Merge tag 'tegra-for-5.20-firmware' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / Documentation / loongarch / introduction.rst
CommitLineData
0ea8ce61
HC
1.. SPDX-License-Identifier: GPL-2.0
2
3=========================
4Introduction to LoongArch
5=========================
6
7LoongArch is a new RISC ISA, which is a bit like MIPS or RISC-V. There are
8currently 3 variants: a reduced 32-bit version (LA32R), a standard 32-bit
9version (LA32S) and a 64-bit version (LA64). There are 4 privilege levels
10(PLVs) defined in LoongArch: PLV0~PLV3, from high to low. Kernel runs at PLV0
11while applications run at PLV3. This document introduces the registers, basic
12instruction set, virtual memory and some other topics of LoongArch.
13
14Registers
15=========
16
17LoongArch registers include general purpose registers (GPRs), floating point
18registers (FPRs), vector registers (VRs) and control status registers (CSRs)
19used in privileged mode (PLV0).
20
21GPRs
22----
23
24LoongArch has 32 GPRs ( ``$r0`` ~ ``$r31`` ); each one is 32-bit wide in LA32
25and 64-bit wide in LA64. ``$r0`` is hard-wired to zero, and the other registers
26are not architecturally special. (Except ``$r1``, which is hard-wired as the
27link register of the BL instruction.)
28
29The kernel uses a variant of the LoongArch register convention, as described in
30the LoongArch ELF psABI spec, in :ref:`References <loongarch-references>`:
31
32================= =============== =================== ============
33Name Alias Usage Preserved
34 across calls
35================= =============== =================== ============
36``$r0`` ``$zero`` Constant zero Unused
37``$r1`` ``$ra`` Return address No
38``$r2`` ``$tp`` TLS/Thread pointer Unused
39``$r3`` ``$sp`` Stack pointer Yes
40``$r4``-``$r11`` ``$a0``-``$a7`` Argument registers No
41``$r4``-``$r5`` ``$v0``-``$v1`` Return value No
42``$r12``-``$r20`` ``$t0``-``$t8`` Temp registers No
43``$r21`` ``$u0`` Percpu base address Unused
44``$r22`` ``$fp`` Frame pointer Yes
45``$r23``-``$r31`` ``$s0``-``$s8`` Static registers Yes
46================= =============== =================== ============
47
a667e4d3
YS
48.. Note::
49 The register ``$r21`` is reserved in the ELF psABI, but used by the Linux
50 kernel for storing the percpu base address. It normally has no ABI name,
51 but is called ``$u0`` in the kernel. You may also see ``$v0`` or ``$v1``
52 in some old code,however they are deprecated aliases of ``$a0`` and ``$a1``
53 respectively.
0ea8ce61
HC
54
55FPRs
56----
57
58LoongArch has 32 FPRs ( ``$f0`` ~ ``$f31`` ) when FPU is present. Each one is
5964-bit wide on the LA64 cores.
60
61The floating-point register convention is the same as described in the
62LoongArch ELF psABI spec:
63
64================= ================== =================== ============
65Name Alias Usage Preserved
66 across calls
67================= ================== =================== ============
68``$f0``-``$f7`` ``$fa0``-``$fa7`` Argument registers No
69``$f0``-``$f1`` ``$fv0``-``$fv1`` Return value No
70``$f8``-``$f23`` ``$ft0``-``$ft15`` Temp registers No
71``$f24``-``$f31`` ``$fs0``-``$fs7`` Static registers Yes
72================= ================== =================== ============
73
a667e4d3
YS
74.. Note::
75 You may see ``$fv0`` or ``$fv1`` in some old code, however they are
76 deprecated aliases of ``$fa0`` and ``$fa1`` respectively.
0ea8ce61
HC
77
78VRs
79----
80
81There are currently 2 vector extensions to LoongArch:
82
83- LSX (Loongson SIMD eXtension) with 128-bit vectors,
84- LASX (Loongson Advanced SIMD eXtension) with 256-bit vectors.
85
86LSX brings ``$v0`` ~ ``$v31`` while LASX brings ``$x0`` ~ ``$x31`` as the vector
87registers.
88
89The VRs overlap with FPRs: for example, on a core implementing LSX and LASX,
90the lower 128 bits of ``$x0`` is shared with ``$v0``, and the lower 64 bits of
91``$v0`` is shared with ``$f0``; same with all other VRs.
