Merge tag 'kconfig-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-block.git] / Documentation / RCU / listRCU.rst
CommitLineData
9422dc24 1.. _list_rcu_doc:
1da177e4 2
9422dc24
JC
3Using RCU to Protect Read-Mostly Linked Lists
4=============================================
1da177e4
LT
5
6One of the best applications of RCU is to protect read-mostly linked lists
7("struct list_head" in list.h). One big advantage of this approach
8is that all of the required memory barriers are included for you in
9the list macros. This document describes several applications of RCU,
10with the best fits first.
11
1da177e4 12Example 1: Read-Side Action Taken Outside of Lock, No In-Place Updates
9422dc24 13----------------------------------------------------------------------
1da177e4
LT
14
15The best applications are cases where, if reader-writer locking were
16used, the read-side lock would be dropped before taking any action
17based on the results of the search. The most celebrated example is
18the routing table. Because the routing table is tracking the state of
19equipment outside of the computer, it will at times contain stale data.
20Therefore, once the route has been computed, there is no need to hold
21the routing table static during transmission of the packet. After all,
22you can hold the routing table static all you want, but that won't keep
23the external Internet from changing, and it is the state of the external
24Internet that really matters. In addition, routing entries are typically
25added or deleted, rather than being modified in place.
26
27A straightforward example of this use of RCU may be found in the
28system-call auditing support. For example, a reader-writer locked
9422dc24 29implementation of audit_filter_task() might be as follows::
1da177e4
LT
30
31 static enum audit_state audit_filter_task(struct task_struct *tsk)
32 {
33 struct audit_entry *e;
34 enum audit_state state;
35
36 read_lock(&auditsc_lock);
a83f1fe2 37 /* Note: audit_netlink_sem held by caller. */
1da177e4
LT
38 list_for_each_entry(e, &audit_tsklist, list) {
39 if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
40 read_unlock(&auditsc_lock);
41 return state;
42 }
43 }
44 read_unlock(&auditsc_lock);
45 return AUDIT_BUILD_CONTEXT;
46 }
47
48Here the list is searched under the lock, but the lock is dropped before
49the corresponding value is returned. By the time that this value is acted
50on, the list may well have been modified. This makes sense, since if
51you are turning auditing off, it is OK to audit a few extra system calls.
52
9422dc24 53This means that RCU can be easily applied to the read side, as follows::
1da177e4
LT
54
55 static enum audit_state audit_filter_task(struct task_struct *tsk)
56 {
57 struct audit_entry *e;
58 enum audit_state state;
59
60 rcu_read_lock();
a83f1fe2 61 /* Note: audit_netlink_sem held by caller. */
1da177e4
LT
62 list_for_each_entry_rcu(e, &audit_tsklist, list) {
63 if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
64 rcu_read_unlock();
65 return state;
66 }
67 }
68 rcu_read_unlock();
69 return AUDIT_BUILD_CONTEXT;
70 }
71
72The read_lock() and read_unlock() calls have become rcu_read_lock()
73and rcu_read_unlock(), respectively, and the list_for_each_entry() has
74become list_for_each_entry_rcu(). The _rcu() list-traversal primitives
75insert the read-side memory barriers that are required on DEC Alpha CPUs.
