
1370 will be printed after an equal sign "=". By default
1371 this is off.
1372
1373 funcgraph-retval-hex
1374 When set, the return value will always be printed
1375 in hexadecimal format. If the option is not set and
1376 the return value is an error code, it will be printed
1377 in signed decimal format; otherwise it will also be
1378 printed in hexadecimal format. By default, this option
1379 is off.
1380
1f198e22
CD
1381 sleep-time
1382 When running function graph tracer, to include
1383 the time a task schedules out in its function.
1384 When enabled, it will account time the task has been
1385 scheduled out as part of the function call.
1386
1387 graph-time
1388 When running function profiler with function graph tracer,
1389 to include the time to call nested functions. When this is
1390 not set, the time reported for the function will only
1391 include the time the function itself executed for, not the
1392 time for functions that it called.
1393
1394Options for blk tracer:
1395
1396 blk_classic
1397 Shows a more minimalistic output.
1398
1399
1400irqsoff
1401-------
1402
1403When interrupts are disabled, the CPU can not react to any other
1404external event (besides NMIs and SMIs). This prevents the timer
1405interrupt from triggering or the mouse interrupt from letting
1406the kernel know of a new mouse event. The result is a latency
1407with the reaction time.
1408
1409The irqsoff tracer tracks the time for which interrupts are
1410disabled. When a new maximum latency is hit, the tracer saves
1411the trace leading up to that latency point so that every time a
1412new maximum is reached, the old saved trace is discarded and the
1413new trace is saved.
1414
1415To reset the maximum, echo 0 into tracing_max_latency. Here is
1416an example::
1417
1418 # echo 0 > options/function-trace
1419 # echo irqsoff > current_tracer
1420 # echo 1 > tracing_on
1421 # echo 0 > tracing_max_latency
1422 # ls -ltr
1423 [...]
1424 # echo 0 > tracing_on
1425 # cat trace
1426 # tracer: irqsoff
1427 #
1428 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1429 # --------------------------------------------------------------------
1430 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1431 # -----------------
1432 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1433 # -----------------
1434 # => started at: run_timer_softirq
1435 # => ended at: run_timer_softirq
1436 #
1437 #
1438 # _------=> CPU#
1439 # / _-----=> irqs-off
1440 # | / _----=> need-resched
1441 # || / _---=> hardirq/softirq
1442 # ||| / _--=> preempt-depth
1443 # |||| / delay
1444 # cmd pid ||||| time | caller
1445 # \ / ||||| \ | /
1446 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
1447 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
1448 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
1449 <idle>-0 0dNs3 25us : <stack trace>
1450 => _raw_spin_unlock_irq
1451 => run_timer_softirq
1452 => __do_softirq
1453 => call_softirq
1454 => do_softirq
1455 => irq_exit
1456 => smp_apic_timer_interrupt
1457 => apic_timer_interrupt
1458 => rcu_idle_exit
1459 => cpu_idle
1460 => rest_init
1461 => start_kernel
1462 => x86_64_start_reservations
1463 => x86_64_start_kernel
1464
1747db54 1465Here we see that we had a latency of 16 microseconds (which is
1f198e22
CD
1466very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1467interrupts. The difference between the 16 and the displayed
1468timestamp 25us occurred because the clock was incremented
1469between the time of recording the max latency and the time of
1470recording the function that had that latency.
1471
1472Note the above example had function-trace not set. If we set
1473function-trace, we get a much larger output::
1474
1475 with echo 1 > options/function-trace
1476
1477 # tracer: irqsoff
1478 #
1479 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1480 # --------------------------------------------------------------------
1481 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1482 # -----------------
1483 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1484 # -----------------
1485 # => started at: ata_scsi_queuecmd
1486 # => ended at: ata_scsi_queuecmd
1487 #
1488 #
1489 # _------=> CPU#
1490 # / _-----=> irqs-off
1491 # | / _----=> need-resched
1492 # || / _---=> hardirq/softirq
1493 # ||| / _--=> preempt-depth
1494 # |||| / delay
1495 # cmd pid ||||| time | caller
1496 # \ / ||||| \ | /
1497 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1498 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
1499 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1500 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1501 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1502 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
1503 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
1504 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1505 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1506 [...]
1507 bash-2042 3d..1 67us : delay_tsc <-__delay
1508 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1509 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
1510 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1511 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
1512 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1513 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1514 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1515 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1516 bash-2042 3d..1 120us : <stack trace>
1517 => _raw_spin_unlock_irqrestore
1518 => ata_scsi_queuecmd
1519 => scsi_dispatch_cmd
1520 => scsi_request_fn
1521 => __blk_run_queue_uncond
1522 => __blk_run_queue
1523 => blk_queue_bio
ed00aabd 1524 => submit_bio_noacct
1f198e22
CD
1525 => submit_bio
1526 => submit_bh
1527 => __ext3_get_inode_loc
1528 => ext3_iget
1529 => ext3_lookup
1530 => lookup_real
1531 => __lookup_hash
1532 => walk_component
1533 => lookup_last
1534 => path_lookupat
1535 => filename_lookup
1536 => user_path_at_empty
1537 => user_path_at
1538 => vfs_fstatat
1539 => vfs_stat
1540 => sys_newstat
1541 => system_call_fastpath
1542
1543
1544Here we traced a 71 microsecond latency. But we also see all the
1545functions that were called during that time. Note that by
1546enabling function tracing, we incur an added overhead. This
1547overhead may extend the latency times. But nevertheless, this
1548trace has provided some very helpful debugging information.
1549
88d380eb
CD
1550If we prefer function graph output instead of function, we can set
1551display-graph option::
3df5ffd2 1552
88d380eb
CD
1553 with echo 1 > options/display-graph
1554
1555 # tracer: irqsoff
1556 #
1557 # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
1558 # --------------------------------------------------------------------
1559 # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
1560 # -----------------
1561 # | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
1562 # -----------------
1563 # => started at: free_debug_processing
1564 # => ended at: return_to_handler
1565 #
1566 #
1567 # _-----=> irqs-off
1568 # / _----=> need-resched
1569 # | / _---=> hardirq/softirq
1570 # || / _--=> preempt-depth
1571 # ||| /
1572 # REL TIME CPU TASK/PID |||| DURATION FUNCTION CALLS
1573 # | | | | |||| | | | | | |
1574 0 us | 0) bash-1507 | d... | 0.000 us | _raw_spin_lock_irqsave();
1575 0 us | 0) bash-1507 | d..1 | 0.378 us | do_raw_spin_trylock();
1576 1 us | 0) bash-1507 | d..2 | | set_track() {
1577 2 us | 0) bash-1507 | d..2 | | save_stack_trace() {
1578 2 us | 0) bash-1507 | d..2 | | __save_stack_trace() {
1579 3 us | 0) bash-1507 | d..2 | | __unwind_start() {
1580 3 us | 0) bash-1507 | d..2 | | get_stack_info() {
1581 3 us | 0) bash-1507 | d..2 | 0.351 us | in_task_stack();
1582 4 us | 0) bash-1507 | d..2 | 1.107 us | }
1583 [...]
1584 3750 us | 0) bash-1507 | d..1 | 0.516 us | do_raw_spin_unlock();
1585 3750 us | 0) bash-1507 | d..1 | 0.000 us | _raw_spin_unlock_irqrestore();
1586 3764 us | 0) bash-1507 | d..1 | 0.000 us | tracer_hardirqs_on();
1587 bash-1507 0d..1 3792us : <stack trace>
1588 => free_debug_processing
1589 => __slab_free
1590 => kmem_cache_free
1591 => vm_area_free
1592 => remove_vma
1593 => exit_mmap
1594 => mmput
2388777a 1595 => begin_new_exec
88d380eb
CD
1596 => load_elf_binary
1597 => search_binary_handler
1598 => __do_execve_file.isra.32
1599 => __x64_sys_execve
1600 => do_syscall_64
1601 => entry_SYSCALL_64_after_hwframe
1f198e22
CD
1602
1603preemptoff
1604----------
1605
1606When preemption is disabled, we may be able to receive
1607interrupts but the task cannot be preempted and a higher
1608priority task must wait for preemption to be enabled again
1609before it can preempt a lower priority task.
1610
1611The preemptoff tracer traces the places that disable preemption.
1612Like the irqsoff tracer, it records the maximum latency for
1613which preemption was disabled. The control of preemptoff tracer
1614is much like the irqsoff tracer.
1615::
1616
1617 # echo 0 > options/function-trace
1618 # echo preemptoff > current_tracer
1619 # echo 1 > tracing_on
1620 # echo 0 > tracing_max_latency
1621 # ls -ltr
1622 [...]
1623 # echo 0 > tracing_on
1624 # cat trace
1625 # tracer: preemptoff
1626 #
1627 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1628 # --------------------------------------------------------------------
1629 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1630 # -----------------
1631 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1632 # -----------------
1633 # => started at: do_IRQ
1634 # => ended at: do_IRQ
1635 #
1636 #
1637 # _------=> CPU#
1638 # / _-----=> irqs-off
1639 # | / _----=> need-resched
1640 # || / _---=> hardirq/softirq
1641 # ||| / _--=> preempt-depth
1642 # |||| / delay
1643 # cmd pid ||||| time | caller
1644 # \ / ||||| \ | /
1645 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
1646 sshd-1991 1d..1 46us : irq_exit <-do_IRQ
1647 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
1648 sshd-1991 1d..1 52us : <stack trace>
1649 => sub_preempt_count
1650 => irq_exit
1651 => do_IRQ
1652 => ret_from_intr
1653
1654
1655This has some more changes. Preemption was disabled when an
1656interrupt came in (notice the 'h'), and was enabled on exit.