92
93CSRs
94----
95
96CSRs can only be accessed from privileged mode (PLV0):
97
98================= ===================================== ==============
99Address Full Name Abbrev Name
100================= ===================================== ==============
1010x0 Current Mode Information CRMD
1020x1 Pre-exception Mode Information PRMD
1030x2 Extension Unit Enable EUEN
1040x3 Miscellaneous Control MISC
1050x4 Exception Configuration ECFG
1060x5 Exception Status ESTAT
1070x6 Exception Return Address ERA
1080x7 Bad (Faulting) Virtual Address BADV
1090x8 Bad (Faulting) Instruction Word BADI
1100xC Exception Entrypoint Address EENTRY
1110x10 TLB Index TLBIDX
1120x11 TLB Entry High-order Bits TLBEHI
1130x12 TLB Entry Low-order Bits 0 TLBELO0
1140x13 TLB Entry Low-order Bits 1 TLBELO1
1150x18 Address Space Identifier ASID
1160x19 Page Global Directory Address for PGDL
117 Lower-half Address Space
1180x1A Page Global Directory Address for PGDH
119 Higher-half Address Space
1200x1B Page Global Directory Address PGD
1210x1C Page Walk Control for Lower- PWCL
122 half Address Space
1230x1D Page Walk Control for Higher- PWCH
124 half Address Space
1250x1E STLB Page Size STLBPS
1260x1F Reduced Virtual Address Configuration RVACFG
1270x20 CPU Identifier CPUID
1280x21 Privileged Resource Configuration 1 PRCFG1
1290x22 Privileged Resource Configuration 2 PRCFG2
1300x23 Privileged Resource Configuration 3 PRCFG3
1310x30+n (0≤n≤15) Saved Data register SAVEn
1320x40 Timer Identifier TID
1330x41 Timer Configuration TCFG
1340x42 Timer Value TVAL
1350x43 Compensation of Timer Count CNTC
1360x44 Timer Interrupt Clearing TICLR
1370x60 LLBit Control LLBCTL
1380x80 Implementation-specific Control 1 IMPCTL1
1390x81 Implementation-specific Control 2 IMPCTL2
1400x88 TLB Refill Exception Entrypoint TLBRENTRY
141 Address
1420x89 TLB Refill Exception BAD (Faulting) TLBRBADV
143 Virtual Address
1440x8A TLB Refill Exception Return Address TLBRERA
1450x8B TLB Refill Exception Saved Data TLBRSAVE
146 Register
1470x8C TLB Refill Exception Entry Low-order TLBRELO0
148 Bits 0
1490x8D TLB Refill Exception Entry Low-order TLBRELO1
150 Bits 1
1510x8E TLB Refill Exception Entry High-order TLBEHI
152 Bits
1530x8F TLB Refill Exception Pre-exception TLBRPRMD
154 Mode Information
1550x90 Machine Error Control MERRCTL
1560x91 Machine Error Information 1 MERRINFO1
1570x92 Machine Error Information 2 MERRINFO2
1580x93 Machine Error Exception Entrypoint MERRENTRY
159 Address
1600x94 Machine Error Exception Return MERRERA
161 Address
1620x95 Machine Error Exception Saved Data MERRSAVE
163 Register
1640x98 Cache TAGs CTAG
1650x180+n (0≤n≤3) Direct Mapping Configuration Window n DMWn
1660x200+2n (0≤n≤31) Performance Monitor Configuration n PMCFGn
1670x201+2n (0≤n≤31) Performance Monitor Overall Counter n PMCNTn
1680x300 Memory Load/Store WatchPoint MWPC
169 Overall Control
1700x301 Memory Load/Store WatchPoint MWPS
171 Overall Status
1720x310+8n (0≤n≤7) Memory Load/Store WatchPoint n MWPnCFG1
173 Configuration 1
1740x311+8n (0≤n≤7) Memory Load/Store WatchPoint n MWPnCFG2
175 Configuration 2
1760x312+8n (0≤n≤7) Memory Load/Store WatchPoint n MWPnCFG3
177 Configuration 3
1780x313+8n (0≤n≤7) Memory Load/Store WatchPoint n MWPnCFG4
179 Configuration 4
1800x380 Instruction Fetch WatchPoint FWPC
181 Overall Control
1820x381 Instruction Fetch WatchPoint FWPS
183 Overall Status
1840x390+8n (0≤n≤7) Instruction Fetch WatchPoint n FWPnCFG1
185 Configuration 1
1860x391+8n (0≤n≤7) Instruction Fetch WatchPoint n FWPnCFG2
187 Configuration 2
1880x392+8n (0≤n≤7) Instruction Fetch WatchPoint n FWPnCFG3
189 Configuration 3
1900x393+8n (0≤n≤7) Instruction Fetch WatchPoint n FWPnCFG4
191 Configuration 4
1920x500 Debug Register DBG
1930x501 Debug Exception Return Address DERA
1940x502 Debug Exception Saved Data Register DSAVE
195================= ===================================== ==============
196
197ERA, TLBRERA, MERRERA and DERA are sometimes also known as EPC, TLBREPC, MERREPC
198and DEPC respectively.
