arm64: memory: Add missing brackets to untagged_addr() macro
[linux-block.git] / Documentation / arm64 / memory.rst
CommitLineData
b693d0b3
MCC
1==============================
2Memory Layout on AArch64 Linux
3==============================
4
5Author: Catalin Marinas <catalin.marinas@arm.com>
6
7This document describes the virtual memory layout used by the AArch64
8Linux kernel. The architecture allows up to 4 levels of translation
9tables with a 4KB page size and up to 3 levels with a 64KB page size.
10
11AArch64 Linux uses either 3 levels or 4 levels of translation tables
12with the 4KB page configuration, allowing 39-bit (512GB) or 48-bit
13(256TB) virtual addresses, respectively, for both user and kernel. With
1464KB pages, only 2 levels of translation tables, allowing 42-bit (4TB)
15virtual address, are used but the memory layout is the same.
16
d2c68de1
SC
17ARMv8.2 adds optional support for Large Virtual Address space. This is
18only available when running with a 64KB page size and expands the
19number of descriptors in the first level of translation.
20
b693d0b3
MCC
21User addresses have bits 63:48 set to 0 while the kernel addresses have
22the same bits set to 1. TTBRx selection is given by bit 63 of the
23virtual address. The swapper_pg_dir contains only kernel (global)
24mappings while the user pgd contains only user (non-global) mappings.
25The swapper_pg_dir address is written to TTBR1 and never written to
26TTBR0.
27
28
d2c68de1 29AArch64 Linux memory layout with 4KB pages + 4 levels (48-bit)::
b693d0b3
MCC
30
31 Start End Size Use
32 -----------------------------------------------------------------------
33 0000000000000000 0000ffffffffffff 256TB user
d2c68de1
SC
34 ffff000000000000 ffff7fffffffffff 128TB kernel logical memory map
35 ffff800000000000 ffff9fffffffffff 32TB kasan shadow region
36 ffffa00000000000 ffffa00007ffffff 128MB bpf jit region
37 ffffa00008000000 ffffa0000fffffff 128MB modules
38 ffffa00010000000 fffffdffbffeffff ~93TB vmalloc
39 fffffdffbfff0000 fffffdfffe5f8fff ~998MB [guard region]
40 fffffdfffe5f9000 fffffdfffe9fffff 4124KB fixed mappings
41 fffffdfffea00000 fffffdfffebfffff 2MB [guard region]
42 fffffdfffec00000 fffffdffffbfffff 16MB PCI I/O space
43 fffffdffffc00000 fffffdffffdfffff 2MB [guard region]
44 fffffdffffe00000 ffffffffffdfffff 2TB vmemmap
45 ffffffffffe00000 ffffffffffffffff 2MB [guard region]
46
47
48AArch64 Linux memory layout with 64KB pages + 3 levels (52-bit with HW support)::
b693d0b3
MCC
49
50 Start End Size Use
51 -----------------------------------------------------------------------
d2c68de1
SC
52 0000000000000000 000fffffffffffff 4PB user
53 fff0000000000000 fff7ffffffffffff 2PB kernel logical memory map
54 fff8000000000000 fffd9fffffffffff 1440TB [gap]
55 fffda00000000000 ffff9fffffffffff 512TB kasan shadow region
56 ffffa00000000000 ffffa00007ffffff 128MB bpf jit region
57 ffffa00008000000 ffffa0000fffffff 128MB modules
58 ffffa00010000000 fffff81ffffeffff ~88TB vmalloc
59 fffff81fffff0000 fffffc1ffe58ffff ~3TB [guard region]
60 fffffc1ffe590000 fffffc1ffe9fffff 4544KB fixed mappings
61 fffffc1ffea00000 fffffc1ffebfffff 2MB [guard region]
62 fffffc1ffec00000 fffffc1fffbfffff 16MB PCI I/O space
63 fffffc1fffc00000 fffffc1fffdfffff 2MB [guard region]
64 fffffc1fffe00000 ffffffffffdfffff 3968GB vmemmap
65 ffffffffffe00000 ffffffffffffffff 2MB [guard region]
b693d0b3
MCC
66
67
68Translation table lookup with 4KB pages::
69
70 +--------+--------+--------+--------+--------+--------+--------+--------+
71 |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
72 +--------+--------+--------+--------+--------+--------+--------+--------+
73 | | | | | |
74 | | | | | v
75 | | | | | [11:0] in-page offset
76 | | | | +-> [20:12] L3 index
77 | | | +-----------> [29:21] L2 index
78 | | +---------------------> [38:30] L1 index
79 | +-------------------------------> [47:39] L0 index
80 +-------------------------------------------------> [63] TTBR0/1
81
82