1657But we also see that interrupts have been disabled when entering
1658the preempt off section and leaving it (the 'd'). We do not know if
1659interrupts were enabled in the mean time or shortly after this
1660was over.
1661::
1662
1663 # tracer: preemptoff
1664 #
1665 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1666 # --------------------------------------------------------------------
1667 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1668 # -----------------
1669 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1670 # -----------------
1671 # => started at: wake_up_new_task
1672 # => ended at: task_rq_unlock
1673 #
1674 #
1675 # _------=> CPU#
1676 # / _-----=> irqs-off
1677 # | / _----=> need-resched
1678 # || / _---=> hardirq/softirq
1679 # ||| / _--=> preempt-depth
1680 # |||| / delay
1681 # cmd pid ||||| time | caller
1682 # \ / ||||| \ | /
1683 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
1684 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
1685 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
1686 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1687 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1688 [...]
1689 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
1690 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
1691 bash-1994 1d..1 13us : add_preempt_count <-irq_enter
1692 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
1693 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1694 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
1695 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
1696 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt
1697 [...]
1698 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event
1699 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
1700 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
1701 bash-1994 1d..2 36us : do_softirq <-irq_exit
1702 bash-1994 1d..2 36us : __do_softirq <-call_softirq
1703 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
1704 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
1705 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
1706 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
1707 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq
1708 [...]
1709 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks
1710 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
1711 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
1712 bash-1994 1dN.2 82us : idle_cpu <-irq_exit
1713 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
1714 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
1715 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1716 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
1717 bash-1994 1.N.1 104us : <stack trace>
1718 => sub_preempt_count
1719 => _raw_spin_unlock_irqrestore
1720 => task_rq_unlock
1721 => wake_up_new_task
1722 => do_fork
1723 => sys_clone
1724 => stub_clone
1725
1726
1727The above is an example of the preemptoff trace with
1728function-trace set. Here we see that interrupts were not disabled
1729the entire time. The irq_enter code lets us know that we entered
1730an interrupt 'h'. Before that, the functions being traced still
1731show that it is not in an interrupt, but we can see from the
1732functions themselves that this is not the case.
1733
1734preemptirqsoff
1735--------------
1736
1737Knowing the locations that have interrupts disabled or
1738preemption disabled for the longest times is helpful. But
1739sometimes we would like to know when either preemption and/or
1740interrupts are disabled.
1741
1742Consider the following code::
1743
1744 local_irq_disable();
1745 call_function_with_irqs_off();
1746 preempt_disable();
1747 call_function_with_irqs_and_preemption_off();
1748 local_irq_enable();
1749 call_function_with_preemption_off();
1750 preempt_enable();
1751
1752The irqsoff tracer will record the total length of
1753call_function_with_irqs_off() and
1754call_function_with_irqs_and_preemption_off().
1755
1756The preemptoff tracer will record the total length of
1757call_function_with_irqs_and_preemption_off() and
1758call_function_with_preemption_off().
1759
1760But neither will trace the time that interrupts and/or
1761preemption is disabled. This total time is the time that we can
1762not schedule. To record this time, use the preemptirqsoff
1763tracer.
1764
1765Again, using this trace is much like the irqsoff and preemptoff
1766tracers.
1767::
1768
1769 # echo 0 > options/function-trace
1770 # echo preemptirqsoff > current_tracer
1771 # echo 1 > tracing_on
1772 # echo 0 > tracing_max_latency
1773 # ls -ltr
1774 [...]
1775 # echo 0 > tracing_on
1776 # cat trace
1777 # tracer: preemptirqsoff
1778 #
1779 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1780 # --------------------------------------------------------------------
1781 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1782 # -----------------
1783 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1784 # -----------------
1785 # => started at: ata_scsi_queuecmd
1786 # => ended at: ata_scsi_queuecmd
1787 #
1788 #
1789 # _------=> CPU#
1790 # / _-----=> irqs-off
1791 # | / _----=> need-resched
1792 # || / _---=> hardirq/softirq
1793 # ||| / _--=> preempt-depth
1794 # |||| / delay
1795 # cmd pid ||||| time | caller
1796 # \ / ||||| \ | /
1797 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1798 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1799 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
1800 ls-2230 3...1 111us : <stack trace>
1801 => sub_preempt_count
1802 => _raw_spin_unlock_irqrestore
1803 => ata_scsi_queuecmd
1804 => scsi_dispatch_cmd
1805 => scsi_request_fn
1806 => __blk_run_queue_uncond
1807 => __blk_run_queue
1808 => blk_queue_bio
ed00aabd 1809 => submit_bio_noacct
1f198e22
CD
1810 => submit_bio
1811 => submit_bh
1812 => ext3_bread
1813 => ext3_dir_bread
1814 => htree_dirblock_to_tree
1815 => ext3_htree_fill_tree
1816 => ext3_readdir
1817 => vfs_readdir
1818 => sys_getdents
1819 => system_call_fastpath
1820
1821
1822The trace_hardirqs_off_thunk is called from assembly on x86 when
1823interrupts are disabled in the assembly code. Without the
1824function tracing, we do not know if interrupts were enabled
1825within the preemption points. We do see that it started with
1826preemption enabled.
1827
1828Here is a trace with function-trace set::
1829
1830 # tracer: preemptirqsoff
1831 #
1832 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1833 # --------------------------------------------------------------------
1834 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1835 # -----------------
1836 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1837 # -----------------
1838 # => started at: schedule
1839 # => ended at: mutex_unlock
1840 #
1841 #
1842 # _------=> CPU#
1843 # / _-----=> irqs-off
1844 # | / _----=> need-resched
1845 # || / _---=> hardirq/softirq
1846 # ||| / _--=> preempt-depth
1847 # |||| / delay
1848 # cmd pid ||||| time | caller
1849 # \ / ||||| \ | /
1850 kworker/-59 3...1 0us : __schedule <-schedule
1851 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
1852 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
1853 kworker/-59 3d..2 1us : deactivate_task <-__schedule
1854 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
1855 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
1856 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
1857 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
1858 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
1859 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
1860 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
1861 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
1862 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1863 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
1864 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
1865 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
1866 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
1867 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
1868 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
1869 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
1870 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
1871 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
1872 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
1873 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
1874 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity
1875 ls-2269 3d..2 7us : finish_task_switch <-__schedule
1876 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
1877 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
1878 ls-2269 3d..2 8us : irq_enter <-do_IRQ
1879 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
1880 ls-2269 3d..2 9us : add_preempt_count <-irq_enter
1881 ls-2269 3d.h2 9us : exit_idle <-do_IRQ
1882 [...]
1883 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
1884 ls-2269 3d.h2 20us : irq_exit <-do_IRQ
1885 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
1886 ls-2269 3d..3 21us : do_softirq <-irq_exit
1887 ls-2269 3d..3 21us : __do_softirq <-call_softirq
1888 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
1889 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
1890 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
1891 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
1892 ls-2269 3d.s5 31us : irq_enter <-do_IRQ
1893 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1894 [...]
1895 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1896 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
1897 ls-2269 3d.H5 32us : exit_idle <-do_IRQ
1898 ls-2269 3d.H5 32us : handle_irq <-do_IRQ
1899 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
1900 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq
1901 [...]
1902 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1903 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1904 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
1905 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
1906 ls-2269 3d..3 159us : idle_cpu <-irq_exit
1907 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit
1908 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
1909 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
1910 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
1911 ls-2269 3d... 186us : <stack trace>
1912 => __mutex_unlock_slowpath
1913 => mutex_unlock
1914 => process_output
1915 => n_tty_write
1916 => tty_write
1917 => vfs_write
1918 => sys_write
1919 => system_call_fastpath
1920
1921This is an interesting trace. It started with kworker running and
1922scheduling out and ls taking over. But as soon as ls released the
1923rq lock and enabled interrupts (but not preemption) an interrupt
1924triggered. When the interrupt finished, it started running softirqs.
1925But while the softirq was running, another interrupt triggered.
1926When an interrupt is running inside a softirq, the annotation is 'H'.
1927
1928
1929wakeup
1930------
1931
1932One common case that people are interested in tracing is the
1933time it takes for a task that is woken to actually wake up.
1934Now for non Real-Time tasks, this can be arbitrary. But tracing
1935it none the less can be interesting.
1936
1937Without function tracing::
1938
1939 # echo 0 > options/function-trace
1940 # echo wakeup > current_tracer
1941 # echo 1 > tracing_on
1942 # echo 0 > tracing_max_latency
1943 # chrt -f 5 sleep 1
1944 # echo 0 > tracing_on
1945 # cat trace
1946 # tracer: wakeup
1947 #
1948 # wakeup latency trace v1.1.5 on 3.8.0-test+
1949 # --------------------------------------------------------------------
1950 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1951 # -----------------
1952 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1953 # -----------------
1954 #
1955 # _------=> CPU#
1956 # / _-----=> irqs-off
1957 # | / _----=> need-resched
1958 # || / _---=> hardirq/softirq
1959 # ||| / _--=> preempt-depth
1960 # |||| / delay
1961 # cmd pid ||||| time | caller
1962 # \ / ||||| \ | /
1963 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H
1964 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1965 <idle>-0 3d..3 15us : __schedule <-schedule
1966 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H
1967
1968The tracer only traces the highest priority task in the system
1969to avoid tracing the normal circumstances. Here we see that
1970the kworker with a nice priority of -20 (not very nice), took
1971just 15 microseconds from the time it woke up, to the time it
1972ran.
1973
1974Non Real-Time tasks are not that interesting. A more interesting
1975trace is to concentrate only on Real-Time tasks.
