lguest: implement deferred interrupts in example Launcher
[linux-2.6-block.git] / Documentation / lguest / lguest.c
CommitLineData
f938d2c8 1/*P:100 This is the Launcher code, a simple program which lays out the
a6bd8e13
RR
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
8ca47e00
RR
5#define _LARGEFILE64_SOURCE
6#define _GNU_SOURCE
7#include <stdio.h>
8#include <string.h>
9#include <unistd.h>
10#include <err.h>
11#include <stdint.h>
12#include <stdlib.h>
13#include <elf.h>
14#include <sys/mman.h>
6649bb7a 15#include <sys/param.h>
8ca47e00
RR
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <sys/wait.h>
659a0e66 19#include <sys/eventfd.h>
8ca47e00
RR
20#include <fcntl.h>
21#include <stdbool.h>
22#include <errno.h>
23#include <ctype.h>
24#include <sys/socket.h>
25#include <sys/ioctl.h>
26#include <sys/time.h>
27#include <time.h>
28#include <netinet/in.h>
29#include <net/if.h>
30#include <linux/sockios.h>
31#include <linux/if_tun.h>
32#include <sys/uio.h>
33#include <termios.h>
34#include <getopt.h>
35#include <zlib.h>
17cbca2b
RR
36#include <assert.h>
37#include <sched.h>
a586d4f6
RR
38#include <limits.h>
39#include <stddef.h>
a161883a 40#include <signal.h>
b45d8cb0 41#include "linux/lguest_launcher.h"
17cbca2b
RR
42#include "linux/virtio_config.h"
43#include "linux/virtio_net.h"
44#include "linux/virtio_blk.h"
45#include "linux/virtio_console.h"
28fd6d7f 46#include "linux/virtio_rng.h"
17cbca2b 47#include "linux/virtio_ring.h"
d5d02d6d 48#include "asm/bootparam.h"
a6bd8e13 49/*L:110 We can ignore the 39 include files we need for this program, but I do
db24e8c2
RR
50 * want to draw attention to the use of kernel-style types.
51 *
52 * As Linus said, "C is a Spartan language, and so should your naming be." I
53 * like these abbreviations, so we define them here. Note that u64 is always
54 * unsigned long long, which works on all Linux systems: this means that we can
55 * use %llu in printf for any u64. */
56typedef unsigned long long u64;
57typedef uint32_t u32;
58typedef uint16_t u16;
59typedef uint8_t u8;
dde79789 60/*:*/
8ca47e00
RR
61
62#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
8ca47e00
RR
63#define BRIDGE_PFX "bridge:"
64#ifndef SIOCBRADDIF
65#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66#endif
3c6b5bfa
RR
67/* We can have up to 256 pages for devices. */
68#define DEVICE_PAGES 256
0f0c4fab
RR
69/* This will occupy 3 pages: it must be a power of 2. */
70#define VIRTQUEUE_NUM 256
8ca47e00 71
dde79789
RR
72/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
8ca47e00
RR
74static bool verbose;
75#define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
dde79789
RR
77/*:*/
78
3c6b5bfa
RR
79/* The pointer to the start of guest memory. */
80static void *guest_base;
81/* The maximum guest physical address allowed, and maximum possible. */
82static unsigned long guest_limit, guest_max;
56739c80
RR
83/* The /dev/lguest file descriptor. */
84static int lguest_fd;
8ca47e00 85
e3283fa0
GOC
86/* a per-cpu variable indicating whose vcpu is currently running */
87static unsigned int __thread cpu_id;
88
dde79789 89/* This is our list of devices. */
8ca47e00
RR
90struct device_list
91{
17cbca2b
RR
92 /* Counter to assign interrupt numbers. */
93 unsigned int next_irq;
94
95 /* Counter to print out convenient device numbers. */
96 unsigned int device_num;
97
dde79789 98 /* The descriptor page for the devices. */
17cbca2b
RR
99 u8 *descpage;
100
dde79789 101 /* A single linked list of devices. */
8ca47e00 102 struct device *dev;
a586d4f6
RR
103 /* And a pointer to the last device for easy append and also for
104 * configuration appending. */
105 struct device *lastdev;
8ca47e00
RR
106};
107
17cbca2b
RR
108/* The list of Guest devices, based on command line arguments. */
109static struct device_list devices;
110
dde79789 111/* The device structure describes a single device. */
8ca47e00
RR
112struct device
113{
dde79789 114 /* The linked-list pointer. */
8ca47e00 115 struct device *next;
17cbca2b 116
713b15b3 117 /* The device's descriptor, as mapped into the Guest. */
8ca47e00 118 struct lguest_device_desc *desc;
17cbca2b 119
713b15b3
RR
120 /* We can't trust desc values once Guest has booted: we use these. */
121 unsigned int feature_len;
122 unsigned int num_vq;
123
17cbca2b
RR
124 /* The name of this device, for --verbose. */
125 const char *name;
8ca47e00 126
17cbca2b
RR
127 /* Any queues attached to this device */
128 struct virtqueue *vq;
8ca47e00 129
659a0e66
RR
130 /* Is it operational */
131 bool running;
a007a751 132
8ca47e00
RR
133 /* Device-specific data. */
134 void *priv;
135};
136
17cbca2b
RR
137/* The virtqueue structure describes a queue attached to a device. */
138struct virtqueue
139{
140 struct virtqueue *next;
141
142 /* Which device owns me. */
143 struct device *dev;
144
145 /* The configuration for this queue. */
146 struct lguest_vqconfig config;
147
148 /* The actual ring of buffers. */
149 struct vring vring;
150
151 /* Last available index we saw. */
152 u16 last_avail_idx;
153
659a0e66
RR
154 /* Eventfd where Guest notifications arrive. */
155 int eventfd;
20887611 156
659a0e66
RR
157 /* Function for the thread which is servicing this virtqueue. */
158 void (*service)(struct virtqueue *vq);
159 pid_t thread;
17cbca2b
RR
160};
161
ec04b13f
BR
162/* Remember the arguments to the program so we can "reboot" */
163static char **main_args;
164
659a0e66
RR
165/* The original tty settings to restore on exit. */
166static struct termios orig_term;
167
f7027c63
RR
168/* We have to be careful with barriers: our devices are all run in separate
169 * threads and so we need to make sure that changes visible to the Guest happen
170 * in precise order. */
171#define wmb() __asm__ __volatile__("" : : : "memory")
17cbca2b
RR
172
173/* Convert an iovec element to the given type.
174 *
175 * This is a fairly ugly trick: we need to know the size of the type and
176 * alignment requirement to check the pointer is kosher. It's also nice to
177 * have the name of the type in case we report failure.
178 *
179 * Typing those three things all the time is cumbersome and error prone, so we
180 * have a macro which sets them all up and passes to the real function. */
181#define convert(iov, type) \
182 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
183
184static void *_convert(struct iovec *iov, size_t size, size_t align,
185 const char *name)
186{
187 if (iov->iov_len != size)
188 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
189 if ((unsigned long)iov->iov_base % align != 0)
190 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
191 return iov->iov_base;
192}
193
b5111790
RR
194/* Wrapper for the last available index. Makes it easier to change. */
195#define lg_last_avail(vq) ((vq)->last_avail_idx)
196
17cbca2b
RR
197/* The virtio configuration space is defined to be little-endian. x86 is
198 * little-endian too, but it's nice to be explicit so we have these helpers. */
199#define cpu_to_le16(v16) (v16)
200#define cpu_to_le32(v32) (v32)
201#define cpu_to_le64(v64) (v64)
202#define le16_to_cpu(v16) (v16)
203#define le32_to_cpu(v32) (v32)
a586d4f6 204#define le64_to_cpu(v64) (v64)
17cbca2b 205
28fd6d7f
RR
206/* Is this iovec empty? */
207static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
208{
209 unsigned int i;
210
211 for (i = 0; i < num_iov; i++)
212 if (iov[i].iov_len)
213 return false;
214 return true;
215}
216
217/* Take len bytes from the front of this iovec. */
218static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
219{
220 unsigned int i;
221
222 for (i = 0; i < num_iov; i++) {
223 unsigned int used;
224
225 used = iov[i].iov_len < len ? iov[i].iov_len : len;
226 iov[i].iov_base += used;
227 iov[i].iov_len -= used;
228 len -= used;
229 }
230 assert(len == 0);
231}
232
6e5aa7ef
RR
233/* The device virtqueue descriptors are followed by feature bitmasks. */
234static u8 *get_feature_bits(struct device *dev)
235{
236 return (u8 *)(dev->desc + 1)
713b15b3 237 + dev->num_vq * sizeof(struct lguest_vqconfig);
6e5aa7ef
RR
238}
239
3c6b5bfa
RR
240/*L:100 The Launcher code itself takes us out into userspace, that scary place
241 * where pointers run wild and free! Unfortunately, like most userspace
242 * programs, it's quite boring (which is why everyone likes to hack on the
243 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
244 * will get you through this section. Or, maybe not.
