Merge branch 'perfcounters-fixes-for-linus' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
380static inline struct task_group *task_group(struct task_struct *p)
381{
382 return NULL;
383}
29f59db3 384
052f1dc7 385#endif /* CONFIG_GROUP_SCHED */
29f59db3 386
6aa645ea
IM
387/* CFS-related fields in a runqueue */
388struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
6aa645ea 392 u64 exec_clock;
e9acbff6 393 u64 min_vruntime;
6aa645ea
IM
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
4a55bd5e
PZ
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
4793241b 405 struct sched_entity *curr, *next, *last;
ddc97297 406
5ac5c4d6 407 unsigned int nr_spread_over;
ddc97297 408
62160e3f 409#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
41a2d6cf
IM
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
41a2d6cf
IM
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
422
423#ifdef CONFIG_SMP
c09595f6 424 /*
c8cba857 425 * the part of load.weight contributed by tasks
c09595f6 426 */
c8cba857 427 unsigned long task_weight;
c09595f6 428
c8cba857
PZ
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
c09595f6 436
c8cba857
PZ
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
f1d239f7
PZ
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
c09595f6 446#endif
6aa645ea
IM
447#endif
448};
1da177e4 449
6aa645ea
IM
450/* Real-Time classes' related field in a runqueue: */
451struct rt_rq {
452 struct rt_prio_array active;
63489e45 453 unsigned long rt_nr_running;
052f1dc7 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
455 struct {
456 int curr; /* highest queued rt task prio */
398a153b 457#ifdef CONFIG_SMP
e864c499 458 int next; /* next highest */
398a153b 459#endif
e864c499 460 } highest_prio;
6f505b16 461#endif
fa85ae24 462#ifdef CONFIG_SMP
73fe6aae 463 unsigned long rt_nr_migratory;
a1ba4d8b 464 unsigned long rt_nr_total;
a22d7fc1 465 int overloaded;
917b627d 466 struct plist_head pushable_tasks;
fa85ae24 467#endif
6f505b16 468 int rt_throttled;
fa85ae24 469 u64 rt_time;
ac086bc2 470 u64 rt_runtime;
ea736ed5 471 /* Nests inside the rq lock: */
ac086bc2 472 spinlock_t rt_runtime_lock;
6f505b16 473
052f1dc7 474#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
475 unsigned long rt_nr_boosted;
476
6f505b16
PZ
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481#endif
6aa645ea
IM
482};
483
57d885fe
GH
484#ifdef CONFIG_SMP
485
486/*
487 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
57d885fe
GH
493 */
494struct root_domain {
495 atomic_t refcount;
c6c4927b
RR
496 cpumask_var_t span;
497 cpumask_var_t online;
637f5085 498
0eab9146 499 /*
637f5085
GH
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
c6c4927b 503 cpumask_var_t rto_mask;
0eab9146 504 atomic_t rto_count;
6e0534f2
GH
505#ifdef CONFIG_SMP
506 struct cpupri cpupri;
507#endif
57d885fe
GH
508};
509
dc938520
GH
510/*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
57d885fe
GH
514static struct root_domain def_root_domain;
515
516#endif
517
1da177e4
LT
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
70b97a7f 525struct rq {
d8016491
IM
526 /* runqueue lock: */
527 spinlock_t lock;
1da177e4
LT
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
6aa645ea
IM
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 536#ifdef CONFIG_NO_HZ
15934a37 537 unsigned long last_tick_seen;
46cb4b7c
SS
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
23a185ca 544 u64 nr_migrations_in;
6aa645ea
IM
545
546 struct cfs_rq cfs;
6f505b16 547 struct rt_rq rt;
6f505b16 548
6aa645ea 549#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
550 /* list of leaf cfs_rq on this cpu: */
551 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
552#endif
553#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 554 struct list_head leaf_rt_rq_list;
1da177e4 555#endif
1da177e4
LT
556
557 /*
558 * This is part of a global counter where only the total sum
559 * over all CPUs matters. A task can increase this counter on
560 * one CPU and if it got migrated afterwards it may decrease
561 * it on another CPU. Always updated under the runqueue lock:
562 */
563 unsigned long nr_uninterruptible;
564
36c8b586 565 struct task_struct *curr, *idle;
c9819f45 566 unsigned long next_balance;
1da177e4 567 struct mm_struct *prev_mm;
6aa645ea 568
3e51f33f 569 u64 clock;
6aa645ea 570
1da177e4
LT
571 atomic_t nr_iowait;
572
573#ifdef CONFIG_SMP
0eab9146 574 struct root_domain *rd;
1da177e4
LT
575 struct sched_domain *sd;
576
a0a522ce 577 unsigned char idle_at_tick;
1da177e4 578 /* For active balancing */
3f029d3c 579 int post_schedule;
1da177e4
LT
580 int active_balance;
581 int push_cpu;
d8016491
IM
582 /* cpu of this runqueue: */
583 int cpu;
1f11eb6a 584 int online;
1da177e4 585
a8a51d5e 586 unsigned long avg_load_per_task;
1da177e4 587
36c8b586 588 struct task_struct *migration_thread;
1da177e4 589 struct list_head migration_queue;
e9e9250b
PZ
590
591 u64 rt_avg;
592 u64 age_stamp;
1da177e4
LT
593#endif
594
dce48a84
TG
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
8f4d37ec 599#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
600#ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603#endif
8f4d37ec
PZ
604 struct hrtimer hrtick_timer;
605#endif
606
1da177e4
LT
607#ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
9c2c4802
KC
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
612
613 /* sys_sched_yield() stats */
480b9434 614 unsigned int yld_count;
1da177e4
LT
615
616 /* schedule() stats */
480b9434
KC
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
1da177e4
LT
620
621 /* try_to_wake_up() stats */
480b9434
KC
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
b8efb561
IM
624
625 /* BKL stats */
480b9434 626 unsigned int bkl_count;
1da177e4
LT
627#endif
628};
629
f34e3b61 630static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 631
7d478721
PZ
632static inline
633void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 634{
7d478721 635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
636}
637
0a2966b4
CL
638static inline int cpu_of(struct rq *rq)
639{
640#ifdef CONFIG_SMP
641 return rq->cpu;
642#else
643 return 0;
644#endif
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 661#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 662
aa9c4c0f 663inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
664{
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666}
667
bf5c91ba
IM
668/*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671#ifdef CONFIG_SCHED_DEBUG
672# define const_debug __read_mostly
673#else
674# define const_debug static const
675#endif
676
017730c1
IM
677/**
678 * runqueue_is_locked
679 *
680 * Returns true if the current cpu runqueue is locked.
681 * This interface allows printk to be called with the runqueue lock
682 * held and know whether or not it is OK to wake up the klogd.
683 */
89f19f04 684int runqueue_is_locked(int cpu)
017730c1 685{
89f19f04 686 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
687}
688
bf5c91ba
IM
689/*
690 * Debugging: various feature bits
691 */
f00b45c1
PZ
692
693#define SCHED_FEAT(name, enabled) \
694 __SCHED_FEAT_##name ,
695
bf5c91ba 696enum {
f00b45c1 697#include "sched_features.h"
bf5c91ba
IM
698};
699
f00b45c1
PZ
700#undef SCHED_FEAT
701
702#define SCHED_FEAT(name, enabled) \
703 (1UL << __SCHED_FEAT_##name) * enabled |
704
bf5c91ba 705const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
706#include "sched_features.h"
707 0;
708
709#undef SCHED_FEAT
710
711#ifdef CONFIG_SCHED_DEBUG
712#define SCHED_FEAT(name, enabled) \
713 #name ,
714
983ed7a6 715static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
716#include "sched_features.h"
717 NULL
718};
719
720#undef SCHED_FEAT
721
34f3a814 722static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 723{
f00b45c1
PZ
724 int i;
725
726 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
727 if (!(sysctl_sched_features & (1UL << i)))
728 seq_puts(m, "NO_");
729 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 730 }
34f3a814 731 seq_puts(m, "\n");
f00b45c1 732
34f3a814 733 return 0;
f00b45c1
PZ
734}
735
736static ssize_t
737sched_feat_write(struct file *filp, const char __user *ubuf,
738 size_t cnt, loff_t *ppos)
739{
740 char buf[64];
741 char *cmp = buf;
742 int neg = 0;
743 int i;
744
745 if (cnt > 63)
746 cnt = 63;
747
748 if (copy_from_user(&buf, ubuf, cnt))
749 return -EFAULT;
750
751 buf[cnt] = 0;
752
c24b7c52 753 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
754 neg = 1;
755 cmp += 3;
756 }
757
758 for (i = 0; sched_feat_names[i]; i++) {
759 int len = strlen(sched_feat_names[i]);
760
761 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
762 if (neg)
763 sysctl_sched_features &= ~(1UL << i);
764 else
765 sysctl_sched_features |= (1UL << i);
766 break;
767 }
768 }
769
770 if (!sched_feat_names[i])
771 return -EINVAL;
772
773 filp->f_pos += cnt;
774
775 return cnt;
776}
777
34f3a814
LZ
778static int sched_feat_open(struct inode *inode, struct file *filp)
779{
780 return single_open(filp, sched_feat_show, NULL);
781}
782
f00b45c1 783static struct file_operations sched_feat_fops = {
34f3a814
LZ
784 .open = sched_feat_open,
785 .write = sched_feat_write,
786 .read = seq_read,
787 .llseek = seq_lseek,
788 .release = single_release,
f00b45c1
PZ
789};
790
791static __init int sched_init_debug(void)
792{
f00b45c1
PZ
793 debugfs_create_file("sched_features", 0644, NULL, NULL,
794 &sched_feat_fops);
795
796 return 0;
797}
798late_initcall(sched_init_debug);
799
800#endif
801
802#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 803
b82d9fdd
PZ
804/*
805 * Number of tasks to iterate in a single balance run.
806 * Limited because this is done with IRQs disabled.
807 */
808const_debug unsigned int sysctl_sched_nr_migrate = 32;
809
2398f2c6
PZ
810/*
811 * ratelimit for updating the group shares.
55cd5340 812 * default: 0.25ms
2398f2c6 813 */
55cd5340 814unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 815
ffda12a1
PZ
816/*
817 * Inject some fuzzyness into changing the per-cpu group shares
818 * this avoids remote rq-locks at the expense of fairness.
819 * default: 4
820 */
821unsigned int sysctl_sched_shares_thresh = 4;
822
e9e9250b
PZ
823/*
824 * period over which we average the RT time consumption, measured
825 * in ms.
826 *
827 * default: 1s
828 */
829const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
830
fa85ae24 831/*
9f0c1e56 832 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
833 * default: 1s
834 */
9f0c1e56 835unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 836
6892b75e
IM
837static __read_mostly int scheduler_running;
838
9f0c1e56
PZ
839/*
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
842 */
843int sysctl_sched_rt_runtime = 950000;
fa85ae24 844
d0b27fa7
PZ
845static inline u64 global_rt_period(void)
846{
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848}
849
850static inline u64 global_rt_runtime(void)
851{
e26873bb 852 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
853 return RUNTIME_INF;
854
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856}
fa85ae24 857
1da177e4 858#ifndef prepare_arch_switch
4866cde0
NP
859# define prepare_arch_switch(next) do { } while (0)
860#endif
861#ifndef finish_arch_switch
862# define finish_arch_switch(prev) do { } while (0)
863#endif
864
051a1d1a
DA
865static inline int task_current(struct rq *rq, struct task_struct *p)
866{
867 return rq->curr == p;
868}
869
4866cde0 870#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 871static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 872{
051a1d1a 873 return task_current(rq, p);
4866cde0
NP
874}
875
70b97a7f 876static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
877{
878}
879
70b97a7f 880static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 881{
da04c035
IM
882#ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885#endif
8a25d5de
IM
886 /*
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
890 */
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892
4866cde0
NP
893 spin_unlock_irq(&rq->lock);
894}
895
896#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 897static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 return p->oncpu;
901#else
051a1d1a 902 return task_current(rq, p);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
913 */
914 next->oncpu = 1;
915#endif
916#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918#else
919 spin_unlock(&rq->lock);
920#endif
921}
922
70b97a7f 923static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 /*
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
930 */
931 smp_wmb();
932 prev->oncpu = 0;
933#endif
934#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
1da177e4 936#endif
4866cde0
NP
937}
938#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 939
b29739f9
IM
940/*
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
943 */
70b97a7f 944static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
945 __acquires(rq->lock)
946{
3a5c359a
AK
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
b29739f9 952 spin_unlock(&rq->lock);
b29739f9 953 }
b29739f9
IM
954}
955
1da177e4
LT
956/*
957 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 958 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
959 * explicitly disabling preemption.
960 */
70b97a7f 961static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
962 __acquires(rq->lock)
963{
70b97a7f 964 struct rq *rq;
1da177e4 965
3a5c359a
AK
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
1da177e4 972 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 973 }
1da177e4
LT
974}
975
ad474cac
ON
976void task_rq_unlock_wait(struct task_struct *p)
977{
978 struct rq *rq = task_rq(p);
979
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
982}
983
a9957449 984static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
985 __releases(rq->lock)
986{
987 spin_unlock(&rq->lock);
988}
989
70b97a7f 990static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
991 __releases(rq->lock)
992{
993 spin_unlock_irqrestore(&rq->lock, *flags);
994}
995
1da177e4 996/*
cc2a73b5 997 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 998 */
a9957449 999static struct rq *this_rq_lock(void)
1da177e4
LT
1000 __acquires(rq->lock)
1001{
70b97a7f 1002 struct rq *rq;
1da177e4
LT
1003
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1007
1008 return rq;
1009}
1010
8f4d37ec
PZ
1011#ifdef CONFIG_SCHED_HRTICK
1012/*
1013 * Use HR-timers to deliver accurate preemption points.
1014 *
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1018 *
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1021 */
8f4d37ec
PZ
1022
1023/*
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1027 */
1028static inline int hrtick_enabled(struct rq *rq)
1029{
1030 if (!sched_feat(HRTICK))
1031 return 0;
ba42059f 1032 if (!cpu_active(cpu_of(rq)))
b328ca18 1033 return 0;
8f4d37ec
PZ
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035}
1036
8f4d37ec
PZ
1037static void hrtick_clear(struct rq *rq)
1038{
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043/*
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1046 */
1047static enum hrtimer_restart hrtick(struct hrtimer *timer)
1048{
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1050
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1052
1053 spin_lock(&rq->lock);
3e51f33f 1054 update_rq_clock(rq);
8f4d37ec
PZ
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1057
1058 return HRTIMER_NORESTART;
1059}
1060
95e904c7 1061#ifdef CONFIG_SMP
31656519
PZ
1062/*
1063 * called from hardirq (IPI) context
1064 */
1065static void __hrtick_start(void *arg)
b328ca18 1066{
31656519 1067 struct rq *rq = arg;
b328ca18 1068
31656519
PZ
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
b328ca18
PZ
1073}
1074
31656519
PZ
1075/*
1076 * Called to set the hrtick timer state.
1077 *
1078 * called with rq->lock held and irqs disabled
1079 */
1080static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1081{
31656519
PZ
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1084
cc584b21 1085 hrtimer_set_expires(timer, time);
31656519
PZ
1086
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
6e275637 1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1091 rq->hrtick_csd_pending = 1;
1092 }
b328ca18
PZ
1093}
1094
1095static int
1096hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1097{
1098 int cpu = (int)(long)hcpu;
1099
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
31656519 1107 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1108 return NOTIFY_OK;
1109 }
1110
1111 return NOTIFY_DONE;
1112}
1113
fa748203 1114static __init void init_hrtick(void)
b328ca18
PZ
1115{
1116 hotcpu_notifier(hotplug_hrtick, 0);
1117}
31656519
PZ
1118#else
1119/*
1120 * Called to set the hrtick timer state.
1121 *
1122 * called with rq->lock held and irqs disabled
1123 */
1124static void hrtick_start(struct rq *rq, u64 delay)
1125{
7f1e2ca9 1126 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1127 HRTIMER_MODE_REL_PINNED, 0);
31656519 1128}
b328ca18 1129
006c75f1 1130static inline void init_hrtick(void)
8f4d37ec 1131{
8f4d37ec 1132}
31656519 1133#endif /* CONFIG_SMP */
8f4d37ec 1134
31656519 1135static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1136{
31656519
PZ
1137#ifdef CONFIG_SMP
1138 rq->hrtick_csd_pending = 0;
8f4d37ec 1139
31656519
PZ
1140 rq->hrtick_csd.flags = 0;
1141 rq->hrtick_csd.func = __hrtick_start;
1142 rq->hrtick_csd.info = rq;
1143#endif
8f4d37ec 1144
31656519
PZ
1145 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1146 rq->hrtick_timer.function = hrtick;
8f4d37ec 1147}
006c75f1 1148#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1149static inline void hrtick_clear(struct rq *rq)
1150{
1151}
1152
8f4d37ec
PZ
1153static inline void init_rq_hrtick(struct rq *rq)
1154{
1155}
1156
b328ca18
PZ
1157static inline void init_hrtick(void)
1158{
1159}
006c75f1 1160#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1161
c24d20db
IM
1162/*
1163 * resched_task - mark a task 'to be rescheduled now'.
1164 *
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1168 */
1169#ifdef CONFIG_SMP
1170
1171#ifndef tsk_is_polling
1172#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173#endif
1174
31656519 1175static void resched_task(struct task_struct *p)
c24d20db
IM
1176{
1177 int cpu;
1178
1179 assert_spin_locked(&task_rq(p)->lock);
1180
5ed0cec0 1181 if (test_tsk_need_resched(p))
c24d20db
IM
1182 return;
1183
5ed0cec0 1184 set_tsk_need_resched(p);
c24d20db
IM
1185
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1189
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1194}
1195
1196static void resched_cpu(int cpu)
1197{
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1200
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1205}
06d8308c
TG
1206
1207#ifdef CONFIG_NO_HZ
1208/*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218void wake_up_idle_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
5ed0cec0 1240 set_tsk_need_resched(rq->idle);
06d8308c
TG
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246}
6d6bc0ad 1247#endif /* CONFIG_NO_HZ */
06d8308c 1248
e9e9250b
PZ
1249static u64 sched_avg_period(void)
1250{
1251 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1252}
1253
1254static void sched_avg_update(struct rq *rq)
1255{
1256 s64 period = sched_avg_period();
1257
1258 while ((s64)(rq->clock - rq->age_stamp) > period) {
1259 rq->age_stamp += period;
1260 rq->rt_avg /= 2;
1261 }
1262}
1263
1264static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1265{
1266 rq->rt_avg += rt_delta;
1267 sched_avg_update(rq);
1268}
1269
6d6bc0ad 1270#else /* !CONFIG_SMP */
31656519 1271static void resched_task(struct task_struct *p)
c24d20db
IM
1272{
1273 assert_spin_locked(&task_rq(p)->lock);
31656519 1274 set_tsk_need_resched(p);
c24d20db 1275}
e9e9250b
PZ
1276
1277static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1278{
1279}
6d6bc0ad 1280#endif /* CONFIG_SMP */
c24d20db 1281
45bf76df
IM
1282#if BITS_PER_LONG == 32
1283# define WMULT_CONST (~0UL)
1284#else
1285# define WMULT_CONST (1UL << 32)
1286#endif
1287
1288#define WMULT_SHIFT 32
1289
194081eb
IM
1290/*
1291 * Shift right and round:
1292 */
cf2ab469 1293#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1294
a7be37ac
PZ
1295/*
1296 * delta *= weight / lw
1297 */
cb1c4fc9 1298static unsigned long
45bf76df
IM
1299calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301{
1302 u64 tmp;
1303
7a232e03
LJ
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
45bf76df
IM
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
194081eb 1316 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1318 WMULT_SHIFT/2);
1319 else
cf2ab469 1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1321
ecf691da 1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1323}
1324
1091985b 1325static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1326{
1327 lw->weight += inc;
e89996ae 1328 lw->inv_weight = 0;
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1332{
1333 lw->weight -= dec;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
2dd73a4f
PW
1337/*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
cce7ade8
PZ
1346#define WEIGHT_IDLEPRIO 3
1347#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1348
1349/*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
dd41f596
IM
1360 */
1361static const int prio_to_weight[40] = {
254753dc
IM
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1370};
1371
5714d2de
IM
1372/*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
dd41f596 1379static const u32 prio_to_wmult[40] = {
254753dc
IM
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1388};
2dd73a4f 1389
dd41f596
IM
1390static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392/*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401};
1402
e1d1484f
PW
1403#ifdef CONFIG_SMP
1404static unsigned long
1405balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410static int
1411iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
e1d1484f 1414#endif
dd41f596 1415
ef12fefa
BR
1416/* Time spent by the tasks of the cpu accounting group executing in ... */
1417enum cpuacct_stat_index {
1418 CPUACCT_STAT_USER, /* ... user mode */
1419 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1420
1421 CPUACCT_STAT_NSTATS,
1422};
1423
d842de87
SV
1424#ifdef CONFIG_CGROUP_CPUACCT
1425static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1426static void cpuacct_update_stats(struct task_struct *tsk,
1427 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1428#else
1429static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1430static inline void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1432#endif
1433
18d95a28
PZ
1434static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_add(&rq->load, load);
1437}
1438
1439static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_sub(&rq->load, load);
1442}
1443
7940ca36 1444#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1445typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1446
1447/*
1448 * Iterate the full tree, calling @down when first entering a node and @up when
1449 * leaving it for the final time.
1450 */
eb755805 1451static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1452{
1453 struct task_group *parent, *child;
eb755805 1454 int ret;
c09595f6
PZ
1455
1456 rcu_read_lock();
1457 parent = &root_task_group;
1458down:
eb755805
PZ
1459 ret = (*down)(parent, data);
1460 if (ret)
1461 goto out_unlock;
c09595f6
PZ
1462 list_for_each_entry_rcu(child, &parent->children, siblings) {
1463 parent = child;
1464 goto down;
1465
1466up:
1467 continue;
1468 }
eb755805
PZ
1469 ret = (*up)(parent, data);
1470 if (ret)
1471 goto out_unlock;
c09595f6
PZ
1472
1473 child = parent;
1474 parent = parent->parent;
1475 if (parent)
1476 goto up;
eb755805 1477out_unlock:
c09595f6 1478 rcu_read_unlock();
eb755805
PZ
1479
1480 return ret;
c09595f6
PZ
1481}
1482
eb755805
PZ
1483static int tg_nop(struct task_group *tg, void *data)
1484{
1485 return 0;
c09595f6 1486}
eb755805
PZ
1487#endif
1488
1489#ifdef CONFIG_SMP
f5f08f39
PZ
1490/* Used instead of source_load when we know the type == 0 */
1491static unsigned long weighted_cpuload(const int cpu)
1492{
1493 return cpu_rq(cpu)->load.weight;
1494}
1495
1496/*
1497 * Return a low guess at the load of a migration-source cpu weighted
1498 * according to the scheduling class and "nice" value.
