trivial: Correct print_tainted routine name in comment
[linux-block.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
6fa6c3b1 14 * Created file with time related functions from sched.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
2c622148 33#include <linux/clocksource.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
1aeb272c 38#include <linux/slab.h>
71abb3af 39#include <linux/math64.h>
e3d5a27d 40#include <linux/ptrace.h>
1da177e4
LT
41
42#include <asm/uaccess.h>
43#include <asm/unistd.h>
44
bdc80787
PA
45#include "timeconst.h"
46
6fa6c3b1 47/*
1da177e4
LT
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51struct timezone sys_tz;
52
53EXPORT_SYMBOL(sys_tz);
54
55#ifdef __ARCH_WANT_SYS_TIME
56
57/*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
58fd3aa2 63SYSCALL_DEFINE1(time, time_t __user *, tloc)
1da177e4 64{
f20bf612 65 time_t i = get_seconds();
1da177e4
LT
66
67 if (tloc) {
20082208 68 if (put_user(i,tloc))
e3d5a27d 69 return -EFAULT;
1da177e4 70 }
e3d5a27d 71 force_successful_syscall_return();
1da177e4
LT
72 return i;
73}
74
75/*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
6fa6c3b1 81
58fd3aa2 82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
1da177e4
LT
83{
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98}
99
100#endif /* __ARCH_WANT_SYS_TIME */
101
58fd3aa2
HC
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
1da177e4
LT
104{
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116}
117
118/*
119 * Adjust the time obtained from the CMOS to be UTC time instead of
120 * local time.
6fa6c3b1 121 *
1da177e4
LT
122 * This is ugly, but preferable to the alternatives. Otherwise we
123 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 124 * confusion if the program gets run more than once; it would also be
1da177e4
LT
125 * hard to make the program warp the clock precisely n hours) or
126 * compile in the timezone information into the kernel. Bad, bad....
127 *
bdc80787 128 * - TYT, 1992-01-01
1da177e4
LT
129 *
130 * The best thing to do is to keep the CMOS clock in universal time (UTC)
131 * as real UNIX machines always do it. This avoids all headaches about
132 * daylight saving times and warping kernel clocks.
133 */
77933d72 134static inline void warp_clock(void)
1da177e4
LT
135{
136 write_seqlock_irq(&xtime_lock);
137 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
138 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
1001d0a9 139 update_xtime_cache(0);
1da177e4
LT
140 write_sequnlock_irq(&xtime_lock);
141 clock_was_set();
142}
143
144/*
145 * In case for some reason the CMOS clock has not already been running
146 * in UTC, but in some local time: The first time we set the timezone,
147 * we will warp the clock so that it is ticking UTC time instead of
148 * local time. Presumably, if someone is setting the timezone then we
149 * are running in an environment where the programs understand about
150 * timezones. This should be done at boot time in the /etc/rc script,
151 * as soon as possible, so that the clock can be set right. Otherwise,
152 * various programs will get confused when the clock gets warped.
153 */
154
155int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
156{
157 static int firsttime = 1;
158 int error = 0;
159
951069e3 160 if (tv && !timespec_valid(tv))
718bcceb
TG
161 return -EINVAL;
162
1da177e4
LT
163 error = security_settime(tv, tz);
164 if (error)
165 return error;
166
167 if (tz) {
168 /* SMP safe, global irq locking makes it work. */
169 sys_tz = *tz;
2c622148 170 update_vsyscall_tz();
1da177e4
LT
171 if (firsttime) {
172 firsttime = 0;
173 if (!tv)
174 warp_clock();
175 }
176 }
177 if (tv)
178 {
179 /* SMP safe, again the code in arch/foo/time.c should
180 * globally block out interrupts when it runs.
