sched/balancing: Rename run_rebalance_domains() => sched_balance_softirq()
[linux-2.6-block.git] / Documentation / scheduler / sched-domains.rst
CommitLineData
d6a3b247
MCC
1=================
2Scheduler Domains
3=================
4
e2495b57 5Each CPU has a "base" scheduling domain (struct sched_domain). The domain
1da177e4 6hierarchy is built from these base domains via the ->parent pointer. ->parent
e2495b57
BP
7MUST be NULL terminated, and domain structures should be per-CPU as they are
8locklessly updated.
1da177e4
LT
9
10Each scheduling domain spans a number of CPUs (stored in the ->span field).
11A domain's span MUST be a superset of it child's span (this restriction could
12be relaxed if the need arises), and a base domain for CPU i MUST span at least
13i. The top domain for each CPU will generally span all CPUs in the system
14although strictly it doesn't have to, but this could lead to a case where some
15CPUs will never be given tasks to run unless the CPUs allowed mask is
16explicitly set. A sched domain's span means "balance process load among these
17CPUs".
18
19Each scheduling domain must have one or more CPU groups (struct sched_group)
20which are organised as a circular one way linked list from the ->groups
21pointer. The union of cpumasks of these groups MUST be the same as the
7b912104
AF
22domain's span. The group pointed to by the ->groups pointer MUST contain the CPU
23to which the domain belongs. Groups may be shared among CPUs as they contain
24read only data after they have been set up. The intersection of cpumasks from
25any two of these groups may be non empty. If this is the case the SD_OVERLAP
26flag is set on the corresponding scheduling domain and its groups may not be
27shared between CPUs.
1da177e4
LT
28
29Balancing within a sched domain occurs between groups. That is, each group
30is treated as one entity. The load of a group is defined as the sum of the
31load of each of its member CPUs, and only when the load of a group becomes
32out of balance are tasks moved between groups.
33
0a0fca9d 34In kernel/sched/core.c, trigger_load_balance() is run periodically on each CPU
e2495b57
BP
35through scheduler_tick(). It raises a softirq after the next regularly scheduled
36rebalancing event for the current runqueue has arrived. The actual load
70a27d6d 37balancing workhorse, sched_balance_softirq()->rebalance_domains(), is then run
e2495b57
BP
38in softirq context (SCHED_SOFTIRQ).
39
5dbbc145
TY
40The latter function takes two arguments: the runqueue of current CPU and whether
41the CPU was idle at the time the scheduler_tick() happened and iterates over all
42sched domains our CPU is on, starting from its base domain and going up the ->parent
43chain. While doing that, it checks to see if the current domain has exhausted its
e2495b57
BP
44rebalance interval. If so, it runs load_balance() on that domain. It then checks
45the parent sched_domain (if it exists), and the parent of the parent and so
46forth.
47
48Initially, load_balance() finds the busiest group in the current sched domain.
49If it succeeds, it looks for the busiest runqueue of all the CPUs' runqueues in
50that group. If it manages to find such a runqueue, it locks both our initial
51CPU's runqueue and the newly found busiest one and starts moving tasks from it
52to our runqueue. The exact number of tasks amounts to an imbalance previously
53computed while iterating over this sched domain's groups.
1da177e4 54
d6a3b247
MCC
55Implementing sched domains
56==========================
57
1da177e4
LT
58The "base" domain will "span" the first level of the hierarchy. In the case
59of SMT, you'll span all siblings of the physical CPU, with each group being
60a single virtual CPU.
61
62In SMP, the parent of the base domain will span all physical CPUs in the
63node. Each group being a single physical CPU. Then with NUMA, the parent
64of the SMP domain will span the entire machine, with each group having the
65cpumask of a node. Or, you could do multi-level NUMA or Opteron, for example,
66might have just one domain covering its one NUMA level.
67
9032dc21
BS
68The implementor should read comments in include/linux/sched/sd_flags.h:
69SD_* to get an idea of the specifics and what to tune for the SD flags
70of a sched_domain.
1da177e4 71
9032dc21
BS
72Architectures may override the generic domain builder and the default SD flags
73for a given topology level by creating a sched_domain_topology_level array and
74calling set_sched_topology() with this array as the parameter.
1da177e4 75
e29c98d1 76The sched-domains debugging infrastructure can be enabled by enabling
19987fda 77CONFIG_SCHED_DEBUG and adding 'sched_verbose' to your cmdline. If you
9406415f
PZ
78forgot to tweak your cmdline, you can also flip the
79/sys/kernel/debug/sched/verbose knob. This enables an error checking parse of
80the sched domains which should catch most possible errors (described above). It
81also prints out the domain structure in a visual format.