245 *
246 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
247 * memory and stores it in "guest_base". In other words, Guest physical ==
248 * Launcher virtual with an offset.
249 *
250 * This can be tough to get your head around, but usually it just means that we
251 * use these trivial conversion functions when the Guest gives us it's
252 * "physical" addresses: */
253static void *from_guest_phys(unsigned long addr)
254{
255 return guest_base + addr;
256}
257
258static unsigned long to_guest_phys(const void *addr)
259{
260 return (addr - guest_base);
261}
262
dde79789
RR
263/*L:130
264 * Loading the Kernel.
265 *
266 * We start with couple of simple helper routines. open_or_die() avoids
267 * error-checking code cluttering the callers: */
8ca47e00
RR
268static int open_or_die(const char *name, int flags)
269{
270 int fd = open(name, flags);
271 if (fd < 0)
272 err(1, "Failed to open %s", name);
273 return fd;
274}
275
3c6b5bfa
RR
276/* map_zeroed_pages() takes a number of pages. */
277static void *map_zeroed_pages(unsigned int num)
8ca47e00 278{
3c6b5bfa
RR
279 int fd = open_or_die("/dev/zero", O_RDONLY);
280 void *addr;
8ca47e00 281
dde79789 282 /* We use a private mapping (ie. if we write to the page, it will be
3c6b5bfa
RR
283 * copied). */
284 addr = mmap(NULL, getpagesize() * num,
285 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
286 if (addr == MAP_FAILED)
287 err(1, "Mmaping %u pages of /dev/zero", num);
34bdaab4 288 close(fd);
3c6b5bfa
RR
289
290 return addr;
291}
292
293/* Get some more pages for a device. */
294static void *get_pages(unsigned int num)
295{
296 void *addr = from_guest_phys(guest_limit);
297
298 guest_limit += num * getpagesize();
299 if (guest_limit > guest_max)
300 errx(1, "Not enough memory for devices");
301 return addr;
8ca47e00
RR
302}
303
6649bb7a
RM
304/* This routine is used to load the kernel or initrd. It tries mmap, but if
305 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
306 * it falls back to reading the memory in. */
307static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
308{
309 ssize_t r;
310
311 /* We map writable even though for some segments are marked read-only.
312 * The kernel really wants to be writable: it patches its own
313 * instructions.
314 *
315 * MAP_PRIVATE means that the page won't be copied until a write is
316 * done to it. This allows us to share untouched memory between
317 * Guests. */
318 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
319 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
320 return;
321
322 /* pread does a seek and a read in one shot: saves a few lines. */
323 r = pread(fd, addr, len, offset);
324 if (r != len)
325 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
326}
327
dde79789
RR
328/* This routine takes an open vmlinux image, which is in ELF, and maps it into
329 * the Guest memory. ELF = Embedded Linking Format, which is the format used
330 * by all modern binaries on Linux including the kernel.
331 *
332 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
333 * address. We use the physical address; the Guest will map itself to the
334 * virtual address.
dde79789
RR
335 *
336 * We return the starting address. */
47436aa4 337static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 338{
8ca47e00
RR
339 Elf32_Phdr phdr[ehdr->e_phnum];
340 unsigned int i;
8ca47e00 341
dde79789
RR
342 /* Sanity checks on the main ELF header: an x86 executable with a
343 * reasonable number of correctly-sized program headers. */
8ca47e00
RR
344 if (ehdr->e_type != ET_EXEC
345 || ehdr->e_machine != EM_386
346 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
347 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
348 errx(1, "Malformed elf header");
349
dde79789
RR
350 /* An ELF executable contains an ELF header and a number of "program"
351 * headers which indicate which parts ("segments") of the program to
352 * load where. */
353
354 /* We read in all the program headers at once: */
8ca47e00
RR
355 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
356 err(1, "Seeking to program headers");
357 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
358 err(1, "Reading program headers");
359
dde79789 360 /* Try all the headers: there are usually only three. A read-only one,
a6bd8e13 361 * a read-write one, and a "note" section which we don't load. */
8ca47e00 362 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 363 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
364 if (phdr[i].p_type != PT_LOAD)
365 continue;
366
367 verbose("Section %i: size %i addr %p\n",
368 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
369
6649bb7a 370 /* We map this section of the file at its physical address. */
3c6b5bfa 371 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 372 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
373 }
374
814a0e5c
RR
375 /* The entry point is given in the ELF header. */
376 return ehdr->e_entry;
8ca47e00
RR
377}
378
dde79789 379/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
5bbf89fc
RR
380 * supposed to jump into it and it will unpack itself. We used to have to
381 * perform some hairy magic because the unpacking code scared me.
dde79789 382 *
5bbf89fc
RR
383 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
384 * a small patch to jump over the tricky bits in the Guest, so now we just read
385 * the funky header so we know where in the file to load, and away we go! */
47436aa4 386static unsigned long load_bzimage(int fd)
8ca47e00 387{
43d33b21 388 struct boot_params boot;
5bbf89fc
RR
389 int r;
390 /* Modern bzImages get loaded at 1M. */
391 void *p = from_guest_phys(0x100000);
392
393 /* Go back to the start of the file and read the header. It should be
71cced6e 394 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
5bbf89fc 395 lseek(fd, 0, SEEK_SET);
43d33b21 396 read(fd, &boot, sizeof(boot));
5bbf89fc 397
43d33b21
RR
398 /* Inside the setup_hdr, we expect the magic "HdrS" */
399 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
400 errx(1, "This doesn't look like a bzImage to me");
401
43d33b21
RR
402 /* Skip over the extra sectors of the header. */
403 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
404
405 /* Now read everything into memory. in nice big chunks. */
406 while ((r = read(fd, p, 65536)) > 0)
407 p += r;
408
43d33b21
RR
409 /* Finally, code32_start tells us where to enter the kernel. */
410 return boot.hdr.code32_start;
8ca47e00
RR
411}
412
dde79789 413/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965
RR
414 * come wrapped up in the self-decompressing "bzImage" format. With a little
415 * work, we can load those, too. */
47436aa4 416static unsigned long load_kernel(int fd)
8ca47e00
RR
417{
418 Elf32_Ehdr hdr;
419
dde79789 420 /* Read in the first few bytes. */
8ca47e00
RR
421 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
422 err(1, "Reading kernel");
423
dde79789 424 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 425 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 426 return map_elf(fd, &hdr);
8ca47e00 427
a6bd8e13 428 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 429 return load_bzimage(fd);
8ca47e00
RR
430}
431
dde79789
RR
432/* This is a trivial little helper to align pages. Andi Kleen hated it because
433 * it calls getpagesize() twice: "it's dumb code."
434 *
435 * Kernel guys get really het up about optimization, even when it's not
436 * necessary. I leave this code as a reaction against that. */
8ca47e00
RR
437static inline unsigned long page_align(unsigned long addr)
438{
dde79789 439 /* Add upwards and truncate downwards. */
8ca47e00
RR
440 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
441}
442
dde79789
RR
443/*L:180 An "initial ram disk" is a disk image loaded into memory along with
444 * the kernel which the kernel can use to boot from without needing any
445 * drivers. Most distributions now use this as standard: the initrd contains
446 * the code to load the appropriate driver modules for the current machine.