181 */
182 return do_settimeofday(tv);
183 }
184 return 0;
185}
186
58fd3aa2
HC
187SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
188 struct timezone __user *, tz)
1da177e4
LT
189{
190 struct timeval user_tv;
191 struct timespec new_ts;
192 struct timezone new_tz;
193
194 if (tv) {
195 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
196 return -EFAULT;
197 new_ts.tv_sec = user_tv.tv_sec;
198 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
199 }
200 if (tz) {
201 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
202 return -EFAULT;
203 }
204
205 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
206}
207
58fd3aa2 208SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
1da177e4
LT
209{
210 struct timex txc; /* Local copy of parameter */
211 int ret;
212
213 /* Copy the user data space into the kernel copy
214 * structure. But bear in mind that the structures
215 * may change
216 */
217 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
218 return -EFAULT;
219 ret = do_adjtimex(&txc);
220 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
221}
222
1da177e4
LT
223/**
224 * current_fs_time - Return FS time
225 * @sb: Superblock.
226 *
8ba8e95e 227 * Return the current time truncated to the time granularity supported by
1da177e4
LT
228 * the fs.
229 */
230struct timespec current_fs_time(struct super_block *sb)
231{
232 struct timespec now = current_kernel_time();
233 return timespec_trunc(now, sb->s_time_gran);
234}
235EXPORT_SYMBOL(current_fs_time);
236
753e9c5c
ED
237/*
238 * Convert jiffies to milliseconds and back.
239 *
240 * Avoid unnecessary multiplications/divisions in the
241 * two most common HZ cases:
242 */
243unsigned int inline jiffies_to_msecs(const unsigned long j)
244{
245#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
246 return (MSEC_PER_SEC / HZ) * j;
247#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
248 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
249#else
bdc80787 250# if BITS_PER_LONG == 32
b9095fd8 251 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
bdc80787
PA
252# else
253 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
254# endif
753e9c5c
ED
255#endif
256}
257EXPORT_SYMBOL(jiffies_to_msecs);
258
259unsigned int inline jiffies_to_usecs(const unsigned long j)
260{
261#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
262 return (USEC_PER_SEC / HZ) * j;
263#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
264 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
265#else
bdc80787 266# if BITS_PER_LONG == 32
b9095fd8 267 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
bdc80787
PA
268# else
269 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
270# endif
753e9c5c
ED
271#endif
272}
273EXPORT_SYMBOL(jiffies_to_usecs);
274
1da177e4 275/**
8ba8e95e 276 * timespec_trunc - Truncate timespec to a granularity
1da177e4 277 * @t: Timespec
8ba8e95e 278 * @gran: Granularity in ns.
1da177e4 279 *
8ba8e95e 280 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
281 * Always rounds down.
282 *
283 * This function should be only used for timestamps returned by
284 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
3eb05676 285 * it doesn't handle the better resolution of the latter.
1da177e4
LT
286 */
287struct timespec timespec_trunc(struct timespec t, unsigned gran)
288{
289 /*
290 * Division is pretty slow so avoid it for common cases.
291 * Currently current_kernel_time() never returns better than
292 * jiffies resolution. Exploit that.
293 */
294 if (gran <= jiffies_to_usecs(1) * 1000) {
295 /* nothing */
296 } else if (gran == 1000000000) {
297 t.tv_nsec = 0;
298 } else {
299 t.tv_nsec -= t.tv_nsec % gran;
300 }
301 return t;
302}
303EXPORT_SYMBOL(timespec_trunc);
304
cf3c769b 305#ifndef CONFIG_GENERIC_TIME
1da177e4
LT
306/*
307 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
308 * and therefore only yields usec accuracy
309 */
310void getnstimeofday(struct timespec *tv)
311{
312 struct timeval x;
313
314 do_gettimeofday(&x);
315 tv->tv_sec = x.tv_sec;
316 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
317}
c6ecf7ed 318EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4
LT
319#endif
320
753be622
TG
321/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
322 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
323 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
324 *
325 * [For the Julian calendar (which was used in Russia before 1917,
326 * Britain & colonies before 1752, anywhere else before 1582,
327 * and is still in use by some communities) leave out the
328 * -year/100+year/400 terms, and add 10.]
