Merge tag 'powerpc-4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-block.git] / Documentation / DocBook / device-drivers.tmpl
CommitLineData
f7f84f38
RD
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="LinuxDriversAPI">
6 <bookinfo>
7 <title>Linux Device Drivers</title>
8
9 <legalnotice>
10 <para>
11 This documentation is free software; you can redistribute
12 it and/or modify it under the terms of the GNU General Public
13 License as published by the Free Software Foundation; either
14 version 2 of the License, or (at your option) any later
15 version.
16 </para>
17
18 <para>
19 This program is distributed in the hope that it will be
20 useful, but WITHOUT ANY WARRANTY; without even the implied
21 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 See the GNU General Public License for more details.
23 </para>
24
25 <para>
26 You should have received a copy of the GNU General Public
27 License along with this program; if not, write to the Free
28 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
29 MA 02111-1307 USA
30 </para>
31
32 <para>
33 For more details see the file COPYING in the source
34 distribution of Linux.
35 </para>
36 </legalnotice>
37 </bookinfo>
38
39<toc></toc>
40
41 <chapter id="Basics">
42 <title>Driver Basics</title>
43 <sect1><title>Driver Entry and Exit points</title>
44!Iinclude/linux/init.h
45 </sect1>
46
47 <sect1><title>Atomic and pointer manipulation</title>
88b68033 48!Iarch/x86/include/asm/atomic.h
f7f84f38
RD
49 </sect1>
50
51 <sect1><title>Delaying, scheduling, and timer routines</title>
52!Iinclude/linux/sched.h
b4d20859
RD
53!Ekernel/sched/core.c
54!Ikernel/sched/cpupri.c
55!Ikernel/sched/fair.c
ee2f154a 56!Iinclude/linux/completion.h
be11e6d8 57!Ekernel/time/timer.c
ee2f154a
RD
58 </sect1>
59 <sect1><title>Wait queues and Wake events</title>
60!Iinclude/linux/wait.h
96d5d9d9 61!Ekernel/sched/wait.c
f7f84f38
RD
62 </sect1>
63 <sect1><title>High-resolution timers</title>
64!Iinclude/linux/ktime.h
65!Iinclude/linux/hrtimer.h
be11e6d8 66!Ekernel/time/hrtimer.c
f7f84f38
RD
67 </sect1>
68 <sect1><title>Workqueues and Kevents</title>
81db32a3 69!Iinclude/linux/workqueue.h
f7f84f38
RD
70!Ekernel/workqueue.c
71 </sect1>
72 <sect1><title>Internal Functions</title>
73!Ikernel/exit.c
74!Ikernel/signal.c
75!Iinclude/linux/kthread.h
76!Ekernel/kthread.c
77 </sect1>
78
79 <sect1><title>Kernel objects manipulation</title>
80<!--
81X!Iinclude/linux/kobject.h
82-->
83!Elib/kobject.c
84 </sect1>
85
86 <sect1><title>Kernel utility functions</title>
87!Iinclude/linux/kernel.h
b9ee979e 88!Ekernel/printk/printk.c
f7f84f38
RD
89!Ekernel/panic.c
90!Ekernel/sys.c
4102adab
PM
91!Ekernel/rcu/srcu.c
92!Ekernel/rcu/tree.c
93!Ekernel/rcu/tree_plugin.h
94!Ekernel/rcu/update.c
f7f84f38
RD
95 </sect1>
96
97 <sect1><title>Device Resource Management</title>
98!Edrivers/base/devres.c
99 </sect1>
100
101 </chapter>
102
103 <chapter id="devdrivers">
104 <title>Device drivers infrastructure</title>
880ffb5c
WG
105 <sect1><title>The Basic Device Driver-Model Structures </title>
106!Iinclude/linux/device.h
107 </sect1>
f7f84f38 108 <sect1><title>Device Drivers Base</title>
13405059 109!Idrivers/base/init.c
f7f84f38
RD
110!Edrivers/base/driver.c
111!Edrivers/base/core.c
13405059 112!Edrivers/base/syscore.c
f7f84f38 113!Edrivers/base/class.c
13405059 114!Idrivers/base/node.c
f7f84f38
RD
115!Edrivers/base/firmware_class.c
116!Edrivers/base/transport_class.c
117<!-- Cannot be included, because
118 attribute_container_add_class_device_adapter
119 and attribute_container_classdev_to_container
120 exceed allowed 44 characters maximum
121X!Edrivers/base/attribute_container.c
122-->
13405059 123!Edrivers/base/dd.c
f7f84f38
RD
124<!--
125X!Edrivers/base/interface.c
126-->
44f28bde 127!Iinclude/linux/platform_device.h
f7f84f38
RD
128!Edrivers/base/platform.c
129!Edrivers/base/bus.c
13405059 130 </sect1>
eae1760f
RC
131 <sect1>
132 <title>Buffer Sharing and Synchronization</title>
133 <para>
134 The dma-buf subsystem provides the framework for sharing buffers
135 for hardware (DMA) access across multiple device drivers and
136 subsystems, and for synchronizing asynchronous hardware access.
