Merge branch 'netlink-protocol-specs'
[linux-2.6-block.git] / Documentation / filesystems / erofs.rst
CommitLineData
e66d8631
MCC
1.. SPDX-License-Identifier: GPL-2.0
2
3======================================
6e95d0a0 4EROFS - Enhanced Read-Only File System
e66d8631
MCC
5======================================
6
fdb05364
GX
7Overview
8========
9
6e95d0a0
GX
10EROFS filesystem stands for Enhanced Read-Only File System. It aims to form a
11generic read-only filesystem solution for various read-only use cases instead
12of just focusing on storage space saving without considering any side effects
13of runtime performance.
fdb05364 14
6e95d0a0
GX
15It is designed to meet the needs of flexibility, feature extendability and user
16payload friendly, etc. Apart from those, it is still kept as a simple
17random-access friendly high-performance filesystem to get rid of unneeded I/O
18amplification and memory-resident overhead compared to similar approaches.
19
20It is implemented to be a better choice for the following scenarios:
e66d8631 21
fdb05364
GX
22 - read-only storage media or
23
24 - part of a fully trusted read-only solution, which means it needs to be
25 immutable and bit-for-bit identical to the official golden image for
6e95d0a0 26 their releases due to security or other considerations and
fdb05364 27
dfeab2e9
GX
28 - hope to minimize extra storage space with guaranteed end-to-end performance
29 by using compact layout, transparent file compression and direct access,
30 especially for those embedded devices with limited memory and high-density
6e95d0a0 31 hosts with numerous containers.
fdb05364 32
2109901d 33Here are the main features of EROFS:
e66d8631 34
fdb05364
GX
35 - Little endian on-disk design;
36
2109901d
GX
37 - Block-based distribution and file-based distribution over fscache are
38 supported;
39
40 - Support multiple devices to refer to external blobs, which can be used
41 for container images;
42
43 - 4KiB block size and 32-bit block addresses for each device, therefore
44 16TiB address space at most for now;
fdb05364 45
6e95d0a0 46 - Two inode layouts for different requirements:
e66d8631 47
6e95d0a0 48 ===================== ============ ======================================
ffafde47 49 compact (v1) extended (v2)
6e95d0a0 50 ===================== ============ ======================================
e66d8631 51 Inode metadata size 32 bytes 64 bytes
6e95d0a0 52 Max file size 4 GiB 16 EiB (also limited by max. vol size)
e66d8631 53 Max uids/gids 65536 4294967296
a1108dcd 54 Per-inode timestamp no yes (64 + 32-bit timestamp)
e66d8631 55 Max hardlinks 65536 4294967296
6e95d0a0
GX
56 Metadata reserved 8 bytes 18 bytes
57 ===================== ============ ======================================
58
2109901d 59 - Support extended attributes as an option;
fdb05364 60
2109901d 61 - Support POSIX.1e ACLs by using extended attributes;
516c115c 62
46f2e044 63 - Support transparent data compression as an option:
6e95d0a0
GX
64 LZ4 and MicroLZMA algorithms can be used on a per-file basis; In addition,
65 inplace decompression is also supported to avoid bounce compressed buffers
66 and page cache thrashing.
67
2109901d
GX
68 - Support chunk-based data deduplication and rolling-hash compressed data
69 deduplication;
70
71 - Support tailpacking inline compared to byte-addressed unaligned metadata
72 or smaller block size alternatives;
73
74 - Support merging tail-end data into a special inode as fragments.
75
e6687b89
JX
76 - Support large folios for uncompressed files.
77
6e95d0a0
GX
78 - Support direct I/O on uncompressed files to avoid double caching for loop
79 devices;
dfeab2e9 80
6e95d0a0
GX
81 - Support FSDAX on uncompressed images for secure containers and ramdisks in
82 order to get rid of unnecessary page cache.
83
6e95d0a0 84 - Support file-based on-demand loading with the Fscache infrastructure.
fdb05364
GX
85
86The following git tree provides the file system user-space tools under
6e95d0a0
GX
87development, such as a formatting tool (mkfs.erofs), an on-disk consistency &
88compatibility checking tool (fsck.erofs), and a debugging tool (dump.erofs):
e66d8631
MCC
89
90- git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git
fdb05364
GX
91
92Bugs and patches are welcome, please kindly help us and send to the following
93linux-erofs mailing list:
e66d8631
MCC
94
95- linux-erofs mailing list <linux-erofs@lists.ozlabs.org>
fdb05364 96
fdb05364
GX
97Mount options
98=============
99
e66d8631 100=================== =========================================================
fdb05364
GX
101(no)user_xattr Setup Extended User Attributes. Note: xattr is enabled
102 by default if CONFIG_EROFS_FS_XATTR is selected.
103(no)acl Setup POSIX Access Control List. Note: acl is enabled
104 by default if CONFIG_EROFS_FS_POSIX_ACL is selected.
