Merge tag 'ntb-5.4' of git://github.com/jonmason/ntb
[linux-2.6-block.git] / Documentation / power / freezing-of-tasks.rst
CommitLineData
151f4e2b 1=================
83144186 2Freezing of tasks
151f4e2b
MCC
3=================
4
5(C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL
83144186
RW
6
7I. What is the freezing of tasks?
151f4e2b 8=================================
83144186
RW
9
10The freezing of tasks is a mechanism by which user space processes and some
11kernel threads are controlled during hibernation or system-wide suspend (on some
12architectures).
13
14II. How does it work?
151f4e2b 15=====================
83144186 16
26e0f90f 17There are three per-task flags used for that, PF_NOFREEZE, PF_FROZEN
83144186
RW
18and PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have
19PF_NOFREEZE unset (all user space processes and some kernel threads) are
20regarded as 'freezable' and treated in a special way before the system enters a
21suspend state as well as before a hibernation image is created (in what follows
22we only consider hibernation, but the description also applies to suspend).
23
24Namely, as the first step of the hibernation procedure the function
26e0f90f
MPS
25freeze_processes() (defined in kernel/power/process.c) is called. A system-wide
26variable system_freezing_cnt (as opposed to a per-task flag) is used to indicate
27whether the system is to undergo a freezing operation. And freeze_processes()
28sets this variable. After this, it executes try_to_freeze_tasks() that sends a
29fake signal to all user space processes, and wakes up all the kernel threads.
30All freezable tasks must react to that by calling try_to_freeze(), which
31results in a call to __refrigerator() (defined in kernel/freezer.c), which sets
32the task's PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE and makes
33it loop until PF_FROZEN is cleared for it. Then, we say that the task is
34'frozen' and therefore the set of functions handling this mechanism is referred
35to as 'the freezer' (these functions are defined in kernel/power/process.c,
36kernel/freezer.c & include/linux/freezer.h). User space processes are generally
37frozen before kernel threads.
83144186 38
a0acae0e
TH
39__refrigerator() must not be called directly. Instead, use the
40try_to_freeze() function (defined in include/linux/freezer.h), that checks
26e0f90f 41if the task is to be frozen and makes the task enter __refrigerator().
83144186
RW
42
43For user space processes try_to_freeze() is called automatically from the
44signal-handling code, but the freezable kernel threads need to call it
d5d8c597
RW
45explicitly in suitable places or use the wait_event_freezable() or
46wait_event_freezable_timeout() macros (defined in include/linux/freezer.h)
26e0f90f
MPS
47that combine interruptible sleep with checking if the task is to be frozen and
48calling try_to_freeze(). The main loop of a freezable kernel thread may look
151f4e2b 49like the following one::
83144186 50
d5d8c597 51 set_freezable();
83144186
RW
52 do {
53 hub_events();
d5d8c597
RW
54 wait_event_freezable(khubd_wait,
55 !list_empty(&hub_event_list) ||
56 kthread_should_stop());
57 } while (!kthread_should_stop() || !list_empty(&hub_event_list));
83144186
RW
58
59(from drivers/usb/core/hub.c::hub_thread()).
60
61If a freezable kernel thread fails to call try_to_freeze() after the freezer has
26e0f90f 62initiated a freezing operation, the freezing of tasks will fail and the entire
83144186 63hibernation operation will be cancelled. For this reason, freezable kernel
d5d8c597
RW
64threads must call try_to_freeze() somewhere or use one of the
65wait_event_freezable() and wait_event_freezable_timeout() macros.
83144186
RW
66
67After the system memory state has been restored from a hibernation image and
68devices have been reinitialized, the function thaw_processes() is called in
69order to clear the PF_FROZEN flag for each frozen task. Then, the tasks that
a0acae0e 70have been frozen leave __refrigerator() and continue running.