137 </para>
138 <para>
139 This is used, for example, by drm "prime" multi-GPU support, but
140 is of course not limited to GPU use cases.
141 </para>
142 <para>
143 The three main components of this are: (1) dma-buf, representing
144 a sg_table and exposed to userspace as a file descriptor to allow
145 passing between devices, (2) fence, which provides a mechanism
146 to signal when one device as finished access, and (3) reservation,
147 which manages the shared or exclusive fence(s) associated with
148 the buffer.
149 </para>
150 <sect2><title>dma-buf</title>
35fac7e3 151!Edrivers/dma-buf/dma-buf.c
eae1760f
RC
152!Iinclude/linux/dma-buf.h
153 </sect2>
154 <sect2><title>reservation</title>
155!Pdrivers/dma-buf/reservation.c Reservation Object Overview
156!Edrivers/dma-buf/reservation.c
157!Iinclude/linux/reservation.h
158 </sect2>
159 <sect2><title>fence</title>
e941759c
ML
160!Edrivers/dma-buf/fence.c
161!Iinclude/linux/fence.h
eae1760f 162!Edrivers/dma-buf/seqno-fence.c
606b23ad 163!Iinclude/linux/seqno-fence.h
5b996e93
GP
164!Edrivers/dma-buf/sync_file.c
165!Iinclude/linux/sync_file.h
eae1760f
RC
166 </sect2>
167 </sect1>
168 <sect1><title>Device Drivers DMA Management</title>
13405059
RD
169!Edrivers/base/dma-coherent.c
170!Edrivers/base/dma-mapping.c
f7f84f38
RD
171 </sect1>
172 <sect1><title>Device Drivers Power Management</title>
173!Edrivers/base/power/main.c
174 </sect1>
175 <sect1><title>Device Drivers ACPI Support</title>
176<!-- Internal functions only
177X!Edrivers/acpi/sleep/main.c
178X!Edrivers/acpi/sleep/wakeup.c
179X!Edrivers/acpi/motherboard.c
180X!Edrivers/acpi/bus.c
181-->
182!Edrivers/acpi/scan.c
183!Idrivers/acpi/scan.c
184<!-- No correct structured comments
185X!Edrivers/acpi/pci_bind.c
186-->
187 </sect1>
188 <sect1><title>Device drivers PnP support</title>
189!Idrivers/pnp/core.c
190<!-- No correct structured comments
191X!Edrivers/pnp/system.c
192 -->
193!Edrivers/pnp/card.c
194!Idrivers/pnp/driver.c
195!Edrivers/pnp/manager.c
196!Edrivers/pnp/support.c
197 </sect1>
198 <sect1><title>Userspace IO devices</title>
199!Edrivers/uio/uio.c
200!Iinclude/linux/uio_driver.h
201 </sect1>
202 </chapter>
203
204 <chapter id="parportdev">
205 <title>Parallel Port Devices</title>
206!Iinclude/linux/parport.h
207!Edrivers/parport/ieee1284.c
208!Edrivers/parport/share.c
209!Idrivers/parport/daisy.c
210 </chapter>
211
212 <chapter id="message_devices">
213 <title>Message-based devices</title>
214 <sect1><title>Fusion message devices</title>
215!Edrivers/message/fusion/mptbase.c
216!Idrivers/message/fusion/mptbase.c
217!Edrivers/message/fusion/mptscsih.c
218!Idrivers/message/fusion/mptscsih.c
219!Idrivers/message/fusion/mptctl.c
220!Idrivers/message/fusion/mptspi.c
221!Idrivers/message/fusion/mptfc.c
222!Idrivers/message/fusion/mptlan.c
223 </sect1>
f7f84f38
RD
224 </chapter>
225
226 <chapter id="snddev">
227 <title>Sound Devices</title>
228!Iinclude/sound/core.h
229!Esound/sound_core.c
230!Iinclude/sound/pcm.h
231!Esound/core/pcm.c
232!Esound/core/device.c
233!Esound/core/info.c
234!Esound/core/rawmidi.c
235!Esound/core/sound.c
236!Esound/core/memory.c