1499 *
1500 * We want to under-estimate the load of migration sources, to
1501 * balance conservatively.
1502 */
1503static unsigned long source_load(int cpu, int type)
1504{
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long total = weighted_cpuload(cpu);
1507
1508 if (type == 0 || !sched_feat(LB_BIAS))
1509 return total;
1510
1511 return min(rq->cpu_load[type-1], total);
1512}
1513
1514/*
1515 * Return a high guess at the load of a migration-target cpu weighted
1516 * according to the scheduling class and "nice" value.
1517 */
1518static unsigned long target_load(int cpu, int type)
1519{
1520 struct rq *rq = cpu_rq(cpu);
1521 unsigned long total = weighted_cpuload(cpu);
1522
1523 if (type == 0 || !sched_feat(LB_BIAS))
1524 return total;
1525
1526 return max(rq->cpu_load[type-1], total);
1527}
1528
ae154be1
PZ
1529static struct sched_group *group_of(int cpu)
1530{
1531 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1532
1533 if (!sd)
1534 return NULL;
1535
1536 return sd->groups;
1537}
1538
1539static unsigned long power_of(int cpu)
1540{
1541 struct sched_group *group = group_of(cpu);
1542
1543 if (!group)
1544 return SCHED_LOAD_SCALE;
1545
1546 return group->cpu_power;
1547}
1548
eb755805
PZ
1549static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1550
1551static unsigned long cpu_avg_load_per_task(int cpu)
1552{
1553 struct rq *rq = cpu_rq(cpu);
af6d596f 1554 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1555
4cd42620
SR
1556 if (nr_running)
1557 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1558 else
1559 rq->avg_load_per_task = 0;
eb755805
PZ
1560
1561 return rq->avg_load_per_task;
1562}
1563
1564#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1565
34d76c41
PZ
1566struct update_shares_data {
1567 unsigned long rq_weight[NR_CPUS];
1568};
1569
1570static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1571
c09595f6
PZ
1572static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1573
1574/*
1575 * Calculate and set the cpu's group shares.
1576 */
34d76c41
PZ
1577static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 struct update_shares_data *usd)
18d95a28 1581{
34d76c41 1582 unsigned long shares, rq_weight;
a5004278 1583 int boost = 0;
c09595f6 1584
34d76c41 1585 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1589 }
c8cba857 1590
c09595f6 1591 /*
a8af7246
PZ
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
c09595f6 1595 */
ec4e0e2f 1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1598
ffda12a1
PZ
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
c09595f6 1603
ffda12a1 1604 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1609 }
18d95a28 1610}
c09595f6
PZ
1611
1612/*
c8cba857
PZ
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
c09595f6 1616 */
eb755805 1617static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1618{
34d76c41
PZ
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 struct update_shares_data *usd;
eb755805 1621 struct sched_domain *sd = data;
34d76c41 1622 unsigned long flags;
c8cba857 1623 int i;
c09595f6 1624
34d76c41
PZ
1625 if (!tg->se[0])
1626 return 0;
1627
1628 local_irq_save(flags);
1629 usd = &__get_cpu_var(update_shares_data);
1630
758b2cdc 1631 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd->rq_weight[i] = weight;
1634
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
ec4e0e2f 1643 rq_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
c8cba857
PZ
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1649
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
c09595f6 1652
758b2cdc 1653 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1655
1656 local_irq_restore(flags);
eb755805
PZ
1657
1658 return 0;
c09595f6
PZ
1659}
1660
1661/*
c8cba857
PZ
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
c09595f6 1665 */
eb755805 1666static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1667{
c8cba857 1668 unsigned long load;
eb755805 1669 long cpu = (long)data;
c09595f6 1670
c8cba857
PZ
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1677 }
c09595f6 1678
c8cba857 1679 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1680
eb755805 1681 return 0;
c09595f6
PZ
1682}
1683
c8cba857 1684static void update_shares(struct sched_domain *sd)
4d8d595d 1685{
e7097159
PZ
1686 s64 elapsed;
1687 u64 now;
1688
1689 if (root_task_group_empty())
1690 return;
1691
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
2398f2c6
PZ
1694
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
eb755805 1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1698 }
4d8d595d
PZ
1699}
1700
3e5459b4
PZ
1701static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1702{
e7097159
PZ
1703 if (root_task_group_empty())
1704 return;
1705
3e5459b4
PZ
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1709}
1710
eb755805 1711static void update_h_load(long cpu)
c09595f6 1712{
e7097159
PZ
1713 if (root_task_group_empty())
1714 return;
1715
eb755805 1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1717}
1718
c09595f6
PZ
1719#else
1720
c8cba857 1721static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1722{
1723}
1724
3e5459b4
PZ
1725static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1726{
1727}
1728
18d95a28
PZ
1729#endif
1730
8f45e2b5
GH
1731#ifdef CONFIG_PREEMPT
1732
b78bb868
PZ
1733static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1734
70574a99 1735/*
8f45e2b5
GH
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
70574a99 1742 */
8f45e2b5
GH
1743static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1747{
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1750
1751 return 1;
1752}
1753
1754#else
1755/*
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1761 */
1762static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1766{
1767 int ret = 0;
1768
70574a99
AD
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1777 }
1778 return ret;
1779}
1780
8f45e2b5
GH
1781#endif /* CONFIG_PREEMPT */
1782
1783/*
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1785 */
1786static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1787{
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1792 }
1793
1794 return _double_lock_balance(this_rq, busiest);
1795}
1796
70574a99
AD
1797static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1799{
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1802}
18d95a28
PZ
1803#endif
1804
30432094 1805#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1806static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1807{
30432094 1808#ifdef CONFIG_SMP
34e83e85
IM
1809 cfs_rq->shares = shares;
1810#endif
1811}
30432094 1812#endif
e7693a36 1813
dce48a84
TG
1814static void calc_load_account_active(struct rq *this_rq);
1815
dd41f596 1816#include "sched_stats.h"
dd41f596 1817#include "sched_idletask.c"
5522d5d5
IM
1818#include "sched_fair.c"
1819#include "sched_rt.c"
dd41f596
IM
1820#ifdef CONFIG_SCHED_DEBUG
1821# include "sched_debug.c"
1822#endif
1823
1824#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1825#define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
dd41f596 1827
c09595f6 1828static void inc_nr_running(struct rq *rq)
9c217245
IM
1829{
1830 rq->nr_running++;
9c217245
IM
1831}
1832
c09595f6 1833static void dec_nr_running(struct rq *rq)
9c217245
IM
1834{
1835 rq->nr_running--;
9c217245
IM
1836}
1837
45bf76df
IM
1838static void set_load_weight(struct task_struct *p)
1839{
1840 if (task_has_rt_policy(p)) {
dd41f596
IM
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1844 }
45bf76df 1845
dd41f596
IM
1846 /*
1847 * SCHED_IDLE tasks get minimal weight:
1848 */
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1853 }
71f8bd46 1854
dd41f596
IM
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1857}
1858
2087a1ad
GH
1859static void update_avg(u64 *avg, u64 sample)
1860{
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1863}
1864
8159f87e 1865static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1866{
831451ac
PZ
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1869
dd41f596 1870 sched_info_queued(p);
fd390f6a 1871 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1872 p->se.on_rq = 1;
71f8bd46
IM
1873}
1874
69be72c1 1875static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1876{
831451ac
PZ
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1885 }
2087a1ad
GH
1886 }
1887
46ac22ba 1888 sched_info_dequeued(p);
f02231e5 1889 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1890 p->se.on_rq = 0;
71f8bd46
IM
1891}
1892
14531189 1893/*
dd41f596 1894 * __normal_prio - return the priority that is based on the static prio
14531189 1895 */
14531189
IM
1896static inline int __normal_prio(struct task_struct *p)
1897{
dd41f596 1898 return p->static_prio;
14531189
IM
1899}
1900
b29739f9
IM
1901/*
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1907 */
36c8b586 1908static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1909{
1910 int prio;
1911
e05606d3 1912 if (task_has_rt_policy(p))
b29739f9
IM
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1917}
1918
1919/*
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1925 */
36c8b586 1926static int effective_prio(struct task_struct *p)
b29739f9
IM
1927{
1928 p->normal_prio = normal_prio(p);
1929 /*
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1933 */
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1937}
1938
1da177e4 1939/*
dd41f596 1940 * activate_task - move a task to the runqueue.
1da177e4 1941 */
dd41f596 1942static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1943{
d9514f6c 1944 if (task_contributes_to_load(p))
dd41f596 1945 rq->nr_uninterruptible--;
1da177e4 1946
8159f87e 1947 enqueue_task(rq, p, wakeup);
c09595f6 1948 inc_nr_running(rq);
1da177e4
LT
1949}
1950
1da177e4
LT
1951/*
1952 * deactivate_task - remove a task from the runqueue.
1953 */
2e1cb74a 1954static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1955{
d9514f6c 1956 if (task_contributes_to_load(p))
dd41f596
IM
1957 rq->nr_uninterruptible++;
1958
69be72c1 1959 dequeue_task(rq, p, sleep);
c09595f6 1960 dec_nr_running(rq);
1da177e4
LT
1961}
1962
1da177e4
LT
1963/**
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1966 */
36c8b586 1967inline int task_curr(const struct task_struct *p)
1da177e4
LT
1968{
1969 return cpu_curr(task_cpu(p)) == p;
1970}
1971
dd41f596
IM
1972static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1973{
6f505b16 1974 set_task_rq(p, cpu);
dd41f596 1975#ifdef CONFIG_SMP
ce96b5ac
DA
1976 /*
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1980 */
1981 smp_wmb();
dd41f596 1982 task_thread_info(p)->cpu = cpu;
dd41f596 1983#endif
2dd73a4f
PW
1984}
1985
cb469845
SR
1986static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1989{
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1996}
1997
1da177e4 1998#ifdef CONFIG_SMP
cc367732
IM
1999/*
2000 * Is this task likely cache-hot:
2001 */
e7693a36 2002static int
cc367732
IM
2003task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004{
2005 s64 delta;
2006
f540a608
IM
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
4793241b
PZ
2010 if (sched_feat(CACHE_HOT_BUDDY) &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2013 return 1;
2014
cc367732
IM
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
6bc1665b
IM
2018 if (sysctl_sched_migration_cost == -1)
2019 return 1;
2020 if (sysctl_sched_migration_cost == 0)
2021 return 0;
2022
cc367732
IM
2023 delta = now - p->se.exec_start;
2024
2025 return delta < (s64)sysctl_sched_migration_cost;
2026}
2027
2028
dd41f596 2029void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2030{
dd41f596
IM
2031 int old_cpu = task_cpu(p);
2032 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2033 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2034 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2035 u64 clock_offset;
dd41f596
IM
2036
2037 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2038
de1d7286 2039 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2040
6cfb0d5d
IM
2041#ifdef CONFIG_SCHEDSTATS
2042 if (p->se.wait_start)
2043 p->se.wait_start -= clock_offset;
dd41f596
IM
2044 if (p->se.sleep_start)
2045 p->se.sleep_start -= clock_offset;
2046 if (p->se.block_start)
2047 p->se.block_start -= clock_offset;
6c594c21 2048#endif
cc367732 2049 if (old_cpu != new_cpu) {
6c594c21 2050 p->se.nr_migrations++;
23a185ca 2051 new_rq->nr_migrations_in++;
6c594c21 2052#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2055#endif
e5289d4a
PZ
2056 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
6c594c21 2058 }
2830cf8c
SV
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
dd41f596
IM
2061
2062 __set_task_cpu(p, new_cpu);
c65cc870
IM
2063}
2064
70b97a7f 2065struct migration_req {
1da177e4 2066 struct list_head list;
1da177e4 2067
36c8b586 2068 struct task_struct *task;
1da177e4
LT
2069 int dest_cpu;
2070
1da177e4 2071 struct completion done;
70b97a7f 2072};
1da177e4
LT
2073
2074/*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
36c8b586 2078static int
70b97a7f 2079migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2080{
70b97a7f 2081 struct rq *rq = task_rq(p);
1da177e4
LT
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
dd41f596 2087 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
1da177e4
LT
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
48f24c4d 2096
1da177e4
LT
2097 return 1;
2098}
2099
a26b89f0
MM
2100/*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106void wait_task_context_switch(struct task_struct *p)
2107{
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141}
2142
1da177e4
LT
2143/*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
85ba2d86
RM
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
1da177e4
LT
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
85ba2d86 2159unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2160{
2161 unsigned long flags;
dd41f596 2162 int running, on_rq;
85ba2d86 2163 unsigned long ncsw;
70b97a7f 2164 struct rq *rq;
1da177e4 2165
3a5c359a
AK
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
fa490cfd 2174
3a5c359a
AK
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
85ba2d86
RM
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
3a5c359a 2189 cpu_relax();
85ba2d86 2190 }
fa490cfd 2191
3a5c359a
AK
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
0a16b607 2198 trace_sched_wait_task(rq, p);
3a5c359a
AK
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
85ba2d86 2201 ncsw = 0;
f31e11d8 2202 if (!match_state || p->state == match_state)
93dcf55f 2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2204 task_rq_unlock(rq, &flags);
fa490cfd 2205
85ba2d86
RM
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
3a5c359a
AK
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
fa490cfd 2222
3a5c359a
AK
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
80dd99b3 2228 * So if it was still runnable (but just not actively
3a5c359a
AK
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
fa490cfd 2236
3a5c359a
AK
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
85ba2d86
RM
2244
2245 return ncsw;
1da177e4
LT
2246}
2247
2248/***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
36c8b586 2261void kick_process(struct task_struct *p)
1da177e4
LT
2262{
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270}
b43e3521 2271EXPORT_SYMBOL_GPL(kick_process);
476d139c 2272#endif /* CONFIG_SMP */
1da177e4 2273
0793a61d
TG
2274/**
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2279 *
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2282 */
2283void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2285{
2286 int cpu;
2287
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2293}
2294
1da177e4
LT
2295/***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2300 *
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2306 *
2307 * returns failure only if the task is already active.
2308 */
7d478721
PZ
2309static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
1da177e4 2311{
cc367732 2312 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2313 unsigned long flags;
70b97a7f 2314 struct rq *rq;
1da177e4 2315
b85d0667 2316 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2317 wake_flags &= ~WF_SYNC;
2398f2c6 2318
e9c84311 2319 this_cpu = get_cpu();
2398f2c6 2320
04e2f174 2321 smp_wmb();
1da177e4 2322 rq = task_rq_lock(p, &flags);
03e89e45 2323 update_rq_clock(rq);
e9c84311 2324 if (!(p->state & state))
1da177e4
LT
2325 goto out;
2326
dd41f596 2327 if (p->se.on_rq)
1da177e4
LT
2328 goto out_running;
2329
2330 cpu = task_cpu(p);
cc367732 2331 orig_cpu = cpu;
1da177e4
LT
2332
2333#ifdef CONFIG_SMP
2334 if (unlikely(task_running(rq, p)))
2335 goto out_activate;
2336
e9c84311
PZ
2337 /*
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
eb24073b
IM
2340 *
2341 * First fix up the nr_uninterruptible count:
e9c84311 2342 */
eb24073b
IM
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
e9c84311
PZ
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2347
7d478721 2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2349 if (cpu != orig_cpu)
5d2f5a61 2350 set_task_cpu(p, cpu);
1da177e4 2351
e9c84311
PZ
2352 rq = task_rq_lock(p, &flags);
2353 WARN_ON(p->state != TASK_WAKING);
2354 cpu = task_cpu(p);
1da177e4 2355
e7693a36
GH
2356#ifdef CONFIG_SCHEDSTATS
2357 schedstat_inc(rq, ttwu_count);
2358 if (cpu == this_cpu)
2359 schedstat_inc(rq, ttwu_local);
2360 else {
2361 struct sched_domain *sd;
2362 for_each_domain(this_cpu, sd) {
758b2cdc 2363 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2364 schedstat_inc(sd, ttwu_wake_remote);
2365 break;
2366 }
2367 }
2368 }
6d6bc0ad 2369#endif /* CONFIG_SCHEDSTATS */
e7693a36 2370
1da177e4
LT
2371out_activate:
2372#endif /* CONFIG_SMP */
cc367732 2373 schedstat_inc(p, se.nr_wakeups);
7d478721 2374 if (wake_flags & WF_SYNC)
cc367732
IM
2375 schedstat_inc(p, se.nr_wakeups_sync);
2376 if (orig_cpu != cpu)
2377 schedstat_inc(p, se.nr_wakeups_migrate);
2378 if (cpu == this_cpu)
2379 schedstat_inc(p, se.nr_wakeups_local);
2380 else
2381 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2382 activate_task(rq, p, 1);
1da177e4
LT
2383 success = 1;
2384
831451ac
PZ
2385 /*
2386 * Only attribute actual wakeups done by this task.
2387 */
2388 if (!in_interrupt()) {
2389 struct sched_entity *se = &current->se;
2390 u64 sample = se->sum_exec_runtime;
2391
2392 if (se->last_wakeup)
2393 sample -= se->last_wakeup;
2394 else
2395 sample -= se->start_runtime;
2396 update_avg(&se->avg_wakeup, sample);
2397
2398 se->last_wakeup = se->sum_exec_runtime;
2399 }
2400
1da177e4 2401out_running:
468a15bb 2402 trace_sched_wakeup(rq, p, success);
7d478721 2403 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2404
1da177e4 2405 p->state = TASK_RUNNING;
9a897c5a
SR
2406#ifdef CONFIG_SMP
2407 if (p->sched_class->task_wake_up)
2408 p->sched_class->task_wake_up(rq, p);
2409#endif
1da177e4
LT
2410out:
2411 task_rq_unlock(rq, &flags);
e9c84311 2412 put_cpu();
1da177e4
LT
2413
2414 return success;
2415}
2416
50fa610a
DH
2417/**
2418 * wake_up_process - Wake up a specific process
2419 * @p: The process to be woken up.
2420 *
2421 * Attempt to wake up the nominated process and move it to the set of runnable
2422 * processes. Returns 1 if the process was woken up, 0 if it was already
2423 * running.
2424 *
2425 * It may be assumed that this function implies a write memory barrier before
2426 * changing the task state if and only if any tasks are woken up.
2427 */
7ad5b3a5 2428int wake_up_process(struct task_struct *p)
1da177e4 2429{
d9514f6c 2430 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2431}
1da177e4
LT
2432EXPORT_SYMBOL(wake_up_process);
2433
7ad5b3a5 2434int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2435{
2436 return try_to_wake_up(p, state, 0);
2437}
2438
1da177e4
LT
2439/*
2440 * Perform scheduler related setup for a newly forked process p.
2441 * p is forked by current.
dd41f596
IM
2442 *
2443 * __sched_fork() is basic setup used by init_idle() too:
2444 */
2445static void __sched_fork(struct task_struct *p)
2446{
dd41f596
IM
2447 p->se.exec_start = 0;
2448 p->se.sum_exec_runtime = 0;
f6cf891c 2449 p->se.prev_sum_exec_runtime = 0;
6c594c21 2450 p->se.nr_migrations = 0;
4ae7d5ce
IM
2451 p->se.last_wakeup = 0;
2452 p->se.avg_overlap = 0;
831451ac
PZ
2453 p->se.start_runtime = 0;
2454 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2455 p->se.avg_running = 0;
6cfb0d5d
IM
2456
2457#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2458 p->se.wait_start = 0;
2459 p->se.wait_max = 0;
2460 p->se.wait_count = 0;
2461 p->se.wait_sum = 0;
2462
2463 p->se.sleep_start = 0;
2464 p->se.sleep_max = 0;
2465 p->se.sum_sleep_runtime = 0;
2466
2467 p->se.block_start = 0;
2468 p->se.block_max = 0;
2469 p->se.exec_max = 0;
2470 p->se.slice_max = 0;
2471
2472 p->se.nr_migrations_cold = 0;
2473 p->se.nr_failed_migrations_affine = 0;
2474 p->se.nr_failed_migrations_running = 0;
2475 p->se.nr_failed_migrations_hot = 0;
2476 p->se.nr_forced_migrations = 0;
2477 p->se.nr_forced2_migrations = 0;
2478
2479 p->se.nr_wakeups = 0;
2480 p->se.nr_wakeups_sync = 0;
2481 p->se.nr_wakeups_migrate = 0;
2482 p->se.nr_wakeups_local = 0;
2483 p->se.nr_wakeups_remote = 0;
2484 p->se.nr_wakeups_affine = 0;
2485 p->se.nr_wakeups_affine_attempts = 0;
2486 p->se.nr_wakeups_passive = 0;
2487 p->se.nr_wakeups_idle = 0;
2488
6cfb0d5d 2489#endif
476d139c 2490
fa717060 2491 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2492 p->se.on_rq = 0;
4a55bd5e 2493 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2494
e107be36
AK
2495#ifdef CONFIG_PREEMPT_NOTIFIERS
2496 INIT_HLIST_HEAD(&p->preempt_notifiers);
2497#endif
2498
1da177e4
LT
2499 /*
2500 * We mark the process as running here, but have not actually
2501 * inserted it onto the runqueue yet. This guarantees that
2502 * nobody will actually run it, and a signal or other external
2503 * event cannot wake it up and insert it on the runqueue either.
2504 */
2505 p->state = TASK_RUNNING;
dd41f596
IM
2506}
2507
2508/*
2509 * fork()/clone()-time setup:
2510 */
2511void sched_fork(struct task_struct *p, int clone_flags)
2512{
2513 int cpu = get_cpu();
2514
2515 __sched_fork(p);
2516
b29739f9 2517 /*
b9dc29e7 2518 * Make sure we do not leak PI boosting priority to the child.
b29739f9
IM
2519 */
2520 p->prio = current->normal_prio;
ca94c442 2521
b9dc29e7
MG
2522 /*
2523 * Revert to default priority/policy on fork if requested.