76
77The changes to the update side are also straightforward. A reader-writer
9422dc24 78lock might be used as follows for deletion and insertion::
1da177e4
LT
79
80 static inline int audit_del_rule(struct audit_rule *rule,
81 struct list_head *list)
82 {
83 struct audit_entry *e;
84
85 write_lock(&auditsc_lock);
86 list_for_each_entry(e, list, list) {
87 if (!audit_compare_rule(rule, &e->rule)) {
88 list_del(&e->list);
89 write_unlock(&auditsc_lock);
90 return 0;
91 }
92 }
93 write_unlock(&auditsc_lock);
94 return -EFAULT; /* No matching rule */
95 }
96
97 static inline int audit_add_rule(struct audit_entry *entry,
98 struct list_head *list)
99 {
100 write_lock(&auditsc_lock);
101 if (entry->rule.flags & AUDIT_PREPEND) {
102 entry->rule.flags &= ~AUDIT_PREPEND;
103 list_add(&entry->list, list);
104 } else {
105 list_add_tail(&entry->list, list);
106 }
107 write_unlock(&auditsc_lock);
108 return 0;
109 }
110
9422dc24 111Following are the RCU equivalents for these two functions::
1da177e4
LT
112
113 static inline int audit_del_rule(struct audit_rule *rule,
114 struct list_head *list)
115 {
116 struct audit_entry *e;
117
118 /* Do not use the _rcu iterator here, since this is the only
119 * deletion routine. */
120 list_for_each_entry(e, list, list) {
121 if (!audit_compare_rule(rule, &e->rule)) {
122 list_del_rcu(&e->list);
3943ac5d 123 call_rcu(&e->rcu, audit_free_rule);
1da177e4
LT
124 return 0;
125 }
126 }
127 return -EFAULT; /* No matching rule */
128 }
129
130 static inline int audit_add_rule(struct audit_entry *entry,
131 struct list_head *list)
132 {
133 if (entry->rule.flags & AUDIT_PREPEND) {
134 entry->rule.flags &= ~AUDIT_PREPEND;
135 list_add_rcu(&entry->list, list);
136 } else {
137 list_add_tail_rcu(&entry->list, list);
138 }
139 return 0;
140 }
141
142Normally, the write_lock() and write_unlock() would be replaced by
143a spin_lock() and a spin_unlock(), but in this case, all callers hold
144audit_netlink_sem, so no additional locking is required. The auditsc_lock
145can therefore be eliminated, since use of RCU eliminates the need for
a83f1fe2
PM
146writers to exclude readers. Normally, the write_lock() calls would
147be converted into spin_lock() calls.
1da177e4
LT
148
149The list_del(), list_add(), and list_add_tail() primitives have been
150replaced by list_del_rcu(), list_add_rcu(), and list_add_tail_rcu().
151The _rcu() list-manipulation primitives add memory barriers that are
a83f1fe2
PM
152needed on weakly ordered CPUs (most of them!). The list_del_rcu()
153primitive omits the pointer poisoning debug-assist code that would
154otherwise cause concurrent readers to fail spectacularly.
1da177e4
LT
155
156So, when readers can tolerate stale data and when entries are either added
157or deleted, without in-place modification, it is very easy to use RCU!
158
1da177e4 159Example 2: Handling In-Place Updates
9422dc24 160------------------------------------
1da177e4
LT
161
162The system-call auditing code does not update auditing rules in place.
163However, if it did, reader-writer-locked code to do so might look as
164follows (presumably, the field_count is only permitted to decrease,
9422dc24 165otherwise, the added fields would need to be filled in)::
1da177e4
LT
166
167 static inline int audit_upd_rule(struct audit_rule *rule,
168 struct list_head *list,
169 __u32 newaction,
170 __u32 newfield_count)
171 {
172 struct audit_entry *e;
173 struct audit_newentry *ne;
174
175 write_lock(&auditsc_lock);
a83f1fe2 176 /* Note: audit_netlink_sem held by caller. */
1da177e4
LT
177 list_for_each_entry(e, list, list) {
178 if (!audit_compare_rule(rule, &e->rule)) {
179 e->rule.action = newaction;
180 e->rule.file_count = newfield_count;
181 write_unlock(&auditsc_lock);
182 return 0;
183 }
184 }
185 write_unlock(&auditsc_lock);
186 return -EFAULT; /* No matching rule */
187 }
188
189The RCU version creates a copy, updates the copy, then replaces the old
190entry with the newly updated entry. This sequence of actions, allowing
191concurrent reads while doing a copy to perform an update, is what gives
9422dc24 192RCU ("read-copy update") its name. The RCU code is as follows::
1da177e4
LT
193
194 static inline int audit_upd_rule(struct audit_rule *rule,
195 struct list_head *list,
196 __u32 newaction,
197 __u32 newfield_count)
198 {
199 struct audit_entry *e;
200 struct audit_newentry *ne;
201
202 list_for_each_entry(e, list, list) {
203 if (!audit_compare_rule(rule, &e->rule)) {
204 ne = kmalloc(sizeof(*entry), GFP_ATOMIC);
205 if (ne == NULL)
206 return -ENOMEM;
207 audit_copy_rule(&ne->rule, &e->rule);
208 ne->rule.action = newaction;
209 ne->rule.file_count = newfield_count;
57d34a6c 210 list_replace_rcu(&e->list, &ne->list);
3943ac5d 211 call_rcu(&e->rcu, audit_free_rule);
1da177e4
LT
212 return 0;
213 }
214 }
215 return -EFAULT; /* No matching rule */
216 }
217
218Again, this assumes that the caller holds audit_netlink_sem. Normally,
219the reader-writer lock would become a spinlock in this sort of code.