1976
1977wakeup_rt
1978---------
1979
1980In a Real-Time environment it is very important to know the
1981wakeup time it takes for the highest priority task that is woken
1982up to the time that it executes. This is also known as "schedule
1983latency". I stress the point that this is about RT tasks. It is
1984also important to know the scheduling latency of non-RT tasks,
1985but the average schedule latency is better for non-RT tasks.
1986Tools like LatencyTop are more appropriate for such
1987measurements.
1988
1989Real-Time environments are interested in the worst case latency.
1990That is the longest latency it takes for something to happen,
1991and not the average. We can have a very fast scheduler that may
1992only have a large latency once in a while, but that would not
1993work well with Real-Time tasks. The wakeup_rt tracer was designed
1994to record the worst case wakeups of RT tasks. Non-RT tasks are
1995not recorded because the tracer only records one worst case and
1996tracing non-RT tasks that are unpredictable will overwrite the
1997worst case latency of RT tasks (just run the normal wakeup
1998tracer for a while to see that effect).
1999
2000Since this tracer only deals with RT tasks, we will run this
2001slightly differently than we did with the previous tracers.
2002Instead of performing an 'ls', we will run 'sleep 1' under
2003'chrt' which changes the priority of the task.
2004::
2005
2006 # echo 0 > options/function-trace
2007 # echo wakeup_rt > current_tracer
2008 # echo 1 > tracing_on
2009 # echo 0 > tracing_max_latency
2010 # chrt -f 5 sleep 1
2011 # echo 0 > tracing_on
2012 # cat trace
2013 # tracer: wakeup
2014 #
2015 # tracer: wakeup_rt
2016 #
2017 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2018 # --------------------------------------------------------------------
2019 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2020 # -----------------
2021 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
2022 # -----------------
2023 #
2024 # _------=> CPU#
2025 # / _-----=> irqs-off
2026 # | / _----=> need-resched
2027 # || / _---=> hardirq/softirq
2028 # ||| / _--=> preempt-depth
2029 # |||| / delay
2030 # cmd pid ||||| time | caller
2031 # \ / ||||| \ | /
2032 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
2033 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
2034 <idle>-0 3d..3 5us : __schedule <-schedule
2035 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
2036
2037
2038Running this on an idle system, we see that it only took 5 microseconds
2039to perform the task switch. Note, since the trace point in the schedule
2040is before the actual "switch", we stop the tracing when the recorded task
2041is about to schedule in. This may change if we add a new marker at the
2042end of the scheduler.
2043
2044Notice that the recorded task is 'sleep' with the PID of 2389
2045and it has an rt_prio of 5. This priority is user-space priority
2046and not the internal kernel priority. The policy is 1 for
2047SCHED_FIFO and 2 for SCHED_RR.
2048
2049Note, that the trace data shows the internal priority (99 - rtprio).
2050::
2051
2052 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
2053
2054The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
2055and in the running state 'R'. The sleep task was scheduled in with
20562389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
2057and it too is in the running state.
2058
2059Doing the same with chrt -r 5 and function-trace set.
2060::
2061
2062 echo 1 > options/function-trace
2063
2064 # tracer: wakeup_rt
2065 #
2066 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2067 # --------------------------------------------------------------------
2068 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2069 # -----------------
2070 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
2071 # -----------------
2072 #
2073 # _------=> CPU#
2074 # / _-----=> irqs-off
2075 # | / _----=> need-resched
2076 # || / _---=> hardirq/softirq
2077 # ||| / _--=> preempt-depth
2078 # |||| / delay
2079 # cmd pid ||||| time | caller
2080 # \ / ||||| \ | /
2081 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep
2082 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2083 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
2084 <idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr
2085 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
2086 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
2087 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
2088 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
2089 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
2090 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2091 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
2092 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
2093 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
2094 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
2095 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
2096 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event
2097 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
2098 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event
2099 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
2100 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
2101 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit
2102 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
2103 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
2104 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
2105 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
2106 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
2107 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
2108 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
2109 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
2110 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
2111 <idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit
2112 <idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz
2113 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
2114 <idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz
2115 <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update
2116 <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz
2117 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
2118 <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit
2119 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
2120 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
2121 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
2122 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
2123 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2124 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
2125 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
2126 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
2127 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram
2128 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event
2129 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
2130 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event
2131 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
2132 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2133 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
2134 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
2135 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
2136 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2137 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
2138 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
2139 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
2140 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
2141 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
2142 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
2143 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns
2144 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event
2145 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
2146 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event
2147 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
2148 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
2149 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
2150 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
2151 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
2152 <idle>-0 3.N.. 25us : schedule <-cpu_idle
2153 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule
2154 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule
2155 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
2156 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
2157 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
2158 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
2159 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
2160 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
2161 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
2162 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
2163 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
2164 <idle>-0 3d..3 29us : __schedule <-preempt_schedule
2165 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep
2166
2167This isn't that big of a trace, even with function tracing enabled,
2168so I included the entire trace.
2169
2170The interrupt went off while when the system was idle. Somewhere
2171before task_woken_rt() was called, the NEED_RESCHED flag was set,
2172this is indicated by the first occurrence of the 'N' flag.
2173
2174Latency tracing and events
2175--------------------------
2176As function tracing can induce a much larger latency, but without
2177seeing what happens within the latency it is hard to know what
2178caused it. There is a middle ground, and that is with enabling
2179events.
2180::
2181
2182 # echo 0 > options/function-trace
2183 # echo wakeup_rt > current_tracer
2184 # echo 1 > events/enable
2185 # echo 1 > tracing_on
2186 # echo 0 > tracing_max_latency
2187 # chrt -f 5 sleep 1
2188 # echo 0 > tracing_on
2189 # cat trace
2190 # tracer: wakeup_rt
2191 #
2192 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
2193 # --------------------------------------------------------------------
2194 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
2195 # -----------------
2196 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
2197 # -----------------
2198 #
2199 # _------=> CPU#
2200 # / _-----=> irqs-off
2201 # | / _----=> need-resched
2202 # || / _---=> hardirq/softirq
2203 # ||| / _--=> preempt-depth
2204 # |||| / delay
2205 # cmd pid ||||| time | caller
2206 # \ / ||||| \ | /
2207 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
2208 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
2209 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
2210 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
2211 <idle>-0 2.N.2 2us : power_end: cpu_id=2
2212 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
2213 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
2214 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
2215 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch
2216 <idle>-0 2.N.2 5us : rcu_utilization: End context switch
2217 <idle>-0 2d..3 6us : __schedule <-schedule
2218 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
2219
2220
2221Hardware Latency Detector
2222-------------------------
2223
2224The hardware latency detector is executed by enabling the "hwlat" tracer.
2225
2226NOTE, this tracer will affect the performance of the system as it will
2227periodically make a CPU constantly busy with interrupts disabled.
2228::
2229
2230 # echo hwlat > current_tracer
2231 # sleep 100
2232 # cat trace
2233 # tracer: hwlat
2234 #
b396bfde
SRV
2235 # entries-in-buffer/entries-written: 13/13 #P:8
2236 #
1f198e22
CD
2237 # _-----=> irqs-off
2238 # / _----=> need-resched
2239 # | / _---=> hardirq/softirq
2240 # || / _--=> preempt-depth
2241 # ||| / delay
2242 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2243 # | | | |||| | |
b396bfde
SRV
2244 <...>-1729 [001] d... 678.473449: #1 inner/outer(us): 11/12 ts:1581527483.343962693 count:6
2245 <...>-1729 [004] d... 689.556542: #2 inner/outer(us): 16/9 ts:1581527494.889008092 count:1
2246 <...>-1729 [005] d... 714.756290: #3 inner/outer(us): 16/16 ts:1581527519.678961629 count:5
2247 <...>-1729 [001] d... 718.788247: #4 inner/outer(us): 9/17 ts:1581527523.889012713 count:1
2248 <...>-1729 [002] d... 719.796341: #5 inner/outer(us): 13/9 ts:1581527524.912872606 count:1
2249 <...>-1729 [006] d... 844.787091: #6 inner/outer(us): 9/12 ts:1581527649.889048502 count:2
2250 <...>-1729 [003] d... 849.827033: #7 inner/outer(us): 18/9 ts:1581527654.889013793 count:1
2251 <...>-1729 [007] d... 853.859002: #8 inner/outer(us): 9/12 ts:1581527658.889065736 count:1
2252 <...>-1729 [001] d... 855.874978: #9 inner/outer(us): 9/11 ts:1581527660.861991877 count:1
2253 <...>-1729 [001] d... 863.938932: #10 inner/outer(us): 9/11 ts:1581527668.970010500 count:1 nmi-total:7 nmi-count:1
2254 <...>-1729 [007] d... 878.050780: #11 inner/outer(us): 9/12 ts:1581527683.385002600 count:1 nmi-total:5 nmi-count:1
2255 <...>-1729 [007] d... 886.114702: #12 inner/outer(us): 9/12 ts:1581527691.385001600 count:1
1f198e22
CD
2256
2257
2258The above output is somewhat the same in the header. All events will have
2259interrupts disabled 'd'. Under the FUNCTION title there is:
2260
2261 #1
2262 This is the count of events recorded that were greater than the
2263 tracing_threshold (See below).
2264
b396bfde 2265 inner/outer(us): 11/11
1f198e22
CD
2266
2267 This shows two numbers as "inner latency" and "outer latency". The test
2268 runs in a loop checking a timestamp twice. The latency detected within
2269 the two timestamps is the "inner latency" and the latency detected
2270 after the previous timestamp and the next timestamp in the loop is
2271 the "outer latency".