447 *
448 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
449 * kernels. He sent me this (and tells me when I break it). */
8ca47e00
RR
450static unsigned long load_initrd(const char *name, unsigned long mem)
451{
452 int ifd;
453 struct stat st;
454 unsigned long len;
8ca47e00
RR
455
456 ifd = open_or_die(name, O_RDONLY);
dde79789 457 /* fstat() is needed to get the file size. */
8ca47e00
RR
458 if (fstat(ifd, &st) < 0)
459 err(1, "fstat() on initrd '%s'", name);
460
6649bb7a
RM
461 /* We map the initrd at the top of memory, but mmap wants it to be
462 * page-aligned, so we round the size up for that. */
8ca47e00 463 len = page_align(st.st_size);
3c6b5bfa 464 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
dde79789
RR
465 /* Once a file is mapped, you can close the file descriptor. It's a
466 * little odd, but quite useful. */
8ca47e00 467 close(ifd);
6649bb7a 468 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
469
470 /* We return the initrd size. */
8ca47e00
RR
471 return len;
472}
e1e72965 473/*:*/
8ca47e00 474
dde79789
RR
475/* Simple routine to roll all the commandline arguments together with spaces
476 * between them. */
8ca47e00
RR
477static void concat(char *dst, char *args[])
478{
479 unsigned int i, len = 0;
480
481 for (i = 0; args[i]; i++) {
1ef36fa6
PB
482 if (i) {
483 strcat(dst+len, " ");
484 len++;
485 }
8ca47e00 486 strcpy(dst+len, args[i]);
1ef36fa6 487 len += strlen(args[i]);
8ca47e00
RR
488 }
489 /* In case it's empty. */
490 dst[len] = '\0';
491}
492
e1e72965
RR
493/*L:185 This is where we actually tell the kernel to initialize the Guest. We
494 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566
MZ
495 * the base of Guest "physical" memory, the top physical page to allow and the
496 * entry point for the Guest. */
56739c80 497static void tell_kernel(unsigned long start)
8ca47e00 498{
511801dc
JS
499 unsigned long args[] = { LHREQ_INITIALIZE,
500 (unsigned long)guest_base,
58a24566 501 guest_limit / getpagesize(), start };
3c6b5bfa
RR
502 verbose("Guest: %p - %p (%#lx)\n",
503 guest_base, guest_base + guest_limit, guest_limit);
56739c80
RR
504 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
505 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 506 err(1, "Writing to /dev/lguest");
8ca47e00 507}
dde79789 508/*:*/
8ca47e00 509
e1e72965 510/*
dde79789
RR
511 * Device Handling.
512 *
e1e72965 513 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 514 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 515 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
516 * if something funny is going on:
517 */
8ca47e00
RR
518static void *_check_pointer(unsigned long addr, unsigned int size,
519 unsigned int line)
520{
dde79789
RR
521 /* We have to separately check addr and addr+size, because size could
522 * be huge and addr + size might wrap around. */
3c6b5bfa 523 if (addr >= guest_limit || addr + size >= guest_limit)
17cbca2b 524 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
dde79789
RR
525 /* We return a pointer for the caller's convenience, now we know it's
526 * safe to use. */
3c6b5bfa 527 return from_guest_phys(addr);
8ca47e00 528}
dde79789 529/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
530#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
531
e1e72965
RR
532/* Each buffer in the virtqueues is actually a chain of descriptors. This
533 * function returns the next descriptor in the chain, or vq->vring.num if we're
534 * at the end. */
17cbca2b
RR
535static unsigned next_desc(struct virtqueue *vq, unsigned int i)
536{
537 unsigned int next;
538
539 /* If this descriptor says it doesn't chain, we're done. */
540 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
541 return vq->vring.num;
542
543 /* Check they're not leading us off end of descriptors. */
544 next = vq->vring.desc[i].next;
545 /* Make sure compiler knows to grab that: we don't want it changing! */
546 wmb();
547
548 if (next >= vq->vring.num)
549 errx(1, "Desc next is %u", next);
550
551 return next;
552}
553
38bc2b8c
RR
554/* This actually sends the interrupt for this virtqueue */
555static void trigger_irq(struct virtqueue *vq)
556{
557 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
558
559 /* If they don't want an interrupt, don't send one, unless empty. */
560 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
561 && lg_last_avail(vq) != vq->vring.avail->idx)
562 return;
563
564 /* Send the Guest an interrupt tell them we used something up. */
565 if (write(lguest_fd, buf, sizeof(buf)) != 0)
566 err(1, "Triggering irq %i", vq->config.irq);
567}
568
17cbca2b
RR
569/* This looks in the virtqueue and for the first available buffer, and converts
570 * it to an iovec for convenient access. Since descriptors consist of some
571 * number of output then some number of input descriptors, it's actually two
572 * iovecs, but we pack them into one and note how many of each there were.
573 *
659a0e66
RR
574 * This function returns the descriptor number found. */
575static unsigned wait_for_vq_desc(struct virtqueue *vq,
576 struct iovec iov[],
577 unsigned int *out_num, unsigned int *in_num)
17cbca2b
RR
578{
579 unsigned int i, head;
659a0e66
RR
580 u16 last_avail = lg_last_avail(vq);
581
582 while (last_avail == vq->vring.avail->idx) {
583 u64 event;
584
38bc2b8c
RR
585 /* OK, tell Guest about progress up to now. */
586 trigger_irq(vq);
587
659a0e66
RR
588 /* Nothing new? Wait for eventfd to tell us they refilled. */
589 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
590 errx(1, "Event read failed?");
591 }
17cbca2b
RR
592
593 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790 594 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 595 errx(1, "Guest moved used index from %u to %u",
b5111790 596 last_avail, vq->vring.avail->idx);
17cbca2b 597
17cbca2b
RR
598 /* Grab the next descriptor number they're advertising, and increment
599 * the index we've seen. */
b5111790
RR
600 head = vq->vring.avail->ring[last_avail % vq->vring.num];
601 lg_last_avail(vq)++;
17cbca2b
RR
602
603 /* If their number is silly, that's a fatal mistake. */
604 if (head >= vq->vring.num)
605 errx(1, "Guest says index %u is available", head);
606
607 /* When we start there are none of either input nor output. */
608 *out_num = *in_num = 0;
609
610 i = head;
611 do {
612 /* Grab the first descriptor, and check it's OK. */
613 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
614 iov[*out_num + *in_num].iov_base
615 = check_pointer(vq->vring.desc[i].addr,
616 vq->vring.desc[i].len);
617 /* If this is an input descriptor, increment that count. */
618 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
619 (*in_num)++;
620 else {
621 /* If it's an output descriptor, they're all supposed
622 * to come before any input descriptors. */
623 if (*in_num)
624 errx(1, "Descriptor has out after in");
625 (*out_num)++;
626 }
627
628 /* If we've got too many, that implies a descriptor loop. */
629 if (*out_num + *in_num > vq->vring.num)
630 errx(1, "Looped descriptor");
631 } while ((i = next_desc(vq, i)) != vq->vring.num);
dde79789 632
17cbca2b 633 return head;
8ca47e00
RR
634}
635
e1e72965 636/* After we've used one of their buffers, we tell them about it. We'll then
17cbca2b
RR
637 * want to send them an interrupt, using trigger_irq(). */
638static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 639{
17cbca2b
RR
640 struct vring_used_elem *used;
641
e1e72965
RR
642 /* The virtqueue contains a ring of used buffers. Get a pointer to the
643 * next entry in that used ring. */
17cbca2b
RR
644 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
645 used->id = head;
646 used->len = len;
647 /* Make sure buffer is written before we update index. */
648 wmb();
649 vq->vring.used->idx++;
8ca47e00
RR
650}
651
17cbca2b 652/* And here's the combo meal deal. Supersize me! */
56739c80 653static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 654{
17cbca2b 655 add_used(vq, head, len);
56739c80 656 trigger_irq(vq);
8ca47e00
RR
657}
658
e1e72965
RR
659/*
660 * The Console
661 *
659a0e66 662 * We associate some data with the console for our exit hack. */
8ca47e00
RR
663struct console_abort
664{
dde79789 665 /* How many times have they hit ^C? */
8ca47e00 666 int count;
dde79789 667 /* When did they start? */
8ca47e00
RR
668 struct timeval start;
669};
670
dde79789 671/* This is the routine which handles console input (ie. stdin). */
659a0e66 672static void console_input(struct virtqueue *vq)
8ca47e00 673{
8ca47e00 674 int len;
17cbca2b 675 unsigned int head, in_num, out_num;
659a0e66
RR
676 struct console_abort *abort = vq->dev->priv;
677 struct iovec iov[vq->vring.num];
56ae43df 678
659a0e66
RR
679 /* Make sure there's a descriptor waiting. */
680 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
56ae43df 681 if (out_num)
17cbca2b 682 errx(1, "Output buffers in console in queue?");
8ca47e00 683
659a0e66
RR
684 /* Read it in. */
685 len = readv(STDIN_FILENO, iov, in_num);
8ca47e00 686 if (len <= 0) {
659a0e66 687 /* Ran out of input? */
8ca47e00 688 warnx("Failed to get console input, ignoring console.");
659a0e66
RR
689 /* For simplicity, dying threads kill the whole Launcher. So
690 * just nap here. */
691 for (;;)
692 pause();
8ca47e00
RR
693 }
694
659a0e66 695 add_used_and_trigger(vq, head, len);
8ca47e00 696
dde79789
RR
697 /* Three ^C within one second? Exit.