220
1da177e4 221Example 3: Eliminating Stale Data
9422dc24 222---------------------------------
1da177e4
LT
223
224The auditing examples above tolerate stale data, as do most algorithms
225that are tracking external state. Because there is a delay from the
226time the external state changes before Linux becomes aware of the change,
227additional RCU-induced staleness is normally not a problem.
228
229However, there are many examples where stale data cannot be tolerated.
230One example in the Linux kernel is the System V IPC (see the ipc_lock()
231function in ipc/util.c). This code checks a "deleted" flag under a
232per-entry spinlock, and, if the "deleted" flag is set, pretends that the
233entry does not exist. For this to be helpful, the search function must
234return holding the per-entry spinlock, as ipc_lock() does in fact do.
235
9422dc24
JC
236Quick Quiz:
237 Why does the search function need to return holding the per-entry lock for
238 this deleted-flag technique to be helpful?
239
240:ref:`Answer to Quick Quiz <answer_quick_quiz_list>`
1da177e4
LT
241
242If the system-call audit module were to ever need to reject stale data,
243one way to accomplish this would be to add a "deleted" flag and a "lock"
244spinlock to the audit_entry structure, and modify audit_filter_task()
9422dc24 245as follows::
1da177e4
LT
246
247 static enum audit_state audit_filter_task(struct task_struct *tsk)
248 {
249 struct audit_entry *e;
250 enum audit_state state;
251
252 rcu_read_lock();
253 list_for_each_entry_rcu(e, &audit_tsklist, list) {
254 if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
255 spin_lock(&e->lock);
256 if (e->deleted) {
257 spin_unlock(&e->lock);
258 rcu_read_unlock();
259 return AUDIT_BUILD_CONTEXT;
260 }
261 rcu_read_unlock();
262 return state;
263 }
264 }
265 rcu_read_unlock();
266 return AUDIT_BUILD_CONTEXT;
267 }
268
269Note that this example assumes that entries are only added and deleted.
270Additional mechanism is required to deal correctly with the
271update-in-place performed by audit_upd_rule(). For one thing,
272audit_upd_rule() would need additional memory barriers to ensure
273that the list_add_rcu() was really executed before the list_del_rcu().
274
275The audit_del_rule() function would need to set the "deleted"
9422dc24 276flag under the spinlock as follows::
1da177e4
LT
277
278 static inline int audit_del_rule(struct audit_rule *rule,
279 struct list_head *list)
280 {
281 struct audit_entry *e;
282
d19720a9
PM
283 /* Do not need to use the _rcu iterator here, since this
284 * is the only deletion routine. */
1da177e4
LT
285 list_for_each_entry(e, list, list) {
286 if (!audit_compare_rule(rule, &e->rule)) {
287 spin_lock(&e->lock);
288 list_del_rcu(&e->list);
289 e->deleted = 1;
290 spin_unlock(&e->lock);
3943ac5d 291 call_rcu(&e->rcu, audit_free_rule);
1da177e4
LT
292 return 0;
293 }
294 }
295 return -EFAULT; /* No matching rule */
296 }
297
1da177e4 298Summary
9422dc24 299-------
1da177e4
LT
300
301Read-mostly list-based data structures that can tolerate stale data are
302the most amenable to use of RCU. The simplest case is where entries are
303either added or deleted from the data structure (or atomically modified
304in place), but non-atomic in-place modifications can be handled by making
305a copy, updating the copy, then replacing the original with the copy.
306If stale data cannot be tolerated, then a "deleted" flag may be used
307in conjunction with a per-entry spinlock in order to allow the search
308function to reject newly deleted data.
309
9422dc24 310.. _answer_quick_quiz_list:
1da177e4 311
9422dc24 312Answer to Quick Quiz:
d19720a9
PM
313 Why does the search function need to return holding the per-entry
314 lock for this deleted-flag technique to be helpful?
315
316 If the search function drops the per-entry lock before returning,
317 then the caller will be processing stale data in any case. If it
318 is really OK to be processing stale data, then you don't need a
319 "deleted" flag. If processing stale data really is a problem,
320 then you need to hold the per-entry lock across all of the code
321 that uses the value that was returned.