83Translation table lookup with 64KB pages::
84
85 +--------+--------+--------+--------+--------+--------+--------+--------+
86 |63 56|55 48|47 40|39 32|31 24|23 16|15 8|7 0|
87 +--------+--------+--------+--------+--------+--------+--------+--------+
88 | | | | |
89 | | | | v
90 | | | | [15:0] in-page offset
91 | | | +----------> [28:16] L3 index
92 | | +--------------------------> [41:29] L2 index
d2c68de1
SC
93 | +-------------------------------> [47:42] L1 index (48-bit)
94 | [51:42] L1 index (52-bit)
b693d0b3
MCC
95 +-------------------------------------------------> [63] TTBR0/1
96
97
98When using KVM without the Virtualization Host Extensions, the
99hypervisor maps kernel pages in EL2 at a fixed (and potentially
100random) offset from the linear mapping. See the kern_hyp_va macro and
101kvm_update_va_mask function for more details. MMIO devices such as
102GICv2 gets mapped next to the HYP idmap page, as do vectors when
103ARM64_HARDEN_EL2_VECTORS is selected for particular CPUs.
104
105When using KVM with the Virtualization Host Extensions, no additional
106mappings are created, since the host kernel runs directly in EL2.
d2c68de1
SC
107
10852-bit VA support in the kernel
109-------------------------------
110If the ARMv8.2-LVA optional feature is present, and we are running
111with a 64KB page size; then it is possible to use 52-bits of address
112space for both userspace and kernel addresses. However, any kernel
113binary that supports 52-bit must also be able to fall back to 48-bit
114at early boot time if the hardware feature is not present.
115
116This fallback mechanism necessitates the kernel .text to be in the
117higher addresses such that they are invariant to 48/52-bit VAs. Due
118to the kasan shadow being a fraction of the entire kernel VA space,
119the end of the kasan shadow must also be in the higher half of the
120kernel VA space for both 48/52-bit. (Switching from 48-bit to 52-bit,
121the end of the kasan shadow is invariant and dependent on ~0UL,
122whilst the start address will "grow" towards the lower addresses).
123
124In order to optimise phys_to_virt and virt_to_phys, the PAGE_OFFSET
125is kept constant at 0xFFF0000000000000 (corresponding to 52-bit),
126this obviates the need for an extra variable read. The physvirt
127offset and vmemmap offsets are computed at early boot to enable
128this logic.
129
130As a single binary will need to support both 48-bit and 52-bit VA
131spaces, the VMEMMAP must be sized large enough for 52-bit VAs and
132also must be sized large enought to accommodate a fixed PAGE_OFFSET.
133
134Most code in the kernel should not need to consider the VA_BITS, for
135code that does need to know the VA size the variables are
136defined as follows:
137
138VA_BITS constant the *maximum* VA space size
139
140VA_BITS_MIN constant the *minimum* VA space size
141
142vabits_actual variable the *actual* VA space size
143
144
145Maximum and minimum sizes can be useful to ensure that buffers are
146sized large enough or that addresses are positioned close enough for
147the "worst" case.
148
14952-bit userspace VAs
150--------------------
151To maintain compatibility with software that relies on the ARMv8.0
152VA space maximum size of 48-bits, the kernel will, by default,
153return virtual addresses to userspace from a 48-bit range.
154
155Software can "opt-in" to receiving VAs from a 52-bit space by
156specifying an mmap hint parameter that is larger than 48-bit.
a2b99dca 157
d2c68de1 158For example:
a2b99dca
AZ
159
160.. code-block:: c
161
162 maybe_high_address = mmap(~0UL, size, prot, flags,...);
d2c68de1
SC
163
164It is also possible to build a debug kernel that returns addresses
165from a 52-bit space by enabling the following kernel config options:
a2b99dca
AZ
166
167.. code-block:: sh
168
d2c68de1
SC
169 CONFIG_EXPERT=y && CONFIG_ARM64_FORCE_52BIT=y
170
171Note that this option is only intended for debugging applications
172and should not be used in production.