83144186 71
9045a050 72
151f4e2b 73Rationale behind the functions dealing with freezing and thawing of tasks
9045a050
SB
74-------------------------------------------------------------------------
75
76freeze_processes():
77 - freezes only userspace tasks
78
79freeze_kernel_threads():
80 - freezes all tasks (including kernel threads) because we can't freeze
81 kernel threads without freezing userspace tasks
82
83thaw_kernel_threads():
84 - thaws only kernel threads; this is particularly useful if we need to do
85 anything special in between thawing of kernel threads and thawing of
86 userspace tasks, or if we want to postpone the thawing of userspace tasks
87
88thaw_processes():
89 - thaws all tasks (including kernel threads) because we can't thaw userspace
90 tasks without thawing kernel threads
91
92
83144186 93III. Which kernel threads are freezable?
151f4e2b 94========================================
83144186
RW
95
96Kernel threads are not freezable by default. However, a kernel thread may clear
97PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE
3a7cbd50 98directly is not allowed). From this point it is regarded as freezable
83144186
RW
99and must call try_to_freeze() in a suitable place.
100
101IV. Why do we do that?
151f4e2b 102======================
83144186
RW
103
104Generally speaking, there is a couple of reasons to use the freezing of tasks:
105
1061. The principal reason is to prevent filesystems from being damaged after
151f4e2b
MCC
107 hibernation. At the moment we have no simple means of checkpointing
108 filesystems, so if there are any modifications made to filesystem data and/or
109 metadata on disks, we cannot bring them back to the state from before the
110 modifications. At the same time each hibernation image contains some
111 filesystem-related information that must be consistent with the state of the
112 on-disk data and metadata after the system memory state has been restored
113 from the image (otherwise the filesystems will be damaged in a nasty way,
114 usually making them almost impossible to repair). We therefore freeze
115 tasks that might cause the on-disk filesystems' data and metadata to be
116 modified after the hibernation image has been created and before the
117 system is finally powered off. The majority of these are user space
118 processes, but if any of the kernel threads may cause something like this
119 to happen, they have to be freezable.
83144186 120
27763653 1212. Next, to create the hibernation image we need to free a sufficient amount of
151f4e2b
MCC
122 memory (approximately 50% of available RAM) and we need to do that before
123 devices are deactivated, because we generally need them for swapping out.
124 Then, after the memory for the image has been freed, we don't want tasks
125 to allocate additional memory and we prevent them from doing that by
126 freezing them earlier. [Of course, this also means that device drivers
127 should not allocate substantial amounts of memory from their .suspend()
128 callbacks before hibernation, but this is a separate issue.]
27763653
RW
129
1303. The third reason is to prevent user space processes and some kernel threads
151f4e2b
MCC
131 from interfering with the suspending and resuming of devices. A user space
132 process running on a second CPU while we are suspending devices may, for
133 example, be troublesome and without the freezing of tasks we would need some
134 safeguards against race conditions that might occur in such a case.
83144186
RW
135
136Although Linus Torvalds doesn't like the freezing of tasks, he said this in one
137of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608):
138
139"RJW:> Why we freeze tasks at all or why we freeze kernel threads?
140
141Linus: In many ways, 'at all'.
142
151f4e2b 143I **do** realize the IO request queue issues, and that we cannot actually do
83144186
RW
144s2ram with some devices in the middle of a DMA. So we want to be able to
145avoid *that*, there's no question about that. And I suspect that stopping
146user threads and then waiting for a sync is practically one of the easier
147ways to do so.
148
149So in practice, the 'at all' may become a 'why freeze kernel threads?' and
150freezing user threads I don't find really objectionable."
151
152Still, there are kernel threads that may want to be freezable. For example, if
5eb6f9ad
VK
153a kernel thread that belongs to a device driver accesses the device directly, it
154in principle needs to know when the device is suspended, so that it doesn't try
155to access it at that time. However, if the kernel thread is freezable, it will
156be frozen before the driver's .suspend() callback is executed and it will be
83144186
RW
157thawed after the driver's .resume() callback has run, so it won't be accessing
158the device while it's suspended.
159
27763653 1604. Another reason for freezing tasks is to prevent user space processes from
151f4e2b
MCC
161 realizing that hibernation (or suspend) operation takes place. Ideally, user
162 space processes should not notice that such a system-wide operation has
163 occurred and should continue running without any problems after the restore
164 (or resume from suspend). Unfortunately, in the most general case this
165 is quite difficult to achieve without the freezing of tasks. Consider,
166 for example, a process that depends on all CPUs being online while it's
167 running. Since we need to disable nonboot CPUs during the hibernation,
168 if this process is not frozen, it may notice that the number of CPUs has
169 changed and may start to work incorrectly because of that.