2524 */
2525 if (unlikely(p->sched_reset_on_fork)) {
2526 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2527 p->policy = SCHED_NORMAL;
2528
2529 if (p->normal_prio < DEFAULT_PRIO)
2530 p->prio = DEFAULT_PRIO;
2531
6c697bdf
MG
2532 if (PRIO_TO_NICE(p->static_prio) < 0) {
2533 p->static_prio = NICE_TO_PRIO(0);
2534 set_load_weight(p);
2535 }
2536
b9dc29e7
MG
2537 /*
2538 * We don't need the reset flag anymore after the fork. It has
2539 * fulfilled its duty:
2540 */
2541 p->sched_reset_on_fork = 0;
2542 }
ca94c442 2543
2ddbf952
HS
2544 if (!rt_prio(p->prio))
2545 p->sched_class = &fair_sched_class;
b29739f9 2546
5f3edc1b
PZ
2547#ifdef CONFIG_SMP
2548 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2549#endif
2550 set_task_cpu(p, cpu);
2551
52f17b6c 2552#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2553 if (likely(sched_info_on()))
52f17b6c 2554 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2555#endif
d6077cb8 2556#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2557 p->oncpu = 0;
2558#endif
1da177e4 2559#ifdef CONFIG_PREEMPT
4866cde0 2560 /* Want to start with kernel preemption disabled. */
a1261f54 2561 task_thread_info(p)->preempt_count = 1;
1da177e4 2562#endif
917b627d
GH
2563 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2564
476d139c 2565 put_cpu();
1da177e4
LT
2566}
2567
2568/*
2569 * wake_up_new_task - wake up a newly created task for the first time.
2570 *
2571 * This function will do some initial scheduler statistics housekeeping
2572 * that must be done for every newly created context, then puts the task
2573 * on the runqueue and wakes it.
2574 */
7ad5b3a5 2575void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2576{
2577 unsigned long flags;
dd41f596 2578 struct rq *rq;
1da177e4
LT
2579
2580 rq = task_rq_lock(p, &flags);
147cbb4b 2581 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2582 update_rq_clock(rq);
1da177e4
LT
2583
2584 p->prio = effective_prio(p);
2585
b9dca1e0 2586 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2587 activate_task(rq, p, 0);
1da177e4 2588 } else {
1da177e4 2589 /*
dd41f596
IM
2590 * Let the scheduling class do new task startup
2591 * management (if any):
1da177e4 2592 */
ee0827d8 2593 p->sched_class->task_new(rq, p);
c09595f6 2594 inc_nr_running(rq);
1da177e4 2595 }
c71dd42d 2596 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2597 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2598#ifdef CONFIG_SMP
2599 if (p->sched_class->task_wake_up)
2600 p->sched_class->task_wake_up(rq, p);
2601#endif
dd41f596 2602 task_rq_unlock(rq, &flags);
1da177e4
LT
2603}
2604
e107be36
AK
2605#ifdef CONFIG_PREEMPT_NOTIFIERS
2606
2607/**
80dd99b3 2608 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2609 * @notifier: notifier struct to register
e107be36
AK
2610 */
2611void preempt_notifier_register(struct preempt_notifier *notifier)
2612{
2613 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2614}
2615EXPORT_SYMBOL_GPL(preempt_notifier_register);
2616
2617/**
2618 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2619 * @notifier: notifier struct to unregister
e107be36
AK
2620 *
2621 * This is safe to call from within a preemption notifier.
2622 */
2623void preempt_notifier_unregister(struct preempt_notifier *notifier)
2624{
2625 hlist_del(&notifier->link);
2626}
2627EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2628
2629static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2630{
2631 struct preempt_notifier *notifier;
2632 struct hlist_node *node;
2633
2634 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2635 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2636}
2637
2638static void
2639fire_sched_out_preempt_notifiers(struct task_struct *curr,
2640 struct task_struct *next)
2641{
2642 struct preempt_notifier *notifier;
2643 struct hlist_node *node;
2644
2645 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2646 notifier->ops->sched_out(notifier, next);
2647}
2648
6d6bc0ad 2649#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2650
2651static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2652{
2653}
2654
2655static void
2656fire_sched_out_preempt_notifiers(struct task_struct *curr,
2657 struct task_struct *next)
2658{
2659}
2660
6d6bc0ad 2661#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2662
4866cde0
NP
2663/**
2664 * prepare_task_switch - prepare to switch tasks
2665 * @rq: the runqueue preparing to switch
421cee29 2666 * @prev: the current task that is being switched out
4866cde0
NP
2667 * @next: the task we are going to switch to.
2668 *
2669 * This is called with the rq lock held and interrupts off. It must
2670 * be paired with a subsequent finish_task_switch after the context
2671 * switch.
2672 *
2673 * prepare_task_switch sets up locking and calls architecture specific
2674 * hooks.
2675 */
e107be36
AK
2676static inline void
2677prepare_task_switch(struct rq *rq, struct task_struct *prev,
2678 struct task_struct *next)
4866cde0 2679{
e107be36 2680 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2681 prepare_lock_switch(rq, next);
2682 prepare_arch_switch(next);
2683}
2684
1da177e4
LT
2685/**
2686 * finish_task_switch - clean up after a task-switch
344babaa 2687 * @rq: runqueue associated with task-switch
1da177e4
LT
2688 * @prev: the thread we just switched away from.
2689 *
4866cde0
NP
2690 * finish_task_switch must be called after the context switch, paired
2691 * with a prepare_task_switch call before the context switch.
2692 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2693 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2694 *
2695 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2696 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2697 * with the lock held can cause deadlocks; see schedule() for
2698 * details.)
2699 */
a9957449 2700static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2701 __releases(rq->lock)
2702{
1da177e4 2703 struct mm_struct *mm = rq->prev_mm;
55a101f8 2704 long prev_state;
1da177e4
LT
2705
2706 rq->prev_mm = NULL;
2707
2708 /*
2709 * A task struct has one reference for the use as "current".
c394cc9f 2710 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2711 * schedule one last time. The schedule call will never return, and
2712 * the scheduled task must drop that reference.
c394cc9f 2713 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2714 * still held, otherwise prev could be scheduled on another cpu, die
2715 * there before we look at prev->state, and then the reference would
2716 * be dropped twice.
2717 * Manfred Spraul <manfred@colorfullife.com>
2718 */
55a101f8 2719 prev_state = prev->state;
4866cde0 2720 finish_arch_switch(prev);
0793a61d 2721 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2722 finish_lock_switch(rq, prev);
e8fa1362 2723
e107be36 2724 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2725 if (mm)
2726 mmdrop(mm);
c394cc9f 2727 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2728 /*
2729 * Remove function-return probe instances associated with this
2730 * task and put them back on the free list.
9761eea8 2731 */
c6fd91f0 2732 kprobe_flush_task(prev);
1da177e4 2733 put_task_struct(prev);
c6fd91f0 2734 }
1da177e4
LT
2735}
2736
3f029d3c
GH
2737#ifdef CONFIG_SMP
2738
2739/* assumes rq->lock is held */
2740static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2741{
2742 if (prev->sched_class->pre_schedule)
2743 prev->sched_class->pre_schedule(rq, prev);
2744}
2745
2746/* rq->lock is NOT held, but preemption is disabled */
2747static inline void post_schedule(struct rq *rq)
2748{
2749 if (rq->post_schedule) {
2750 unsigned long flags;
2751
2752 spin_lock_irqsave(&rq->lock, flags);
2753 if (rq->curr->sched_class->post_schedule)
2754 rq->curr->sched_class->post_schedule(rq);
2755 spin_unlock_irqrestore(&rq->lock, flags);
2756
2757 rq->post_schedule = 0;
2758 }
2759}
2760
2761#else
da19ab51 2762
3f029d3c
GH
2763static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2764{
2765}
2766
2767static inline void post_schedule(struct rq *rq)
2768{
1da177e4
LT
2769}
2770
3f029d3c
GH
2771#endif
2772
1da177e4
LT
2773/**
2774 * schedule_tail - first thing a freshly forked thread must call.
2775 * @prev: the thread we just switched away from.
2776 */
36c8b586 2777asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2778 __releases(rq->lock)
2779{
70b97a7f
IM
2780 struct rq *rq = this_rq();
2781
4866cde0 2782 finish_task_switch(rq, prev);
da19ab51 2783
3f029d3c
GH
2784 /*
2785 * FIXME: do we need to worry about rq being invalidated by the
2786 * task_switch?
2787 */
2788 post_schedule(rq);
70b97a7f 2789
4866cde0
NP
2790#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2791 /* In this case, finish_task_switch does not reenable preemption */
2792 preempt_enable();
2793#endif
1da177e4 2794 if (current->set_child_tid)
b488893a 2795 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2796}
2797
2798/*
2799 * context_switch - switch to the new MM and the new
2800 * thread's register state.
2801 */
dd41f596 2802static inline void
70b97a7f 2803context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2804 struct task_struct *next)
1da177e4 2805{
dd41f596 2806 struct mm_struct *mm, *oldmm;
1da177e4 2807
e107be36 2808 prepare_task_switch(rq, prev, next);
0a16b607 2809 trace_sched_switch(rq, prev, next);
dd41f596
IM
2810 mm = next->mm;
2811 oldmm = prev->active_mm;
9226d125
ZA
2812 /*
2813 * For paravirt, this is coupled with an exit in switch_to to
2814 * combine the page table reload and the switch backend into
2815 * one hypercall.
2816 */
224101ed 2817 arch_start_context_switch(prev);
9226d125 2818
dd41f596 2819 if (unlikely(!mm)) {
1da177e4
LT
2820 next->active_mm = oldmm;
2821 atomic_inc(&oldmm->mm_count);
2822 enter_lazy_tlb(oldmm, next);
2823 } else
2824 switch_mm(oldmm, mm, next);
2825
dd41f596 2826 if (unlikely(!prev->mm)) {
1da177e4 2827 prev->active_mm = NULL;
1da177e4
LT
2828 rq->prev_mm = oldmm;
2829 }
3a5f5e48
IM
2830 /*
2831 * Since the runqueue lock will be released by the next
2832 * task (which is an invalid locking op but in the case
2833 * of the scheduler it's an obvious special-case), so we
2834 * do an early lockdep release here:
2835 */
2836#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2837 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2838#endif
1da177e4
LT
2839
2840 /* Here we just switch the register state and the stack. */
2841 switch_to(prev, next, prev);
2842
dd41f596
IM
2843 barrier();
2844 /*
2845 * this_rq must be evaluated again because prev may have moved
2846 * CPUs since it called schedule(), thus the 'rq' on its stack
2847 * frame will be invalid.
2848 */
2849 finish_task_switch(this_rq(), prev);
1da177e4
LT
2850}
2851
2852/*
2853 * nr_running, nr_uninterruptible and nr_context_switches:
2854 *
2855 * externally visible scheduler statistics: current number of runnable
2856 * threads, current number of uninterruptible-sleeping threads, total
2857 * number of context switches performed since bootup.
2858 */
2859unsigned long nr_running(void)
2860{
2861 unsigned long i, sum = 0;
2862
2863 for_each_online_cpu(i)
2864 sum += cpu_rq(i)->nr_running;
2865
2866 return sum;
2867}
2868
2869unsigned long nr_uninterruptible(void)
2870{
2871 unsigned long i, sum = 0;
2872
0a945022 2873 for_each_possible_cpu(i)
1da177e4
LT
2874 sum += cpu_rq(i)->nr_uninterruptible;
2875
2876 /*
2877 * Since we read the counters lockless, it might be slightly
2878 * inaccurate. Do not allow it to go below zero though:
2879 */
2880 if (unlikely((long)sum < 0))
2881 sum = 0;
2882
2883 return sum;
2884}
2885
2886unsigned long long nr_context_switches(void)
2887{
cc94abfc
SR
2888 int i;
2889 unsigned long long sum = 0;
1da177e4 2890
0a945022 2891 for_each_possible_cpu(i)
1da177e4
LT
2892 sum += cpu_rq(i)->nr_switches;
2893
2894 return sum;
2895}
2896
2897unsigned long nr_iowait(void)
2898{
2899 unsigned long i, sum = 0;
2900
0a945022 2901 for_each_possible_cpu(i)
1da177e4
LT
2902 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2903
2904 return sum;
2905}
2906
dce48a84
TG
2907/* Variables and functions for calc_load */
2908static atomic_long_t calc_load_tasks;
2909static unsigned long calc_load_update;
2910unsigned long avenrun[3];
2911EXPORT_SYMBOL(avenrun);
2912
2d02494f
TG
2913/**
2914 * get_avenrun - get the load average array
2915 * @loads: pointer to dest load array
2916 * @offset: offset to add
2917 * @shift: shift count to shift the result left
2918 *
2919 * These values are estimates at best, so no need for locking.
2920 */
2921void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2922{
2923 loads[0] = (avenrun[0] + offset) << shift;
2924 loads[1] = (avenrun[1] + offset) << shift;
2925 loads[2] = (avenrun[2] + offset) << shift;
2926}
2927
dce48a84
TG
2928static unsigned long
2929calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2930{
dce48a84
TG
2931 load *= exp;
2932 load += active * (FIXED_1 - exp);
2933 return load >> FSHIFT;
2934}
db1b1fef 2935
dce48a84
TG
2936/*
2937 * calc_load - update the avenrun load estimates 10 ticks after the
2938 * CPUs have updated calc_load_tasks.
2939 */
2940void calc_global_load(void)
2941{
2942 unsigned long upd = calc_load_update + 10;
2943 long active;
2944
2945 if (time_before(jiffies, upd))
2946 return;
db1b1fef 2947
dce48a84
TG
2948 active = atomic_long_read(&calc_load_tasks);
2949 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2950
dce48a84
TG
2951 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2952 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2953 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2954
2955 calc_load_update += LOAD_FREQ;
2956}
2957
2958/*
2959 * Either called from update_cpu_load() or from a cpu going idle
2960 */
2961static void calc_load_account_active(struct rq *this_rq)
2962{
2963 long nr_active, delta;
2964
2965 nr_active = this_rq->nr_running;
2966 nr_active += (long) this_rq->nr_uninterruptible;
2967
2968 if (nr_active != this_rq->calc_load_active) {
2969 delta = nr_active - this_rq->calc_load_active;
2970 this_rq->calc_load_active = nr_active;
2971 atomic_long_add(delta, &calc_load_tasks);
2972 }
db1b1fef
JS
2973}
2974
23a185ca
PM
2975/*
2976 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2977 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2978 */
23a185ca
PM
2979u64 cpu_nr_migrations(int cpu)
2980{
2981 return cpu_rq(cpu)->nr_migrations_in;
2982}
2983
48f24c4d 2984/*
dd41f596
IM
2985 * Update rq->cpu_load[] statistics. This function is usually called every
2986 * scheduler tick (TICK_NSEC).
48f24c4d 2987 */
dd41f596 2988static void update_cpu_load(struct rq *this_rq)
48f24c4d 2989{
495eca49 2990 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2991 int i, scale;
2992
2993 this_rq->nr_load_updates++;
dd41f596
IM
2994
2995 /* Update our load: */
2996 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2997 unsigned long old_load, new_load;
2998
2999 /* scale is effectively 1 << i now, and >> i divides by scale */
3000
3001 old_load = this_rq->cpu_load[i];
3002 new_load = this_load;
a25707f3
IM
3003 /*
3004 * Round up the averaging division if load is increasing. This
3005 * prevents us from getting stuck on 9 if the load is 10, for
3006 * example.
3007 */
3008 if (new_load > old_load)
3009 new_load += scale-1;
dd41f596
IM
3010 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3011 }
dce48a84
TG
3012
3013 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3014 this_rq->calc_load_update += LOAD_FREQ;
3015 calc_load_account_active(this_rq);
3016 }
48f24c4d
IM
3017}
3018
dd41f596
IM
3019#ifdef CONFIG_SMP
3020
1da177e4
LT
3021/*
3022 * double_rq_lock - safely lock two runqueues
3023 *
3024 * Note this does not disable interrupts like task_rq_lock,
3025 * you need to do so manually before calling.
3026 */
70b97a7f 3027static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3028 __acquires(rq1->lock)
3029 __acquires(rq2->lock)
3030{
054b9108 3031 BUG_ON(!irqs_disabled());
1da177e4
LT
3032 if (rq1 == rq2) {
3033 spin_lock(&rq1->lock);
3034 __acquire(rq2->lock); /* Fake it out ;) */
3035 } else {
c96d145e 3036 if (rq1 < rq2) {
1da177e4 3037 spin_lock(&rq1->lock);
5e710e37 3038 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3039 } else {
3040 spin_lock(&rq2->lock);
5e710e37 3041 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3042 }
3043 }
6e82a3be
IM
3044 update_rq_clock(rq1);
3045 update_rq_clock(rq2);
1da177e4
LT
3046}
3047
3048/*
3049 * double_rq_unlock - safely unlock two runqueues
3050 *
3051 * Note this does not restore interrupts like task_rq_unlock,
3052 * you need to do so manually after calling.
3053 */
70b97a7f 3054static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3055 __releases(rq1->lock)
3056 __releases(rq2->lock)
3057{
3058 spin_unlock(&rq1->lock);
3059 if (rq1 != rq2)
3060 spin_unlock(&rq2->lock);
3061 else
3062 __release(rq2->lock);
3063}
3064
1da177e4
LT
3065/*
3066 * If dest_cpu is allowed for this process, migrate the task to it.
3067 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3068 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3069 * the cpu_allowed mask is restored.
3070 */
36c8b586 3071static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3072{
70b97a7f 3073 struct migration_req req;
1da177e4 3074 unsigned long flags;
70b97a7f 3075 struct rq *rq;
1da177e4
LT
3076
3077 rq = task_rq_lock(p, &flags);
96f874e2 3078 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3079 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3080 goto out;
3081
3082 /* force the process onto the specified CPU */
3083 if (migrate_task(p, dest_cpu, &req)) {
3084 /* Need to wait for migration thread (might exit: take ref). */
3085 struct task_struct *mt = rq->migration_thread;
36c8b586 3086
1da177e4
LT
3087 get_task_struct(mt);
3088 task_rq_unlock(rq, &flags);
3089 wake_up_process(mt);
3090 put_task_struct(mt);
3091 wait_for_completion(&req.done);
36c8b586 3092
1da177e4
LT
3093 return;
3094 }
3095out:
3096 task_rq_unlock(rq, &flags);
3097}
3098
3099/*
476d139c
NP
3100 * sched_exec - execve() is a valuable balancing opportunity, because at
3101 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3102 */
3103void sched_exec(void)
3104{
1da177e4 3105 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3106 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3107 put_cpu();
476d139c
NP
3108 if (new_cpu != this_cpu)
3109 sched_migrate_task(current, new_cpu);
1da177e4
LT
3110}
3111
3112/*
3113 * pull_task - move a task from a remote runqueue to the local runqueue.
3114 * Both runqueues must be locked.
3115 */
dd41f596
IM
3116static void pull_task(struct rq *src_rq, struct task_struct *p,
3117 struct rq *this_rq, int this_cpu)
1da177e4 3118{
2e1cb74a 3119 deactivate_task(src_rq, p, 0);
1da177e4 3120 set_task_cpu(p, this_cpu);
dd41f596 3121 activate_task(this_rq, p, 0);
1da177e4
LT
3122 /*
3123 * Note that idle threads have a prio of MAX_PRIO, for this test
3124 * to be always true for them.
3125 */
15afe09b 3126 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3127}
3128
3129/*
3130 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3131 */
858119e1 3132static
70b97a7f 3133int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3134 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3135 int *all_pinned)
1da177e4 3136{
708dc512 3137 int tsk_cache_hot = 0;
1da177e4
LT
3138 /*
3139 * We do not migrate tasks that are:
3140 * 1) running (obviously), or
3141 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3142 * 3) are cache-hot on their current CPU.
3143 */
96f874e2 3144 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3145 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3146 return 0;
cc367732 3147 }
81026794
NP
3148 *all_pinned = 0;
3149
cc367732
IM
3150 if (task_running(rq, p)) {
3151 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3152 return 0;
cc367732 3153 }
1da177e4 3154
da84d961
IM
3155 /*
3156 * Aggressive migration if:
3157 * 1) task is cache cold, or
3158 * 2) too many balance attempts have failed.
3159 */
3160
708dc512
LH
3161 tsk_cache_hot = task_hot(p, rq->clock, sd);
3162 if (!tsk_cache_hot ||
3163 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3164#ifdef CONFIG_SCHEDSTATS
708dc512 3165 if (tsk_cache_hot) {
da84d961 3166 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3167 schedstat_inc(p, se.nr_forced_migrations);
3168 }
da84d961
IM
3169#endif
3170 return 1;
3171 }
3172
708dc512 3173 if (tsk_cache_hot) {
cc367732 3174 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3175 return 0;
cc367732 3176 }
1da177e4
LT
3177 return 1;
3178}
3179
e1d1484f
PW
3180static unsigned long
3181balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3182 unsigned long max_load_move, struct sched_domain *sd,
3183 enum cpu_idle_type idle, int *all_pinned,
3184 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3185{
051c6764 3186 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3187 struct task_struct *p;
3188 long rem_load_move = max_load_move;
1da177e4 3189
e1d1484f 3190 if (max_load_move == 0)
1da177e4
LT
3191 goto out;
3192
81026794
NP
3193 pinned = 1;
3194
1da177e4 3195 /*
dd41f596 3196 * Start the load-balancing iterator:
1da177e4 3197 */
dd41f596
IM
3198 p = iterator->start(iterator->arg);
3199next:
b82d9fdd 3200 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3201 goto out;
051c6764
PZ
3202
3203 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3204 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3205 p = iterator->next(iterator->arg);
3206 goto next;
1da177e4
LT
3207 }
3208
dd41f596 3209 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3210 pulled++;
dd41f596 3211 rem_load_move -= p->se.load.weight;
1da177e4 3212
7e96fa58
GH
3213#ifdef CONFIG_PREEMPT
3214 /*
3215 * NEWIDLE balancing is a source of latency, so preemptible kernels
3216 * will stop after the first task is pulled to minimize the critical
3217 * section.
3218 */
3219 if (idle == CPU_NEWLY_IDLE)
3220 goto out;
3221#endif
3222
2dd73a4f 3223 /*
b82d9fdd 3224 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3225 */
e1d1484f 3226 if (rem_load_move > 0) {
a4ac01c3
PW
3227 if (p->prio < *this_best_prio)
3228 *this_best_prio = p->prio;
dd41f596
IM
3229 p = iterator->next(iterator->arg);
3230 goto next;
1da177e4
LT
3231 }
3232out:
3233 /*
e1d1484f 3234 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3235 * so we can safely collect pull_task() stats here rather than
3236 * inside pull_task().
3237 */
3238 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3239
3240 if (all_pinned)
3241 *all_pinned = pinned;
e1d1484f
PW
3242
3243 return max_load_move - rem_load_move;
1da177e4
LT
3244}
3245
dd41f596 3246/*
43010659
PW
3247 * move_tasks tries to move up to max_load_move weighted load from busiest to
3248 * this_rq, as part of a balancing operation within domain "sd".
3249 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3250 *
3251 * Called with both runqueues locked.