2272
b396bfde
SRV
2273 ts:1581527483.343962693
2274
2275 The absolute timestamp that the first latency was recorded in the window.
2276
2277 count:6
1f198e22 2278
b396bfde 2279 The number of times a latency was detected during the window.
1f198e22 2280
b396bfde 2281 nmi-total:7 nmi-count:1
1f198e22
CD
2282
2283 On architectures that support it, if an NMI comes in during the
2284 test, the time spent in NMI is reported in "nmi-total" (in
2285 microseconds).
2286
2287 All architectures that have NMIs will show the "nmi-count" if an
2288 NMI comes in during the test.
2289
2290hwlat files:
2291
2292 tracing_threshold
2293 This gets automatically set to "10" to represent 10
2294 microseconds. This is the threshold of latency that
2295 needs to be detected before the trace will be recorded.
2296
2297 Note, when hwlat tracer is finished (another tracer is
2298 written into "current_tracer"), the original value for
2299 tracing_threshold is placed back into this file.
2300
2301 hwlat_detector/width
2302 The length of time the test runs with interrupts disabled.
2303
2304 hwlat_detector/window
2305 The length of time of the window which the test
2306 runs. That is, the test will run for "width"
2307 microseconds per "window" microseconds
2308
2309 tracing_cpumask
2310 When the test is started. A kernel thread is created that
2311 runs the test. This thread will alternate between CPUs
2312 listed in the tracing_cpumask between each period
2313 (one "window"). To limit the test to specific CPUs
2314 set the mask in this file to only the CPUs that the test
2315 should run on.
2316
2317function
2318--------
2319
2320This tracer is the function tracer. Enabling the function tracer
2321can be done from the debug file system. Make sure the
2322ftrace_enabled is set; otherwise this tracer is a nop.
2323See the "ftrace_enabled" section below.
2324::
2325
2326 # sysctl kernel.ftrace_enabled=1
2327 # echo function > current_tracer
2328 # echo 1 > tracing_on
2329 # usleep 1
2330 # echo 0 > tracing_on
2331 # cat trace
2332 # tracer: function
2333 #
2334 # entries-in-buffer/entries-written: 24799/24799 #P:4
2335 #
2336 # _-----=> irqs-off
2337 # / _----=> need-resched
2338 # | / _---=> hardirq/softirq
2339 # || / _--=> preempt-depth
2340 # ||| / delay
2341 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2342 # | | | |||| | |
2343 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write
2344 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2345 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify
2346 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
2347 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
2348 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock
2349 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock
2350 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify
2351 [...]
2352
2353
2354Note: function tracer uses ring buffers to store the above
2355entries. The newest data may overwrite the oldest data.
2356Sometimes using echo to stop the trace is not sufficient because
2357the tracing could have overwritten the data that you wanted to
2358record. For this reason, it is sometimes better to disable
2359tracing directly from a program. This allows you to stop the
2360tracing at the point that you hit the part that you are
2361interested in. To disable the tracing directly from a C program,
2362something like following code snippet can be used::
2363
2364 int trace_fd;
2365 [...]
2366 int main(int argc, char *argv[]) {
2367 [...]
2368 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2369 [...]
2370 if (condition_hit()) {
2371 write(trace_fd, "0", 1);
2372 }
2373 [...]
2374 }
2375
2376
2377Single thread tracing
2378---------------------
2379
2380By writing into set_ftrace_pid you can trace a
2381single thread. For example::
2382
2383 # cat set_ftrace_pid
2384 no pid
2385 # echo 3111 > set_ftrace_pid
2386 # cat set_ftrace_pid
2387 3111
2388 # echo function > current_tracer
2389 # cat trace | head
2390 # tracer: function
2391 #
2392 # TASK-PID CPU# TIMESTAMP FUNCTION
2393 # | | | | |
2394 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
2395 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2396 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2397 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2398 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
2399 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
2400 # echo > set_ftrace_pid
2401 # cat trace |head
2402 # tracer: function
2403 #
2404 # TASK-PID CPU# TIMESTAMP FUNCTION
2405 # | | | | |
2406 ##### CPU 3 buffer started ####
2407 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
2408 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
2409 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
2410 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
2411 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
2412
2413If you want to trace a function when executing, you could use
2414something like this simple program.
2415::
2416
2417 #include <stdio.h>
2418 #include <stdlib.h>
2419 #include <sys/types.h>
2420 #include <sys/stat.h>
2421 #include <fcntl.h>
2422 #include <unistd.h>
2423 #include <string.h>
2424
2425 #define _STR(x) #x
2426 #define STR(x) _STR(x)
2427 #define MAX_PATH 256
2428
2429 const char *find_tracefs(void)
2430 {
2431 static char tracefs[MAX_PATH+1];
2432 static int tracefs_found;
2433 char type[100];
2434 FILE *fp;
2435
2436 if (tracefs_found)
2437 return tracefs;
2438
2439 if ((fp = fopen("/proc/mounts","r")) == NULL) {
2440 perror("/proc/mounts");
2441 return NULL;
2442 }
2443
2444 while (fscanf(fp, "%*s %"
2445 STR(MAX_PATH)
2446 "s %99s %*s %*d %*d\n",
2447 tracefs, type) == 2) {
2448 if (strcmp(type, "tracefs") == 0)
2449 break;
2450 }
2451 fclose(fp);
2452
2453 if (strcmp(type, "tracefs") != 0) {
2454 fprintf(stderr, "tracefs not mounted");
2455 return NULL;
2456 }
2457
2458 strcat(tracefs, "/tracing/");
2459 tracefs_found = 1;
2460
2461 return tracefs;
2462 }
2463
2464 const char *tracing_file(const char *file_name)
2465 {
2466 static char trace_file[MAX_PATH+1];
2467 snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2468 return trace_file;
2469 }
2470
2471 int main (int argc, char **argv)
2472 {
2473 if (argc < 1)
2474 exit(-1);
2475
2476 if (fork() > 0) {
2477 int fd, ffd;
2478 char line[64];
2479 int s;
2480
2481 ffd = open(tracing_file("current_tracer"), O_WRONLY);
2482 if (ffd < 0)
2483 exit(-1);
2484 write(ffd, "nop", 3);
2485
2486 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2487 s = sprintf(line, "%d\n", getpid());
2488 write(fd, line, s);
2489
2490 write(ffd, "function", 8);
2491
2492 close(fd);
2493 close(ffd);
2494
2495 execvp(argv[1], argv+1);
2496 }
2497
2498 return 0;
2499 }
2500
2501Or this simple script!
2502::
2503
2504 #!/bin/bash
2505
2506 tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
951e0d00
ZL
2507 echo 0 > $tracefs/tracing_on
2508 echo $$ > $tracefs/set_ftrace_pid
2509 echo function > $tracefs/current_tracer
2510 echo 1 > $tracefs/tracing_on
1f198e22
CD
2511 exec "$@"
2512
2513
2514function graph tracer
2515---------------------------
2516
2517This tracer is similar to the function tracer except that it
2518probes a function on its entry and its exit. This is done by
2519using a dynamically allocated stack of return addresses in each
2520task_struct. On function entry the tracer overwrites the return
2521address of each function traced to set a custom probe. Thus the
2522original return address is stored on the stack of return address
2523in the task_struct.
2524
2525Probing on both ends of a function leads to special features
2526such as:
2527
2528- measure of a function's time execution
2529- having a reliable call stack to draw function calls graph
2530
2531This tracer is useful in several situations:
2532
2533- you want to find the reason of a strange kernel behavior and
2534 need to see what happens in detail on any areas (or specific
2535 ones).
2536
2537- you are experiencing weird latencies but it's difficult to
2538 find its origin.
2539
2540- you want to find quickly which path is taken by a specific
2541 function
2542
2543- you just want to peek inside a working kernel and want to see
2544 what happens there.
2545
2546::
2547
2548 # tracer: function_graph
2549 #
2550 # CPU DURATION FUNCTION CALLS
2551 # | | | | | | |
2552
2553 0) | sys_open() {
2554 0) | do_sys_open() {
2555 0) | getname() {
2556 0) | kmem_cache_alloc() {
2557 0) 1.382 us | __might_sleep();
2558 0) 2.478 us | }
2559 0) | strncpy_from_user() {
2560 0) | might_fault() {
2561 0) 1.389 us | __might_sleep();
2562 0) 2.553 us | }
2563 0) 3.807 us | }
2564 0) 7.876 us | }
2565 0) | alloc_fd() {
2566 0) 0.668 us | _spin_lock();
2567 0) 0.570 us | expand_files();
2568 0) 0.586 us | _spin_unlock();
2569
2570
2571There are several columns that can be dynamically
2572enabled/disabled. You can use every combination of options you
2573want, depending on your needs.
2574
2575- The cpu number on which the function executed is default
2576 enabled. It is sometimes better to only trace one cpu (see
2577 tracing_cpu_mask file) or you might sometimes see unordered
2578 function calls while cpu tracing switch.
2579
2580 - hide: echo nofuncgraph-cpu > trace_options
2581 - show: echo funcgraph-cpu > trace_options
2582
2583- The duration (function's time of execution) is displayed on
2584 the closing bracket line of a function or on the same line
2585 than the current function in case of a leaf one. It is default
2586 enabled.
2587
2588 - hide: echo nofuncgraph-duration > trace_options
2589 - show: echo funcgraph-duration > trace_options
2590
2591- The overhead field precedes the duration field in case of
2592 reached duration thresholds.