698 *
659a0e66
RR
699 * This is such a hack, but works surprisingly well. Each ^C has to
700 * be in a buffer by itself, so they can't be too fast. But we check
701 * that we get three within about a second, so they can't be too
702 * slow. */
703 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
8ca47e00 704 abort->count = 0;
659a0e66
RR
705 return;
706 }
8ca47e00 707
659a0e66
RR
708 abort->count++;
709 if (abort->count == 1)
710 gettimeofday(&abort->start, NULL);
711 else if (abort->count == 3) {
712 struct timeval now;
713 gettimeofday(&now, NULL);
714 /* Kill all Launcher processes with SIGINT, like normal ^C */
715 if (now.tv_sec <= abort->start.tv_sec+1)
716 kill(0, SIGINT);
717 abort->count = 0;
718 }
8ca47e00
RR
719}
720
659a0e66
RR
721/* This is the routine which handles console output (ie. stdout). */
722static void console_output(struct virtqueue *vq)
8ca47e00 723{
17cbca2b 724 unsigned int head, out, in;
17cbca2b
RR
725 struct iovec iov[vq->vring.num];
726
659a0e66
RR
727 head = wait_for_vq_desc(vq, iov, &out, &in);
728 if (in)
729 errx(1, "Input buffers in console output queue?");
730 while (!iov_empty(iov, out)) {
731 int len = writev(STDOUT_FILENO, iov, out);
732 if (len <= 0)
733 err(1, "Write to stdout gave %i", len);
734 iov_consume(iov, out, len);
17cbca2b 735 }
38bc2b8c 736 add_used(vq, head, 0);
a161883a
RR
737}
738
e1e72965
RR
739/*
740 * The Network
741 *
742 * Handling output for network is also simple: we get all the output buffers
659a0e66 743 * and write them to /dev/net/tun.
a6bd8e13 744 */
659a0e66
RR
745struct net_info {
746 int tunfd;
747};
748
749static void net_output(struct virtqueue *vq)
8ca47e00 750{
659a0e66
RR
751 struct net_info *net_info = vq->dev->priv;
752 unsigned int head, out, in;
17cbca2b 753 struct iovec iov[vq->vring.num];
a161883a 754
659a0e66
RR
755 head = wait_for_vq_desc(vq, iov, &out, &in);
756 if (in)
757 errx(1, "Input buffers in net output queue?");
758 if (writev(net_info->tunfd, iov, out) < 0)
759 errx(1, "Write to tun failed?");
38bc2b8c 760 add_used(vq, head, 0);
8ca47e00
RR
761}
762
659a0e66 763/* This is where we handle packets coming in from the tun device to our
17cbca2b 764 * Guest. */
659a0e66 765static void net_input(struct virtqueue *vq)
8ca47e00 766{
8ca47e00 767 int len;
659a0e66
RR
768 unsigned int head, out, in;
769 struct iovec iov[vq->vring.num];
770 struct net_info *net_info = vq->dev->priv;
771
772 head = wait_for_vq_desc(vq, iov, &out, &in);
773 if (out)
774 errx(1, "Output buffers in net input queue?");
775 len = readv(net_info->tunfd, iov, in);
8ca47e00 776 if (len <= 0)
659a0e66
RR
777 err(1, "Failed to read from tun.");
778 add_used_and_trigger(vq, head, len);
779}
dde79789 780
659a0e66
RR
781/* This is the helper to create threads. */
782static int do_thread(void *_vq)
783{
784 struct virtqueue *vq = _vq;
17cbca2b 785
659a0e66
RR
786 for (;;)
787 vq->service(vq);
788 return 0;
789}
17cbca2b 790
659a0e66
RR
791/* When a child dies, we kill our entire process group with SIGTERM. This
792 * also has the side effect that the shell restores the console for us! */
793static void kill_launcher(int signal)
794{
795 kill(0, SIGTERM);
8ca47e00
RR
796}
797
659a0e66 798static void reset_device(struct device *dev)
56ae43df 799{
659a0e66
RR
800 struct virtqueue *vq;
801
802 verbose("Resetting device %s\n", dev->name);
803
804 /* Clear any features they've acked. */
805 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
806
807 /* We're going to be explicitly killing threads, so ignore them. */
808 signal(SIGCHLD, SIG_IGN);
809
810 /* Zero out the virtqueues, get rid of their threads */
811 for (vq = dev->vq; vq; vq = vq->next) {
812 if (vq->thread != (pid_t)-1) {
813 kill(vq->thread, SIGTERM);
814 waitpid(vq->thread, NULL, 0);
815 vq->thread = (pid_t)-1;
816 }
817 memset(vq->vring.desc, 0,
818 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
819 lg_last_avail(vq) = 0;
820 }
821 dev->running = false;
822
823 /* Now we care if threads die. */
824 signal(SIGCHLD, (void *)kill_launcher);
56ae43df
RR
825}
826
659a0e66 827static void create_thread(struct virtqueue *vq)
5dae785a 828{
659a0e66
RR
829 /* Create stack for thread and run it. Since stack grows
830 * upwards, we point the stack pointer to the end of this
831 * region. */
832 char *stack = malloc(32768);
833 unsigned long args[] = { LHREQ_EVENTFD,
834 vq->config.pfn*getpagesize(), 0 };
835
836 /* Create a zero-initialized eventfd. */
837 vq->eventfd = eventfd(0, 0);
838 if (vq->eventfd < 0)
839 err(1, "Creating eventfd");
840 args[2] = vq->eventfd;
841
842 /* Attach an eventfd to this virtqueue: it will go off
843 * when the Guest does an LHCALL_NOTIFY for this vq. */
844 if (write(lguest_fd, &args, sizeof(args)) != 0)
845 err(1, "Attaching eventfd");
846
847 /* CLONE_VM: because it has to access the Guest memory, and
848 * SIGCHLD so we get a signal if it dies. */
849 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
850 if (vq->thread == (pid_t)-1)
851 err(1, "Creating clone");
852 /* We close our local copy, now the child has it. */
853 close(vq->eventfd);
5dae785a
RR
854}
855
659a0e66 856static void start_device(struct device *dev)
6e5aa7ef 857{
659a0e66 858 unsigned int i;
6e5aa7ef
RR
859 struct virtqueue *vq;
860
659a0e66
RR
861 verbose("Device %s OK: offered", dev->name);
862 for (i = 0; i < dev->feature_len; i++)
863 verbose(" %02x", get_feature_bits(dev)[i]);
864 verbose(", accepted");
865 for (i = 0; i < dev->feature_len; i++)
866 verbose(" %02x", get_feature_bits(dev)
867 [dev->feature_len+i]);
868
869 for (vq = dev->vq; vq; vq = vq->next) {
870 if (vq->service)
871 create_thread(vq);
872 }
873 dev->running = true;
874}
875
876static void cleanup_devices(void)
877{
878 struct device *dev;
879
880 for (dev = devices.dev; dev; dev = dev->next)
881 reset_device(dev);
6e5aa7ef 882
659a0e66
RR
883 /* If we saved off the original terminal settings, restore them now. */
884 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
885 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
886}
6e5aa7ef 887
659a0e66
RR
888/* When the Guest tells us they updated the status field, we handle it. */
889static void update_device_status(struct device *dev)
890{
891 /* A zero status is a reset, otherwise it's a set of flags. */
892 if (dev->desc->status == 0)
893 reset_device(dev);
894 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
a007a751 895 warnx("Device %s configuration FAILED", dev->name);
659a0e66
RR
896 if (dev->running)
897 reset_device(dev);
a007a751 898 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
659a0e66
RR
899 if (!dev->running)
900 start_device(dev);
6e5aa7ef
RR
901 }
902}
903
17cbca2b 904/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
56739c80 905static void handle_output(unsigned long addr)
8ca47e00
RR
906{
907 struct device *i;
17cbca2b 908
659a0e66 909 /* Check each device. */
17cbca2b 910 for (i = devices.dev; i; i = i->next) {
659a0e66
RR
911 struct virtqueue *vq;
912
a007a751 913 /* Notifications to device descriptors update device status. */
6e5aa7ef 914 if (from_guest_phys(addr) == i->desc) {
a007a751 915 update_device_status(i);
6e5aa7ef
RR
916 return;
917 }
918
659a0e66 919 /* Devices *can* be used before status is set to DRIVER_OK. */
17cbca2b 920 for (vq = i->vq; vq; vq = vq->next) {
659a0e66 921 if (addr != vq->config.pfn*getpagesize())
6e5aa7ef 922 continue;
659a0e66
RR
923 if (i->running)
924 errx(1, "Notification on running %s", i->name);
925 start_device(i);
6e5aa7ef 926 return;
8ca47e00
RR
927 }
928 }
dde79789 929
17cbca2b
RR
930 /* Early console write is done using notify on a nul-terminated string
931 * in Guest memory. */
932 if (addr >= guest_limit)
933 errx(1, "Bad NOTIFY %#lx", addr);
934
935 write(STDOUT_FILENO, from_guest_phys(addr),
936 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
937}
938
dde79789
RR
939/*L:190
940 * Device Setup
941 *
942 * All devices need a descriptor so the Guest knows it exists, and a "struct
943 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
944 * routines to allocate and manage them.