3252 */
3253static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3254 unsigned long max_load_move,
dd41f596
IM
3255 struct sched_domain *sd, enum cpu_idle_type idle,
3256 int *all_pinned)
3257{
5522d5d5 3258 const struct sched_class *class = sched_class_highest;
43010659 3259 unsigned long total_load_moved = 0;
a4ac01c3 3260 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3261
3262 do {
43010659
PW
3263 total_load_moved +=
3264 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3265 max_load_move - total_load_moved,
a4ac01c3 3266 sd, idle, all_pinned, &this_best_prio);
dd41f596 3267 class = class->next;
c4acb2c0 3268
7e96fa58
GH
3269#ifdef CONFIG_PREEMPT
3270 /*
3271 * NEWIDLE balancing is a source of latency, so preemptible
3272 * kernels will stop after the first task is pulled to minimize
3273 * the critical section.
3274 */
c4acb2c0
GH
3275 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3276 break;
7e96fa58 3277#endif
43010659 3278 } while (class && max_load_move > total_load_moved);
dd41f596 3279
43010659
PW
3280 return total_load_moved > 0;
3281}
3282
e1d1484f
PW
3283static int
3284iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3285 struct sched_domain *sd, enum cpu_idle_type idle,
3286 struct rq_iterator *iterator)
3287{
3288 struct task_struct *p = iterator->start(iterator->arg);
3289 int pinned = 0;
3290
3291 while (p) {
3292 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3293 pull_task(busiest, p, this_rq, this_cpu);
3294 /*
3295 * Right now, this is only the second place pull_task()
3296 * is called, so we can safely collect pull_task()
3297 * stats here rather than inside pull_task().
3298 */
3299 schedstat_inc(sd, lb_gained[idle]);
3300
3301 return 1;
3302 }
3303 p = iterator->next(iterator->arg);
3304 }
3305
3306 return 0;
3307}
3308
43010659
PW
3309/*
3310 * move_one_task tries to move exactly one task from busiest to this_rq, as
3311 * part of active balancing operations within "domain".
3312 * Returns 1 if successful and 0 otherwise.
3313 *
3314 * Called with both runqueues locked.
3315 */
3316static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3317 struct sched_domain *sd, enum cpu_idle_type idle)
3318{
5522d5d5 3319 const struct sched_class *class;
43010659 3320
cde7e5ca 3321 for_each_class(class) {
e1d1484f 3322 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3323 return 1;
cde7e5ca 3324 }
43010659
PW
3325
3326 return 0;
dd41f596 3327}
67bb6c03 3328/********** Helpers for find_busiest_group ************************/
1da177e4 3329/*
222d656d
GS
3330 * sd_lb_stats - Structure to store the statistics of a sched_domain
3331 * during load balancing.
1da177e4 3332 */
222d656d
GS
3333struct sd_lb_stats {
3334 struct sched_group *busiest; /* Busiest group in this sd */
3335 struct sched_group *this; /* Local group in this sd */
3336 unsigned long total_load; /* Total load of all groups in sd */
3337 unsigned long total_pwr; /* Total power of all groups in sd */
3338 unsigned long avg_load; /* Average load across all groups in sd */
3339
3340 /** Statistics of this group */
3341 unsigned long this_load;
3342 unsigned long this_load_per_task;
3343 unsigned long this_nr_running;
3344
3345 /* Statistics of the busiest group */
3346 unsigned long max_load;
3347 unsigned long busiest_load_per_task;
3348 unsigned long busiest_nr_running;
3349
3350 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3351#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3352 int power_savings_balance; /* Is powersave balance needed for this sd */
3353 struct sched_group *group_min; /* Least loaded group in sd */
3354 struct sched_group *group_leader; /* Group which relieves group_min */
3355 unsigned long min_load_per_task; /* load_per_task in group_min */
3356 unsigned long leader_nr_running; /* Nr running of group_leader */
3357 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3358#endif
222d656d 3359};
1da177e4 3360
d5ac537e 3361/*
381be78f
GS
3362 * sg_lb_stats - stats of a sched_group required for load_balancing
3363 */
3364struct sg_lb_stats {
3365 unsigned long avg_load; /*Avg load across the CPUs of the group */
3366 unsigned long group_load; /* Total load over the CPUs of the group */
3367 unsigned long sum_nr_running; /* Nr tasks running in the group */
3368 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3369 unsigned long group_capacity;
3370 int group_imb; /* Is there an imbalance in the group ? */
3371};
408ed066 3372
67bb6c03
GS
3373/**
3374 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3375 * @group: The group whose first cpu is to be returned.
3376 */
3377static inline unsigned int group_first_cpu(struct sched_group *group)
3378{
3379 return cpumask_first(sched_group_cpus(group));
3380}
3381
3382/**
3383 * get_sd_load_idx - Obtain the load index for a given sched domain.
3384 * @sd: The sched_domain whose load_idx is to be obtained.
3385 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3386 */
3387static inline int get_sd_load_idx(struct sched_domain *sd,
3388 enum cpu_idle_type idle)
3389{
3390 int load_idx;
3391
3392 switch (idle) {
3393 case CPU_NOT_IDLE:
7897986b 3394 load_idx = sd->busy_idx;
67bb6c03
GS
3395 break;
3396
3397 case CPU_NEWLY_IDLE:
7897986b 3398 load_idx = sd->newidle_idx;
67bb6c03
GS
3399 break;
3400 default:
7897986b 3401 load_idx = sd->idle_idx;
67bb6c03
GS
3402 break;
3403 }
1da177e4 3404
67bb6c03
GS
3405 return load_idx;
3406}
1da177e4 3407
1da177e4 3408
c071df18
GS
3409#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3410/**
3411 * init_sd_power_savings_stats - Initialize power savings statistics for
3412 * the given sched_domain, during load balancing.
3413 *
3414 * @sd: Sched domain whose power-savings statistics are to be initialized.
3415 * @sds: Variable containing the statistics for sd.
3416 * @idle: Idle status of the CPU at which we're performing load-balancing.
3417 */
3418static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3419 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3420{
3421 /*
3422 * Busy processors will not participate in power savings
3423 * balance.
3424 */
3425 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3426 sds->power_savings_balance = 0;
3427 else {
3428 sds->power_savings_balance = 1;
3429 sds->min_nr_running = ULONG_MAX;
3430 sds->leader_nr_running = 0;
3431 }
3432}
783609c6 3433
c071df18
GS
3434/**
3435 * update_sd_power_savings_stats - Update the power saving stats for a
3436 * sched_domain while performing load balancing.
3437 *
3438 * @group: sched_group belonging to the sched_domain under consideration.
3439 * @sds: Variable containing the statistics of the sched_domain
3440 * @local_group: Does group contain the CPU for which we're performing
3441 * load balancing ?
3442 * @sgs: Variable containing the statistics of the group.
3443 */
3444static inline void update_sd_power_savings_stats(struct sched_group *group,
3445 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3446{
408ed066 3447
c071df18
GS
3448 if (!sds->power_savings_balance)
3449 return;
1da177e4 3450
c071df18
GS
3451 /*
3452 * If the local group is idle or completely loaded
3453 * no need to do power savings balance at this domain
3454 */
3455 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3456 !sds->this_nr_running))
3457 sds->power_savings_balance = 0;
2dd73a4f 3458
c071df18
GS
3459 /*
3460 * If a group is already running at full capacity or idle,
3461 * don't include that group in power savings calculations
3462 */
3463 if (!sds->power_savings_balance ||
3464 sgs->sum_nr_running >= sgs->group_capacity ||
3465 !sgs->sum_nr_running)
3466 return;
5969fe06 3467
c071df18
GS
3468 /*
3469 * Calculate the group which has the least non-idle load.
3470 * This is the group from where we need to pick up the load
3471 * for saving power
3472 */
3473 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3474 (sgs->sum_nr_running == sds->min_nr_running &&
3475 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3476 sds->group_min = group;
3477 sds->min_nr_running = sgs->sum_nr_running;
3478 sds->min_load_per_task = sgs->sum_weighted_load /
3479 sgs->sum_nr_running;
3480 }
783609c6 3481
c071df18
GS
3482 /*
3483 * Calculate the group which is almost near its
3484 * capacity but still has some space to pick up some load
3485 * from other group and save more power
3486 */
d899a789 3487 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3488 return;
1da177e4 3489
c071df18
GS
3490 if (sgs->sum_nr_running > sds->leader_nr_running ||
3491 (sgs->sum_nr_running == sds->leader_nr_running &&
3492 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3493 sds->group_leader = group;
3494 sds->leader_nr_running = sgs->sum_nr_running;
3495 }
3496}
408ed066 3497
c071df18 3498/**
d5ac537e 3499 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3500 * @sds: Variable containing the statistics of the sched_domain
3501 * under consideration.
3502 * @this_cpu: Cpu at which we're currently performing load-balancing.
3503 * @imbalance: Variable to store the imbalance.
3504 *
d5ac537e
RD
3505 * Description:
3506 * Check if we have potential to perform some power-savings balance.
3507 * If yes, set the busiest group to be the least loaded group in the
3508 * sched_domain, so that it's CPUs can be put to idle.
3509 *
c071df18
GS
3510 * Returns 1 if there is potential to perform power-savings balance.
3511 * Else returns 0.
3512 */
3513static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3514 int this_cpu, unsigned long *imbalance)
3515{
3516 if (!sds->power_savings_balance)
3517 return 0;
1da177e4 3518
c071df18
GS
3519 if (sds->this != sds->group_leader ||
3520 sds->group_leader == sds->group_min)
3521 return 0;
783609c6 3522
c071df18
GS
3523 *imbalance = sds->min_load_per_task;
3524 sds->busiest = sds->group_min;
1da177e4 3525
c071df18 3526 return 1;
1da177e4 3527
c071df18
GS
3528}
3529#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3530static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3531 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3532{
3533 return;
3534}
408ed066 3535
c071df18
GS
3536static inline void update_sd_power_savings_stats(struct sched_group *group,
3537 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3538{
3539 return;
3540}
3541
3542static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3543 int this_cpu, unsigned long *imbalance)
3544{
3545 return 0;
3546}
3547#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3548
d6a59aa3
PZ
3549
3550unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3551{
3552 return SCHED_LOAD_SCALE;
3553}
3554
3555unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3556{
3557 return default_scale_freq_power(sd, cpu);
3558}
3559
3560unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3561{
3562 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3563 unsigned long smt_gain = sd->smt_gain;
3564
3565 smt_gain /= weight;
3566
3567 return smt_gain;
3568}
3569
d6a59aa3
PZ
3570unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3571{
3572 return default_scale_smt_power(sd, cpu);
3573}
3574
e9e9250b
PZ
3575unsigned long scale_rt_power(int cpu)
3576{
3577 struct rq *rq = cpu_rq(cpu);
3578 u64 total, available;
3579
3580 sched_avg_update(rq);
3581
3582 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3583 available = total - rq->rt_avg;
3584
3585 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3586 total = SCHED_LOAD_SCALE;
3587
3588 total >>= SCHED_LOAD_SHIFT;
3589
3590 return div_u64(available, total);
3591}
3592
ab29230e
PZ
3593static void update_cpu_power(struct sched_domain *sd, int cpu)
3594{
3595 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3596 unsigned long power = SCHED_LOAD_SCALE;
3597 struct sched_group *sdg = sd->groups;
ab29230e 3598
8e6598af
PZ
3599 if (sched_feat(ARCH_POWER))
3600 power *= arch_scale_freq_power(sd, cpu);
3601 else
3602 power *= default_scale_freq_power(sd, cpu);
3603
d6a59aa3 3604 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3605
3606 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3607 if (sched_feat(ARCH_POWER))
3608 power *= arch_scale_smt_power(sd, cpu);
3609 else
3610 power *= default_scale_smt_power(sd, cpu);
3611
ab29230e
PZ
3612 power >>= SCHED_LOAD_SHIFT;
3613 }
3614
e9e9250b
PZ
3615 power *= scale_rt_power(cpu);
3616 power >>= SCHED_LOAD_SHIFT;
3617
3618 if (!power)
3619 power = 1;
ab29230e 3620
18a3885f 3621 sdg->cpu_power = power;
ab29230e
PZ
3622}
3623
3624static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3625{
3626 struct sched_domain *child = sd->child;
3627 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3628 unsigned long power;
cc9fba7d
PZ
3629
3630 if (!child) {
ab29230e 3631 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3632 return;
3633 }
3634
d7ea17a7 3635 power = 0;
cc9fba7d
PZ
3636
3637 group = child->groups;
3638 do {
d7ea17a7 3639 power += group->cpu_power;
cc9fba7d
PZ
3640 group = group->next;
3641 } while (group != child->groups);
d7ea17a7
IM
3642
3643 sdg->cpu_power = power;
cc9fba7d 3644}
c071df18 3645
1f8c553d
GS
3646/**
3647 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3648 * @group: sched_group whose statistics are to be updated.
3649 * @this_cpu: Cpu for which load balance is currently performed.
3650 * @idle: Idle status of this_cpu
3651 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3652 * @sd_idle: Idle status of the sched_domain containing group.
3653 * @local_group: Does group contain this_cpu.
3654 * @cpus: Set of cpus considered for load balancing.
3655 * @balance: Should we balance.
3656 * @sgs: variable to hold the statistics for this group.
3657 */
cc9fba7d
PZ
3658static inline void update_sg_lb_stats(struct sched_domain *sd,
3659 struct sched_group *group, int this_cpu,
1f8c553d
GS
3660 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3661 int local_group, const struct cpumask *cpus,
3662 int *balance, struct sg_lb_stats *sgs)
3663{
3664 unsigned long load, max_cpu_load, min_cpu_load;
3665 int i;
3666 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3667 unsigned long sum_avg_load_per_task;
3668 unsigned long avg_load_per_task;
3669
cc9fba7d 3670 if (local_group) {
1f8c553d 3671 balance_cpu = group_first_cpu(group);
cc9fba7d 3672 if (balance_cpu == this_cpu)
ab29230e 3673 update_group_power(sd, this_cpu);
cc9fba7d 3674 }
1f8c553d
GS
3675
3676 /* Tally up the load of all CPUs in the group */
3677 sum_avg_load_per_task = avg_load_per_task = 0;
3678 max_cpu_load = 0;
3679 min_cpu_load = ~0UL;
408ed066 3680
1f8c553d
GS
3681 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3682 struct rq *rq = cpu_rq(i);
908a7c1b 3683
1f8c553d
GS
3684 if (*sd_idle && rq->nr_running)
3685 *sd_idle = 0;
5c45bf27 3686
1f8c553d 3687 /* Bias balancing toward cpus of our domain */
1da177e4 3688 if (local_group) {
1f8c553d
GS
3689 if (idle_cpu(i) && !first_idle_cpu) {
3690 first_idle_cpu = 1;
3691 balance_cpu = i;
3692 }
3693
3694 load = target_load(i, load_idx);
3695 } else {
3696 load = source_load(i, load_idx);
3697 if (load > max_cpu_load)
3698 max_cpu_load = load;
3699 if (min_cpu_load > load)
3700 min_cpu_load = load;
1da177e4 3701 }
5c45bf27 3702
1f8c553d
GS
3703 sgs->group_load += load;
3704 sgs->sum_nr_running += rq->nr_running;
3705 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3706
1f8c553d
GS
3707 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3708 }
5c45bf27 3709
1f8c553d
GS
3710 /*
3711 * First idle cpu or the first cpu(busiest) in this sched group
3712 * is eligible for doing load balancing at this and above
3713 * domains. In the newly idle case, we will allow all the cpu's
3714 * to do the newly idle load balance.
3715 */
3716 if (idle != CPU_NEWLY_IDLE && local_group &&
3717 balance_cpu != this_cpu && balance) {
3718 *balance = 0;
3719 return;
3720 }
5c45bf27 3721
1f8c553d 3722 /* Adjust by relative CPU power of the group */
18a3885f 3723 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3724
1f8c553d
GS
3725
3726 /*
3727 * Consider the group unbalanced when the imbalance is larger
3728 * than the average weight of two tasks.
3729 *
3730 * APZ: with cgroup the avg task weight can vary wildly and
3731 * might not be a suitable number - should we keep a
3732 * normalized nr_running number somewhere that negates
3733 * the hierarchy?
3734 */
18a3885f
PZ
3735 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3736 group->cpu_power;
1f8c553d
GS
3737
3738 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3739 sgs->group_imb = 1;
3740
bdb94aa5 3741 sgs->group_capacity =
18a3885f 3742 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3743}
dd41f596 3744
37abe198
GS
3745/**
3746 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3747 * @sd: sched_domain whose statistics are to be updated.
3748 * @this_cpu: Cpu for which load balance is currently performed.
3749 * @idle: Idle status of this_cpu
3750 * @sd_idle: Idle status of the sched_domain containing group.
3751 * @cpus: Set of cpus considered for load balancing.
3752 * @balance: Should we balance.
3753 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3754 */
37abe198
GS
3755static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3756 enum cpu_idle_type idle, int *sd_idle,
3757 const struct cpumask *cpus, int *balance,
3758 struct sd_lb_stats *sds)
1da177e4 3759{
b5d978e0 3760 struct sched_domain *child = sd->child;
222d656d 3761 struct sched_group *group = sd->groups;
37abe198 3762 struct sg_lb_stats sgs;
b5d978e0
PZ
3763 int load_idx, prefer_sibling = 0;
3764
3765 if (child && child->flags & SD_PREFER_SIBLING)
3766 prefer_sibling = 1;
222d656d 3767
c071df18 3768 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3769 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3770
3771 do {
1da177e4 3772 int local_group;
1da177e4 3773
758b2cdc
RR
3774 local_group = cpumask_test_cpu(this_cpu,
3775 sched_group_cpus(group));
381be78f 3776 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3777 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3778 local_group, cpus, balance, &sgs);
1da177e4 3779
37abe198
GS
3780 if (local_group && balance && !(*balance))
3781 return;
783609c6 3782
37abe198 3783 sds->total_load += sgs.group_load;
18a3885f 3784 sds->total_pwr += group->cpu_power;
1da177e4 3785
b5d978e0
PZ
3786 /*
3787 * In case the child domain prefers tasks go to siblings
3788 * first, lower the group capacity to one so that we'll try
3789 * and move all the excess tasks away.
3790 */
3791 if (prefer_sibling)
bdb94aa5 3792 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3793
1da177e4 3794 if (local_group) {
37abe198
GS
3795 sds->this_load = sgs.avg_load;
3796 sds->this = group;
3797 sds->this_nr_running = sgs.sum_nr_running;
3798 sds->this_load_per_task = sgs.sum_weighted_load;
3799 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3800 (sgs.sum_nr_running > sgs.group_capacity ||
3801 sgs.group_imb)) {
37abe198
GS
3802 sds->max_load = sgs.avg_load;
3803 sds->busiest = group;
3804 sds->busiest_nr_running = sgs.sum_nr_running;
3805 sds->busiest_load_per_task = sgs.sum_weighted_load;
3806 sds->group_imb = sgs.group_imb;
48f24c4d 3807 }
5c45bf27 3808
c071df18 3809 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3810 group = group->next;
3811 } while (group != sd->groups);
37abe198 3812}
1da177e4 3813
2e6f44ae
GS
3814/**
3815 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3816 * amongst the groups of a sched_domain, during
3817 * load balancing.
2e6f44ae
GS
3818 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3819 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3820 * @imbalance: Variable to store the imbalance.
3821 */
3822static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3823 int this_cpu, unsigned long *imbalance)
3824{
3825 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3826 unsigned int imbn = 2;
3827
3828 if (sds->this_nr_running) {
3829 sds->this_load_per_task /= sds->this_nr_running;
3830 if (sds->busiest_load_per_task >
3831 sds->this_load_per_task)
3832 imbn = 1;
3833 } else
3834 sds->this_load_per_task =
3835 cpu_avg_load_per_task(this_cpu);
1da177e4 3836
2e6f44ae
GS
3837 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3838 sds->busiest_load_per_task * imbn) {
3839 *imbalance = sds->busiest_load_per_task;
3840 return;
3841 }
908a7c1b 3842
1da177e4 3843 /*
2e6f44ae
GS
3844 * OK, we don't have enough imbalance to justify moving tasks,
3845 * however we may be able to increase total CPU power used by
3846 * moving them.
1da177e4 3847 */
2dd73a4f 3848
18a3885f 3849 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3850 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3851 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3852 min(sds->this_load_per_task, sds->this_load);
3853 pwr_now /= SCHED_LOAD_SCALE;
3854
3855 /* Amount of load we'd subtract */
18a3885f
PZ
3856 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3857 sds->busiest->cpu_power;
2e6f44ae 3858 if (sds->max_load > tmp)
18a3885f 3859 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3860 min(sds->busiest_load_per_task, sds->max_load - tmp);
3861
3862 /* Amount of load we'd add */
18a3885f 3863 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3864 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3865 tmp = (sds->max_load * sds->busiest->cpu_power) /
3866 sds->this->cpu_power;
2e6f44ae 3867 else
18a3885f
PZ
3868 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3869 sds->this->cpu_power;
3870 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3871 min(sds->this_load_per_task, sds->this_load + tmp);
3872 pwr_move /= SCHED_LOAD_SCALE;
3873
3874 /* Move if we gain throughput */
3875 if (pwr_move > pwr_now)
3876 *imbalance = sds->busiest_load_per_task;
3877}
dbc523a3
GS
3878
3879/**
3880 * calculate_imbalance - Calculate the amount of imbalance present within the
3881 * groups of a given sched_domain during load balance.
3882 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3883 * @this_cpu: Cpu for which currently load balance is being performed.
3884 * @imbalance: The variable to store the imbalance.
3885 */
3886static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3887 unsigned long *imbalance)
3888{
3889 unsigned long max_pull;
2dd73a4f
PW
3890 /*
3891 * In the presence of smp nice balancing, certain scenarios can have
3892 * max load less than avg load(as we skip the groups at or below
3893 * its cpu_power, while calculating max_load..)
3894 */
dbc523a3 3895 if (sds->max_load < sds->avg_load) {
2dd73a4f 3896 *imbalance = 0;
dbc523a3 3897 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3898 }
0c117f1b
SS
3899
3900 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3901 max_pull = min(sds->max_load - sds->avg_load,
3902 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3903
1da177e4 3904 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3905 *imbalance = min(max_pull * sds->busiest->cpu_power,
3906 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3907 / SCHED_LOAD_SCALE;
3908
2dd73a4f
PW
3909 /*
3910 * if *imbalance is less than the average load per runnable task
3911 * there is no gaurantee that any tasks will be moved so we'll have
3912 * a think about bumping its value to force at least one task to be
3913 * moved
3914 */
dbc523a3
GS
3915 if (*imbalance < sds->busiest_load_per_task)
3916 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3917
dbc523a3 3918}
37abe198 3919/******* find_busiest_group() helpers end here *********************/
1da177e4 3920
b7bb4c9b
GS
3921/**
3922 * find_busiest_group - Returns the busiest group within the sched_domain
3923 * if there is an imbalance. If there isn't an imbalance, and
3924 * the user has opted for power-savings, it returns a group whose
3925 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3926 * such a group exists.