2593
2594 - hide: echo nofuncgraph-overhead > trace_options
2595 - show: echo funcgraph-overhead > trace_options
2596 - depends on: funcgraph-duration
2597
2598 ie::
2599
2600 3) # 1837.709 us | } /* __switch_to */
2601 3) | finish_task_switch() {
2602 3) 0.313 us | _raw_spin_unlock_irq();
2603 3) 3.177 us | }
2604 3) # 1889.063 us | } /* __schedule */
2605 3) ! 140.417 us | } /* __schedule */
2606 3) # 2034.948 us | } /* schedule */
2607 3) * 33998.59 us | } /* schedule_preempt_disabled */
2608
2609 [...]
2610
2611 1) 0.260 us | msecs_to_jiffies();
2612 1) 0.313 us | __rcu_read_unlock();
2613 1) + 61.770 us | }
2614 1) + 64.479 us | }
2615 1) 0.313 us | rcu_bh_qs();
2616 1) 0.313 us | __local_bh_enable();
2617 1) ! 217.240 us | }
2618 1) 0.365 us | idle_cpu();
2619 1) | rcu_irq_exit() {
2620 1) 0.417 us | rcu_eqs_enter_common.isra.47();
2621 1) 3.125 us | }
2622 1) ! 227.812 us | }
2623 1) ! 457.395 us | }
2624 1) @ 119760.2 us | }
2625
2626 [...]
2627
2628 2) | handle_IPI() {
2629 1) 6.979 us | }
2630 2) 0.417 us | scheduler_ipi();
2631 1) 9.791 us | }
2632 1) + 12.917 us | }
2633 2) 3.490 us | }
2634 1) + 15.729 us | }
2635 1) + 18.542 us | }
2636 2) $ 3594274 us | }
2637
2638Flags::
2639
2640 + means that the function exceeded 10 usecs.
2641 ! means that the function exceeded 100 usecs.
2642 # means that the function exceeded 1000 usecs.
2643 * means that the function exceeded 10 msecs.
2644 @ means that the function exceeded 100 msecs.
2645 $ means that the function exceeded 1 sec.
2646
2647
2648- The task/pid field displays the thread cmdline and pid which
2649 executed the function. It is default disabled.
2650
2651 - hide: echo nofuncgraph-proc > trace_options
2652 - show: echo funcgraph-proc > trace_options
2653
2654 ie::
2655
2656 # tracer: function_graph
2657 #
2658 # CPU TASK/PID DURATION FUNCTION CALLS
2659 # | | | | | | | | |
2660 0) sh-4802 | | d_free() {
2661 0) sh-4802 | | call_rcu() {
2662 0) sh-4802 | | __call_rcu() {
2663 0) sh-4802 | 0.616 us | rcu_process_gp_end();
2664 0) sh-4802 | 0.586 us | check_for_new_grace_period();
2665 0) sh-4802 | 2.899 us | }
2666 0) sh-4802 | 4.040 us | }
2667 0) sh-4802 | 5.151 us | }
2668 0) sh-4802 | + 49.370 us | }
2669
2670
2671- The absolute time field is an absolute timestamp given by the
2672 system clock since it started. A snapshot of this time is
2673 given on each entry/exit of functions
2674
2675 - hide: echo nofuncgraph-abstime > trace_options
2676 - show: echo funcgraph-abstime > trace_options
2677
2678 ie::
2679
2680 #
2681 # TIME CPU DURATION FUNCTION CALLS
2682 # | | | | | | | |
2683 360.774522 | 1) 0.541 us | }
2684 360.774522 | 1) 4.663 us | }
2685 360.774523 | 1) 0.541 us | __wake_up_bit();
2686 360.774524 | 1) 6.796 us | }
2687 360.774524 | 1) 7.952 us | }
2688 360.774525 | 1) 9.063 us | }
2689 360.774525 | 1) 0.615 us | journal_mark_dirty();
2690 360.774527 | 1) 0.578 us | __brelse();
2691 360.774528 | 1) | reiserfs_prepare_for_journal() {
2692 360.774528 | 1) | unlock_buffer() {
2693 360.774529 | 1) | wake_up_bit() {
2694 360.774529 | 1) | bit_waitqueue() {
2695 360.774530 | 1) 0.594 us | __phys_addr();
2696
2697
2698The function name is always displayed after the closing bracket
2699for a function if the start of that function is not in the
2700trace buffer.
2701
2702Display of the function name after the closing bracket may be
2703enabled for functions whose start is in the trace buffer,
2704allowing easier searching with grep for function durations.
2705It is default disabled.
2706
2707 - hide: echo nofuncgraph-tail > trace_options
2708 - show: echo funcgraph-tail > trace_options
2709
2710 Example with nofuncgraph-tail (default)::
2711
2712 0) | putname() {
2713 0) | kmem_cache_free() {
2714 0) 0.518 us | __phys_addr();
2715 0) 1.757 us | }
2716 0) 2.861 us | }
2717
2718 Example with funcgraph-tail::
2719
2720 0) | putname() {
2721 0) | kmem_cache_free() {
2722 0) 0.518 us | __phys_addr();
2723 0) 1.757 us | } /* kmem_cache_free() */
2724 0) 2.861 us | } /* putname() */
2725
21c094d3
DP
2726The return value of each traced function can be displayed after
2727an equal sign "=". When encountering system call failures, it
d56b699d 2728can be very helpful to quickly locate the function that first
21c094d3
DP
2729returns an error code.
2730
2731 - hide: echo nofuncgraph-retval > trace_options
2732 - show: echo funcgraph-retval > trace_options
2733
2734 Example with funcgraph-retval::
2735
2736 1) | cgroup_migrate() {
2737 1) 0.651 us | cgroup_migrate_add_task(); /* = 0xffff93fcfd346c00 */
2738 1) | cgroup_migrate_execute() {
2739 1) | cpu_cgroup_can_attach() {
2740 1) | cgroup_taskset_first() {
2741 1) 0.732 us | cgroup_taskset_next(); /* = 0xffff93fc8fb20000 */
2742 1) 1.232 us | } /* cgroup_taskset_first = 0xffff93fc8fb20000 */
2743 1) 0.380 us | sched_rt_can_attach(); /* = 0x0 */
2744 1) 2.335 us | } /* cpu_cgroup_can_attach = -22 */
2745 1) 4.369 us | } /* cgroup_migrate_execute = -22 */
2746 1) 7.143 us | } /* cgroup_migrate = -22 */
2747
2748The above example shows that the function cpu_cgroup_can_attach
2749returned the error code -22 firstly, then we can read the code
2750of this function to get the root cause.
2751
2752When the option funcgraph-retval-hex is not set, the return value can
2753be displayed in a smart way. Specifically, if it is an error code,
2754it will be printed in signed decimal format, otherwise it will
2755printed in hexadecimal format.
2756
2757 - smart: echo nofuncgraph-retval-hex > trace_options
2758 - hexadecimal: echo funcgraph-retval-hex > trace_options
2759
2760 Example with funcgraph-retval-hex::
2761
2762 1) | cgroup_migrate() {
2763 1) 0.651 us | cgroup_migrate_add_task(); /* = 0xffff93fcfd346c00 */
2764 1) | cgroup_migrate_execute() {
2765 1) | cpu_cgroup_can_attach() {
2766 1) | cgroup_taskset_first() {
2767 1) 0.732 us | cgroup_taskset_next(); /* = 0xffff93fc8fb20000 */
2768 1) 1.232 us | } /* cgroup_taskset_first = 0xffff93fc8fb20000 */
2769 1) 0.380 us | sched_rt_can_attach(); /* = 0x0 */
2770 1) 2.335 us | } /* cpu_cgroup_can_attach = 0xffffffea */
2771 1) 4.369 us | } /* cgroup_migrate_execute = 0xffffffea */
2772 1) 7.143 us | } /* cgroup_migrate = 0xffffffea */
2773
2774At present, there are some limitations when using the funcgraph-retval
2775option, and these limitations will be eliminated in the future:
2776
2777- Even if the function return type is void, a return value will still
2778 be printed, and you can just ignore it.
2779
2780- Even if return values are stored in multiple registers, only the
2781 value contained in the first register will be recorded and printed.
2782 To illustrate, in the x86 architecture, eax and edx are used to store
2783 a 64-bit return value, with the lower 32 bits saved in eax and the
2784 upper 32 bits saved in edx. However, only the value stored in eax
2785 will be recorded and printed.
2786
2787- In certain procedure call standards, such as arm64's AAPCS64, when a
2788 type is smaller than a GPR, it is the responsibility of the consumer
2789 to perform the narrowing, and the upper bits may contain UNKNOWN values.
2790 Therefore, it is advisable to check the code for such cases. For instance,
2791 when using a u8 in a 64-bit GPR, bits [63:8] may contain arbitrary values,
2792 especially when larger types are truncated, whether explicitly or implicitly.
2793 Here are some specific cases to illustrate this point:
2794
fc30ace0 2795 **Case One**:
21c094d3
DP
2796
2797 The function narrow_to_u8 is defined as follows::
2798
2799 u8 narrow_to_u8(u64 val)
2800 {
2801 // implicitly truncated
2802 return val;
2803 }
2804
2805 It may be compiled to::
2806
2807 narrow_to_u8:
2808 < ... ftrace instrumentation ... >
2809 RET
2810
2811 If you pass 0x123456789abcdef to this function and want to narrow it,
2812 it may be recorded as 0x123456789abcdef instead of 0xef.
2813
fc30ace0 2814 **Case Two**:
21c094d3
DP
2815
2816 The function error_if_not_4g_aligned is defined as follows::
2817
2818 int error_if_not_4g_aligned(u64 val)
2819 {
2820 if (val & GENMASK(31, 0))
2821 return -EINVAL;
2822
2823 return 0;
2824 }
2825
2826 It could be compiled to::
2827
2828 error_if_not_4g_aligned:
2829 CBNZ w0, .Lnot_aligned
2830 RET // bits [31:0] are zero, bits
2831 // [63:32] are UNKNOWN
2832 .Lnot_aligned:
2833 MOV x0, #-EINVAL
2834 RET
2835
2836 When passing 0x2_0000_0000 to it, the return value may be recorded as
2837 0x2_0000_0000 instead of 0.