83144186
RW
170
171V. Are there any problems related to the freezing of tasks?
151f4e2b 172===========================================================
83144186
RW
173
174Yes, there are.
175
176First of all, the freezing of kernel threads may be tricky if they depend one
177on another. For example, if kernel thread A waits for a completion (in the
178TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread B
179and B is frozen in the meantime, then A will be blocked until B is thawed, which
180may be undesirable. That's why kernel threads are not freezable by default.
181
182Second, there are the following two problems related to the freezing of user
183space processes:
151f4e2b 184
83144186
RW
1851. Putting processes into an uninterruptible sleep distorts the load average.
1862. Now that we have FUSE, plus the framework for doing device drivers in
151f4e2b
MCC
187 userspace, it gets even more complicated because some userspace processes are
188 now doing the sorts of things that kernel threads do
189 (https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html).
83144186
RW
190
191The problem 1. seems to be fixable, although it hasn't been fixed so far. The
192other one is more serious, but it seems that we can work around it by using
193hibernation (and suspend) notifiers (in that case, though, we won't be able to
194avoid the realization by the user space processes that the hibernation is taking
195place).
196
197There are also problems that the freezing of tasks tends to expose, although
198they are not directly related to it. For example, if request_firmware() is
199called from a device driver's .resume() routine, it will timeout and eventually
200fail, because the user land process that should respond to the request is frozen
201at this point. So, seemingly, the failure is due to the freezing of tasks.
202Suppose, however, that the firmware file is located on a filesystem accessible
203only through another device that hasn't been resumed yet. In that case,
204request_firmware() will fail regardless of whether or not the freezing of tasks
205is used. Consequently, the problem is not really related to the freezing of
fccdb5ae
ON
206tasks, since it generally exists anyway.
207
208A driver must have all firmwares it may need in RAM before suspend() is called.
209If keeping them is not practical, for example due to their size, they must be
730c4c05
RW
210requested early enough using the suspend notifier API described in
211Documentation/driver-api/pm/notifiers.rst.
cba3176e
SB
212
213VI. Are there any precautions to be taken to prevent freezing failures?
151f4e2b 214=======================================================================
cba3176e
SB
215
216Yes, there are.
217
55f2503c 218First of all, grabbing the 'system_transition_mutex' lock to mutually exclude a piece of code
cba3176e
SB
219from system-wide sleep such as suspend/hibernation is not encouraged.
220If possible, that piece of code must instead hook onto the suspend/hibernation
221notifiers to achieve mutual exclusion. Look at the CPU-Hotplug code
222(kernel/cpu.c) for an example.
223
55f2503c
PL
224However, if that is not feasible, and grabbing 'system_transition_mutex' is deemed necessary,
225it is strongly discouraged to directly call mutex_[un]lock(&system_transition_mutex) since
cba3176e 226that could lead to freezing failures, because if the suspend/hibernate code
55f2503c 227successfully acquired the 'system_transition_mutex' lock, and hence that other entity failed
cba3176e
SB
228to acquire the lock, then that task would get blocked in TASK_UNINTERRUPTIBLE
229state. As a consequence, the freezer would not be able to freeze that task,
230leading to freezing failure.
231
232However, the [un]lock_system_sleep() APIs are safe to use in this scenario,
233since they ask the freezer to skip freezing this task, since it is anyway
55f2503c 234"frozen enough" as it is blocked on 'system_transition_mutex', which will be released
cba3176e
SB
235only after the entire suspend/hibernation sequence is complete.
236So, to summarize, use [un]lock_system_sleep() instead of directly using
55f2503c 237mutex_[un]lock(&system_transition_mutex). That would prevent freezing failures.
957d1282
LF
238
239V. Miscellaneous
151f4e2b
MCC
240================
241
957d1282
LF
242/sys/power/pm_freeze_timeout controls how long it will cost at most to freeze
243all user space processes or all freezable kernel threads, in unit of millisecond.
244The default value is 20000, with range of unsigned integer.