945 */
8ca47e00 946
a586d4f6
RR
947/* The layout of the device page is a "struct lguest_device_desc" followed by a
948 * number of virtqueue descriptors, then two sets of feature bits, then an
949 * array of configuration bytes. This routine returns the configuration
950 * pointer. */
951static u8 *device_config(const struct device *dev)
952{
953 return (void *)(dev->desc + 1)
713b15b3
RR
954 + dev->num_vq * sizeof(struct lguest_vqconfig)
955 + dev->feature_len * 2;
17cbca2b
RR
956}
957
a586d4f6
RR
958/* This routine allocates a new "struct lguest_device_desc" from descriptor
959 * table page just above the Guest's normal memory. It returns a pointer to
960 * that descriptor. */
961static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 962{
a586d4f6
RR
963 struct lguest_device_desc d = { .type = type };
964 void *p;
17cbca2b 965
a586d4f6
RR
966 /* Figure out where the next device config is, based on the last one. */
967 if (devices.lastdev)
968 p = device_config(devices.lastdev)
969 + devices.lastdev->desc->config_len;
970 else
971 p = devices.descpage;
17cbca2b 972
a586d4f6
RR
973 /* We only have one page for all the descriptors. */
974 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
975 errx(1, "Too many devices");
17cbca2b 976
a586d4f6
RR
977 /* p might not be aligned, so we memcpy in. */
978 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
979}
980
a586d4f6
RR
981/* Each device descriptor is followed by the description of its virtqueues. We
982 * specify how many descriptors the virtqueue is to have. */
17cbca2b 983static void add_virtqueue(struct device *dev, unsigned int num_descs,
659a0e66 984 void (*service)(struct virtqueue *))
17cbca2b
RR
985{
986 unsigned int pages;
987 struct virtqueue **i, *vq = malloc(sizeof(*vq));
988 void *p;
989
a6bd8e13 990 /* First we need some memory for this virtqueue. */
2966af73 991 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
42b36cc0 992 / getpagesize();
17cbca2b
RR
993 p = get_pages(pages);
994
d1c856e0
RR
995 /* Initialize the virtqueue */
996 vq->next = NULL;
997 vq->last_avail_idx = 0;
998 vq->dev = dev;
659a0e66
RR
999 vq->service = service;
1000 vq->thread = (pid_t)-1;
d1c856e0 1001
17cbca2b
RR
1002 /* Initialize the configuration. */
1003 vq->config.num = num_descs;
1004 vq->config.irq = devices.next_irq++;
1005 vq->config.pfn = to_guest_phys(p) / getpagesize();
1006
1007 /* Initialize the vring. */
2966af73 1008 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
17cbca2b 1009
a586d4f6
RR
1010 /* Append virtqueue to this device's descriptor. We use
1011 * device_config() to get the end of the device's current virtqueues;
1012 * we check that we haven't added any config or feature information
1013 * yet, otherwise we'd be overwriting them. */
1014 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1015 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
713b15b3 1016 dev->num_vq++;
a586d4f6
RR
1017 dev->desc->num_vq++;
1018
1019 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b
RR
1020
1021 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1022 * second. */
1023 for (i = &dev->vq; *i; i = &(*i)->next);
1024 *i = vq;
8ca47e00
RR
1025}
1026
6e5aa7ef 1027/* The first half of the feature bitmask is for us to advertise features. The
a6bd8e13 1028 * second half is for the Guest to accept features. */
a586d4f6
RR
1029static void add_feature(struct device *dev, unsigned bit)
1030{
6e5aa7ef 1031 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1032
1033 /* We can't extend the feature bits once we've added config bytes */
1034 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1035 assert(dev->desc->config_len == 0);
713b15b3 1036 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
a586d4f6
RR
1037 }
1038
a586d4f6
RR
1039 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1040}
1041
1042/* This routine sets the configuration fields for an existing device's
1043 * descriptor. It only works for the last device, but that's OK because that's
1044 * how we use it. */
1045static void set_config(struct device *dev, unsigned len, const void *conf)
1046{
1047 /* Check we haven't overflowed our single page. */
1048 if (device_config(dev) + len > devices.descpage + getpagesize())
1049 errx(1, "Too many devices");
1050
1051 /* Copy in the config information, and store the length. */
1052 memcpy(device_config(dev), conf, len);
1053 dev->desc->config_len = len;
1054}
1055
17cbca2b 1056/* This routine does all the creation and setup of a new device, including
a6bd8e13
RR
1057 * calling new_dev_desc() to allocate the descriptor and device memory.
1058 *
1059 * See what I mean about userspace being boring? */
659a0e66 1060static struct device *new_device(const char *name, u16 type)
8ca47e00
RR
1061{
1062 struct device *dev = malloc(sizeof(*dev));
1063
dde79789 1064 /* Now we populate the fields one at a time. */
17cbca2b 1065 dev->desc = new_dev_desc(type);
17cbca2b 1066 dev->name = name;
d1c856e0 1067 dev->vq = NULL;
713b15b3
RR
1068 dev->feature_len = 0;
1069 dev->num_vq = 0;
659a0e66 1070 dev->running = false;
a586d4f6
RR
1071
1072 /* Append to device list. Prepending to a single-linked list is
1073 * easier, but the user expects the devices to be arranged on the bus
1074 * in command-line order. The first network device on the command line
1075 * is eth0, the first block device /dev/vda, etc. */
1076 if (devices.lastdev)
1077 devices.lastdev->next = dev;
1078 else
1079 devices.dev = dev;
1080 devices.lastdev = dev;
1081
8ca47e00
RR
1082 return dev;
1083}
1084
dde79789
RR
1085/* Our first setup routine is the console. It's a fairly simple device, but
1086 * UNIX tty handling makes it uglier than it could be. */
17cbca2b 1087static void setup_console(void)
8ca47e00
RR
1088{
1089 struct device *dev;
1090
dde79789 1091 /* If we can save the initial standard input settings... */
8ca47e00
RR
1092 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1093 struct termios term = orig_term;
dde79789
RR
1094 /* Then we turn off echo, line buffering and ^C etc. We want a
1095 * raw input stream to the Guest. */
8ca47e00
RR
1096 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1097 tcsetattr(STDIN_FILENO, TCSANOW, &term);
8ca47e00
RR
1098 }
1099
659a0e66
RR
1100 dev = new_device("console", VIRTIO_ID_CONSOLE);
1101
dde79789 1102 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1103 dev->priv = malloc(sizeof(struct console_abort));
1104 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1105
56ae43df
RR
1106 /* The console needs two virtqueues: the input then the output. When
1107 * they put something the input queue, we make sure we're listening to
1108 * stdin. When they put something in the output queue, we write it to
e1e72965 1109 * stdout. */
659a0e66
RR
1110 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1111 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
17cbca2b 1112
659a0e66 1113 verbose("device %u: console\n", ++devices.device_num);
8ca47e00 1114}
17cbca2b 1115/*:*/
8ca47e00 1116
17cbca2b
RR
1117/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1118 * --sharenet=<name> option which opens or creates a named pipe. This can be
1119 * used to send packets to another guest in a 1:1 manner.