2838
1f198e22
CD
2839You can put some comments on specific functions by using
2840trace_printk() For example, if you want to put a comment inside
2841the __might_sleep() function, you just have to include
2842<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2843
2844 trace_printk("I'm a comment!\n")
2845
2846will produce::
2847
2848 1) | __might_sleep() {
2849 1) | /* I'm a comment! */
2850 1) 1.449 us | }
2851
2852
2853You might find other useful features for this tracer in the
2854following "dynamic ftrace" section such as tracing only specific
2855functions or tasks.
2856
2857dynamic ftrace
2858--------------
2859
2860If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2861virtually no overhead when function tracing is disabled. The way
2862this works is the mcount function call (placed at the start of
2863every kernel function, produced by the -pg switch in gcc),
2864starts of pointing to a simple return. (Enabling FTRACE will
2865include the -pg switch in the compiling of the kernel.)
2866
2867At compile time every C file object is run through the
2868recordmcount program (located in the scripts directory). This
2869program will parse the ELF headers in the C object to find all
2870the locations in the .text section that call mcount. Starting
2a1e03ca 2871with gcc version 4.6, the -mfentry has been added for x86, which
1f198e22
CD
2872calls "__fentry__" instead of "mcount". Which is called before
2873the creation of the stack frame.
2874
2875Note, not all sections are traced. They may be prevented by either
2876a notrace, or blocked another way and all inline functions are not
2877traced. Check the "available_filter_functions" file to see what functions
2878can be traced.
2879
2880A section called "__mcount_loc" is created that holds
2881references to all the mcount/fentry call sites in the .text section.
2882The recordmcount program re-links this section back into the
2883original object. The final linking stage of the kernel will add all these
2884references into a single table.
2885
2886On boot up, before SMP is initialized, the dynamic ftrace code
2887scans this table and updates all the locations into nops. It
2888also records the locations, which are added to the
2889available_filter_functions list. Modules are processed as they
2890are loaded and before they are executed. When a module is
2891unloaded, it also removes its functions from the ftrace function
2892list. This is automatic in the module unload code, and the
2893module author does not need to worry about it.
2894
2895When tracing is enabled, the process of modifying the function
2896tracepoints is dependent on architecture. The old method is to use
2897kstop_machine to prevent races with the CPUs executing code being
2898modified (which can cause the CPU to do undesirable things, especially
2899if the modified code crosses cache (or page) boundaries), and the nops are
2900patched back to calls. But this time, they do not call mcount
2901(which is just a function stub). They now call into the ftrace
2902infrastructure.
2903
2904The new method of modifying the function tracepoints is to place
2905a breakpoint at the location to be modified, sync all CPUs, modify
2906the rest of the instruction not covered by the breakpoint. Sync
2907all CPUs again, and then remove the breakpoint with the finished
2908version to the ftrace call site.
2909
2910Some archs do not even need to monkey around with the synchronization,
2911and can just slap the new code on top of the old without any
2912problems with other CPUs executing it at the same time.
2913
2914One special side-effect to the recording of the functions being
2915traced is that we can now selectively choose which functions we
2916wish to trace and which ones we want the mcount calls to remain
2917as nops.
2918
2919Two files are used, one for enabling and one for disabling the
2920tracing of specified functions. They are:
2921
2922 set_ftrace_filter
2923
2924and
2925
2926 set_ftrace_notrace
2927
2928A list of available functions that you can add to these files is
2929listed in:
2930
2931 available_filter_functions
2932
2933::
2934
2935 # cat available_filter_functions
2936 put_prev_task_idle
2937 kmem_cache_create
2938 pick_next_task_rt
c7483d82 2939 cpus_read_lock
1f198e22
CD
2940 pick_next_task_fair
2941 mutex_lock
2942 [...]
2943
2944If I am only interested in sys_nanosleep and hrtimer_interrupt::
2945
2946 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2947 # echo function > current_tracer
2948 # echo 1 > tracing_on
2949 # usleep 1
2950 # echo 0 > tracing_on
2951 # cat trace
2952 # tracer: function
2953 #
2954 # entries-in-buffer/entries-written: 5/5 #P:4
2955 #
2956 # _-----=> irqs-off
2957 # / _----=> need-resched
2958 # | / _---=> hardirq/softirq
2959 # || / _--=> preempt-depth
2960 # ||| / delay
2961 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2962 # | | | |||| | |
2963 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath
2964 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2965 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2966 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2967 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2968
2969To see which functions are being traced, you can cat the file:
2970::
2971
2972 # cat set_ftrace_filter
2973 hrtimer_interrupt
2974 sys_nanosleep
2975
2976
2977Perhaps this is not enough. The filters also allow glob(7) matching.
2978
6234c7bd 2979 ``<match>*``
1f198e22 2980 will match functions that begin with <match>
6234c7bd 2981 ``*<match>``
1f198e22 2982 will match functions that end with <match>
6234c7bd 2983 ``*<match>*``
1f198e22 2984 will match functions that have <match> in it
6234c7bd 2985 ``<match1>*<match2>``
1f198e22
CD
2986 will match functions that begin with <match1> and end with <match2>
2987
2988.. note::
2989 It is better to use quotes to enclose the wild cards,
2990 otherwise the shell may expand the parameters into names
2991 of files in the local directory.
2992
2993::
2994
2995 # echo 'hrtimer_*' > set_ftrace_filter
2996
2997Produces::
2998
2999 # tracer: function
3000 #
3001 # entries-in-buffer/entries-written: 897/897 #P:4
3002 #
3003 # _-----=> irqs-off
3004 # / _----=> need-resched
3005 # | / _---=> hardirq/softirq
3006 # || / _--=> preempt-depth
3007 # ||| / delay
3008 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3009 # | | | |||| | |
3010 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
3011 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
3012 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
3013 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit
3014 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
3015 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
3016 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter
3017 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem
3018
3019Notice that we lost the sys_nanosleep.
3020::
3021
3022 # cat set_ftrace_filter
3023 hrtimer_run_queues
3024 hrtimer_run_pending
3025 hrtimer_init
3026 hrtimer_cancel
3027 hrtimer_try_to_cancel
3028 hrtimer_forward
3029 hrtimer_start
3030 hrtimer_reprogram
3031 hrtimer_force_reprogram
3032 hrtimer_get_next_event
3033 hrtimer_interrupt
3034 hrtimer_nanosleep
3035 hrtimer_wakeup
3036 hrtimer_get_remaining
3037 hrtimer_get_res
3038 hrtimer_init_sleeper
3039
3040
3041This is because the '>' and '>>' act just like they do in bash.
3042To rewrite the filters, use '>'
3043To append to the filters, use '>>'
3044
3045To clear out a filter so that all functions will be recorded
3046again::
3047
3048 # echo > set_ftrace_filter
3049 # cat set_ftrace_filter
3050 #
3051
3052Again, now we want to append.
3053
3054::
3055
3056 # echo sys_nanosleep > set_ftrace_filter
3057 # cat set_ftrace_filter
3058 sys_nanosleep
3059 # echo 'hrtimer_*' >> set_ftrace_filter
3060 # cat set_ftrace_filter
3061 hrtimer_run_queues
3062 hrtimer_run_pending
3063 hrtimer_init
3064 hrtimer_cancel
3065 hrtimer_try_to_cancel
3066 hrtimer_forward
3067 hrtimer_start
3068 hrtimer_reprogram
3069 hrtimer_force_reprogram
3070 hrtimer_get_next_event
3071 hrtimer_interrupt
3072 sys_nanosleep
3073 hrtimer_nanosleep
3074 hrtimer_wakeup
3075 hrtimer_get_remaining
3076 hrtimer_get_res
3077 hrtimer_init_sleeper
3078
3079
3080The set_ftrace_notrace prevents those functions from being
3081traced.
3082::
3083
3084 # echo '*preempt*' '*lock*' > set_ftrace_notrace
3085
3086Produces::
3087
3088 # tracer: function
3089 #
3090 # entries-in-buffer/entries-written: 39608/39608 #P:4
3091 #
3092 # _-----=> irqs-off
3093 # / _----=> need-resched
3094 # | / _---=> hardirq/softirq
3095 # || / _--=> preempt-depth
3096 # ||| / delay
3097 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3098 # | | | |||| | |
3099 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open
3100 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last
3101 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
3102 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check
3103 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement
3104 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action
3105 bash-1994 [000] .... 4342.324899: do_truncate <-do_last
ed5a7047 3106 bash-1994 [000] .... 4342.324899: setattr_should_drop_suidgid <-do_truncate
1f198e22
CD
3107 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
3108 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change
3109 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time
3110 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time
3111
3112We can see that there's no more lock or preempt tracing.
3113
f79b3f33
SRV
3114Selecting function filters via index
3115------------------------------------
3116
3117Because processing of strings is expensive (the address of the function
3118needs to be looked up before comparing to the string being passed in),
3119an index can be used as well to enable functions. This is useful in the
3120case of setting thousands of specific functions at a time. By passing
3121in a list of numbers, no string processing will occur. Instead, the function
3122at the specific location in the internal array (which corresponds to the
3123functions in the "available_filter_functions" file), is selected.