237!Esound/core/pcm_memory.c
238!Esound/core/init.c
239!Esound/core/isadma.c
240!Esound/core/control.c
241!Esound/core/pcm_lib.c
242!Esound/core/hwdep.c
243!Esound/core/pcm_native.c
244!Esound/core/memalloc.c
245<!-- FIXME: Removed for now since no structured comments in source
246X!Isound/sound_firmware.c
247-->
248 </chapter>
249
dc2c8bd3 250
f7f84f38
RD
251 <chapter id="uart16x50">
252 <title>16x50 UART Driver</title>
fcf28564 253!Edrivers/tty/serial/serial_core.c
5448bd8c 254!Edrivers/tty/serial/8250/8250_core.c
f7f84f38
RD
255 </chapter>
256
257 <chapter id="fbdev">
258 <title>Frame Buffer Library</title>
259
260 <para>
261 The frame buffer drivers depend heavily on four data structures.
262 These structures are declared in include/linux/fb.h. They are
263 fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
264 The last three can be made available to and from userland.
265 </para>
266
267 <para>
268 fb_info defines the current state of a particular video card.
269 Inside fb_info, there exists a fb_ops structure which is a
270 collection of needed functions to make fbdev and fbcon work.
271 fb_info is only visible to the kernel.
272 </para>
273
274 <para>
275 fb_var_screeninfo is used to describe the features of a video card
276 that are user defined. With fb_var_screeninfo, things such as
277 depth and the resolution may be defined.
278 </para>
279
280 <para>
281 The next structure is fb_fix_screeninfo. This defines the
282 properties of a card that are created when a mode is set and can't
283 be changed otherwise. A good example of this is the start of the
284 frame buffer memory. This "locks" the address of the frame buffer
285 memory, so that it cannot be changed or moved.
286 </para>
287
288 <para>
289 The last structure is fb_monospecs. In the old API, there was
290 little importance for fb_monospecs. This allowed for forbidden things
291 such as setting a mode of 800x600 on a fix frequency monitor. With
292 the new API, fb_monospecs prevents such things, and if used
293 correctly, can prevent a monitor from being cooked. fb_monospecs
294 will not be useful until kernels 2.5.x.
295 </para>
296
297 <sect1><title>Frame Buffer Memory</title>
19757fc8 298!Edrivers/video/fbdev/core/fbmem.c
f7f84f38
RD
299 </sect1>
300<!--
301 <sect1><title>Frame Buffer Console</title>
302X!Edrivers/video/console/fbcon.c
303 </sect1>
304-->
305 <sect1><title>Frame Buffer Colormap</title>
19757fc8 306!Edrivers/video/fbdev/core/fbcmap.c
f7f84f38
RD
307 </sect1>
308<!-- FIXME:
309 drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
310 out until somebody adds docs. KAO
311 <sect1><title>Frame Buffer Generic Functions</title>
312X!Idrivers/video/fbgen.c
313 </sect1>
314KAO -->
315 <sect1><title>Frame Buffer Video Mode Database</title>
19757fc8
TV
316!Idrivers/video/fbdev/core/modedb.c
317!Edrivers/video/fbdev/core/modedb.c
f7f84f38
RD
318 </sect1>
319 <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
f7018c21 320!Edrivers/video/fbdev/macmodes.c
f7f84f38
RD
321 </sect1>
322 <sect1><title>Frame Buffer Fonts</title>
323 <para>
ee89bd6b 324 Refer to the file lib/fonts/fonts.c for more information.