3927 *
3928 * Also calculates the amount of weighted load which should be moved
3929 * to restore balance.
3930 *
3931 * @sd: The sched_domain whose busiest group is to be returned.
3932 * @this_cpu: The cpu for which load balancing is currently being performed.
3933 * @imbalance: Variable which stores amount of weighted load which should
3934 * be moved to restore balance/put a group to idle.
3935 * @idle: The idle status of this_cpu.
3936 * @sd_idle: The idleness of sd
3937 * @cpus: The set of CPUs under consideration for load-balancing.
3938 * @balance: Pointer to a variable indicating if this_cpu
3939 * is the appropriate cpu to perform load balancing at this_level.
3940 *
3941 * Returns: - the busiest group if imbalance exists.
3942 * - If no imbalance and user has opted for power-savings balance,
3943 * return the least loaded group whose CPUs can be
3944 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3945 */
3946static struct sched_group *
3947find_busiest_group(struct sched_domain *sd, int this_cpu,
3948 unsigned long *imbalance, enum cpu_idle_type idle,
3949 int *sd_idle, const struct cpumask *cpus, int *balance)
3950{
3951 struct sd_lb_stats sds;
1da177e4 3952
37abe198 3953 memset(&sds, 0, sizeof(sds));
1da177e4 3954
37abe198
GS
3955 /*
3956 * Compute the various statistics relavent for load balancing at
3957 * this level.
3958 */
3959 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3960 balance, &sds);
3961
b7bb4c9b
GS
3962 /* Cases where imbalance does not exist from POV of this_cpu */
3963 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3964 * at this level.
3965 * 2) There is no busy sibling group to pull from.
3966 * 3) This group is the busiest group.
3967 * 4) This group is more busy than the avg busieness at this
3968 * sched_domain.
3969 * 5) The imbalance is within the specified limit.
3970 * 6) Any rebalance would lead to ping-pong
3971 */
37abe198
GS
3972 if (balance && !(*balance))
3973 goto ret;
1da177e4 3974
b7bb4c9b
GS
3975 if (!sds.busiest || sds.busiest_nr_running == 0)
3976 goto out_balanced;
1da177e4 3977
b7bb4c9b 3978 if (sds.this_load >= sds.max_load)
1da177e4 3979 goto out_balanced;
1da177e4 3980
222d656d 3981 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3982
b7bb4c9b
GS
3983 if (sds.this_load >= sds.avg_load)
3984 goto out_balanced;
3985
3986 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3987 goto out_balanced;
3988
222d656d
GS
3989 sds.busiest_load_per_task /= sds.busiest_nr_running;
3990 if (sds.group_imb)
3991 sds.busiest_load_per_task =
3992 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3993
1da177e4
LT
3994 /*
3995 * We're trying to get all the cpus to the average_load, so we don't
3996 * want to push ourselves above the average load, nor do we wish to
3997 * reduce the max loaded cpu below the average load, as either of these
3998 * actions would just result in more rebalancing later, and ping-pong
3999 * tasks around. Thus we look for the minimum possible imbalance.
4000 * Negative imbalances (*we* are more loaded than anyone else) will
4001 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4002 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4003 * appear as very large values with unsigned longs.
4004 */
222d656d 4005 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4006 goto out_balanced;
4007
dbc523a3
GS
4008 /* Looks like there is an imbalance. Compute it */
4009 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4010 return sds.busiest;
1da177e4
LT
4011
4012out_balanced:
c071df18
GS
4013 /*
4014 * There is no obvious imbalance. But check if we can do some balancing
4015 * to save power.
4016 */
4017 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4018 return sds.busiest;
783609c6 4019ret:
1da177e4
LT
4020 *imbalance = 0;
4021 return NULL;
4022}
4023
4024/*
4025 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4026 */
70b97a7f 4027static struct rq *
d15bcfdb 4028find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4029 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4030{
70b97a7f 4031 struct rq *busiest = NULL, *rq;
2dd73a4f 4032 unsigned long max_load = 0;
1da177e4
LT
4033 int i;
4034
758b2cdc 4035 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4036 unsigned long power = power_of(i);
4037 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4038 unsigned long wl;
0a2966b4 4039
96f874e2 4040 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4041 continue;
4042
48f24c4d 4043 rq = cpu_rq(i);
bdb94aa5
PZ
4044 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4045 wl /= power;
2dd73a4f 4046
bdb94aa5 4047 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4048 continue;
1da177e4 4049
dd41f596
IM
4050 if (wl > max_load) {
4051 max_load = wl;
48f24c4d 4052 busiest = rq;
1da177e4
LT
4053 }
4054 }
4055
4056 return busiest;
4057}
4058
77391d71
NP
4059/*
4060 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4061 * so long as it is large enough.
4062 */
4063#define MAX_PINNED_INTERVAL 512
4064
df7c8e84
RR
4065/* Working cpumask for load_balance and load_balance_newidle. */
4066static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4067
1da177e4
LT
4068/*
4069 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4070 * tasks if there is an imbalance.
1da177e4 4071 */
70b97a7f 4072static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4073 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4074 int *balance)
1da177e4 4075{
43010659 4076 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4077 struct sched_group *group;
1da177e4 4078 unsigned long imbalance;
70b97a7f 4079 struct rq *busiest;
fe2eea3f 4080 unsigned long flags;
df7c8e84 4081 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4082
96f874e2 4083 cpumask_setall(cpus);
7c16ec58 4084
89c4710e
SS
4085 /*
4086 * When power savings policy is enabled for the parent domain, idle
4087 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4088 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4089 * portraying it as CPU_NOT_IDLE.
89c4710e 4090 */
d15bcfdb 4091 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4092 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4093 sd_idle = 1;
1da177e4 4094
2d72376b 4095 schedstat_inc(sd, lb_count[idle]);
1da177e4 4096
0a2966b4 4097redo:
c8cba857 4098 update_shares(sd);
0a2966b4 4099 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4100 cpus, balance);
783609c6 4101
06066714 4102 if (*balance == 0)
783609c6 4103 goto out_balanced;
783609c6 4104
1da177e4
LT
4105 if (!group) {
4106 schedstat_inc(sd, lb_nobusyg[idle]);
4107 goto out_balanced;
4108 }
4109
7c16ec58 4110 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4111 if (!busiest) {
4112 schedstat_inc(sd, lb_nobusyq[idle]);
4113 goto out_balanced;
4114 }
4115
db935dbd 4116 BUG_ON(busiest == this_rq);
1da177e4
LT
4117
4118 schedstat_add(sd, lb_imbalance[idle], imbalance);
4119
43010659 4120 ld_moved = 0;
1da177e4
LT
4121 if (busiest->nr_running > 1) {
4122 /*
4123 * Attempt to move tasks. If find_busiest_group has found
4124 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4125 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4126 * correctly treated as an imbalance.
4127 */
fe2eea3f 4128 local_irq_save(flags);
e17224bf 4129 double_rq_lock(this_rq, busiest);
43010659 4130 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4131 imbalance, sd, idle, &all_pinned);
e17224bf 4132 double_rq_unlock(this_rq, busiest);
fe2eea3f 4133 local_irq_restore(flags);
81026794 4134
46cb4b7c
SS
4135 /*
4136 * some other cpu did the load balance for us.
4137 */
43010659 4138 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4139 resched_cpu(this_cpu);
4140
81026794 4141 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4142 if (unlikely(all_pinned)) {
96f874e2
RR
4143 cpumask_clear_cpu(cpu_of(busiest), cpus);
4144 if (!cpumask_empty(cpus))
0a2966b4 4145 goto redo;
81026794 4146 goto out_balanced;
0a2966b4 4147 }
1da177e4 4148 }
81026794 4149
43010659 4150 if (!ld_moved) {
1da177e4
LT
4151 schedstat_inc(sd, lb_failed[idle]);
4152 sd->nr_balance_failed++;
4153
4154 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4155
fe2eea3f 4156 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4157
4158 /* don't kick the migration_thread, if the curr
4159 * task on busiest cpu can't be moved to this_cpu
4160 */
96f874e2
RR
4161 if (!cpumask_test_cpu(this_cpu,
4162 &busiest->curr->cpus_allowed)) {
fe2eea3f 4163 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4164 all_pinned = 1;
4165 goto out_one_pinned;
4166 }
4167
1da177e4
LT
4168 if (!busiest->active_balance) {
4169 busiest->active_balance = 1;
4170 busiest->push_cpu = this_cpu;
81026794 4171 active_balance = 1;
1da177e4 4172 }
fe2eea3f 4173 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4174 if (active_balance)
1da177e4
LT
4175 wake_up_process(busiest->migration_thread);
4176
4177 /*
4178 * We've kicked active balancing, reset the failure
4179 * counter.
4180 */
39507451 4181 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4182 }
81026794 4183 } else
1da177e4
LT
4184 sd->nr_balance_failed = 0;
4185
81026794 4186 if (likely(!active_balance)) {
1da177e4
LT
4187 /* We were unbalanced, so reset the balancing interval */
4188 sd->balance_interval = sd->min_interval;
81026794
NP
4189 } else {
4190 /*
4191 * If we've begun active balancing, start to back off. This
4192 * case may not be covered by the all_pinned logic if there
4193 * is only 1 task on the busy runqueue (because we don't call
4194 * move_tasks).
4195 */
4196 if (sd->balance_interval < sd->max_interval)
4197 sd->balance_interval *= 2;
1da177e4
LT
4198 }
4199
43010659 4200 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4201 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4202 ld_moved = -1;
4203
4204 goto out;
1da177e4
LT
4205
4206out_balanced:
1da177e4
LT
4207 schedstat_inc(sd, lb_balanced[idle]);
4208
16cfb1c0 4209 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4210
4211out_one_pinned:
1da177e4 4212 /* tune up the balancing interval */
77391d71
NP
4213 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4214 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4215 sd->balance_interval *= 2;
4216
48f24c4d 4217 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4218 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4219 ld_moved = -1;
4220 else
4221 ld_moved = 0;
4222out:
c8cba857
PZ
4223 if (ld_moved)
4224 update_shares(sd);
c09595f6 4225 return ld_moved;
1da177e4
LT
4226}
4227
4228/*
4229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4230 * tasks if there is an imbalance.
4231 *
d15bcfdb 4232 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4233 * this_rq is locked.
4234 */
48f24c4d 4235static int
df7c8e84 4236load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4237{
4238 struct sched_group *group;
70b97a7f 4239 struct rq *busiest = NULL;
1da177e4 4240 unsigned long imbalance;
43010659 4241 int ld_moved = 0;
5969fe06 4242 int sd_idle = 0;
969bb4e4 4243 int all_pinned = 0;
df7c8e84 4244 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4245
96f874e2 4246 cpumask_setall(cpus);
5969fe06 4247
89c4710e
SS
4248 /*
4249 * When power savings policy is enabled for the parent domain, idle
4250 * sibling can pick up load irrespective of busy siblings. In this case,
4251 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4252 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4253 */
4254 if (sd->flags & SD_SHARE_CPUPOWER &&
4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4256 sd_idle = 1;
1da177e4 4257
2d72376b 4258 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4259redo:
3e5459b4 4260 update_shares_locked(this_rq, sd);
d15bcfdb 4261 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4262 &sd_idle, cpus, NULL);
1da177e4 4263 if (!group) {
d15bcfdb 4264 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4265 goto out_balanced;
1da177e4
LT
4266 }
4267
7c16ec58 4268 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4269 if (!busiest) {
d15bcfdb 4270 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4271 goto out_balanced;
1da177e4
LT
4272 }
4273
db935dbd
NP
4274 BUG_ON(busiest == this_rq);
4275
d15bcfdb 4276 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4277
43010659 4278 ld_moved = 0;
d6d5cfaf
NP
4279 if (busiest->nr_running > 1) {
4280 /* Attempt to move tasks */
4281 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4282 /* this_rq->clock is already updated */
4283 update_rq_clock(busiest);
43010659 4284 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4285 imbalance, sd, CPU_NEWLY_IDLE,
4286 &all_pinned);
1b12bbc7 4287 double_unlock_balance(this_rq, busiest);
0a2966b4 4288
969bb4e4 4289 if (unlikely(all_pinned)) {
96f874e2
RR
4290 cpumask_clear_cpu(cpu_of(busiest), cpus);
4291 if (!cpumask_empty(cpus))
0a2966b4
CL
4292 goto redo;
4293 }
d6d5cfaf
NP
4294 }
4295
43010659 4296 if (!ld_moved) {
36dffab6 4297 int active_balance = 0;
ad273b32 4298
d15bcfdb 4299 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4300 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4302 return -1;
ad273b32
VS
4303
4304 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4305 return -1;
4306
4307 if (sd->nr_balance_failed++ < 2)
4308 return -1;
4309
4310 /*
4311 * The only task running in a non-idle cpu can be moved to this
4312 * cpu in an attempt to completely freeup the other CPU
4313 * package. The same method used to move task in load_balance()
4314 * have been extended for load_balance_newidle() to speedup
4315 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4316 *
4317 * The package power saving logic comes from
4318 * find_busiest_group(). If there are no imbalance, then
4319 * f_b_g() will return NULL. However when sched_mc={1,2} then
4320 * f_b_g() will select a group from which a running task may be
4321 * pulled to this cpu in order to make the other package idle.
4322 * If there is no opportunity to make a package idle and if
4323 * there are no imbalance, then f_b_g() will return NULL and no
4324 * action will be taken in load_balance_newidle().
4325 *
4326 * Under normal task pull operation due to imbalance, there
4327 * will be more than one task in the source run queue and
4328 * move_tasks() will succeed. ld_moved will be true and this
4329 * active balance code will not be triggered.
4330 */
4331
4332 /* Lock busiest in correct order while this_rq is held */
4333 double_lock_balance(this_rq, busiest);
4334
4335 /*
4336 * don't kick the migration_thread, if the curr
4337 * task on busiest cpu can't be moved to this_cpu
4338 */
6ca09dfc 4339 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4340 double_unlock_balance(this_rq, busiest);
4341 all_pinned = 1;
4342 return ld_moved;
4343 }
4344
4345 if (!busiest->active_balance) {
4346 busiest->active_balance = 1;
4347 busiest->push_cpu = this_cpu;
4348 active_balance = 1;
4349 }
4350
4351 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4352 /*
4353 * Should not call ttwu while holding a rq->lock
4354 */
4355 spin_unlock(&this_rq->lock);
ad273b32
VS
4356 if (active_balance)
4357 wake_up_process(busiest->migration_thread);
da8d5089 4358 spin_lock(&this_rq->lock);
ad273b32 4359
5969fe06 4360 } else
16cfb1c0 4361 sd->nr_balance_failed = 0;
1da177e4 4362
3e5459b4 4363 update_shares_locked(this_rq, sd);
43010659 4364 return ld_moved;
16cfb1c0
NP
4365
4366out_balanced:
d15bcfdb 4367 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4368 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4369 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4370 return -1;
16cfb1c0 4371 sd->nr_balance_failed = 0;
48f24c4d 4372
16cfb1c0 4373 return 0;
1da177e4
LT
4374}
4375
4376/*
4377 * idle_balance is called by schedule() if this_cpu is about to become
4378 * idle. Attempts to pull tasks from other CPUs.
4379 */
70b97a7f 4380static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4381{
4382 struct sched_domain *sd;
efbe027e 4383 int pulled_task = 0;
dd41f596 4384 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4385
4386 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4387 unsigned long interval;
4388
4389 if (!(sd->flags & SD_LOAD_BALANCE))
4390 continue;
4391
4392 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4393 /* If we've pulled tasks over stop searching: */
7c16ec58 4394 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4395 sd);
92c4ca5c
CL
4396
4397 interval = msecs_to_jiffies(sd->balance_interval);
4398 if (time_after(next_balance, sd->last_balance + interval))
4399 next_balance = sd->last_balance + interval;
4400 if (pulled_task)
4401 break;
1da177e4 4402 }
dd41f596 4403 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4404 /*
4405 * We are going idle. next_balance may be set based on
4406 * a busy processor. So reset next_balance.
4407 */
4408 this_rq->next_balance = next_balance;
dd41f596 4409 }
1da177e4
LT
4410}
4411
4412/*
4413 * active_load_balance is run by migration threads. It pushes running tasks
4414 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4415 * running on each physical CPU where possible, and avoids physical /
4416 * logical imbalances.
4417 *
4418 * Called with busiest_rq locked.
4419 */
70b97a7f 4420static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4421{
39507451 4422 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4423 struct sched_domain *sd;
4424 struct rq *target_rq;
39507451 4425
48f24c4d 4426 /* Is there any task to move? */
39507451 4427 if (busiest_rq->nr_running <= 1)
39507451
NP
4428 return;
4429
4430 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4431
4432 /*
39507451 4433 * This condition is "impossible", if it occurs
41a2d6cf 4434 * we need to fix it. Originally reported by
39507451 4435 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4436 */
39507451 4437 BUG_ON(busiest_rq == target_rq);
1da177e4 4438
39507451
NP
4439 /* move a task from busiest_rq to target_rq */
4440 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4441 update_rq_clock(busiest_rq);
4442 update_rq_clock(target_rq);
39507451
NP
4443
4444 /* Search for an sd spanning us and the target CPU. */
c96d145e 4445 for_each_domain(target_cpu, sd) {
39507451 4446 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4447 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4448 break;
c96d145e 4449 }
39507451 4450
48f24c4d 4451 if (likely(sd)) {
2d72376b 4452 schedstat_inc(sd, alb_count);
39507451 4453
43010659
PW
4454 if (move_one_task(target_rq, target_cpu, busiest_rq,
4455 sd, CPU_IDLE))
48f24c4d
IM
4456 schedstat_inc(sd, alb_pushed);
4457 else
4458 schedstat_inc(sd, alb_failed);
4459 }
1b12bbc7 4460 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4461}
4462
46cb4b7c
SS
4463#ifdef CONFIG_NO_HZ
4464static struct {
4465 atomic_t load_balancer;
7d1e6a9b 4466 cpumask_var_t cpu_mask;
f711f609 4467 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4468} nohz ____cacheline_aligned = {
4469 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4470};
4471
eea08f32
AB
4472int get_nohz_load_balancer(void)
4473{
4474 return atomic_read(&nohz.load_balancer);
4475}
4476
f711f609
GS
4477#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4478/**
4479 * lowest_flag_domain - Return lowest sched_domain containing flag.
4480 * @cpu: The cpu whose lowest level of sched domain is to
4481 * be returned.
4482 * @flag: The flag to check for the lowest sched_domain
4483 * for the given cpu.
4484 *
4485 * Returns the lowest sched_domain of a cpu which contains the given flag.
4486 */
4487static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4488{
4489 struct sched_domain *sd;
4490
4491 for_each_domain(cpu, sd)
4492 if (sd && (sd->flags & flag))
4493 break;
4494
4495 return sd;
4496}
4497
4498/**
4499 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4500 * @cpu: The cpu whose domains we're iterating over.
4501 * @sd: variable holding the value of the power_savings_sd
4502 * for cpu.
4503 * @flag: The flag to filter the sched_domains to be iterated.
4504 *
4505 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4506 * set, starting from the lowest sched_domain to the highest.
4507 */
4508#define for_each_flag_domain(cpu, sd, flag) \
4509 for (sd = lowest_flag_domain(cpu, flag); \
4510 (sd && (sd->flags & flag)); sd = sd->parent)
4511
4512/**
4513 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4514 * @ilb_group: group to be checked for semi-idleness
4515 *
4516 * Returns: 1 if the group is semi-idle. 0 otherwise.
4517 *
4518 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4519 * and atleast one non-idle CPU. This helper function checks if the given
4520 * sched_group is semi-idle or not.
4521 */
4522static inline int is_semi_idle_group(struct sched_group *ilb_group)
4523{
4524 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4525 sched_group_cpus(ilb_group));
4526
4527 /*
4528 * A sched_group is semi-idle when it has atleast one busy cpu
4529 * and atleast one idle cpu.
4530 */
4531 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4532 return 0;
4533
4534 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4535 return 0;
4536
4537 return 1;
4538}
4539/**
4540 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4541 * @cpu: The cpu which is nominating a new idle_load_balancer.
4542 *
4543 * Returns: Returns the id of the idle load balancer if it exists,
4544 * Else, returns >= nr_cpu_ids.
4545 *
4546 * This algorithm picks the idle load balancer such that it belongs to a
4547 * semi-idle powersavings sched_domain. The idea is to try and avoid
4548 * completely idle packages/cores just for the purpose of idle load balancing
4549 * when there are other idle cpu's which are better suited for that job.
4550 */
4551static int find_new_ilb(int cpu)
4552{
4553 struct sched_domain *sd;
4554 struct sched_group *ilb_group;
4555
4556 /*
4557 * Have idle load balancer selection from semi-idle packages only
4558 * when power-aware load balancing is enabled
4559 */
4560 if (!(sched_smt_power_savings || sched_mc_power_savings))
4561 goto out_done;
4562
4563 /*
4564 * Optimize for the case when we have no idle CPUs or only one
4565 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4566 */
4567 if (cpumask_weight(nohz.cpu_mask) < 2)
4568 goto out_done;
4569
4570 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4571 ilb_group = sd->groups;
4572
4573 do {
4574 if (is_semi_idle_group(ilb_group))
4575 return cpumask_first(nohz.ilb_grp_nohz_mask);
4576
4577 ilb_group = ilb_group->next;
4578
4579 } while (ilb_group != sd->groups);
4580 }
4581
4582out_done:
4583 return cpumask_first(nohz.cpu_mask);
4584}
4585#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4586static inline int find_new_ilb(int call_cpu)
4587{
6e29ec57 4588 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4589}
4590#endif
4591
7835b98b 4592/*
46cb4b7c
SS
4593 * This routine will try to nominate the ilb (idle load balancing)
4594 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4595 * load balancing on behalf of all those cpus. If all the cpus in the system
4596 * go into this tickless mode, then there will be no ilb owner (as there is
4597 * no need for one) and all the cpus will sleep till the next wakeup event
4598 * arrives...
4599 *
4600 * For the ilb owner, tick is not stopped. And this tick will be used
4601 * for idle load balancing. ilb owner will still be part of
4602 * nohz.cpu_mask..
7835b98b 4603 *
46cb4b7c
SS
4604 * While stopping the tick, this cpu will become the ilb owner if there
4605 * is no other owner. And will be the owner till that cpu becomes busy
4606 * or if all cpus in the system stop their ticks at which point
4607 * there is no need for ilb owner.