199
200Basic Instruction Set
201=====================
202
203Instruction formats
204-------------------
205
206LoongArch instructions are 32 bits wide, belonging to 9 basic instruction
207formats (and variants of them):
208
209=========== ==========================
210Format name Composition
211=========== ==========================
2122R Opcode + Rj + Rd
2133R Opcode + Rk + Rj + Rd
2144R Opcode + Ra + Rk + Rj + Rd
2152RI8 Opcode + I8 + Rj + Rd
2162RI12 Opcode + I12 + Rj + Rd
2172RI14 Opcode + I14 + Rj + Rd
2182RI16 Opcode + I16 + Rj + Rd
2191RI21 Opcode + I21L + Rj + I21H
220I26 Opcode + I26L + I26H
221=========== ==========================
222
223Rd is the destination register operand, while Rj, Rk and Ra ("a" stands for
224"additional") are the source register operands. I8/I12/I16/I21/I26 are
225immediate operands of respective width. The longer I21 and I26 are stored
226in separate higher and lower parts in the instruction word, denoted by the "L"
227and "H" suffixes.
228
229List of Instructions
230--------------------
231
232For brevity, only instruction names (mnemonics) are listed here; please see the
233:ref:`References <loongarch-references>` for details.
234
235
2361. Arithmetic Instructions::
237
238 ADD.W SUB.W ADDI.W ADD.D SUB.D ADDI.D
239 SLT SLTU SLTI SLTUI
240 AND OR NOR XOR ANDN ORN ANDI ORI XORI
241 MUL.W MULH.W MULH.WU DIV.W DIV.WU MOD.W MOD.WU
242 MUL.D MULH.D MULH.DU DIV.D DIV.DU MOD.D MOD.DU
243 PCADDI PCADDU12I PCADDU18I
244 LU12I.W LU32I.D LU52I.D ADDU16I.D
245
2462. Bit-shift Instructions::
247
248 SLL.W SRL.W SRA.W ROTR.W SLLI.W SRLI.W SRAI.W ROTRI.W
249 SLL.D SRL.D SRA.D ROTR.D SLLI.D SRLI.D SRAI.D ROTRI.D
250
2513. Bit-manipulation Instructions::
252
253 EXT.W.B EXT.W.H CLO.W CLO.D SLZ.W CLZ.D CTO.W CTO.D CTZ.W CTZ.D
254 BYTEPICK.W BYTEPICK.D BSTRINS.W BSTRINS.D BSTRPICK.W BSTRPICK.D
255 REVB.2H REVB.4H REVB.2W REVB.D REVH.2W REVH.D BITREV.4B BITREV.8B BITREV.W BITREV.D
256 MASKEQZ MASKNEZ
257
2584. Branch Instructions::
259
260 BEQ BNE BLT BGE BLTU BGEU BEQZ BNEZ B BL JIRL
261
2625. Load/Store Instructions::
263
264 LD.B LD.BU LD.H LD.HU LD.W LD.WU LD.D ST.B ST.H ST.W ST.D
265 LDX.B LDX.BU LDX.H LDX.HU LDX.W LDX.WU LDX.D STX.B STX.H STX.W STX.D
266 LDPTR.W LDPTR.D STPTR.W STPTR.D
267 PRELD PRELDX
268
2696. Atomic Operation Instructions::
270
271 LL.W SC.W LL.D SC.D
272 AMSWAP.W AMSWAP.D AMADD.W AMADD.D AMAND.W AMAND.D AMOR.W AMOR.D AMXOR.W AMXOR.D
273 AMMAX.W AMMAX.D AMMIN.W AMMIN.D
274
2757. Barrier Instructions::
276
277 IBAR DBAR
278
2798. Special Instructions::
280
281 SYSCALL BREAK CPUCFG NOP IDLE ERTN(ERET) DBCL(DBGCALL) RDTIMEL.W RDTIMEH.W RDTIME.D
282 ASRTLE.D ASRTGT.D
283
2849. Privileged Instructions::
285
286 CSRRD CSRWR CSRXCHG
287 IOCSRRD.B IOCSRRD.H IOCSRRD.W IOCSRRD.D IOCSRWR.B IOCSRWR.H IOCSRWR.W IOCSRWR.D
288 CACOP TLBP(TLBSRCH) TLBRD TLBWR TLBFILL TLBCLR TLBFLUSH INVTLB LDDIR LDPTE
289
290Virtual Memory
291==============
292
293LoongArch supports direct-mapped virtual memory and page-mapped virtual memory.