4279f3f9 105cache_strategy=%s Select a strategy for cached decompression from now on:
e66d8631
MCC
106
107 ========== =============================================
108 disabled In-place I/O decompression only;
109 readahead Cache the last incomplete compressed physical
4279f3f9
GX
110 cluster for further reading. It still does
111 in-place I/O decompression for the rest
112 compressed physical clusters;
e66d8631 113 readaround Cache the both ends of incomplete compressed
4279f3f9
GX
114 physical clusters for further reading.
115 It still does in-place I/O decompression
116 for the rest compressed physical clusters.
e66d8631 117 ========== =============================================
06252e9c
GX
118dax={always,never} Use direct access (no page cache). See
119 Documentation/filesystems/dax.rst.
120dax A legacy option which is an alias for ``dax=always``.
dfeab2e9 121device=%s Specify a path to an extra device to be used together.
6e95d0a0 122fsid=%s Specify a filesystem image ID for Fscache back-end.
b22c7b97
JX
123domain_id=%s Specify a domain ID in fscache mode so that different images
124 with the same blobs under a given domain ID can share storage.
e66d8631 125=================== =========================================================
fdb05364 126
168e9a76
HJ
127Sysfs Entries
128=============
129
130Information about mounted erofs file systems can be found in /sys/fs/erofs.
131Each mounted filesystem will have a directory in /sys/fs/erofs based on its
132device name (i.e., /sys/fs/erofs/sda).
133(see also Documentation/ABI/testing/sysfs-fs-erofs)
134
fdb05364
GX
135On-disk details
136===============
137
138Summary
139-------
140Different from other read-only file systems, an EROFS volume is designed
e66d8631 141to be as simple as possible::
fdb05364
GX
142
143 |-> aligned with the block size
144 ____________________________________________________________
145 | |SB| | ... | Metadata | ... | Data | Metadata | ... | Data |
146 |_|__|_|_____|__________|_____|______|__________|_____|______|
147 0 +1K
148
149All data areas should be aligned with the block size, but metadata areas
150may not. All metadatas can be now observed in two different spaces (views):
e66d8631 151
fdb05364 152 1. Inode metadata space
e66d8631 153
fdb05364 154 Each valid inode should be aligned with an inode slot, which is a fixed
ffafde47 155 value (32 bytes) and designed to be kept in line with compact inode size.
fdb05364
GX
156
157 Each inode can be directly found with the following formula:
158 inode offset = meta_blkaddr * block_size + 32 * nid
159
e66d8631
MCC
160 ::
161
1b55767d
GX
162 |-> aligned with 8B
163 |-> followed closely
164 + meta_blkaddr blocks |-> another slot
165 _____________________________________________________________________
166 | ... | inode | xattrs | extents | data inline | ... | inode ...
167 |________|_______|(optional)|(optional)|__(optional)_|_____|__________
168 |-> aligned with the inode slot size
169 . .
170 . .
171 . .
172 . .
173 . .
174 . .
175 .____________________________________________________|-> aligned with 4B
176 | xattr_ibody_header | shared xattrs | inline xattrs |
177 |____________________|_______________|_______________|
178 |-> 12 bytes <-|->x * 4 bytes<-| .
179 . . .
180 . . .
181 . . .
182 ._______________________________.______________________.
183 | id | id | id | id | ... | id | ent | ... | ent| ... |
184 |____|____|____|____|______|____|_____|_____|____|_____|
185 |-> aligned with 4B
186 |-> aligned with 4B
fdb05364
GX
187
188 Inode could be 32 or 64 bytes, which can be distinguished from a common
e66d8631 189 field which all inode versions have -- i_format::
fdb05364
GX
190
191 __________________ __________________
ffafde47 192 | i_format | | i_format |
fdb05364
GX
193 |__________________| |__________________|
194 | ... | | ... |
195 | | | |
196 |__________________| 32 bytes | |
197 | |
198 |__________________| 64 bytes
199
200 Xattrs, extents, data inline are followed by the corresponding inode with
ffafde47 201 proper alignment, and they could be optional for different data mappings.
2a9dc7a8 202 _currently_ total 5 data layouts are supported:
fdb05364 203
e66d8631 204 == ====================================================================
ffafde47
GX
205 0 flat file data without data inline (no extent);
206 1 fixed-sized output data compression (with non-compacted indexes);
207 2 flat file data with tail packing data inline (no extent);
2a9dc7a8
GX
208 3 fixed-sized output data compression (with compacted indexes, v5.3+);
209 4 chunk-based file (v5.15+).
e66d8631 210 == ====================================================================
fdb05364
GX
211
212 The size of the optional xattrs is indicated by i_xattr_count in inode
213 header. Large xattrs or xattrs shared by many different files can be
214 stored in shared xattrs metadata rather than inlined right after inode.
215
216 2. Shared xattrs metadata space
e66d8631 217
fdb05364
GX
218 Shared xattrs space is similar to the above inode space, started with
219 a specific block indicated by xattr_blkaddr, organized one by one with
220 proper align.
221
222 Each share xattr can also be directly found by the following formula:
223 xattr offset = xattr_blkaddr * block_size + 4 * xattr_id
224
1b55767d 225::
e66d8631 226
1b55767d
GX
227 |-> aligned by 4 bytes
228 + xattr_blkaddr blocks |-> aligned with 4 bytes
229 _________________________________________________________________________
230 | ... | xattr_entry | xattr data | ... | xattr_entry | xattr data ...