4608 *
4609 * When the ilb owner becomes busy, it nominates another owner, during the
4610 * next busy scheduler_tick()
4611 */
4612int select_nohz_load_balancer(int stop_tick)
4613{
4614 int cpu = smp_processor_id();
4615
4616 if (stop_tick) {
46cb4b7c
SS
4617 cpu_rq(cpu)->in_nohz_recently = 1;
4618
483b4ee6
SS
4619 if (!cpu_active(cpu)) {
4620 if (atomic_read(&nohz.load_balancer) != cpu)
4621 return 0;
4622
4623 /*
4624 * If we are going offline and still the leader,
4625 * give up!
4626 */
46cb4b7c
SS
4627 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4628 BUG();
483b4ee6 4629
46cb4b7c
SS
4630 return 0;
4631 }
4632
483b4ee6
SS
4633 cpumask_set_cpu(cpu, nohz.cpu_mask);
4634
46cb4b7c 4635 /* time for ilb owner also to sleep */
7d1e6a9b 4636 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4637 if (atomic_read(&nohz.load_balancer) == cpu)
4638 atomic_set(&nohz.load_balancer, -1);
4639 return 0;
4640 }
4641
4642 if (atomic_read(&nohz.load_balancer) == -1) {
4643 /* make me the ilb owner */
4644 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4645 return 1;
e790fb0b
GS
4646 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4647 int new_ilb;
4648
4649 if (!(sched_smt_power_savings ||
4650 sched_mc_power_savings))
4651 return 1;
4652 /*
4653 * Check to see if there is a more power-efficient
4654 * ilb.
4655 */
4656 new_ilb = find_new_ilb(cpu);
4657 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4658 atomic_set(&nohz.load_balancer, -1);
4659 resched_cpu(new_ilb);
4660 return 0;
4661 }
46cb4b7c 4662 return 1;
e790fb0b 4663 }
46cb4b7c 4664 } else {
7d1e6a9b 4665 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4666 return 0;
4667
7d1e6a9b 4668 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4669
4670 if (atomic_read(&nohz.load_balancer) == cpu)
4671 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4672 BUG();
4673 }
4674 return 0;
4675}
4676#endif
4677
4678static DEFINE_SPINLOCK(balancing);
4679
4680/*
7835b98b
CL
4681 * It checks each scheduling domain to see if it is due to be balanced,
4682 * and initiates a balancing operation if so.
4683 *
4684 * Balancing parameters are set up in arch_init_sched_domains.
4685 */
a9957449 4686static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4687{
46cb4b7c
SS
4688 int balance = 1;
4689 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4690 unsigned long interval;
4691 struct sched_domain *sd;
46cb4b7c 4692 /* Earliest time when we have to do rebalance again */
c9819f45 4693 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4694 int update_next_balance = 0;
d07355f5 4695 int need_serialize;
1da177e4 4696
46cb4b7c 4697 for_each_domain(cpu, sd) {
1da177e4
LT
4698 if (!(sd->flags & SD_LOAD_BALANCE))
4699 continue;
4700
4701 interval = sd->balance_interval;
d15bcfdb 4702 if (idle != CPU_IDLE)
1da177e4
LT
4703 interval *= sd->busy_factor;
4704
4705 /* scale ms to jiffies */
4706 interval = msecs_to_jiffies(interval);
4707 if (unlikely(!interval))
4708 interval = 1;
dd41f596
IM
4709 if (interval > HZ*NR_CPUS/10)
4710 interval = HZ*NR_CPUS/10;
4711
d07355f5 4712 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4713
d07355f5 4714 if (need_serialize) {
08c183f3
CL
4715 if (!spin_trylock(&balancing))
4716 goto out;
4717 }
4718
c9819f45 4719 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4720 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4721 /*
4722 * We've pulled tasks over so either we're no
5969fe06
NP
4723 * longer idle, or one of our SMT siblings is
4724 * not idle.
4725 */
d15bcfdb 4726 idle = CPU_NOT_IDLE;
1da177e4 4727 }
1bd77f2d 4728 sd->last_balance = jiffies;
1da177e4 4729 }
d07355f5 4730 if (need_serialize)
08c183f3
CL
4731 spin_unlock(&balancing);
4732out:
f549da84 4733 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4734 next_balance = sd->last_balance + interval;
f549da84
SS
4735 update_next_balance = 1;
4736 }
783609c6
SS
4737
4738 /*
4739 * Stop the load balance at this level. There is another
4740 * CPU in our sched group which is doing load balancing more
4741 * actively.
4742 */
4743 if (!balance)
4744 break;
1da177e4 4745 }
f549da84
SS
4746
4747 /*
4748 * next_balance will be updated only when there is a need.
4749 * When the cpu is attached to null domain for ex, it will not be
4750 * updated.
4751 */
4752 if (likely(update_next_balance))
4753 rq->next_balance = next_balance;
46cb4b7c
SS
4754}
4755
4756/*
4757 * run_rebalance_domains is triggered when needed from the scheduler tick.
4758 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4759 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4760 */
4761static void run_rebalance_domains(struct softirq_action *h)
4762{
dd41f596
IM
4763 int this_cpu = smp_processor_id();
4764 struct rq *this_rq = cpu_rq(this_cpu);
4765 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4766 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4767
dd41f596 4768 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4769
4770#ifdef CONFIG_NO_HZ
4771 /*
4772 * If this cpu is the owner for idle load balancing, then do the
4773 * balancing on behalf of the other idle cpus whose ticks are
4774 * stopped.
4775 */
dd41f596
IM
4776 if (this_rq->idle_at_tick &&
4777 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4778 struct rq *rq;
4779 int balance_cpu;
4780
7d1e6a9b
RR
4781 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4782 if (balance_cpu == this_cpu)
4783 continue;
4784
46cb4b7c
SS
4785 /*
4786 * If this cpu gets work to do, stop the load balancing
4787 * work being done for other cpus. Next load
4788 * balancing owner will pick it up.
4789 */
4790 if (need_resched())
4791 break;
4792
de0cf899 4793 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4794
4795 rq = cpu_rq(balance_cpu);
dd41f596
IM
4796 if (time_after(this_rq->next_balance, rq->next_balance))
4797 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4798 }
4799 }
4800#endif
4801}
4802
8a0be9ef
FW
4803static inline int on_null_domain(int cpu)
4804{
4805 return !rcu_dereference(cpu_rq(cpu)->sd);
4806}
4807
46cb4b7c
SS
4808/*
4809 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4810 *
4811 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4812 * idle load balancing owner or decide to stop the periodic load balancing,
4813 * if the whole system is idle.
4814 */
dd41f596 4815static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4816{
46cb4b7c
SS
4817#ifdef CONFIG_NO_HZ
4818 /*
4819 * If we were in the nohz mode recently and busy at the current
4820 * scheduler tick, then check if we need to nominate new idle
4821 * load balancer.
4822 */
4823 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4824 rq->in_nohz_recently = 0;
4825
4826 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4827 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4828 atomic_set(&nohz.load_balancer, -1);
4829 }
4830
4831 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4832 int ilb = find_new_ilb(cpu);
46cb4b7c 4833
434d53b0 4834 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4835 resched_cpu(ilb);
4836 }
4837 }
4838
4839 /*
4840 * If this cpu is idle and doing idle load balancing for all the
4841 * cpus with ticks stopped, is it time for that to stop?
4842 */
4843 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4844 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4845 resched_cpu(cpu);
4846 return;
4847 }
4848
4849 /*
4850 * If this cpu is idle and the idle load balancing is done by
4851 * someone else, then no need raise the SCHED_SOFTIRQ
4852 */
4853 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4854 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4855 return;
4856#endif
8a0be9ef
FW
4857 /* Don't need to rebalance while attached to NULL domain */
4858 if (time_after_eq(jiffies, rq->next_balance) &&
4859 likely(!on_null_domain(cpu)))
46cb4b7c 4860 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4861}
dd41f596
IM
4862
4863#else /* CONFIG_SMP */
4864
1da177e4
LT
4865/*
4866 * on UP we do not need to balance between CPUs:
4867 */
70b97a7f 4868static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4869{
4870}
dd41f596 4871
1da177e4
LT
4872#endif
4873
1da177e4
LT
4874DEFINE_PER_CPU(struct kernel_stat, kstat);
4875
4876EXPORT_PER_CPU_SYMBOL(kstat);
4877
4878/*
c5f8d995 4879 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4880 * @p in case that task is currently running.
c5f8d995
HS
4881 *
4882 * Called with task_rq_lock() held on @rq.
1da177e4 4883 */
c5f8d995
HS
4884static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4885{
4886 u64 ns = 0;
4887
4888 if (task_current(rq, p)) {
4889 update_rq_clock(rq);
4890 ns = rq->clock - p->se.exec_start;
4891 if ((s64)ns < 0)
4892 ns = 0;
4893 }
4894
4895 return ns;
4896}
4897
bb34d92f 4898unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4899{
1da177e4 4900 unsigned long flags;
41b86e9c 4901 struct rq *rq;
bb34d92f 4902 u64 ns = 0;
48f24c4d 4903
41b86e9c 4904 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4905 ns = do_task_delta_exec(p, rq);
4906 task_rq_unlock(rq, &flags);
1508487e 4907
c5f8d995
HS
4908 return ns;
4909}
f06febc9 4910
c5f8d995
HS
4911/*
4912 * Return accounted runtime for the task.
4913 * In case the task is currently running, return the runtime plus current's
4914 * pending runtime that have not been accounted yet.
4915 */
4916unsigned long long task_sched_runtime(struct task_struct *p)
4917{
4918 unsigned long flags;
4919 struct rq *rq;
4920 u64 ns = 0;
4921
4922 rq = task_rq_lock(p, &flags);
4923 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4924 task_rq_unlock(rq, &flags);
4925
4926 return ns;
4927}
48f24c4d 4928
c5f8d995
HS
4929/*
4930 * Return sum_exec_runtime for the thread group.
4931 * In case the task is currently running, return the sum plus current's
4932 * pending runtime that have not been accounted yet.
4933 *
4934 * Note that the thread group might have other running tasks as well,
4935 * so the return value not includes other pending runtime that other
4936 * running tasks might have.
4937 */
4938unsigned long long thread_group_sched_runtime(struct task_struct *p)
4939{
4940 struct task_cputime totals;
4941 unsigned long flags;
4942 struct rq *rq;
4943 u64 ns;
4944
4945 rq = task_rq_lock(p, &flags);
4946 thread_group_cputime(p, &totals);
4947 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4948 task_rq_unlock(rq, &flags);
48f24c4d 4949
1da177e4
LT
4950 return ns;
4951}
4952
1da177e4
LT
4953/*
4954 * Account user cpu time to a process.
4955 * @p: the process that the cpu time gets accounted to
1da177e4 4956 * @cputime: the cpu time spent in user space since the last update
457533a7 4957 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4958 */
457533a7
MS
4959void account_user_time(struct task_struct *p, cputime_t cputime,
4960 cputime_t cputime_scaled)
1da177e4
LT
4961{
4962 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4963 cputime64_t tmp;
4964
457533a7 4965 /* Add user time to process. */
1da177e4 4966 p->utime = cputime_add(p->utime, cputime);
457533a7 4967 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4968 account_group_user_time(p, cputime);
1da177e4
LT
4969
4970 /* Add user time to cpustat. */
4971 tmp = cputime_to_cputime64(cputime);
4972 if (TASK_NICE(p) > 0)
4973 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4974 else
4975 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4976
4977 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4978 /* Account for user time used */
4979 acct_update_integrals(p);
1da177e4
LT
4980}
4981
94886b84
LV
4982/*
4983 * Account guest cpu time to a process.
4984 * @p: the process that the cpu time gets accounted to
4985 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4986 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4987 */
457533a7
MS
4988static void account_guest_time(struct task_struct *p, cputime_t cputime,
4989 cputime_t cputime_scaled)
94886b84
LV
4990{
4991 cputime64_t tmp;
4992 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4993
4994 tmp = cputime_to_cputime64(cputime);
4995
457533a7 4996 /* Add guest time to process. */
94886b84 4997 p->utime = cputime_add(p->utime, cputime);
457533a7 4998 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4999 account_group_user_time(p, cputime);
94886b84
LV
5000 p->gtime = cputime_add(p->gtime, cputime);
5001
457533a7 5002 /* Add guest time to cpustat. */
94886b84
LV
5003 cpustat->user = cputime64_add(cpustat->user, tmp);
5004 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5005}
5006
1da177e4
LT
5007/*
5008 * Account system cpu time to a process.
5009 * @p: the process that the cpu time gets accounted to
5010 * @hardirq_offset: the offset to subtract from hardirq_count()
5011 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5012 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5013 */
5014void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5015 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5016{
5017 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5018 cputime64_t tmp;
5019
983ed7a6 5020 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5021 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5022 return;
5023 }
94886b84 5024
457533a7 5025 /* Add system time to process. */
1da177e4 5026 p->stime = cputime_add(p->stime, cputime);
457533a7 5027 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5028 account_group_system_time(p, cputime);
1da177e4
LT
5029
5030 /* Add system time to cpustat. */
5031 tmp = cputime_to_cputime64(cputime);
5032 if (hardirq_count() - hardirq_offset)
5033 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5034 else if (softirq_count())
5035 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5036 else
79741dd3
MS
5037 cpustat->system = cputime64_add(cpustat->system, tmp);
5038
ef12fefa
BR
5039 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5040
1da177e4
LT
5041 /* Account for system time used */
5042 acct_update_integrals(p);
1da177e4
LT
5043}
5044
c66f08be 5045/*
1da177e4 5046 * Account for involuntary wait time.
1da177e4 5047 * @steal: the cpu time spent in involuntary wait
c66f08be 5048 */
79741dd3 5049void account_steal_time(cputime_t cputime)
c66f08be 5050{
79741dd3
MS
5051 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5052 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5053
5054 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5055}
5056
1da177e4 5057/*
79741dd3
MS
5058 * Account for idle time.
5059 * @cputime: the cpu time spent in idle wait
1da177e4 5060 */
79741dd3 5061void account_idle_time(cputime_t cputime)
1da177e4
LT
5062{
5063 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5064 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5065 struct rq *rq = this_rq();
1da177e4 5066
79741dd3
MS
5067 if (atomic_read(&rq->nr_iowait) > 0)
5068 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5069 else
5070 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5071}
5072
79741dd3
MS
5073#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5074
5075/*
5076 * Account a single tick of cpu time.
5077 * @p: the process that the cpu time gets accounted to
5078 * @user_tick: indicates if the tick is a user or a system tick
5079 */
5080void account_process_tick(struct task_struct *p, int user_tick)
5081{
5082 cputime_t one_jiffy = jiffies_to_cputime(1);
5083 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5084 struct rq *rq = this_rq();
5085
5086 if (user_tick)
5087 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5088 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5089 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5090 one_jiffy_scaled);
5091 else
5092 account_idle_time(one_jiffy);
5093}
5094
5095/*
5096 * Account multiple ticks of steal time.
5097 * @p: the process from which the cpu time has been stolen
5098 * @ticks: number of stolen ticks
5099 */
5100void account_steal_ticks(unsigned long ticks)
5101{
5102 account_steal_time(jiffies_to_cputime(ticks));
5103}
5104
5105/*
5106 * Account multiple ticks of idle time.
5107 * @ticks: number of stolen ticks
5108 */
5109void account_idle_ticks(unsigned long ticks)
5110{
5111 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5112}
5113
79741dd3
MS
5114#endif
5115
49048622
BS
5116/*
5117 * Use precise platform statistics if available:
5118 */
5119#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5120cputime_t task_utime(struct task_struct *p)
5121{
5122 return p->utime;
5123}
5124
5125cputime_t task_stime(struct task_struct *p)
5126{
5127 return p->stime;
5128}
5129#else
5130cputime_t task_utime(struct task_struct *p)
5131{
5132 clock_t utime = cputime_to_clock_t(p->utime),
5133 total = utime + cputime_to_clock_t(p->stime);
5134 u64 temp;
5135
5136 /*
5137 * Use CFS's precise accounting:
5138 */
5139 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5140
5141 if (total) {
5142 temp *= utime;
5143 do_div(temp, total);
5144 }
5145 utime = (clock_t)temp;
5146
5147 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5148 return p->prev_utime;
5149}
5150
5151cputime_t task_stime(struct task_struct *p)
5152{
5153 clock_t stime;
5154
5155 /*
5156 * Use CFS's precise accounting. (we subtract utime from
5157 * the total, to make sure the total observed by userspace
5158 * grows monotonically - apps rely on that):
5159 */
5160 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5161 cputime_to_clock_t(task_utime(p));
5162
5163 if (stime >= 0)
5164 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5165
5166 return p->prev_stime;
5167}
5168#endif
5169
5170inline cputime_t task_gtime(struct task_struct *p)
5171{
5172 return p->gtime;
5173}
5174
7835b98b
CL
5175/*
5176 * This function gets called by the timer code, with HZ frequency.
5177 * We call it with interrupts disabled.
5178 *
5179 * It also gets called by the fork code, when changing the parent's
5180 * timeslices.
5181 */
5182void scheduler_tick(void)
5183{
7835b98b
CL
5184 int cpu = smp_processor_id();
5185 struct rq *rq = cpu_rq(cpu);
dd41f596 5186 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5187
5188 sched_clock_tick();
dd41f596
IM
5189
5190 spin_lock(&rq->lock);
3e51f33f 5191 update_rq_clock(rq);
f1a438d8 5192 update_cpu_load(rq);
fa85ae24 5193 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5194 spin_unlock(&rq->lock);
7835b98b 5195
e220d2dc
PZ
5196 perf_counter_task_tick(curr, cpu);
5197
e418e1c2 5198#ifdef CONFIG_SMP
dd41f596
IM
5199 rq->idle_at_tick = idle_cpu(cpu);
5200 trigger_load_balance(rq, cpu);
e418e1c2 5201#endif
1da177e4
LT
5202}
5203
132380a0 5204notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5205{
5206 if (in_lock_functions(addr)) {
5207 addr = CALLER_ADDR2;
5208 if (in_lock_functions(addr))
5209 addr = CALLER_ADDR3;
5210 }
5211 return addr;
5212}
1da177e4 5213
7e49fcce
SR
5214#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5215 defined(CONFIG_PREEMPT_TRACER))
5216
43627582 5217void __kprobes add_preempt_count(int val)
1da177e4 5218{
6cd8a4bb 5219#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5220 /*
5221 * Underflow?
5222 */
9a11b49a
IM
5223 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5224 return;
6cd8a4bb 5225#endif
1da177e4 5226 preempt_count() += val;
6cd8a4bb 5227#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5228 /*
5229 * Spinlock count overflowing soon?
5230 */
33859f7f
MOS
5231 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5232 PREEMPT_MASK - 10);
6cd8a4bb
SR
5233#endif
5234 if (preempt_count() == val)
5235 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5236}
5237EXPORT_SYMBOL(add_preempt_count);
5238
43627582 5239void __kprobes sub_preempt_count(int val)
1da177e4 5240{
6cd8a4bb 5241#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5242 /*
5243 * Underflow?
5244 */
01e3eb82 5245 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5246 return;
1da177e4
LT
5247 /*
5248 * Is the spinlock portion underflowing?
5249 */
9a11b49a
IM
5250 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5251 !(preempt_count() & PREEMPT_MASK)))
5252 return;
6cd8a4bb 5253#endif
9a11b49a 5254
6cd8a4bb
SR
5255 if (preempt_count() == val)
5256 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5257 preempt_count() -= val;
5258}
5259EXPORT_SYMBOL(sub_preempt_count);
5260
5261#endif
5262
5263/*
dd41f596 5264 * Print scheduling while atomic bug:
1da177e4 5265 */
dd41f596 5266static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5267{
838225b4
SS
5268 struct pt_regs *regs = get_irq_regs();
5269
5270 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5271 prev->comm, prev->pid, preempt_count());
5272
dd41f596 5273 debug_show_held_locks(prev);
e21f5b15 5274 print_modules();
dd41f596
IM
5275 if (irqs_disabled())
5276 print_irqtrace_events(prev);
838225b4
SS
5277
5278 if (regs)
5279 show_regs(regs);
5280 else
5281 dump_stack();
dd41f596 5282}
1da177e4 5283
dd41f596
IM
5284/*
5285 * Various schedule()-time debugging checks and statistics:
5286 */
5287static inline void schedule_debug(struct task_struct *prev)
5288{
1da177e4 5289 /*
41a2d6cf 5290 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5291 * schedule() atomically, we ignore that path for now.
5292 * Otherwise, whine if we are scheduling when we should not be.
5293 */
3f33a7ce 5294 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5295 __schedule_bug(prev);
5296
1da177e4
LT
5297 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5298
2d72376b 5299 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5300#ifdef CONFIG_SCHEDSTATS
5301 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5302 schedstat_inc(this_rq(), bkl_count);
5303 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5304 }
5305#endif
dd41f596
IM
5306}
5307
ad4b78bb 5308static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5309{
ad4b78bb 5310 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5311
ad4b78bb 5312 update_avg(&p->se.avg_running, runtime);
df1c99d4 5313
ad4b78bb 5314 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5315 /*
5316 * In order to avoid avg_overlap growing stale when we are
5317 * indeed overlapping and hence not getting put to sleep, grow
5318 * the avg_overlap on preemption.
5319 *
5320 * We use the average preemption runtime because that
5321 * correlates to the amount of cache footprint a task can
5322 * build up.
5323 */
ad4b78bb
PZ
5324 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5325 update_avg(&p->se.avg_overlap, runtime);
5326 } else {
5327 update_avg(&p->se.avg_running, 0);
df1c99d4 5328 }
ad4b78bb 5329 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5330}
5331
dd41f596
IM
5332/*
5333 * Pick up the highest-prio task:
5334 */
5335static inline struct task_struct *
b67802ea 5336pick_next_task(struct rq *rq)
dd41f596 5337{
5522d5d5 5338 const struct sched_class *class;
dd41f596 5339 struct task_struct *p;
1da177e4
LT
5340
5341 /*
dd41f596
IM
5342 * Optimization: we know that if all tasks are in
5343 * the fair class we can call that function directly:
1da177e4 5344 */
dd41f596 5345 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5346 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5347 if (likely(p))
5348 return p;
1da177e4
LT
5349 }
5350
dd41f596
IM
5351 class = sched_class_highest;
5352 for ( ; ; ) {
fb8d4724 5353 p = class->pick_next_task(rq);
dd41f596
IM
5354 if (p)
5355 return p;
5356 /*
5357 * Will never be NULL as the idle class always
5358 * returns a non-NULL p:
5359 */
5360 class = class->next;
5361 }
5362}
1da177e4 5363
dd41f596
IM
5364/*
5365 * schedule() is the main scheduler function.