3124
3125::
3126
3127 # echo 1 > set_ftrace_filter
3128
3129Will select the first function listed in "available_filter_functions"
3130
3131::
3132
3133 # head -1 available_filter_functions
3134 trace_initcall_finish_cb
3135
3136 # cat set_ftrace_filter
3137 trace_initcall_finish_cb
3138
3139 # head -50 available_filter_functions | tail -1
3140 x86_pmu_commit_txn
3141
3142 # echo 1 50 > set_ftrace_filter
3143 # cat set_ftrace_filter
3144 trace_initcall_finish_cb
3145 x86_pmu_commit_txn
1f198e22
CD
3146
3147Dynamic ftrace with the function graph tracer
3148---------------------------------------------
3149
3150Although what has been explained above concerns both the
3151function tracer and the function-graph-tracer, there are some
3152special features only available in the function-graph tracer.
3153
3154If you want to trace only one function and all of its children,
3155you just have to echo its name into set_graph_function::
3156
3157 echo __do_fault > set_graph_function
3158
3159will produce the following "expanded" trace of the __do_fault()
3160function::
3161
3162 0) | __do_fault() {
3163 0) | filemap_fault() {
3164 0) | find_lock_page() {
3165 0) 0.804 us | find_get_page();
3166 0) | __might_sleep() {
3167 0) 1.329 us | }
3168 0) 3.904 us | }
3169 0) 4.979 us | }
3170 0) 0.653 us | _spin_lock();
3171 0) 0.578 us | page_add_file_rmap();
3172 0) 0.525 us | native_set_pte_at();
3173 0) 0.585 us | _spin_unlock();
3174 0) | unlock_page() {
3175 0) 0.541 us | page_waitqueue();
3176 0) 0.639 us | __wake_up_bit();
3177 0) 2.786 us | }
3178 0) + 14.237 us | }
3179 0) | __do_fault() {
3180 0) | filemap_fault() {
3181 0) | find_lock_page() {
3182 0) 0.698 us | find_get_page();
3183 0) | __might_sleep() {
3184 0) 1.412 us | }
3185 0) 3.950 us | }
3186 0) 5.098 us | }
3187 0) 0.631 us | _spin_lock();
3188 0) 0.571 us | page_add_file_rmap();
3189 0) 0.526 us | native_set_pte_at();
3190 0) 0.586 us | _spin_unlock();
3191 0) | unlock_page() {
3192 0) 0.533 us | page_waitqueue();
3193 0) 0.638 us | __wake_up_bit();
3194 0) 2.793 us | }
3195 0) + 14.012 us | }
3196
3197You can also expand several functions at once::
3198
3199 echo sys_open > set_graph_function
3200 echo sys_close >> set_graph_function
3201
3202Now if you want to go back to trace all functions you can clear
3203this special filter via::
3204
3205 echo > set_graph_function
3206
3207
3208ftrace_enabled
3209--------------
3210
3211Note, the proc sysctl ftrace_enable is a big on/off switch for the
3212function tracer. By default it is enabled (when function tracing is
3213enabled in the kernel). If it is disabled, all function tracing is
3214disabled. This includes not only the function tracers for ftrace, but
7162431d
MB
3215also for any other uses (perf, kprobes, stack tracing, profiling, etc). It
3216cannot be disabled if there is a callback with FTRACE_OPS_FL_PERMANENT set
3217registered.
1f198e22
CD
3218
3219Please disable this with care.
3220
3221This can be disable (and enabled) with::
3222
3223 sysctl kernel.ftrace_enabled=0
3224 sysctl kernel.ftrace_enabled=1
3225
3226 or
3227
3228 echo 0 > /proc/sys/kernel/ftrace_enabled
3229 echo 1 > /proc/sys/kernel/ftrace_enabled
3230
3231
3232Filter commands
3233---------------
3234
3235A few commands are supported by the set_ftrace_filter interface.
3236Trace commands have the following format::
3237
3238 <function>:<command>:<parameter>
3239
3240The following commands are supported:
3241
3242- mod:
3243 This command enables function filtering per module. The
3244 parameter defines the module. For example, if only the write*
3245 functions in the ext3 module are desired, run:
3246
3247 echo 'write*:mod:ext3' > set_ftrace_filter
3248
3249 This command interacts with the filter in the same way as
3250 filtering based on function names. Thus, adding more functions
3251 in a different module is accomplished by appending (>>) to the
3252 filter file. Remove specific module functions by prepending
3253 '!'::
3254
3255 echo '!writeback*:mod:ext3' >> set_ftrace_filter
3256
3257 Mod command supports module globbing. Disable tracing for all
3258 functions except a specific module::
3259
3260 echo '!*:mod:!ext3' >> set_ftrace_filter
3261
3262 Disable tracing for all modules, but still trace kernel::
3263
3264 echo '!*:mod:*' >> set_ftrace_filter
3265
3266 Enable filter only for kernel::
3267
3268 echo '*write*:mod:!*' >> set_ftrace_filter
3269
3270 Enable filter for module globbing::
3271
3272 echo '*write*:mod:*snd*' >> set_ftrace_filter
3273
3274- traceon/traceoff:
3275 These commands turn tracing on and off when the specified
3276 functions are hit. The parameter determines how many times the
3277 tracing system is turned on and off. If unspecified, there is
3278 no limit. For example, to disable tracing when a schedule bug
3279 is hit the first 5 times, run::
3280
3281 echo '__schedule_bug:traceoff:5' > set_ftrace_filter
3282
3283 To always disable tracing when __schedule_bug is hit::
3284
3285 echo '__schedule_bug:traceoff' > set_ftrace_filter
3286
3287 These commands are cumulative whether or not they are appended
3288 to set_ftrace_filter. To remove a command, prepend it by '!'
3289 and drop the parameter::
3290
3291 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
3292
3293 The above removes the traceoff command for __schedule_bug
3294 that have a counter. To remove commands without counters::
3295
3296 echo '!__schedule_bug:traceoff' > set_ftrace_filter
3297
3298- snapshot:
3299 Will cause a snapshot to be triggered when the function is hit.
3300 ::
3301
3302 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
3303
3304 To only snapshot once:
3305 ::
3306
3307 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
3308
3309 To remove the above commands::
3310
3311 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
3312 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
3313
3314- enable_event/disable_event:
3315 These commands can enable or disable a trace event. Note, because
3316 function tracing callbacks are very sensitive, when these commands
3317 are registered, the trace point is activated, but disabled in
3318 a "soft" mode. That is, the tracepoint will be called, but
3319 just will not be traced. The event tracepoint stays in this mode
3320 as long as there's a command that triggers it.
3321 ::
3322
3323 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
3324 set_ftrace_filter
3325
3326 The format is::
3327
3328 <function>:enable_event:<system>:<event>[:count]
3329 <function>:disable_event:<system>:<event>[:count]
3330
3331 To remove the events commands::
3332
3333 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
3334 set_ftrace_filter
3335 echo '!schedule:disable_event:sched:sched_switch' > \
3336 set_ftrace_filter
3337
3338- dump:
3339 When the function is hit, it will dump the contents of the ftrace
3340 ring buffer to the console. This is useful if you need to debug
3341 something, and want to dump the trace when a certain function
2a1e03ca 3342 is hit. Perhaps it's a function that is called before a triple
1f198e22
CD
3343 fault happens and does not allow you to get a regular dump.
3344
3345- cpudump:
3346 When the function is hit, it will dump the contents of the ftrace
3347 ring buffer for the current CPU to the console. Unlike the "dump"
3348 command, it only prints out the contents of the ring buffer for the
3349 CPU that executed the function that triggered the dump.
3350
8a2933cf
MH
3351- stacktrace:
3352 When the function is hit, a stack trace is recorded.
3353
1f198e22
CD
3354trace_pipe
3355----------
3356
3357The trace_pipe outputs the same content as the trace file, but
3358the effect on the tracing is different. Every read from
3359trace_pipe is consumed. This means that subsequent reads will be
3360different. The trace is live.
3361::
3362
3363 # echo function > current_tracer
3364 # cat trace_pipe > /tmp/trace.out &
3365 [1] 4153
3366 # echo 1 > tracing_on
3367 # usleep 1
3368 # echo 0 > tracing_on
3369 # cat trace
3370 # tracer: function
3371 #
3372 # entries-in-buffer/entries-written: 0/0 #P:4
3373 #
3374 # _-----=> irqs-off
3375 # / _----=> need-resched
3376 # | / _---=> hardirq/softirq
3377 # || / _--=> preempt-depth
3378 # ||| / delay
3379 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3380 # | | | |||| | |
3381
3382 #
3383 # cat /tmp/trace.out
3384 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write
3385 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3386 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify
3387 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
3388 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
3389 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock
3390 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock
3391 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify
3392 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath
3393
3394
3395Note, reading the trace_pipe file will block until more input is
f12fcca6
PW
3396added. This is contrary to the trace file. If any process opened
3397the trace file for reading, it will actually disable tracing and
3398prevent new entries from being added. The trace_pipe file does
3399not have this limitation.
1f198e22
CD
3400
3401trace entries
3402-------------
3403
3404Having too much or not enough data can be troublesome in
3405diagnosing an issue in the kernel. The file buffer_size_kb is
3406used to modify the size of the internal trace buffers. The
3407number listed is the number of entries that can be recorded per
3408CPU. To know the full size, multiply the number of possible CPUs
3409with the number of entries.
3410::
3411
3412 # cat buffer_size_kb
3413 1408 (units kilobytes)
3414
3415Or simply read buffer_total_size_kb
3416::
3417
3418 # cat buffer_total_size_kb
3419 5632
3420
3421To modify the buffer, simple echo in a number (in 1024 byte segments).