dde79789 1120 *
17cbca2b
RR
1121 * More sopisticated is to use one of the tools developed for project like UML
1122 * to do networking.
dde79789 1123 *
17cbca2b
RR
1124 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1125 * completely generic ("here's my vring, attach to your vring") and would work
1126 * for any traffic. Of course, namespace and permissions issues need to be
1127 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1128 * multiple inter-guest channels behind one interface, although it would
1129 * require some manner of hotplugging new virtio channels.
1130 *
1131 * Finally, we could implement a virtio network switch in the kernel. :*/
8ca47e00
RR
1132
1133static u32 str2ip(const char *ipaddr)
1134{
dec6a2be 1135 unsigned int b[4];
8ca47e00 1136
dec6a2be
MM
1137 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1138 errx(1, "Failed to parse IP address '%s'", ipaddr);
1139 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1140}
1141
1142static void str2mac(const char *macaddr, unsigned char mac[6])
1143{
1144 unsigned int m[6];
1145 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1146 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1147 errx(1, "Failed to parse mac address '%s'", macaddr);
1148 mac[0] = m[0];
1149 mac[1] = m[1];
1150 mac[2] = m[2];
1151 mac[3] = m[3];
1152 mac[4] = m[4];
1153 mac[5] = m[5];
8ca47e00
RR
1154}
1155
dde79789
RR
1156/* This code is "adapted" from libbridge: it attaches the Host end of the
1157 * network device to the bridge device specified by the command line.
1158 *
1159 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1160 * dislike bridging), and I just try not to break it. */
8ca47e00
RR
1161static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1162{
1163 int ifidx;
1164 struct ifreq ifr;
1165
1166 if (!*br_name)
1167 errx(1, "must specify bridge name");
1168
1169 ifidx = if_nametoindex(if_name);
1170 if (!ifidx)
1171 errx(1, "interface %s does not exist!", if_name);
1172
1173 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1174 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1175 ifr.ifr_ifindex = ifidx;
1176 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1177 err(1, "can't add %s to bridge %s", if_name, br_name);
1178}
1179
dde79789
RR
1180/* This sets up the Host end of the network device with an IP address, brings
1181 * it up so packets will flow, the copies the MAC address into the hwaddr
17cbca2b 1182 * pointer. */
dec6a2be 1183static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1184{
1185 struct ifreq ifr;
1186 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1187
1188 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1189 strcpy(ifr.ifr_name, tapif);
1190
1191 /* Don't read these incantations. Just cut & paste them like I did! */
8ca47e00
RR
1192 sin->sin_family = AF_INET;
1193 sin->sin_addr.s_addr = htonl(ipaddr);
1194 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1195 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1196 ifr.ifr_flags = IFF_UP;
1197 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1198 err(1, "Bringing interface %s up", tapif);
1199}
1200
dec6a2be 1201static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1202{
8ca47e00 1203 struct ifreq ifr;
dec6a2be
MM
1204 int netfd;
1205
1206 /* Start with this zeroed. Messy but sure. */
1207 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1208
dde79789
RR
1209 /* We open the /dev/net/tun device and tell it we want a tap device. A
1210 * tap device is like a tun device, only somehow different. To tell
1211 * the truth, I completely blundered my way through this code, but it
1212 * works now! */
8ca47e00 1213 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 1214 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
1215 strcpy(ifr.ifr_name, "tap%d");
1216 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1217 err(1, "configuring /dev/net/tun");
dec6a2be 1218
398f187d
RR
1219 if (ioctl(netfd, TUNSETOFFLOAD,
1220 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1221 err(1, "Could not set features for tun device");
1222
dde79789
RR
1223 /* We don't need checksums calculated for packets coming in this
1224 * device: trust us! */
8ca47e00
RR
1225 ioctl(netfd, TUNSETNOCSUM, 1);
1226
dec6a2be
MM
1227 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1228 return netfd;
1229}
1230
1231/*L:195 Our network is a Host<->Guest network. This can either use bridging or
1232 * routing, but the principle is the same: it uses the "tun" device to inject
1233 * packets into the Host as if they came in from a normal network card. We
1234 * just shunt packets between the Guest and the tun device. */
1235static void setup_tun_net(char *arg)
1236{
1237 struct device *dev;
659a0e66
RR
1238 struct net_info *net_info = malloc(sizeof(*net_info));
1239 int ipfd;
dec6a2be
MM
1240 u32 ip = INADDR_ANY;
1241 bool bridging = false;
1242 char tapif[IFNAMSIZ], *p;
1243 struct virtio_net_config conf;
1244
659a0e66 1245 net_info->tunfd = get_tun_device(tapif);
dec6a2be 1246
17cbca2b 1247 /* First we create a new network device. */
659a0e66
RR
1248 dev = new_device("net", VIRTIO_ID_NET);
1249 dev->priv = net_info;
dde79789 1250
56ae43df
RR
1251 /* Network devices need a receive and a send queue, just like
1252 * console. */
659a0e66
RR
1253 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1254 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
8ca47e00 1255
dde79789
RR
1256 /* We need a socket to perform the magic network ioctls to bring up the
1257 * tap interface, connect to the bridge etc. Any socket will do! */
8ca47e00
RR
1258 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1259 if (ipfd < 0)
1260 err(1, "opening IP socket");
1261
dde79789 1262 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1263 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1264 arg += strlen(BRIDGE_PFX);
1265 bridging = true;
1266 }
1267
1268 /* A mac address may follow the bridge name or IP address */
1269 p = strchr(arg, ':');
1270 if (p) {
1271 str2mac(p+1, conf.mac);
40c42076 1272 add_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 1273 *p = '\0';
dec6a2be
MM
1274 }
1275
1276 /* arg is now either an IP address or a bridge name */
1277 if (bridging)
1278 add_to_bridge(ipfd, tapif, arg);
1279 else
8ca47e00
RR
1280 ip = str2ip(arg);
1281
dec6a2be
MM
1282 /* Set up the tun device. */
1283 configure_device(ipfd, tapif, ip);
8ca47e00 1284
20887611 1285 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
398f187d
RR
1286 /* Expect Guest to handle everything except UFO */
1287 add_feature(dev, VIRTIO_NET_F_CSUM);
1288 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
398f187d
RR
1289 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1290 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1291 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1292 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1293 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1294 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
a586d4f6 1295 set_config(dev, sizeof(conf), &conf);
8ca47e00 1296
a586d4f6 1297 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1298 close(ipfd);
1299
dec6a2be
MM
1300 devices.device_num++;
1301
1302 if (bridging)
1303 verbose("device %u: tun %s attached to bridge: %s\n",
1304 devices.device_num, tapif, arg);
1305 else
1306 verbose("device %u: tun %s: %s\n",
1307 devices.device_num, tapif, arg);
8ca47e00 1308}
17cbca2b 1309
e1e72965
RR
1310/* Our block (disk) device should be really simple: the Guest asks for a block
1311 * number and we read or write that position in the file. Unfortunately, that
1312 * was amazingly slow: the Guest waits until the read is finished before
1313 * running anything else, even if it could have been doing useful work.
17cbca2b 1314 *
e1e72965
RR
1315 * We could use async I/O, except it's reputed to suck so hard that characters
1316 * actually go missing from your code when you try to use it.