5366 */
ff743345 5367asmlinkage void __sched schedule(void)
dd41f596
IM
5368{
5369 struct task_struct *prev, *next;
67ca7bde 5370 unsigned long *switch_count;
dd41f596 5371 struct rq *rq;
31656519 5372 int cpu;
dd41f596 5373
ff743345
PZ
5374need_resched:
5375 preempt_disable();
dd41f596
IM
5376 cpu = smp_processor_id();
5377 rq = cpu_rq(cpu);
d6714c22 5378 rcu_sched_qs(cpu);
dd41f596
IM
5379 prev = rq->curr;
5380 switch_count = &prev->nivcsw;
5381
5382 release_kernel_lock(prev);
5383need_resched_nonpreemptible:
5384
5385 schedule_debug(prev);
1da177e4 5386
31656519 5387 if (sched_feat(HRTICK))
f333fdc9 5388 hrtick_clear(rq);
8f4d37ec 5389
8cd162ce 5390 spin_lock_irq(&rq->lock);
3e51f33f 5391 update_rq_clock(rq);
1e819950 5392 clear_tsk_need_resched(prev);
1da177e4 5393
1da177e4 5394 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5395 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5396 prev->state = TASK_RUNNING;
16882c1e 5397 else
2e1cb74a 5398 deactivate_task(rq, prev, 1);
dd41f596 5399 switch_count = &prev->nvcsw;
1da177e4
LT
5400 }
5401
3f029d3c 5402 pre_schedule(rq, prev);
f65eda4f 5403
dd41f596 5404 if (unlikely(!rq->nr_running))
1da177e4 5405 idle_balance(cpu, rq);
1da177e4 5406
df1c99d4 5407 put_prev_task(rq, prev);
b67802ea 5408 next = pick_next_task(rq);
1da177e4 5409
1da177e4 5410 if (likely(prev != next)) {
673a90a1 5411 sched_info_switch(prev, next);
564c2b21 5412 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5413
1da177e4
LT
5414 rq->nr_switches++;
5415 rq->curr = next;
5416 ++*switch_count;
5417
dd41f596 5418 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5419 /*
5420 * the context switch might have flipped the stack from under
5421 * us, hence refresh the local variables.
5422 */
5423 cpu = smp_processor_id();
5424 rq = cpu_rq(cpu);
1da177e4
LT
5425 } else
5426 spin_unlock_irq(&rq->lock);
5427
3f029d3c 5428 post_schedule(rq);
1da177e4 5429
8f4d37ec 5430 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5431 goto need_resched_nonpreemptible;
8f4d37ec 5432
1da177e4 5433 preempt_enable_no_resched();
ff743345 5434 if (need_resched())
1da177e4
LT
5435 goto need_resched;
5436}
1da177e4
LT
5437EXPORT_SYMBOL(schedule);
5438
0d66bf6d
PZ
5439#ifdef CONFIG_SMP
5440/*
5441 * Look out! "owner" is an entirely speculative pointer
5442 * access and not reliable.
5443 */
5444int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5445{
5446 unsigned int cpu;
5447 struct rq *rq;
5448
5449 if (!sched_feat(OWNER_SPIN))
5450 return 0;
5451
5452#ifdef CONFIG_DEBUG_PAGEALLOC
5453 /*
5454 * Need to access the cpu field knowing that
5455 * DEBUG_PAGEALLOC could have unmapped it if
5456 * the mutex owner just released it and exited.
5457 */
5458 if (probe_kernel_address(&owner->cpu, cpu))
5459 goto out;
5460#else
5461 cpu = owner->cpu;
5462#endif
5463
5464 /*
5465 * Even if the access succeeded (likely case),
5466 * the cpu field may no longer be valid.
5467 */
5468 if (cpu >= nr_cpumask_bits)
5469 goto out;
5470
5471 /*
5472 * We need to validate that we can do a
5473 * get_cpu() and that we have the percpu area.
5474 */
5475 if (!cpu_online(cpu))
5476 goto out;
5477
5478 rq = cpu_rq(cpu);
5479
5480 for (;;) {
5481 /*
5482 * Owner changed, break to re-assess state.
5483 */
5484 if (lock->owner != owner)
5485 break;
5486
5487 /*
5488 * Is that owner really running on that cpu?
5489 */
5490 if (task_thread_info(rq->curr) != owner || need_resched())
5491 return 0;
5492
5493 cpu_relax();
5494 }
5495out:
5496 return 1;
5497}
5498#endif
5499
1da177e4
LT
5500#ifdef CONFIG_PREEMPT
5501/*
2ed6e34f 5502 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5503 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5504 * occur there and call schedule directly.
5505 */
5506asmlinkage void __sched preempt_schedule(void)
5507{
5508 struct thread_info *ti = current_thread_info();
6478d880 5509
1da177e4
LT
5510 /*
5511 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5512 * we do not want to preempt the current task. Just return..
1da177e4 5513 */
beed33a8 5514 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5515 return;
5516
3a5c359a
AK
5517 do {
5518 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5519 schedule();
3a5c359a 5520 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5521
3a5c359a
AK
5522 /*
5523 * Check again in case we missed a preemption opportunity
5524 * between schedule and now.
5525 */
5526 barrier();
5ed0cec0 5527 } while (need_resched());
1da177e4 5528}
1da177e4
LT
5529EXPORT_SYMBOL(preempt_schedule);
5530
5531/*
2ed6e34f 5532 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5533 * off of irq context.
5534 * Note, that this is called and return with irqs disabled. This will
5535 * protect us against recursive calling from irq.
5536 */
5537asmlinkage void __sched preempt_schedule_irq(void)
5538{
5539 struct thread_info *ti = current_thread_info();
6478d880 5540
2ed6e34f 5541 /* Catch callers which need to be fixed */
1da177e4
LT
5542 BUG_ON(ti->preempt_count || !irqs_disabled());
5543
3a5c359a
AK
5544 do {
5545 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5546 local_irq_enable();
5547 schedule();
5548 local_irq_disable();
3a5c359a 5549 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5550
3a5c359a
AK
5551 /*
5552 * Check again in case we missed a preemption opportunity
5553 * between schedule and now.
5554 */
5555 barrier();
5ed0cec0 5556 } while (need_resched());
1da177e4
LT
5557}
5558
5559#endif /* CONFIG_PREEMPT */
5560
63859d4f 5561int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5562 void *key)
1da177e4 5563{
63859d4f 5564 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5565}
1da177e4
LT
5566EXPORT_SYMBOL(default_wake_function);
5567
5568/*
41a2d6cf
IM
5569 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5570 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5571 * number) then we wake all the non-exclusive tasks and one exclusive task.
5572 *
5573 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5574 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5575 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5576 */
78ddb08f 5577static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5578 int nr_exclusive, int wake_flags, void *key)
1da177e4 5579{
2e45874c 5580 wait_queue_t *curr, *next;
1da177e4 5581
2e45874c 5582 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5583 unsigned flags = curr->flags;
5584
63859d4f 5585 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5586 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5587 break;
5588 }
5589}
5590
5591/**
5592 * __wake_up - wake up threads blocked on a waitqueue.
5593 * @q: the waitqueue
5594 * @mode: which threads
5595 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5596 * @key: is directly passed to the wakeup function
50fa610a
DH
5597 *
5598 * It may be assumed that this function implies a write memory barrier before
5599 * changing the task state if and only if any tasks are woken up.
1da177e4 5600 */
7ad5b3a5 5601void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5602 int nr_exclusive, void *key)
1da177e4
LT
5603{
5604 unsigned long flags;
5605
5606 spin_lock_irqsave(&q->lock, flags);
5607 __wake_up_common(q, mode, nr_exclusive, 0, key);
5608 spin_unlock_irqrestore(&q->lock, flags);
5609}
1da177e4
LT
5610EXPORT_SYMBOL(__wake_up);
5611
5612/*
5613 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5614 */
7ad5b3a5 5615void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5616{
5617 __wake_up_common(q, mode, 1, 0, NULL);
5618}
5619
4ede816a
DL
5620void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5621{
5622 __wake_up_common(q, mode, 1, 0, key);
5623}
5624
1da177e4 5625/**
4ede816a 5626 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5627 * @q: the waitqueue
5628 * @mode: which threads
5629 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5630 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5631 *
5632 * The sync wakeup differs that the waker knows that it will schedule
5633 * away soon, so while the target thread will be woken up, it will not
5634 * be migrated to another CPU - ie. the two threads are 'synchronized'
5635 * with each other. This can prevent needless bouncing between CPUs.
5636 *
5637 * On UP it can prevent extra preemption.
50fa610a
DH
5638 *
5639 * It may be assumed that this function implies a write memory barrier before
5640 * changing the task state if and only if any tasks are woken up.
1da177e4 5641 */
4ede816a
DL
5642void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5643 int nr_exclusive, void *key)
1da177e4
LT
5644{
5645 unsigned long flags;
7d478721 5646 int wake_flags = WF_SYNC;
1da177e4
LT
5647
5648 if (unlikely(!q))
5649 return;
5650
5651 if (unlikely(!nr_exclusive))
7d478721 5652 wake_flags = 0;
1da177e4
LT
5653
5654 spin_lock_irqsave(&q->lock, flags);
7d478721 5655 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5656 spin_unlock_irqrestore(&q->lock, flags);
5657}
4ede816a
DL
5658EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5659
5660/*
5661 * __wake_up_sync - see __wake_up_sync_key()
5662 */
5663void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5664{
5665 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5666}
1da177e4
LT
5667EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5668
65eb3dc6
KD
5669/**
5670 * complete: - signals a single thread waiting on this completion
5671 * @x: holds the state of this particular completion
5672 *
5673 * This will wake up a single thread waiting on this completion. Threads will be
5674 * awakened in the same order in which they were queued.
5675 *
5676 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5677 *
5678 * It may be assumed that this function implies a write memory barrier before
5679 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5680 */
b15136e9 5681void complete(struct completion *x)
1da177e4
LT
5682{
5683 unsigned long flags;
5684
5685 spin_lock_irqsave(&x->wait.lock, flags);
5686 x->done++;
d9514f6c 5687 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5688 spin_unlock_irqrestore(&x->wait.lock, flags);
5689}
5690EXPORT_SYMBOL(complete);
5691
65eb3dc6
KD
5692/**
5693 * complete_all: - signals all threads waiting on this completion
5694 * @x: holds the state of this particular completion
5695 *
5696 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5697 *
5698 * It may be assumed that this function implies a write memory barrier before
5699 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5700 */
b15136e9 5701void complete_all(struct completion *x)
1da177e4
LT
5702{
5703 unsigned long flags;
5704
5705 spin_lock_irqsave(&x->wait.lock, flags);
5706 x->done += UINT_MAX/2;
d9514f6c 5707 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5708 spin_unlock_irqrestore(&x->wait.lock, flags);
5709}
5710EXPORT_SYMBOL(complete_all);
5711
8cbbe86d
AK
5712static inline long __sched
5713do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5714{
1da177e4
LT
5715 if (!x->done) {
5716 DECLARE_WAITQUEUE(wait, current);
5717
5718 wait.flags |= WQ_FLAG_EXCLUSIVE;
5719 __add_wait_queue_tail(&x->wait, &wait);
5720 do {
94d3d824 5721 if (signal_pending_state(state, current)) {
ea71a546
ON
5722 timeout = -ERESTARTSYS;
5723 break;
8cbbe86d
AK
5724 }
5725 __set_current_state(state);
1da177e4
LT
5726 spin_unlock_irq(&x->wait.lock);
5727 timeout = schedule_timeout(timeout);
5728 spin_lock_irq(&x->wait.lock);
ea71a546 5729 } while (!x->done && timeout);
1da177e4 5730 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5731 if (!x->done)
5732 return timeout;
1da177e4
LT
5733 }
5734 x->done--;
ea71a546 5735 return timeout ?: 1;
1da177e4 5736}
1da177e4 5737
8cbbe86d
AK
5738static long __sched
5739wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5740{
1da177e4
LT
5741 might_sleep();
5742
5743 spin_lock_irq(&x->wait.lock);
8cbbe86d 5744 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5745 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5746 return timeout;
5747}
1da177e4 5748
65eb3dc6
KD
5749/**
5750 * wait_for_completion: - waits for completion of a task
5751 * @x: holds the state of this particular completion
5752 *
5753 * This waits to be signaled for completion of a specific task. It is NOT
5754 * interruptible and there is no timeout.
5755 *
5756 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5757 * and interrupt capability. Also see complete().
5758 */
b15136e9 5759void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5760{
5761 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5762}
8cbbe86d 5763EXPORT_SYMBOL(wait_for_completion);
1da177e4 5764
65eb3dc6
KD
5765/**
5766 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5767 * @x: holds the state of this particular completion
5768 * @timeout: timeout value in jiffies
5769 *
5770 * This waits for either a completion of a specific task to be signaled or for a
5771 * specified timeout to expire. The timeout is in jiffies. It is not
5772 * interruptible.
5773 */
b15136e9 5774unsigned long __sched
8cbbe86d 5775wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5776{
8cbbe86d 5777 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5778}
8cbbe86d 5779EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5780
65eb3dc6
KD
5781/**
5782 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5783 * @x: holds the state of this particular completion
5784 *
5785 * This waits for completion of a specific task to be signaled. It is
5786 * interruptible.
5787 */
8cbbe86d 5788int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5789{
51e97990
AK
5790 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5791 if (t == -ERESTARTSYS)
5792 return t;
5793 return 0;
0fec171c 5794}
8cbbe86d 5795EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5796
65eb3dc6
KD
5797/**
5798 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5799 * @x: holds the state of this particular completion
5800 * @timeout: timeout value in jiffies
5801 *
5802 * This waits for either a completion of a specific task to be signaled or for a
5803 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5804 */
b15136e9 5805unsigned long __sched
8cbbe86d
AK
5806wait_for_completion_interruptible_timeout(struct completion *x,
5807 unsigned long timeout)
0fec171c 5808{
8cbbe86d 5809 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5810}
8cbbe86d 5811EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5812
65eb3dc6
KD
5813/**
5814 * wait_for_completion_killable: - waits for completion of a task (killable)
5815 * @x: holds the state of this particular completion
5816 *
5817 * This waits to be signaled for completion of a specific task. It can be
5818 * interrupted by a kill signal.
5819 */
009e577e
MW
5820int __sched wait_for_completion_killable(struct completion *x)
5821{
5822 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5823 if (t == -ERESTARTSYS)
5824 return t;
5825 return 0;
5826}
5827EXPORT_SYMBOL(wait_for_completion_killable);
5828
be4de352
DC
5829/**
5830 * try_wait_for_completion - try to decrement a completion without blocking
5831 * @x: completion structure
5832 *
5833 * Returns: 0 if a decrement cannot be done without blocking
5834 * 1 if a decrement succeeded.
5835 *
5836 * If a completion is being used as a counting completion,
5837 * attempt to decrement the counter without blocking. This
5838 * enables us to avoid waiting if the resource the completion
5839 * is protecting is not available.
5840 */
5841bool try_wait_for_completion(struct completion *x)
5842{
5843 int ret = 1;
5844
5845 spin_lock_irq(&x->wait.lock);
5846 if (!x->done)
5847 ret = 0;
5848 else
5849 x->done--;
5850 spin_unlock_irq(&x->wait.lock);
5851 return ret;
5852}
5853EXPORT_SYMBOL(try_wait_for_completion);
5854
5855/**
5856 * completion_done - Test to see if a completion has any waiters
5857 * @x: completion structure
5858 *
5859 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5860 * 1 if there are no waiters.
5861 *
5862 */
5863bool completion_done(struct completion *x)
5864{
5865 int ret = 1;
5866
5867 spin_lock_irq(&x->wait.lock);
5868 if (!x->done)
5869 ret = 0;
5870 spin_unlock_irq(&x->wait.lock);
5871 return ret;
5872}
5873EXPORT_SYMBOL(completion_done);
5874
8cbbe86d
AK
5875static long __sched
5876sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5877{
0fec171c
IM
5878 unsigned long flags;
5879 wait_queue_t wait;
5880
5881 init_waitqueue_entry(&wait, current);
1da177e4 5882
8cbbe86d 5883 __set_current_state(state);
1da177e4 5884
8cbbe86d
AK
5885 spin_lock_irqsave(&q->lock, flags);
5886 __add_wait_queue(q, &wait);
5887 spin_unlock(&q->lock);
5888 timeout = schedule_timeout(timeout);
5889 spin_lock_irq(&q->lock);
5890 __remove_wait_queue(q, &wait);
5891 spin_unlock_irqrestore(&q->lock, flags);
5892
5893 return timeout;
5894}
5895
5896void __sched interruptible_sleep_on(wait_queue_head_t *q)
5897{
5898 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5899}
1da177e4
LT
5900EXPORT_SYMBOL(interruptible_sleep_on);
5901
0fec171c 5902long __sched
95cdf3b7 5903interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5904{
8cbbe86d 5905 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5906}
1da177e4
LT
5907EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5908
0fec171c 5909void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5910{
8cbbe86d 5911 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5912}
1da177e4
LT
5913EXPORT_SYMBOL(sleep_on);
5914
0fec171c 5915long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5916{
8cbbe86d 5917 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5918}
1da177e4
LT
5919EXPORT_SYMBOL(sleep_on_timeout);
5920
b29739f9
IM
5921#ifdef CONFIG_RT_MUTEXES
5922
5923/*
5924 * rt_mutex_setprio - set the current priority of a task
5925 * @p: task
5926 * @prio: prio value (kernel-internal form)
5927 *
5928 * This function changes the 'effective' priority of a task. It does
5929 * not touch ->normal_prio like __setscheduler().
5930 *
5931 * Used by the rt_mutex code to implement priority inheritance logic.
5932 */
36c8b586 5933void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5934{
5935 unsigned long flags;
83b699ed 5936 int oldprio, on_rq, running;
70b97a7f 5937 struct rq *rq;
cb469845 5938 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5939
5940 BUG_ON(prio < 0 || prio > MAX_PRIO);
5941
5942 rq = task_rq_lock(p, &flags);
a8e504d2 5943 update_rq_clock(rq);
b29739f9 5944
d5f9f942 5945 oldprio = p->prio;
dd41f596 5946 on_rq = p->se.on_rq;
051a1d1a 5947 running = task_current(rq, p);
0e1f3483 5948 if (on_rq)
69be72c1 5949 dequeue_task(rq, p, 0);
0e1f3483
HS
5950 if (running)
5951 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5952
5953 if (rt_prio(prio))
5954 p->sched_class = &rt_sched_class;
5955 else
5956 p->sched_class = &fair_sched_class;
5957
b29739f9
IM
5958 p->prio = prio;
5959
0e1f3483
HS
5960 if (running)
5961 p->sched_class->set_curr_task(rq);
dd41f596 5962 if (on_rq) {
8159f87e 5963 enqueue_task(rq, p, 0);
cb469845
SR
5964
5965 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5966 }
5967 task_rq_unlock(rq, &flags);
5968}
5969
5970#endif
5971
36c8b586 5972void set_user_nice(struct task_struct *p, long nice)
1da177e4 5973{
dd41f596 5974 int old_prio, delta, on_rq;
1da177e4 5975 unsigned long flags;
70b97a7f 5976 struct rq *rq;
1da177e4
LT
5977
5978 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5979 return;
5980 /*
5981 * We have to be careful, if called from sys_setpriority(),
5982 * the task might be in the middle of scheduling on another CPU.
5983 */
5984 rq = task_rq_lock(p, &flags);
a8e504d2 5985 update_rq_clock(rq);
1da177e4
LT
5986 /*
5987 * The RT priorities are set via sched_setscheduler(), but we still
5988 * allow the 'normal' nice value to be set - but as expected
5989 * it wont have any effect on scheduling until the task is
dd41f596 5990 * SCHED_FIFO/SCHED_RR:
1da177e4 5991 */
e05606d3 5992 if (task_has_rt_policy(p)) {
1da177e4
LT
5993 p->static_prio = NICE_TO_PRIO(nice);
5994 goto out_unlock;
5995 }
dd41f596 5996 on_rq = p->se.on_rq;
c09595f6 5997 if (on_rq)
69be72c1 5998 dequeue_task(rq, p, 0);
1da177e4 5999
1da177e4 6000 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6001 set_load_weight(p);
b29739f9
IM
6002 old_prio = p->prio;
6003 p->prio = effective_prio(p);
6004 delta = p->prio - old_prio;
1da177e4 6005
dd41f596 6006 if (on_rq) {
8159f87e 6007 enqueue_task(rq, p, 0);
1da177e4 6008 /*
d5f9f942
AM
6009 * If the task increased its priority or is running and
6010 * lowered its priority, then reschedule its CPU:
1da177e4 6011 */
d5f9f942 6012 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6013 resched_task(rq->curr);
6014 }
6015out_unlock:
6016 task_rq_unlock(rq, &flags);
6017}
1da177e4
LT
6018EXPORT_SYMBOL(set_user_nice);
6019
e43379f1
MM
6020/*
6021 * can_nice - check if a task can reduce its nice value
6022 * @p: task
6023 * @nice: nice value
6024 */
36c8b586 6025int can_nice(const struct task_struct *p, const int nice)
e43379f1 6026{
024f4747
MM
6027 /* convert nice value [19,-20] to rlimit style value [1,40] */
6028 int nice_rlim = 20 - nice;
48f24c4d 6029
e43379f1
MM
6030 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6031 capable(CAP_SYS_NICE));
6032}
6033
1da177e4
LT
6034#ifdef __ARCH_WANT_SYS_NICE
6035
6036/*
6037 * sys_nice - change the priority of the current process.
6038 * @increment: priority increment
6039 *
6040 * sys_setpriority is a more generic, but much slower function that
6041 * does similar things.
6042 */
5add95d4 6043SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6044{
48f24c4d 6045 long nice, retval;
1da177e4
LT
6046
6047 /*
6048 * Setpriority might change our priority at the same moment.
6049 * We don't have to worry. Conceptually one call occurs first
6050 * and we have a single winner.
6051 */
e43379f1
MM
6052 if (increment < -40)
6053 increment = -40;
1da177e4
LT
6054 if (increment > 40)
6055 increment = 40;
6056
2b8f836f 6057 nice = TASK_NICE(current) + increment;
1da177e4
LT
6058 if (nice < -20)
6059 nice = -20;
6060 if (nice > 19)
6061 nice = 19;
6062
e43379f1
MM
6063 if (increment < 0 && !can_nice(current, nice))
6064 return -EPERM;
6065
1da177e4
LT
6066 retval = security_task_setnice(current, nice);
6067 if (retval)
6068 return retval;
6069
6070 set_user_nice(current, nice);
6071 return 0;
6072}
6073
6074#endif
6075
6076/**
6077 * task_prio - return the priority value of a given task.
6078 * @p: the task in question.
6079 *
6080 * This is the priority value as seen by users in /proc.
6081 * RT tasks are offset by -200. Normal tasks are centered
6082 * around 0, value goes from -16 to +15.