f7f84f38
RD
325 </para>
326<!-- FIXME: Removed for now since no structured comments in source
ee89bd6b 327X!Ilib/fonts/fonts.c
f7f84f38
RD
328-->
329 </sect1>
330 </chapter>
331
332 <chapter id="input_subsystem">
333 <title>Input Subsystem</title>
d69249f4 334 <sect1><title>Input core</title>
f7f84f38
RD
335!Iinclude/linux/input.h
336!Edrivers/input/input.c
337!Edrivers/input/ff-core.c
338!Edrivers/input/ff-memless.c
69479f8d
DT
339 </sect1>
340 <sect1><title>Multitouch Library</title>
341!Iinclude/linux/input/mt.h
342!Edrivers/input/input-mt.c
d69249f4
DT
343 </sect1>
344 <sect1><title>Polled input devices</title>
345!Iinclude/linux/input-polldev.h
346!Edrivers/input/input-polldev.c
347 </sect1>
abaa5c23 348 <sect1><title>Matrix keyboards/keypads</title>
d69249f4
DT
349!Iinclude/linux/input/matrix_keypad.h
350 </sect1>
36203c4f
DT
351 <sect1><title>Sparse keymap support</title>
352!Iinclude/linux/input/sparse-keymap.h
353!Edrivers/input/sparse-keymap.c
354 </sect1>
f7f84f38
RD
355 </chapter>
356
357 <chapter id="spi">
358 <title>Serial Peripheral Interface (SPI)</title>
359 <para>
360 SPI is the "Serial Peripheral Interface", widely used with
361 embedded systems because it is a simple and efficient
362 interface: basically a multiplexed shift register.
363 Its three signal wires hold a clock (SCK, often in the range
364 of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
365 a "Master In, Slave Out" (MISO) data line.
366 SPI is a full duplex protocol; for each bit shifted out the
367 MOSI line (one per clock) another is shifted in on the MISO line.
368 Those bits are assembled into words of various sizes on the
369 way to and from system memory.
370 An additional chipselect line is usually active-low (nCS);
371 four signals are normally used for each peripheral, plus
372 sometimes an interrupt.
373 </para>
374 <para>
375 The SPI bus facilities listed here provide a generalized
376 interface to declare SPI busses and devices, manage them
377 according to the standard Linux driver model, and perform
378 input/output operations.
379 At this time, only "master" side interfaces are supported,
380 where Linux talks to SPI peripherals and does not implement
381 such a peripheral itself.
382 (Interfaces to support implementing SPI slaves would
383 necessarily look different.)
384 </para>
385 <para>
386 The programming interface is structured around two kinds of driver,
387 and two kinds of device.
388 A "Controller Driver" abstracts the controller hardware, which may
389 be as simple as a set of GPIO pins or as complex as a pair of FIFOs
390 connected to dual DMA engines on the other side of the SPI shift
391 register (maximizing throughput). Such drivers bridge between
392 whatever bus they sit on (often the platform bus) and SPI, and
393 expose the SPI side of their device as a
394 <structname>struct spi_master</structname>.
395 SPI devices are children of that master, represented as a
396 <structname>struct spi_device</structname> and manufactured from
397 <structname>struct spi_board_info</structname> descriptors which
398 are usually provided by board-specific initialization code.
399 A <structname>struct spi_driver</structname> is called a
400 "Protocol Driver", and is bound to a spi_device using normal
401 driver model calls.
402 </para>
403 <para>
404 The I/O model is a set of queued messages. Protocol drivers
405 submit one or more <structname>struct spi_message</structname>
406 objects, which are processed and completed asynchronously.
407 (There are synchronous wrappers, however.) Messages are
408 built from one or more <structname>struct spi_transfer</structname>
409 objects, each of which wraps a full duplex SPI transfer.
410 A variety of protocol tweaking options are needed, because
411 different chips adopt very different policies for how they
412 use the bits transferred with SPI.