231 |________|_____________|_____________|_____|______________|_______________
fdb05364
GX
232
233Directories
234-----------
235All directories are now organized in a compact on-disk format. Note that
236each directory block is divided into index and name areas in order to support
237random file lookup, and all directory entries are _strictly_ recorded in
238alphabetical order in order to support improved prefix binary search
239algorithm (could refer to the related source code).
240
e66d8631
MCC
241::
242
1b55767d
GX
243 ___________________________
244 / |
245 / ______________|________________
246 / / | nameoff1 | nameoffN-1
247 ____________.______________._______________v________________v__________
248 | dirent | dirent | ... | dirent | filename | filename | ... | filename |
249 |___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____|
250 \ ^
251 \ | * could have
252 \ | trailing '\0'
253 \________________________| nameoff0
254 Directory block
fdb05364
GX
255
256Note that apart from the offset of the first filename, nameoff0 also indicates
257the total number of directory entries in this block since it is no need to
258introduce another on-disk field at all.
259
6e95d0a0
GX
260Chunk-based files
261-----------------
2a9dc7a8
GX
262In order to support chunk-based data deduplication, a new inode data layout has
263been supported since Linux v5.15: Files are split in equal-sized data chunks
264with ``extents`` area of the inode metadata indicating how to get the chunk
265data: these can be simply as a 4-byte block address array or in the 8-byte
266chunk index form (see struct erofs_inode_chunk_index in erofs_fs.h for more
267details.)
268
269By the way, chunk-based files are all uncompressed for now.
270
46f2e044
GX
271Data compression
272----------------
2109901d 273EROFS implements fixed-sized output compression which generates fixed-sized
46f2e044
GX
274compressed data blocks from variable-sized input in contrast to other existing
275fixed-sized input solutions. Relatively higher compression ratios can be gotten
276by using fixed-sized output compression since nowadays popular data compression
277algorithms are mostly LZ77-based and such fixed-sized output approach can be
278benefited from the historical dictionary (aka. sliding window).
279
280In details, original (uncompressed) data is turned into several variable-sized
281extents and in the meanwhile, compressed into physical clusters (pclusters).
282In order to record each variable-sized extent, logical clusters (lclusters) are
283introduced as the basic unit of compress indexes to indicate whether a new
284extent is generated within the range (HEAD) or not (NONHEAD). Lclusters are now
285fixed in block size, as illustrated below::
e66d8631 286
1b55767d
GX
287 |<- variable-sized extent ->|<- VLE ->|
288 clusterofs clusterofs clusterofs
289 | | |
290 _________v_________________________________v_______________________v________
291 ... | . | | . | | . ...
292 ____|____._________|______________|________.___ _|______________|__.________
293 |-> lcluster <-|-> lcluster <-|-> lcluster <-|-> lcluster <-|
46f2e044
GX
294 (HEAD) (NONHEAD) (HEAD) (NONHEAD) .
295 . CBLKCNT . .
296 . . .
297 . . .
298 _______._____________________________.______________._________________
1b55767d
GX
299 ... | | | | ...
300 _______|______________|______________|______________|_________________
46f2e044
GX
301 |-> big pcluster <-|-> pcluster <-|
302
303A physical cluster can be seen as a container of physical compressed blocks
304which contains compressed data. Previously, only lcluster-sized (4KB) pclusters
305were supported. After big pcluster feature is introduced (available since
306Linux v5.13), pcluster can be a multiple of lcluster size.
307
308For each HEAD lcluster, clusterofs is recorded to indicate where a new extent
309starts and blkaddr is used to seek the compressed data. For each NONHEAD
310lcluster, delta0 and delta1 are available instead of blkaddr to indicate the
311distance to its HEAD lcluster and the next HEAD lcluster. A PLAIN lcluster is
312also a HEAD lcluster except that its data is uncompressed. See the comments
313around "struct z_erofs_vle_decompressed_index" in erofs_fs.h for more details.
314
315If big pcluster is enabled, pcluster size in lclusters needs to be recorded as
316well. Let the delta0 of the first NONHEAD lcluster store the compressed block
317count with a special flag as a new called CBLKCNT NONHEAD lcluster. It's easy
318to understand its delta0 is constantly 1, as illustrated below::
319
320 __________________________________________________________
321 | HEAD | NONHEAD | NONHEAD | ... | NONHEAD | HEAD | HEAD |
322 |__:___|_(CBLKCNT)_|_________|_____|_________|__:___|____:_|
323 |<----- a big pcluster (with CBLKCNT) ------>|<-- -->|
324 a lcluster-sized pcluster (without CBLKCNT) ^
325
326If another HEAD follows a HEAD lcluster, there is no room to record CBLKCNT,
327but it's easy to know the size of such pcluster is 1 lcluster as well.
2109901d
GX
328
329Since Linux v6.1, each pcluster can be used for multiple variable-sized extents,
330therefore it can be used for compressed data deduplication.