329 *
330 * This algorithm was first published by Gauss (I think).
331 *
332 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
3eb05676 333 * machines where long is 32-bit! (However, as time_t is signed, we
753be622
TG
334 * will already get problems at other places on 2038-01-19 03:14:08)
335 */
336unsigned long
f4818900
IM
337mktime(const unsigned int year0, const unsigned int mon0,
338 const unsigned int day, const unsigned int hour,
339 const unsigned int min, const unsigned int sec)
753be622 340{
f4818900
IM
341 unsigned int mon = mon0, year = year0;
342
343 /* 1..12 -> 11,12,1..10 */
344 if (0 >= (int) (mon -= 2)) {
345 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
346 year -= 1;
347 }
348
349 return ((((unsigned long)
350 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
351 year*365 - 719499
352 )*24 + hour /* now have hours */
353 )*60 + min /* now have minutes */
354 )*60 + sec; /* finally seconds */
355}
356
199e7056
AM
357EXPORT_SYMBOL(mktime);
358
753be622
TG
359/**
360 * set_normalized_timespec - set timespec sec and nsec parts and normalize
361 *
362 * @ts: pointer to timespec variable to be set
363 * @sec: seconds to set
364 * @nsec: nanoseconds to set
365 *
366 * Set seconds and nanoseconds field of a timespec variable and
367 * normalize to the timespec storage format
368 *
369 * Note: The tv_nsec part is always in the range of
bdc80787 370 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
371 * For negative values only the tv_sec field is negative !
372 */
12e09337 373void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
753be622
TG
374{
375 while (nsec >= NSEC_PER_SEC) {
12e09337
TG
376 /*
377 * The following asm() prevents the compiler from
378 * optimising this loop into a modulo operation. See
379 * also __iter_div_u64_rem() in include/linux/time.h
380 */
381 asm("" : "+rm"(nsec));
753be622
TG
382 nsec -= NSEC_PER_SEC;
383 ++sec;
384 }
385 while (nsec < 0) {
12e09337 386 asm("" : "+rm"(nsec));
753be622
TG
387 nsec += NSEC_PER_SEC;
388 --sec;
389 }
390 ts->tv_sec = sec;
391 ts->tv_nsec = nsec;
392}
7c3f944e 393EXPORT_SYMBOL(set_normalized_timespec);
753be622 394
f8f46da3
TG
395/**
396 * ns_to_timespec - Convert nanoseconds to timespec
397 * @nsec: the nanoseconds value to be converted
398 *
399 * Returns the timespec representation of the nsec parameter.
400 */
df869b63 401struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
402{
403 struct timespec ts;
f8bd2258 404 s32 rem;
f8f46da3 405
88fc3897
GA
406 if (!nsec)
407 return (struct timespec) {0, 0};
408
f8bd2258
RZ
409 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
410 if (unlikely(rem < 0)) {
411 ts.tv_sec--;
412 rem += NSEC_PER_SEC;
413 }
414 ts.tv_nsec = rem;
f8f46da3
TG
415
416 return ts;
417}
85795d64 418EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
419
420/**
421 * ns_to_timeval - Convert nanoseconds to timeval
422 * @nsec: the nanoseconds value to be converted
423 *
424 * Returns the timeval representation of the nsec parameter.
425 */
df869b63 426struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
427{
428 struct timespec ts = ns_to_timespec(nsec);
429 struct timeval tv;
430
431 tv.tv_sec = ts.tv_sec;
432 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
433
434 return tv;
435}
b7aa0bf7 436EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 437
41cf5445
IM
438/*
439 * When we convert to jiffies then we interpret incoming values
440 * the following way:
441 *
442 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
443 *
444 * - 'too large' values [that would result in larger than
445 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
446 *
447 * - all other values are converted to jiffies by either multiplying
448 * the input value by a factor or dividing it with a factor
449 *
450 * We must also be careful about 32-bit overflows.