413 </para>
414!Iinclude/linux/spi/spi.h
415!Fdrivers/spi/spi.c spi_register_board_info
416!Edrivers/spi/spi.c
417 </chapter>
418
419 <chapter id="i2c">
420 <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
421
422 <para>
423 I<superscript>2</superscript>C (or without fancy typography, "I2C")
424 is an acronym for the "Inter-IC" bus, a simple bus protocol which is
425 widely used where low data rate communications suffice.
426 Since it's also a licensed trademark, some vendors use another
427 name (such as "Two-Wire Interface", TWI) for the same bus.
428 I2C only needs two signals (SCL for clock, SDA for data), conserving
429 board real estate and minimizing signal quality issues.
430 Most I2C devices use seven bit addresses, and bus speeds of up
431 to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
432 found wide use.
433 I2C is a multi-master bus; open drain signaling is used to
434 arbitrate between masters, as well as to handshake and to
435 synchronize clocks from slower clients.
436 </para>
437
438 <para>
439 The Linux I2C programming interfaces support only the master
440 side of bus interactions, not the slave side.
441 The programming interface is structured around two kinds of driver,
442 and two kinds of device.
443 An I2C "Adapter Driver" abstracts the controller hardware; it binds
444 to a physical device (perhaps a PCI device or platform_device) and
445 exposes a <structname>struct i2c_adapter</structname> representing
446 each I2C bus segment it manages.
447 On each I2C bus segment will be I2C devices represented by a
448 <structname>struct i2c_client</structname>. Those devices will
449 be bound to a <structname>struct i2c_driver</structname>,
450 which should follow the standard Linux driver model.
451 (At this writing, a legacy model is more widely used.)
452 There are functions to perform various I2C protocol operations; at
453 this writing all such functions are usable only from task context.
454 </para>
455
456 <para>
457 The System Management Bus (SMBus) is a sibling protocol. Most SMBus
458 systems are also I2C conformant. The electrical constraints are
459 tighter for SMBus, and it standardizes particular protocol messages
460 and idioms. Controllers that support I2C can also support most
461 SMBus operations, but SMBus controllers don't support all the protocol
462 options that an I2C controller will.
463 There are functions to perform various SMBus protocol operations,
464 either using I2C primitives or by issuing SMBus commands to
465 i2c_adapter devices which don't support those I2C operations.
466 </para>
467
468!Iinclude/linux/i2c.h
469!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
470!Edrivers/i2c/i2c-core.c
471 </chapter>
472
a4ac73a7
CC
473 <chapter id="hsi">
474 <title>High Speed Synchronous Serial Interface (HSI)</title>
475
476 <para>
477 High Speed Synchronous Serial Interface (HSI) is a
478 serial interface mainly used for connecting application
479 engines (APE) with cellular modem engines (CMT) in cellular
480 handsets.
481
482 HSI provides multiplexing for up to 16 logical channels,
483 low-latency and full duplex communication.
484 </para>
485
486!Iinclude/linux/hsi/hsi.h
e01957ab 487!Edrivers/hsi/hsi_core.c
a4ac73a7
CC
488 </chapter>
489
6e146f5c
TR
490 <chapter id="pwm">
491 <title>Pulse-Width Modulation (PWM)</title>
492 <para>
493 Pulse-width modulation is a modulation technique primarily used to
494 control power supplied to electrical devices.
495 </para>
496 <para>
497 The PWM framework provides an abstraction for providers and consumers
498 of PWM signals. A controller that provides one or more PWM signals is
499 registered as <structname>struct pwm_chip</structname>. Providers are
500 expected to embed this structure in a driver-specific structure. This
501 structure contains fields that describe a particular chip.
502 </para>
503 <para>
504 A chip exposes one or more PWM signal sources, each of which exposed
505 as a <structname>struct pwm_device</structname>. Operations can be
506 performed on PWM devices to control the period, duty cycle, polarity
507 and active state of the signal.
508 </para>
509 <para>
510 Note that PWM devices are exclusive resources: they can always only be
511 used by one consumer at a time.
512 </para>
513!Iinclude/linux/pwm.h
514!Edrivers/pwm/core.c
515 </chapter>
516
f7f84f38 517</book>