17cbca2b
RR
1317 *
1318 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1319
e1e72965 1320/* This hangs off device->priv. */
17cbca2b
RR
1321struct vblk_info
1322{
1323 /* The size of the file. */
1324 off64_t len;
1325
1326 /* The file descriptor for the file. */
1327 int fd;
1328
1329 /* IO thread listens on this file descriptor [0]. */
1330 int workpipe[2];
1331
1332 /* IO thread writes to this file descriptor to mark it done, then
1333 * Launcher triggers interrupt to Guest. */
1334 int done_fd;
1335};
1336
e1e72965
RR
1337/*L:210
1338 * The Disk
1339 *
1340 * Remember that the block device is handled by a separate I/O thread. We head
1341 * straight into the core of that thread here:
1342 */
659a0e66 1343static void blk_request(struct virtqueue *vq)
17cbca2b 1344{
659a0e66 1345 struct vblk_info *vblk = vq->dev->priv;
17cbca2b
RR
1346 unsigned int head, out_num, in_num, wlen;
1347 int ret;
cb38fa23 1348 u8 *in;
17cbca2b 1349 struct virtio_blk_outhdr *out;
659a0e66 1350 struct iovec iov[vq->vring.num];
17cbca2b
RR
1351 off64_t off;
1352
659a0e66
RR
1353 /* Get the next request. */
1354 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
17cbca2b 1355
e1e72965
RR
1356 /* Every block request should contain at least one output buffer
1357 * (detailing the location on disk and the type of request) and one
1358 * input buffer (to hold the result). */
17cbca2b
RR
1359 if (out_num == 0 || in_num == 0)
1360 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1361 head, out_num, in_num);
1362
1363 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1364 in = convert(&iov[out_num+in_num-1], u8);
17cbca2b
RR
1365 off = out->sector * 512;
1366
e1e72965
RR
1367 /* The block device implements "barriers", where the Guest indicates
1368 * that it wants all previous writes to occur before this write. We
1369 * don't have a way of asking our kernel to do a barrier, so we just
1370 * synchronize all the data in the file. Pretty poor, no? */
17cbca2b
RR
1371 if (out->type & VIRTIO_BLK_T_BARRIER)
1372 fdatasync(vblk->fd);
1373
e1e72965
RR
1374 /* In general the virtio block driver is allowed to try SCSI commands.
1375 * It'd be nice if we supported eject, for example, but we don't. */
17cbca2b
RR
1376 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1377 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1378 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1379 wlen = sizeof(*in);
17cbca2b
RR
1380 } else if (out->type & VIRTIO_BLK_T_OUT) {
1381 /* Write */
1382
1383 /* Move to the right location in the block file. This can fail
1384 * if they try to write past end. */
1385 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1386 err(1, "Bad seek to sector %llu", out->sector);
1387
1388 ret = writev(vblk->fd, iov+1, out_num-1);
1389 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1390
1391 /* Grr... Now we know how long the descriptor they sent was, we
1392 * make sure they didn't try to write over the end of the block
1393 * file (possibly extending it). */
1394 if (ret > 0 && off + ret > vblk->len) {
1395 /* Trim it back to the correct length */
1396 ftruncate64(vblk->fd, vblk->len);
1397 /* Die, bad Guest, die. */
1398 errx(1, "Write past end %llu+%u", off, ret);
1399 }
1200e646 1400 wlen = sizeof(*in);
cb38fa23 1401 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b
RR
1402 } else {
1403 /* Read */
1404
1405 /* Move to the right location in the block file. This can fail
1406 * if they try to read past end. */
1407 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1408 err(1, "Bad seek to sector %llu", out->sector);
1409
1410 ret = readv(vblk->fd, iov+1, in_num-1);
1411 verbose("READ from sector %llu: %i\n", out->sector, ret);
1412 if (ret >= 0) {
1200e646 1413 wlen = sizeof(*in) + ret;
cb38fa23 1414 *in = VIRTIO_BLK_S_OK;
17cbca2b 1415 } else {
1200e646 1416 wlen = sizeof(*in);
cb38fa23 1417 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1418 }
1419 }
1420
d1881d31
RR
1421 /* OK, so we noted that it was pretty poor to use an fdatasync as a
1422 * barrier. But Christoph Hellwig points out that we need a sync
1423 * *afterwards* as well: "Barriers specify no reordering to the front
1424 * or the back." And Jens Axboe confirmed it, so here we are: */
1425 if (out->type & VIRTIO_BLK_T_BARRIER)
1426 fdatasync(vblk->fd);
1427
38bc2b8c 1428 add_used(vq, head, wlen);
17cbca2b
RR
1429}
1430
e1e72965 1431/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1432static void setup_block_file(const char *filename)
1433{
17cbca2b
RR
1434 struct device *dev;
1435 struct vblk_info *vblk;
a586d4f6 1436 struct virtio_blk_config conf;
17cbca2b 1437
17cbca2b 1438 /* The device responds to return from I/O thread. */
659a0e66 1439 dev = new_device("block", VIRTIO_ID_BLOCK);
17cbca2b 1440
e1e72965 1441 /* The device has one virtqueue, where the Guest places requests. */
659a0e66 1442 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
17cbca2b
RR
1443
1444 /* Allocate the room for our own bookkeeping */
1445 vblk = dev->priv = malloc(sizeof(*vblk));
1446
1447 /* First we open the file and store the length. */
1448 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1449 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1450
a586d4f6
RR
1451 /* We support barriers. */
1452 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1453
17cbca2b 1454 /* Tell Guest how many sectors this device has. */
a586d4f6 1455 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b
RR
1456
1457 /* Tell Guest not to put in too many descriptors at once: two are used
1458 * for the in and out elements. */
a586d4f6
RR
1459 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1460 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1461
1462 set_config(dev, sizeof(conf), &conf);
17cbca2b 1463
17cbca2b 1464 verbose("device %u: virtblock %llu sectors\n",
659a0e66 1465 ++devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1466}
28fd6d7f 1467
659a0e66
RR
1468struct rng_info {
1469 int rfd;
1470};
1471
28fd6d7f
RR
1472/* Our random number generator device reads from /dev/random into the Guest's
1473 * input buffers. The usual case is that the Guest doesn't want random numbers
1474 * and so has no buffers although /dev/random is still readable, whereas
1475 * console is the reverse.
1476 *
1477 * The same logic applies, however. */
659a0e66 1478static void rng_input(struct virtqueue *vq)
28fd6d7f
RR
1479{
1480 int len;
1481 unsigned int head, in_num, out_num, totlen = 0;
659a0e66
RR
1482 struct rng_info *rng_info = vq->dev->priv;
1483 struct iovec iov[vq->vring.num];
28fd6d7f
RR
1484
1485 /* First we need a buffer from the Guests's virtqueue. */
659a0e66 1486 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
28fd6d7f
RR
1487 if (out_num)
1488 errx(1, "Output buffers in rng?");
1489
1490 /* This is why we convert to iovecs: the readv() call uses them, and so
1491 * it reads straight into the Guest's buffer. We loop to make sure we
1492 * fill it. */
1493 while (!iov_empty(iov, in_num)) {
659a0e66 1494 len = readv(rng_info->rfd, iov, in_num);
28fd6d7f
RR
1495 if (len <= 0)
1496 err(1, "Read from /dev/random gave %i", len);
1497 iov_consume(iov, in_num, len);
1498 totlen += len;
1499 }
1500
1501 /* Tell the Guest about the new input. */
38bc2b8c 1502 add_used(vq, head, totlen);
28fd6d7f
RR
1503}
1504
1505/* And this creates a "hardware" random number device for the Guest. */
1506static void setup_rng(void)
1507{
1508 struct device *dev;
659a0e66 1509 struct rng_info *rng_info = malloc(sizeof(*rng_info));
28fd6d7f 1510
659a0e66 1511 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
28fd6d7f
RR
1512
1513 /* The device responds to return from I/O thread. */
659a0e66
RR
1514 dev = new_device("rng", VIRTIO_ID_RNG);
1515 dev->priv = rng_info;
28fd6d7f
RR
1516
1517 /* The device has one virtqueue, where the Guest places inbufs. */
659a0e66 1518 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
28fd6d7f
RR
1519
1520 verbose("device %u: rng\n", devices.device_num++);
1521}
a6bd8e13 1522/* That's the end of device setup. */
ec04b13f 1523
a6bd8e13 1524/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1525static void __attribute__((noreturn)) restart_guest(void)
1526{
1527 unsigned int i;
1528
8c79873d
RR
1529 /* Since we don't track all open fds, we simply close everything beyond
1530 * stderr. */
ec04b13f
BR
1531 for (i = 3; i < FD_SETSIZE; i++)
1532 close(i);
8c79873d 1533
659a0e66
RR
1534 /* Reset all the devices (kills all threads). */
1535 cleanup_devices();
1536
ec04b13f
BR
1537 execv(main_args[0], main_args);
1538 err(1, "Could not exec %s", main_args[0]);
1539}
8ca47e00 1540
a6bd8e13 1541/*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
dde79789 1542 * its input and output, and finally, lays it to rest. */
56739c80 1543static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
1544{
1545 for (;;) {
17cbca2b 1546 unsigned long notify_addr;
8ca47e00
RR
1547 int readval;
1548
1549 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1550 readval = pread(lguest_fd, &notify_addr,
1551 sizeof(notify_addr), cpu_id);
8ca47e00 1552
17cbca2b
RR
1553 /* One unsigned long means the Guest did HCALL_NOTIFY */
1554 if (readval == sizeof(notify_addr)) {
1555 verbose("Notify on address %#lx\n", notify_addr);
56739c80 1556 handle_output(notify_addr);
dde79789 1557 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1558 } else if (errno == ENOENT) {
1559 char reason[1024] = { 0 };
e3283fa0 1560 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1561 errx(1, "%s", reason);
ec04b13f
BR
1562 /* ERESTART means that we need to reboot the guest */
1563 } else if (errno == ERESTART) {
1564 restart_guest();
659a0e66
RR
1565 /* Anything else means a bug or incompatible change. */
1566 } else
8ca47e00 1567 err(1, "Running guest failed");
8ca47e00
RR
1568 }
1569}
a6bd8e13 1570/*L:240
e1e72965
RR
1571 * This is the end of the Launcher. The good news: we are over halfway
1572 * through! The bad news: the most fiendish part of the code still lies ahead
1573 * of us.