451 */
8b9365d7
IM
452unsigned long msecs_to_jiffies(const unsigned int m)
453{
41cf5445
IM
454 /*
455 * Negative value, means infinite timeout:
456 */
457 if ((int)m < 0)
8b9365d7 458 return MAX_JIFFY_OFFSET;
41cf5445 459
8b9365d7 460#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
461 /*
462 * HZ is equal to or smaller than 1000, and 1000 is a nice
463 * round multiple of HZ, divide with the factor between them,
464 * but round upwards:
465 */
8b9365d7
IM
466 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
467#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
468 /*
469 * HZ is larger than 1000, and HZ is a nice round multiple of
470 * 1000 - simply multiply with the factor between them.
471 *
472 * But first make sure the multiplication result cannot
473 * overflow:
474 */
475 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
476 return MAX_JIFFY_OFFSET;
477
8b9365d7
IM
478 return m * (HZ / MSEC_PER_SEC);
479#else
41cf5445
IM
480 /*
481 * Generic case - multiply, round and divide. But first
482 * check that if we are doing a net multiplication, that
bdc80787 483 * we wouldn't overflow:
41cf5445
IM
484 */
485 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
486 return MAX_JIFFY_OFFSET;
487
b9095fd8 488 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
bdc80787 489 >> MSEC_TO_HZ_SHR32;
8b9365d7
IM
490#endif
491}
492EXPORT_SYMBOL(msecs_to_jiffies);
493
494unsigned long usecs_to_jiffies(const unsigned int u)
495{
496 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
497 return MAX_JIFFY_OFFSET;
498#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
499 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
500#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
501 return u * (HZ / USEC_PER_SEC);
502#else
b9095fd8 503 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
bdc80787 504 >> USEC_TO_HZ_SHR32;
8b9365d7
IM
505#endif
506}
507EXPORT_SYMBOL(usecs_to_jiffies);
508
509/*
510 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
511 * that a remainder subtract here would not do the right thing as the
512 * resolution values don't fall on second boundries. I.e. the line:
513 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
514 *
515 * Rather, we just shift the bits off the right.
516 *
517 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
518 * value to a scaled second value.
519 */
520unsigned long
521timespec_to_jiffies(const struct timespec *value)
522{
523 unsigned long sec = value->tv_sec;
524 long nsec = value->tv_nsec + TICK_NSEC - 1;
525
526 if (sec >= MAX_SEC_IN_JIFFIES){
527 sec = MAX_SEC_IN_JIFFIES;
528 nsec = 0;
529 }
530 return (((u64)sec * SEC_CONVERSION) +
531 (((u64)nsec * NSEC_CONVERSION) >>
532 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
533
534}
535EXPORT_SYMBOL(timespec_to_jiffies);
536
537void
538jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
539{
540 /*
541 * Convert jiffies to nanoseconds and separate with
542 * one divide.
543 */
f8bd2258
RZ
544 u32 rem;
545 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
546 NSEC_PER_SEC, &rem);
547 value->tv_nsec = rem;
8b9365d7
IM
548}
549EXPORT_SYMBOL(jiffies_to_timespec);
550
551/* Same for "timeval"
552 *
553 * Well, almost. The problem here is that the real system resolution is
554 * in nanoseconds and the value being converted is in micro seconds.
555 * Also for some machines (those that use HZ = 1024, in-particular),
556 * there is a LARGE error in the tick size in microseconds.
557
558 * The solution we use is to do the rounding AFTER we convert the
559 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
560 * Instruction wise, this should cost only an additional add with carry
561 * instruction above the way it was done above.
562 */
563unsigned long
564timeval_to_jiffies(const struct timeval *value)
565{
566 unsigned long sec = value->tv_sec;
567 long usec = value->tv_usec;
568
569 if (sec >= MAX_SEC_IN_JIFFIES){
570 sec = MAX_SEC_IN_JIFFIES;
571 usec = 0;
572 }
573 return (((u64)sec * SEC_CONVERSION) +
574 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
575 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
576}
456a09dc 577EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
578
579void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
580{
581 /*
582 * Convert jiffies to nanoseconds and separate with
583 * one divide.