294
295Direct-mapped virtual memory is configured by CSR.DMWn (n=0~3), it has a simple
296relationship between virtual address (VA) and physical address (PA)::
297
298 VA = PA + FixedOffset
299
300Page-mapped virtual memory has arbitrary relationship between VA and PA, which
301is recorded in TLB and page tables. LoongArch's TLB includes a fully-associative
302MTLB (Multiple Page Size TLB) and set-associative STLB (Single Page Size TLB).
303
304By default, the whole virtual address space of LA32 is configured like this:
305
306============ =========================== =============================
307Name Address Range Attributes
308============ =========================== =============================
309``UVRANGE`` ``0x00000000 - 0x7FFFFFFF`` Page-mapped, Cached, PLV0~3
310``KPRANGE0`` ``0x80000000 - 0x9FFFFFFF`` Direct-mapped, Uncached, PLV0
311``KPRANGE1`` ``0xA0000000 - 0xBFFFFFFF`` Direct-mapped, Cached, PLV0
312``KVRANGE`` ``0xC0000000 - 0xFFFFFFFF`` Page-mapped, Cached, PLV0
313============ =========================== =============================
314
315User mode (PLV3) can only access UVRANGE. For direct-mapped KPRANGE0 and
316KPRANGE1, PA is equal to VA with bit30~31 cleared. For example, the uncached
317direct-mapped VA of 0x00001000 is 0x80001000, and the cached direct-mapped
318VA of 0x00001000 is 0xA0001000.
319
320By default, the whole virtual address space of LA64 is configured like this:
321
322============ ====================== ======================================
323Name Address Range Attributes
324============ ====================== ======================================
325``XUVRANGE`` ``0x0000000000000000 - Page-mapped, Cached, PLV0~3
326 0x3FFFFFFFFFFFFFFF``
327``XSPRANGE`` ``0x4000000000000000 - Direct-mapped, Cached / Uncached, PLV0
328 0x7FFFFFFFFFFFFFFF``
329``XKPRANGE`` ``0x8000000000000000 - Direct-mapped, Cached / Uncached, PLV0
330 0xBFFFFFFFFFFFFFFF``
331``XKVRANGE`` ``0xC000000000000000 - Page-mapped, Cached, PLV0
332 0xFFFFFFFFFFFFFFFF``
333============ ====================== ======================================
334
335User mode (PLV3) can only access XUVRANGE. For direct-mapped XSPRANGE and
336XKPRANGE, PA is equal to VA with bits 60~63 cleared, and the cache attribute
337is configured by bits 60~61 in VA: 0 is for strongly-ordered uncached, 1 is
338for coherent cached, and 2 is for weakly-ordered uncached.
339
340Currently we only use XKPRANGE for direct mapping and XSPRANGE is reserved.
341
342To put this in action: the strongly-ordered uncached direct-mapped VA (in
343XKPRANGE) of 0x00000000_00001000 is 0x80000000_00001000, the coherent cached
344direct-mapped VA (in XKPRANGE) of 0x00000000_00001000 is 0x90000000_00001000,
345and the weakly-ordered uncached direct-mapped VA (in XKPRANGE) of 0x00000000
346_00001000 is 0xA0000000_00001000.
347
348Relationship of Loongson and LoongArch
349======================================
350
351LoongArch is a RISC ISA which is different from any other existing ones, while
352Loongson is a family of processors. Loongson includes 3 series: Loongson-1 is
353the 32-bit processor series, Loongson-2 is the low-end 64-bit processor series,
354and Loongson-3 is the high-end 64-bit processor series. Old Loongson is based on
355MIPS, while New Loongson is based on LoongArch. Take Loongson-3 as an example:
356Loongson-3A1000/3B1500/3A2000/3A3000/3A4000 are MIPS-compatible, while Loongson-
3573A5000 (and future revisions) are all based on LoongArch.
358
359.. _loongarch-references:
360
361References
362==========
363
364Official web site of Loongson Technology Corp. Ltd.:
365
366 http://www.loongson.cn/
367
368Developer web site of Loongson and LoongArch (Software and Documentation):
369
370 http://www.loongnix.cn/
371
372 https://github.com/loongson/
373
374 https://loongson.github.io/LoongArch-Documentation/
375
376Documentation of LoongArch ISA:
377
378 https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-Vol1-v1.00-CN.pdf (in Chinese)
379
380 https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-Vol1-v1.00-EN.pdf (in English)
381
382Documentation of LoongArch ELF psABI:
383
384 https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-ELF-ABI-v1.00-CN.pdf (in Chinese)
385
386 https://github.com/loongson/LoongArch-Documentation/releases/latest/download/LoongArch-ELF-ABI-v1.00-EN.pdf (in English)
387
388Linux kernel repository of Loongson and LoongArch:
389
390 https://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson.git