dde79789 1574 *
e1e72965
RR
1575 * Are you ready? Take a deep breath and join me in the core of the Host, in
1576 * "make Host".
1577 :*/
8ca47e00
RR
1578
1579static struct option opts[] = {
1580 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1581 { "tunnet", 1, NULL, 't' },
1582 { "block", 1, NULL, 'b' },
28fd6d7f 1583 { "rng", 0, NULL, 'r' },
8ca47e00
RR
1584 { "initrd", 1, NULL, 'i' },
1585 { NULL },
1586};
1587static void usage(void)
1588{
1589 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1590 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1591 "|--block=<filename>|--initrd=<filename>]...\n"
1592 "<mem-in-mb> vmlinux [args...]");
1593}
1594
3c6b5bfa 1595/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1596int main(int argc, char *argv[])
1597{
47436aa4
RR
1598 /* Memory, top-level pagetable, code startpoint and size of the
1599 * (optional) initrd. */
58a24566 1600 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
1601 /* Two temporaries. */
1602 int i, c;
3c6b5bfa 1603 /* The boot information for the Guest. */
43d33b21 1604 struct boot_params *boot;
dde79789 1605 /* If they specify an initrd file to load. */
8ca47e00
RR
1606 const char *initrd_name = NULL;
1607
ec04b13f
BR
1608 /* Save the args: we "reboot" by execing ourselves again. */
1609 main_args = argv;
ec04b13f 1610
659a0e66
RR
1611 /* First we initialize the device list. We keep a pointer to the last
1612 * device, and the next interrupt number to use for devices (1:
1613 * remember that 0 is used by the timer). */
a586d4f6 1614 devices.lastdev = NULL;
17cbca2b 1615 devices.next_irq = 1;
8ca47e00 1616
e3283fa0 1617 cpu_id = 0;
dde79789
RR
1618 /* We need to know how much memory so we can set up the device
1619 * descriptor and memory pages for the devices as we parse the command
1620 * line. So we quickly look through the arguments to find the amount
1621 * of memory now. */
6570c459
RR
1622 for (i = 1; i < argc; i++) {
1623 if (argv[i][0] != '-') {
3c6b5bfa
RR
1624 mem = atoi(argv[i]) * 1024 * 1024;
1625 /* We start by mapping anonymous pages over all of
1626 * guest-physical memory range. This fills it with 0,
1627 * and ensures that the Guest won't be killed when it
1628 * tries to access it. */
1629 guest_base = map_zeroed_pages(mem / getpagesize()
1630 + DEVICE_PAGES);
1631 guest_limit = mem;
1632 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1633 devices.descpage = get_pages(1);
6570c459
RR
1634 break;
1635 }
1636 }
dde79789
RR
1637
1638 /* The options are fairly straight-forward */
8ca47e00
RR
1639 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1640 switch (c) {
1641 case 'v':
1642 verbose = true;
1643 break;
8ca47e00 1644 case 't':
17cbca2b 1645 setup_tun_net(optarg);
8ca47e00
RR
1646 break;
1647 case 'b':
17cbca2b 1648 setup_block_file(optarg);
8ca47e00 1649 break;
28fd6d7f
RR
1650 case 'r':
1651 setup_rng();
1652 break;
8ca47e00
RR
1653 case 'i':
1654 initrd_name = optarg;
1655 break;
1656 default:
1657 warnx("Unknown argument %s", argv[optind]);
1658 usage();
1659 }
1660 }
dde79789
RR
1661 /* After the other arguments we expect memory and kernel image name,
1662 * followed by command line arguments for the kernel. */
8ca47e00
RR
1663 if (optind + 2 > argc)
1664 usage();
1665
3c6b5bfa
RR
1666 verbose("Guest base is at %p\n", guest_base);
1667
dde79789 1668 /* We always have a console device */
17cbca2b 1669 setup_console();
8ca47e00 1670
8ca47e00 1671 /* Now we load the kernel */
47436aa4 1672 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 1673
3c6b5bfa
RR
1674 /* Boot information is stashed at physical address 0 */
1675 boot = from_guest_phys(0);
1676
dde79789 1677 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
1678 if (initrd_name) {
1679 initrd_size = load_initrd(initrd_name, mem);
dde79789
RR
1680 /* These are the location in the Linux boot header where the
1681 * start and size of the initrd are expected to be found. */
43d33b21
RR
1682 boot->hdr.ramdisk_image = mem - initrd_size;
1683 boot->hdr.ramdisk_size = initrd_size;
dde79789 1684 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 1685 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
1686 }
1687
dde79789
RR
1688 /* The Linux boot header contains an "E820" memory map: ours is a
1689 * simple, single region. */
43d33b21
RR
1690 boot->e820_entries = 1;
1691 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
dde79789 1692 /* The boot header contains a command line pointer: we put the command
43d33b21
RR
1693 * line after the boot header. */
1694 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 1695 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 1696 concat((char *)(boot + 1), argv+optind+2);
dde79789 1697
814a0e5c 1698 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 1699 boot->hdr.version = 0x207;
814a0e5c
RR
1700
1701 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 1702 boot->hdr.hardware_subarch = 1;
814a0e5c 1703
43d33b21
RR
1704 /* Tell the entry path not to try to reload segment registers. */
1705 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 1706
dde79789
RR
1707 /* We tell the kernel to initialize the Guest: this returns the open
1708 * /dev/lguest file descriptor. */
56739c80 1709 tell_kernel(start);
dde79789 1710
659a0e66
RR
1711 /* Ensure that we terminate if a child dies. */
1712 signal(SIGCHLD, kill_launcher);
1713
1714 /* If we exit via err(), this kills all the threads, restores tty. */
1715 atexit(cleanup_devices);
8ca47e00 1716
dde79789 1717 /* Finally, run the Guest. This doesn't return. */
56739c80 1718 run_guest();
8ca47e00 1719}
f56a384e
RR
1720/*:*/
1721
1722/*M:999
1723 * Mastery is done: you now know everything I do.
1724 *
1725 * But surely you have seen code, features and bugs in your wanderings which
1726 * you now yearn to attack? That is the real game, and I look forward to you
1727 * patching and forking lguest into the Your-Name-Here-visor.
1728 *
1729 * Farewell, and good coding!
1730 * Rusty Russell.
1731 */