584 */
f8bd2258 585 u32 rem;
8b9365d7 586
f8bd2258
RZ
587 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
588 NSEC_PER_SEC, &rem);
589 value->tv_usec = rem / NSEC_PER_USEC;
8b9365d7 590}
456a09dc 591EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
592
593/*
594 * Convert jiffies/jiffies_64 to clock_t and back.
595 */
596clock_t jiffies_to_clock_t(long x)
597{
598#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
599# if HZ < USER_HZ
600 return x * (USER_HZ / HZ);
601# else
8b9365d7 602 return x / (HZ / USER_HZ);
6ffc787a 603# endif
8b9365d7 604#else
71abb3af 605 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
8b9365d7
IM
606#endif
607}
608EXPORT_SYMBOL(jiffies_to_clock_t);
609
610unsigned long clock_t_to_jiffies(unsigned long x)
611{
612#if (HZ % USER_HZ)==0
613 if (x >= ~0UL / (HZ / USER_HZ))
614 return ~0UL;
615 return x * (HZ / USER_HZ);
616#else
8b9365d7
IM
617 /* Don't worry about loss of precision here .. */
618 if (x >= ~0UL / HZ * USER_HZ)
619 return ~0UL;
620
621 /* .. but do try to contain it here */
71abb3af 622 return div_u64((u64)x * HZ, USER_HZ);
8b9365d7
IM
623#endif
624}
625EXPORT_SYMBOL(clock_t_to_jiffies);
626
627u64 jiffies_64_to_clock_t(u64 x)
628{
629#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a 630# if HZ < USER_HZ
71abb3af 631 x = div_u64(x * USER_HZ, HZ);
ec03d707 632# elif HZ > USER_HZ
71abb3af 633 x = div_u64(x, HZ / USER_HZ);
ec03d707
AM
634# else
635 /* Nothing to do */
6ffc787a 636# endif
8b9365d7
IM
637#else
638 /*
639 * There are better ways that don't overflow early,
640 * but even this doesn't overflow in hundreds of years
641 * in 64 bits, so..
642 */
71abb3af 643 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
8b9365d7
IM
644#endif
645 return x;
646}
8b9365d7
IM
647EXPORT_SYMBOL(jiffies_64_to_clock_t);
648
649u64 nsec_to_clock_t(u64 x)
650{
651#if (NSEC_PER_SEC % USER_HZ) == 0
71abb3af 652 return div_u64(x, NSEC_PER_SEC / USER_HZ);
8b9365d7 653#elif (USER_HZ % 512) == 0
71abb3af 654 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
8b9365d7
IM
655#else
656 /*
657 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
658 * overflow after 64.99 years.
659 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
660 */
71abb3af 661 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
8b9365d7 662#endif
8b9365d7
IM
663}
664
1da177e4
LT
665#if (BITS_PER_LONG < 64)
666u64 get_jiffies_64(void)
667{
668 unsigned long seq;
669 u64 ret;
670
671 do {
672 seq = read_seqbegin(&xtime_lock);
673 ret = jiffies_64;
674 } while (read_seqretry(&xtime_lock, seq));
675 return ret;
676}
1da177e4
LT
677EXPORT_SYMBOL(get_jiffies_64);
678#endif
679
680EXPORT_SYMBOL(jiffies);
df0cc053
TG
681
682/*
683 * Add two timespec values and do a safety check for overflow.
684 * It's assumed that both values are valid (>= 0)
685 */
686struct timespec timespec_add_safe(const struct timespec lhs,
687 const struct timespec rhs)
688{
689 struct timespec res;
690
691 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
692 lhs.tv_nsec + rhs.tv_nsec);
693
694 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
695 res.tv_sec = TIME_T_MAX;
696
697 return res;
698}