3422::
3423
3424 # echo 10000 > buffer_size_kb
3425 # cat buffer_size_kb
3426 10000 (units kilobytes)
3427
3428It will try to allocate as much as possible. If you allocate too
3429much, it can cause Out-Of-Memory to trigger.
3430::
3431
3432 # echo 1000000000000 > buffer_size_kb
3433 -bash: echo: write error: Cannot allocate memory
3434 # cat buffer_size_kb
3435 85
3436
3437The per_cpu buffers can be changed individually as well:
3438::
3439
3440 # echo 10000 > per_cpu/cpu0/buffer_size_kb
3441 # echo 100 > per_cpu/cpu1/buffer_size_kb
3442
3443When the per_cpu buffers are not the same, the buffer_size_kb
3444at the top level will just show an X
3445::
3446
3447 # cat buffer_size_kb
3448 X
3449
3450This is where the buffer_total_size_kb is useful:
3451::
3452
3453 # cat buffer_total_size_kb
3454 12916
3455
3456Writing to the top level buffer_size_kb will reset all the buffers
3457to be the same again.
3458
3459Snapshot
3460--------
3461CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3462available to all non latency tracers. (Latency tracers which
3463record max latency, such as "irqsoff" or "wakeup", can't use
3464this feature, since those are already using the snapshot
3465mechanism internally.)
3466
3467Snapshot preserves a current trace buffer at a particular point
3468in time without stopping tracing. Ftrace swaps the current
3469buffer with a spare buffer, and tracing continues in the new
3470current (=previous spare) buffer.
3471
3472The following tracefs files in "tracing" are related to this
3473feature:
3474
3475 snapshot:
3476
3477 This is used to take a snapshot and to read the output
3478 of the snapshot. Echo 1 into this file to allocate a
3479 spare buffer and to take a snapshot (swap), then read
3480 the snapshot from this file in the same format as
3481 "trace" (described above in the section "The File
3482 System"). Both reads snapshot and tracing are executable
3483 in parallel. When the spare buffer is allocated, echoing
3484 0 frees it, and echoing else (positive) values clear the
3485 snapshot contents.
3486 More details are shown in the table below.
3487
3488 +--------------+------------+------------+------------+
3489 |status\\input | 0 | 1 | else |
3490 +==============+============+============+============+
3491 |not allocated |(do nothing)| alloc+swap |(do nothing)|
3492 +--------------+------------+------------+------------+
3493 |allocated | free | swap | clear |
3494 +--------------+------------+------------+------------+
3495
3496Here is an example of using the snapshot feature.
3497::
3498
3499 # echo 1 > events/sched/enable
3500 # echo 1 > snapshot
3501 # cat snapshot
3502 # tracer: nop
3503 #
3504 # entries-in-buffer/entries-written: 71/71 #P:8
3505 #
3506 # _-----=> irqs-off
3507 # / _----=> need-resched
3508 # | / _---=> hardirq/softirq
3509 # || / _--=> preempt-depth
3510 # ||| / delay
3511 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3512 # | | | |||| | |
3513 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3514 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3515 [...]
3516 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3517
3518 # cat trace
3519 # tracer: nop
3520 #
3521 # entries-in-buffer/entries-written: 77/77 #P:8
3522 #
3523 # _-----=> irqs-off
3524 # / _----=> need-resched
3525 # | / _---=> hardirq/softirq
3526 # || / _--=> preempt-depth
3527 # ||| / delay
3528 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3529 # | | | |||| | |
3530 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3531 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3532 [...]
3533
3534
3535If you try to use this snapshot feature when current tracer is
3536one of the latency tracers, you will get the following results.
3537::
3538
3539 # echo wakeup > current_tracer
3540 # echo 1 > snapshot
3541 bash: echo: write error: Device or resource busy
3542 # cat snapshot
3543 cat: snapshot: Device or resource busy
3544
3545
3546Instances
3547---------
cc2cf679 3548In the tracefs tracing directory, there is a directory called "instances".
1f198e22
CD
3549This directory can have new directories created inside of it using
3550mkdir, and removing directories with rmdir. The directory created
3551with mkdir in this directory will already contain files and other
3552directories after it is created.
3553::
3554
3555 # mkdir instances/foo
3556 # ls instances/foo
3557 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
3558 set_event snapshot trace trace_clock trace_marker trace_options
3559 trace_pipe tracing_on
3560
3561As you can see, the new directory looks similar to the tracing directory
3562itself. In fact, it is very similar, except that the buffer and
5b8914a6 3563events are agnostic from the main directory, or from any other
1f198e22
CD
3564instances that are created.
3565
3566The files in the new directory work just like the files with the
3567same name in the tracing directory except the buffer that is used
3568is a separate and new buffer. The files affect that buffer but do not
3569affect the main buffer with the exception of trace_options. Currently,
3570the trace_options affect all instances and the top level buffer
3571the same, but this may change in future releases. That is, options
3572may become specific to the instance they reside in.
3573
3574Notice that none of the function tracer files are there, nor is
3575current_tracer and available_tracers. This is because the buffers
3576can currently only have events enabled for them.
3577::
3578
3579 # mkdir instances/foo
3580 # mkdir instances/bar
3581 # mkdir instances/zoot
3582 # echo 100000 > buffer_size_kb
3583 # echo 1000 > instances/foo/buffer_size_kb
3584 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3585 # echo function > current_trace
3586 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3587 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3588 # echo 1 > instances/foo/events/sched/sched_switch/enable
3589 # echo 1 > instances/bar/events/irq/enable
3590 # echo 1 > instances/zoot/events/syscalls/enable
3591 # cat trace_pipe
3592 CPU:2 [LOST 11745 EVENTS]
3593 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3594 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3595 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3596 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3597 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3598 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3599 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3600 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3601 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3602 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3603 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3604 [...]
3605
3606 # cat instances/foo/trace_pipe
3607 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3608 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3609 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3610 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3611 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3612 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3613 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3614 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3615 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3616 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3617 [...]
3618
3619 # cat instances/bar/trace_pipe
3620 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX]
3621 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX]
3622 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER]
3623 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU]
3624 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER]
3625 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER]
3626 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU]
3627 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU]
3628 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3629 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled
3630 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0
3631 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled
3632 [...]
3633
3634 # cat instances/zoot/trace
3635 # tracer: nop
3636 #
3637 # entries-in-buffer/entries-written: 18996/18996 #P:4
3638 #
3639 # _-----=> irqs-off
3640 # / _----=> need-resched
3641 # | / _---=> hardirq/softirq
3642 # || / _--=> preempt-depth
3643 # ||| / delay
3644 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3645 # | | | |||| | |
3646 bash-1998 [000] d... 140.733501: sys_write -> 0x2
3647 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1)
3648 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
3649 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3650 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
3651 bash-1998 [000] d... 140.733510: sys_close(fd: a)
3652 bash-1998 [000] d... 140.733510: sys_close -> 0x0
3653 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3654 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
3655 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3656 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0
3657
3658You can see that the trace of the top most trace buffer shows only
3659the function tracing. The foo instance displays wakeups and task
3660switches.
3661
3662To remove the instances, simply delete their directories:
3663::
3664
3665 # rmdir instances/foo
3666 # rmdir instances/bar
3667 # rmdir instances/zoot
3668
3669Note, if a process has a trace file open in one of the instance
3670directories, the rmdir will fail with EBUSY.
3671
3672
3673Stack trace
3674-----------
3675Since the kernel has a fixed sized stack, it is important not to
c9b951c3 3676waste it in functions. A kernel developer must be conscious of
1f198e22
CD
3677what they allocate on the stack. If they add too much, the system
3678can be in danger of a stack overflow, and corruption will occur,
3679usually leading to a system panic.
3680
3681There are some tools that check this, usually with interrupts
3682periodically checking usage. But if you can perform a check
3683at every function call that will become very useful. As ftrace provides
3684a function tracer, it makes it convenient to check the stack size
3685at every function call. This is enabled via the stack tracer.
3686
3687CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3688To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3689::
3690
3691 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3692
3693You can also enable it from the kernel command line to trace
3694the stack size of the kernel during boot up, by adding "stacktrace"
3695to the kernel command line parameter.
3696
3697After running it for a few minutes, the output looks like:
3698::
3699
3700 # cat stack_max_size
3701 2928
3702
3703 # cat stack_trace
3704 Depth Size Location (18 entries)
3705 ----- ---- --------
3706 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
3707 1) 2704 160 find_busiest_group+0x31/0x1f1
3708 2) 2544 256 load_balance+0xd9/0x662
3709 3) 2288 80 idle_balance+0xbb/0x130
3710 4) 2208 128 __schedule+0x26e/0x5b9
3711 5) 2080 16 schedule+0x64/0x66
3712 6) 2064 128 schedule_timeout+0x34/0xe0
3713 7) 1936 112 wait_for_common+0x97/0xf1
3714 8) 1824 16 wait_for_completion+0x1d/0x1f
3715 9) 1808 128 flush_work+0xfe/0x119
3716 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
3717 11) 1664 48 input_available_p+0x1d/0x5c
3718 12) 1616 48 n_tty_poll+0x6d/0x134
3719 13) 1568 64 tty_poll+0x64/0x7f
3720 14) 1504 880 do_select+0x31e/0x511
3721 15) 624 400 core_sys_select+0x177/0x216
3722 16) 224 96 sys_select+0x91/0xb9
3723 17) 128 128 system_call_fastpath+0x16/0x1b
3724
3725Note, if -mfentry is being used by gcc, functions get traced before
3726they set up the stack frame. This means that leaf level functions
3727are not tested by the stack tracer when -mfentry is used.
3728
3729Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3730
3731More
3732----
3733More details can be found in the source code, in the `kernel/trace/*.c` files.