6083 */
36c8b586 6084int task_prio(const struct task_struct *p)
1da177e4
LT
6085{
6086 return p->prio - MAX_RT_PRIO;
6087}
6088
6089/**
6090 * task_nice - return the nice value of a given task.
6091 * @p: the task in question.
6092 */
36c8b586 6093int task_nice(const struct task_struct *p)
1da177e4
LT
6094{
6095 return TASK_NICE(p);
6096}
150d8bed 6097EXPORT_SYMBOL(task_nice);
1da177e4
LT
6098
6099/**
6100 * idle_cpu - is a given cpu idle currently?
6101 * @cpu: the processor in question.
6102 */
6103int idle_cpu(int cpu)
6104{
6105 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6106}
6107
1da177e4
LT
6108/**
6109 * idle_task - return the idle task for a given cpu.
6110 * @cpu: the processor in question.
6111 */
36c8b586 6112struct task_struct *idle_task(int cpu)
1da177e4
LT
6113{
6114 return cpu_rq(cpu)->idle;
6115}
6116
6117/**
6118 * find_process_by_pid - find a process with a matching PID value.
6119 * @pid: the pid in question.
6120 */
a9957449 6121static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6122{
228ebcbe 6123 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6124}
6125
6126/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6127static void
6128__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6129{
dd41f596 6130 BUG_ON(p->se.on_rq);
48f24c4d 6131
1da177e4 6132 p->policy = policy;
dd41f596
IM
6133 switch (p->policy) {
6134 case SCHED_NORMAL:
6135 case SCHED_BATCH:
6136 case SCHED_IDLE:
6137 p->sched_class = &fair_sched_class;
6138 break;
6139 case SCHED_FIFO:
6140 case SCHED_RR:
6141 p->sched_class = &rt_sched_class;
6142 break;
6143 }
6144
1da177e4 6145 p->rt_priority = prio;
b29739f9
IM
6146 p->normal_prio = normal_prio(p);
6147 /* we are holding p->pi_lock already */
6148 p->prio = rt_mutex_getprio(p);
2dd73a4f 6149 set_load_weight(p);
1da177e4
LT
6150}
6151
c69e8d9c
DH
6152/*
6153 * check the target process has a UID that matches the current process's
6154 */
6155static bool check_same_owner(struct task_struct *p)
6156{
6157 const struct cred *cred = current_cred(), *pcred;
6158 bool match;
6159
6160 rcu_read_lock();
6161 pcred = __task_cred(p);
6162 match = (cred->euid == pcred->euid ||
6163 cred->euid == pcred->uid);
6164 rcu_read_unlock();
6165 return match;
6166}
6167
961ccddd
RR
6168static int __sched_setscheduler(struct task_struct *p, int policy,
6169 struct sched_param *param, bool user)
1da177e4 6170{
83b699ed 6171 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6172 unsigned long flags;
cb469845 6173 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6174 struct rq *rq;
ca94c442 6175 int reset_on_fork;
1da177e4 6176
66e5393a
SR
6177 /* may grab non-irq protected spin_locks */
6178 BUG_ON(in_interrupt());
1da177e4
LT
6179recheck:
6180 /* double check policy once rq lock held */
ca94c442
LP
6181 if (policy < 0) {
6182 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6183 policy = oldpolicy = p->policy;
ca94c442
LP
6184 } else {
6185 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6186 policy &= ~SCHED_RESET_ON_FORK;
6187
6188 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6189 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6190 policy != SCHED_IDLE)
6191 return -EINVAL;
6192 }
6193
1da177e4
LT
6194 /*
6195 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6196 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6197 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6198 */
6199 if (param->sched_priority < 0 ||
95cdf3b7 6200 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6201 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6202 return -EINVAL;
e05606d3 6203 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6204 return -EINVAL;
6205
37e4ab3f
OC
6206 /*
6207 * Allow unprivileged RT tasks to decrease priority:
6208 */
961ccddd 6209 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6210 if (rt_policy(policy)) {
8dc3e909 6211 unsigned long rlim_rtprio;
8dc3e909
ON
6212
6213 if (!lock_task_sighand(p, &flags))
6214 return -ESRCH;
6215 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6216 unlock_task_sighand(p, &flags);
6217
6218 /* can't set/change the rt policy */
6219 if (policy != p->policy && !rlim_rtprio)
6220 return -EPERM;
6221
6222 /* can't increase priority */
6223 if (param->sched_priority > p->rt_priority &&
6224 param->sched_priority > rlim_rtprio)
6225 return -EPERM;
6226 }
dd41f596
IM
6227 /*
6228 * Like positive nice levels, dont allow tasks to
6229 * move out of SCHED_IDLE either:
6230 */
6231 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6232 return -EPERM;
5fe1d75f 6233
37e4ab3f 6234 /* can't change other user's priorities */
c69e8d9c 6235 if (!check_same_owner(p))
37e4ab3f 6236 return -EPERM;
ca94c442
LP
6237
6238 /* Normal users shall not reset the sched_reset_on_fork flag */
6239 if (p->sched_reset_on_fork && !reset_on_fork)
6240 return -EPERM;
37e4ab3f 6241 }
1da177e4 6242
725aad24 6243 if (user) {
b68aa230 6244#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6245 /*
6246 * Do not allow realtime tasks into groups that have no runtime
6247 * assigned.
6248 */
9a7e0b18
PZ
6249 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6250 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6251 return -EPERM;
b68aa230
PZ
6252#endif
6253
725aad24
JF
6254 retval = security_task_setscheduler(p, policy, param);
6255 if (retval)
6256 return retval;
6257 }
6258
b29739f9
IM
6259 /*
6260 * make sure no PI-waiters arrive (or leave) while we are
6261 * changing the priority of the task:
6262 */
6263 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6264 /*
6265 * To be able to change p->policy safely, the apropriate
6266 * runqueue lock must be held.
6267 */
b29739f9 6268 rq = __task_rq_lock(p);
1da177e4
LT
6269 /* recheck policy now with rq lock held */
6270 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6271 policy = oldpolicy = -1;
b29739f9
IM
6272 __task_rq_unlock(rq);
6273 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6274 goto recheck;
6275 }
2daa3577 6276 update_rq_clock(rq);
dd41f596 6277 on_rq = p->se.on_rq;
051a1d1a 6278 running = task_current(rq, p);
0e1f3483 6279 if (on_rq)
2e1cb74a 6280 deactivate_task(rq, p, 0);
0e1f3483
HS
6281 if (running)
6282 p->sched_class->put_prev_task(rq, p);
f6b53205 6283
ca94c442
LP
6284 p->sched_reset_on_fork = reset_on_fork;
6285
1da177e4 6286 oldprio = p->prio;
dd41f596 6287 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6288
0e1f3483
HS
6289 if (running)
6290 p->sched_class->set_curr_task(rq);
dd41f596
IM
6291 if (on_rq) {
6292 activate_task(rq, p, 0);
cb469845
SR
6293
6294 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6295 }
b29739f9
IM
6296 __task_rq_unlock(rq);
6297 spin_unlock_irqrestore(&p->pi_lock, flags);
6298
95e02ca9
TG
6299 rt_mutex_adjust_pi(p);
6300
1da177e4
LT
6301 return 0;
6302}
961ccddd
RR
6303
6304/**
6305 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6306 * @p: the task in question.
6307 * @policy: new policy.
6308 * @param: structure containing the new RT priority.
6309 *
6310 * NOTE that the task may be already dead.
6311 */
6312int sched_setscheduler(struct task_struct *p, int policy,
6313 struct sched_param *param)
6314{
6315 return __sched_setscheduler(p, policy, param, true);
6316}
1da177e4
LT
6317EXPORT_SYMBOL_GPL(sched_setscheduler);
6318
961ccddd
RR
6319/**
6320 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6321 * @p: the task in question.
6322 * @policy: new policy.
6323 * @param: structure containing the new RT priority.
6324 *
6325 * Just like sched_setscheduler, only don't bother checking if the
6326 * current context has permission. For example, this is needed in
6327 * stop_machine(): we create temporary high priority worker threads,
6328 * but our caller might not have that capability.
6329 */
6330int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6331 struct sched_param *param)
6332{
6333 return __sched_setscheduler(p, policy, param, false);
6334}
6335
95cdf3b7
IM
6336static int
6337do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6338{
1da177e4
LT
6339 struct sched_param lparam;
6340 struct task_struct *p;
36c8b586 6341 int retval;
1da177e4
LT
6342
6343 if (!param || pid < 0)
6344 return -EINVAL;
6345 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6346 return -EFAULT;
5fe1d75f
ON
6347
6348 rcu_read_lock();
6349 retval = -ESRCH;
1da177e4 6350 p = find_process_by_pid(pid);
5fe1d75f
ON
6351 if (p != NULL)
6352 retval = sched_setscheduler(p, policy, &lparam);
6353 rcu_read_unlock();
36c8b586 6354
1da177e4
LT
6355 return retval;
6356}
6357
6358/**
6359 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6360 * @pid: the pid in question.
6361 * @policy: new policy.
6362 * @param: structure containing the new RT priority.
6363 */
5add95d4
HC
6364SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6365 struct sched_param __user *, param)
1da177e4 6366{
c21761f1
JB
6367 /* negative values for policy are not valid */
6368 if (policy < 0)
6369 return -EINVAL;
6370
1da177e4
LT
6371 return do_sched_setscheduler(pid, policy, param);
6372}
6373
6374/**
6375 * sys_sched_setparam - set/change the RT priority of a thread
6376 * @pid: the pid in question.
6377 * @param: structure containing the new RT priority.
6378 */
5add95d4 6379SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6380{
6381 return do_sched_setscheduler(pid, -1, param);
6382}
6383
6384/**
6385 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6386 * @pid: the pid in question.
6387 */
5add95d4 6388SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6389{
36c8b586 6390 struct task_struct *p;
3a5c359a 6391 int retval;
1da177e4
LT
6392
6393 if (pid < 0)
3a5c359a 6394 return -EINVAL;
1da177e4
LT
6395
6396 retval = -ESRCH;
6397 read_lock(&tasklist_lock);
6398 p = find_process_by_pid(pid);
6399 if (p) {
6400 retval = security_task_getscheduler(p);
6401 if (!retval)
ca94c442
LP
6402 retval = p->policy
6403 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6404 }
6405 read_unlock(&tasklist_lock);
1da177e4
LT
6406 return retval;
6407}
6408
6409/**
ca94c442 6410 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6411 * @pid: the pid in question.
6412 * @param: structure containing the RT priority.
6413 */
5add95d4 6414SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6415{
6416 struct sched_param lp;
36c8b586 6417 struct task_struct *p;
3a5c359a 6418 int retval;
1da177e4
LT
6419
6420 if (!param || pid < 0)
3a5c359a 6421 return -EINVAL;
1da177e4
LT
6422
6423 read_lock(&tasklist_lock);
6424 p = find_process_by_pid(pid);
6425 retval = -ESRCH;
6426 if (!p)
6427 goto out_unlock;
6428
6429 retval = security_task_getscheduler(p);
6430 if (retval)
6431 goto out_unlock;
6432
6433 lp.sched_priority = p->rt_priority;
6434 read_unlock(&tasklist_lock);
6435
6436 /*
6437 * This one might sleep, we cannot do it with a spinlock held ...
6438 */
6439 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6440
1da177e4
LT
6441 return retval;
6442
6443out_unlock:
6444 read_unlock(&tasklist_lock);
6445 return retval;
6446}
6447
96f874e2 6448long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6449{
5a16f3d3 6450 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6451 struct task_struct *p;
6452 int retval;
1da177e4 6453
95402b38 6454 get_online_cpus();
1da177e4
LT
6455 read_lock(&tasklist_lock);
6456
6457 p = find_process_by_pid(pid);
6458 if (!p) {
6459 read_unlock(&tasklist_lock);
95402b38 6460 put_online_cpus();
1da177e4
LT
6461 return -ESRCH;
6462 }
6463
6464 /*
6465 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6466 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6467 * usage count and then drop tasklist_lock.
6468 */
6469 get_task_struct(p);
6470 read_unlock(&tasklist_lock);
6471
5a16f3d3
RR
6472 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6473 retval = -ENOMEM;
6474 goto out_put_task;
6475 }
6476 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6477 retval = -ENOMEM;
6478 goto out_free_cpus_allowed;
6479 }
1da177e4 6480 retval = -EPERM;
c69e8d9c 6481 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6482 goto out_unlock;
6483
e7834f8f
DQ
6484 retval = security_task_setscheduler(p, 0, NULL);
6485 if (retval)
6486 goto out_unlock;
6487
5a16f3d3
RR
6488 cpuset_cpus_allowed(p, cpus_allowed);
6489 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6490 again:
5a16f3d3 6491 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6492
8707d8b8 6493 if (!retval) {
5a16f3d3
RR
6494 cpuset_cpus_allowed(p, cpus_allowed);
6495 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6496 /*
6497 * We must have raced with a concurrent cpuset
6498 * update. Just reset the cpus_allowed to the
6499 * cpuset's cpus_allowed
6500 */
5a16f3d3 6501 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6502 goto again;
6503 }
6504 }
1da177e4 6505out_unlock:
5a16f3d3
RR
6506 free_cpumask_var(new_mask);
6507out_free_cpus_allowed:
6508 free_cpumask_var(cpus_allowed);
6509out_put_task:
1da177e4 6510 put_task_struct(p);
95402b38 6511 put_online_cpus();
1da177e4
LT
6512 return retval;
6513}
6514
6515static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6516 struct cpumask *new_mask)
1da177e4 6517{
96f874e2
RR
6518 if (len < cpumask_size())
6519 cpumask_clear(new_mask);
6520 else if (len > cpumask_size())
6521 len = cpumask_size();
6522
1da177e4
LT
6523 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6524}
6525
6526/**
6527 * sys_sched_setaffinity - set the cpu affinity of a process
6528 * @pid: pid of the process
6529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6530 * @user_mask_ptr: user-space pointer to the new cpu mask
6531 */
5add95d4
HC
6532SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6533 unsigned long __user *, user_mask_ptr)
1da177e4 6534{
5a16f3d3 6535 cpumask_var_t new_mask;
1da177e4
LT
6536 int retval;
6537
5a16f3d3
RR
6538 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6539 return -ENOMEM;
1da177e4 6540
5a16f3d3
RR
6541 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6542 if (retval == 0)
6543 retval = sched_setaffinity(pid, new_mask);
6544 free_cpumask_var(new_mask);
6545 return retval;
1da177e4
LT
6546}
6547
96f874e2 6548long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6549{
36c8b586 6550 struct task_struct *p;
1da177e4 6551 int retval;
1da177e4 6552
95402b38 6553 get_online_cpus();
1da177e4
LT
6554 read_lock(&tasklist_lock);
6555
6556 retval = -ESRCH;
6557 p = find_process_by_pid(pid);
6558 if (!p)
6559 goto out_unlock;
6560
e7834f8f
DQ
6561 retval = security_task_getscheduler(p);
6562 if (retval)
6563 goto out_unlock;
6564
96f874e2 6565 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6566
6567out_unlock:
6568 read_unlock(&tasklist_lock);
95402b38 6569 put_online_cpus();
1da177e4 6570
9531b62f 6571 return retval;
1da177e4
LT
6572}
6573
6574/**
6575 * sys_sched_getaffinity - get the cpu affinity of a process
6576 * @pid: pid of the process
6577 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6578 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6579 */
5add95d4
HC
6580SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6581 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6582{
6583 int ret;
f17c8607 6584 cpumask_var_t mask;
1da177e4 6585
f17c8607 6586 if (len < cpumask_size())
1da177e4
LT
6587 return -EINVAL;
6588
f17c8607
RR
6589 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6590 return -ENOMEM;
1da177e4 6591
f17c8607
RR
6592 ret = sched_getaffinity(pid, mask);
6593 if (ret == 0) {
6594 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6595 ret = -EFAULT;
6596 else
6597 ret = cpumask_size();
6598 }
6599 free_cpumask_var(mask);
1da177e4 6600
f17c8607 6601 return ret;
1da177e4
LT
6602}
6603
6604/**
6605 * sys_sched_yield - yield the current processor to other threads.
6606 *
dd41f596
IM
6607 * This function yields the current CPU to other tasks. If there are no
6608 * other threads running on this CPU then this function will return.
1da177e4 6609 */
5add95d4 6610SYSCALL_DEFINE0(sched_yield)
1da177e4 6611{
70b97a7f 6612 struct rq *rq = this_rq_lock();
1da177e4 6613
2d72376b 6614 schedstat_inc(rq, yld_count);
4530d7ab 6615 current->sched_class->yield_task(rq);
1da177e4
LT
6616
6617 /*
6618 * Since we are going to call schedule() anyway, there's
6619 * no need to preempt or enable interrupts:
6620 */
6621 __release(rq->lock);
8a25d5de 6622 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6623 _raw_spin_unlock(&rq->lock);
6624 preempt_enable_no_resched();
6625
6626 schedule();
6627
6628 return 0;
6629}
6630
d86ee480
PZ
6631static inline int should_resched(void)
6632{
6633 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6634}
6635
e7b38404 6636static void __cond_resched(void)
1da177e4 6637{
e7aaaa69
FW
6638 add_preempt_count(PREEMPT_ACTIVE);
6639 schedule();
6640 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6641}
6642
02b67cc3 6643int __sched _cond_resched(void)
1da177e4 6644{
d86ee480 6645 if (should_resched()) {
1da177e4
LT
6646 __cond_resched();
6647 return 1;
6648 }
6649 return 0;
6650}
02b67cc3 6651EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6652
6653/*
613afbf8 6654 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6655 * call schedule, and on return reacquire the lock.
6656 *
41a2d6cf 6657 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6658 * operations here to prevent schedule() from being called twice (once via
6659 * spin_unlock(), once by hand).
6660 */
613afbf8 6661int __cond_resched_lock(spinlock_t *lock)
1da177e4 6662{
d86ee480 6663 int resched = should_resched();
6df3cecb
JK
6664 int ret = 0;
6665
f607c668
PZ
6666 lockdep_assert_held(lock);
6667
95c354fe 6668 if (spin_needbreak(lock) || resched) {
1da177e4 6669 spin_unlock(lock);
d86ee480 6670 if (resched)
95c354fe
NP
6671 __cond_resched();
6672 else
6673 cpu_relax();
6df3cecb 6674 ret = 1;
1da177e4 6675 spin_lock(lock);
1da177e4 6676 }
6df3cecb 6677 return ret;
1da177e4 6678}
613afbf8 6679EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6680
613afbf8 6681int __sched __cond_resched_softirq(void)
1da177e4
LT
6682{
6683 BUG_ON(!in_softirq());
6684
d86ee480 6685 if (should_resched()) {
98d82567 6686 local_bh_enable();
1da177e4
LT
6687 __cond_resched();
6688 local_bh_disable();
6689 return 1;
6690 }
6691 return 0;
6692}
613afbf8 6693EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6694
1da177e4
LT
6695/**
6696 * yield - yield the current processor to other threads.
6697 *
72fd4a35 6698 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6699 * thread runnable and calls sys_sched_yield().
6700 */
6701void __sched yield(void)
6702{
6703 set_current_state(TASK_RUNNING);
6704 sys_sched_yield();
6705}
1da177e4
LT
6706EXPORT_SYMBOL(yield);
6707
6708/*
41a2d6cf 6709 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6710 * that process accounting knows that this is a task in IO wait state.
6711 *
6712 * But don't do that if it is a deliberate, throttling IO wait (this task
6713 * has set its backing_dev_info: the queue against which it should throttle)
6714 */
6715void __sched io_schedule(void)
6716{
54d35f29 6717 struct rq *rq = raw_rq();
1da177e4 6718
0ff92245 6719 delayacct_blkio_start();
1da177e4 6720 atomic_inc(&rq->nr_iowait);
8f0dfc34 6721 current->in_iowait = 1;
1da177e4 6722 schedule();
8f0dfc34 6723 current->in_iowait = 0;
1da177e4 6724 atomic_dec(&rq->nr_iowait);
0ff92245 6725 delayacct_blkio_end();
1da177e4 6726}
1da177e4
LT
6727EXPORT_SYMBOL(io_schedule);
6728
6729long __sched io_schedule_timeout(long timeout)
6730{
54d35f29 6731 struct rq *rq = raw_rq();
1da177e4
LT
6732 long ret;
6733
0ff92245 6734 delayacct_blkio_start();
1da177e4 6735 atomic_inc(&rq->nr_iowait);
8f0dfc34 6736 current->in_iowait = 1;
1da177e4 6737 ret = schedule_timeout(timeout);
8f0dfc34 6738 current->in_iowait = 0;
1da177e4 6739 atomic_dec(&rq->nr_iowait);
0ff92245 6740 delayacct_blkio_end();
1da177e4
LT
6741 return ret;
6742}
6743
6744/**
6745 * sys_sched_get_priority_max - return maximum RT priority.
6746 * @policy: scheduling class.
6747 *
6748 * this syscall returns the maximum rt_priority that can be used
6749 * by a given scheduling class.
6750 */
5add95d4 6751SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6752{
6753 int ret = -EINVAL;
6754
6755 switch (policy) {
6756 case SCHED_FIFO:
6757 case SCHED_RR:
6758 ret = MAX_USER_RT_PRIO-1;
6759 break;
6760 case SCHED_NORMAL:
b0a9499c 6761 case SCHED_BATCH:
dd41f596 6762 case SCHED_IDLE:
1da177e4
LT
6763 ret = 0;
6764 break;
6765 }
6766 return ret;
6767}
6768
6769/**
6770 * sys_sched_get_priority_min - return minimum RT priority.
6771 * @policy: scheduling class.
6772 *
6773 * this syscall returns the minimum rt_priority that can be used
6774 * by a given scheduling class.
6775 */
5add95d4 6776SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6777{
6778 int ret = -EINVAL;
6779
6780 switch (policy) {
6781 case SCHED_FIFO:
6782 case SCHED_RR:
6783 ret = 1;
6784 break;
6785 case SCHED_NORMAL:
b0a9499c 6786 case SCHED_BATCH:
dd41f596 6787 case SCHED_IDLE:
1da177e4
LT
6788 ret = 0;
6789 }
6790 return ret;
6791}
6792
6793/**
6794 * sys_sched_rr_get_interval - return the default timeslice of a process.
6795 * @pid: pid of the process.
6796 * @interval: userspace pointer to the timeslice value.
6797 *
6798 * this syscall writes the default timeslice value of a given process
6799 * into the user-space timespec buffer. A value of '0' means infinity.
6800 */
17da2bd9 6801SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6802 struct timespec __user *, interval)
1da177e4 6803{
36c8b586 6804 struct task_struct *p;
a4ec24b4 6805 unsigned int time_slice;
3a5c359a 6806 int retval;
1da177e4 6807 struct timespec t;
1da177e4
LT
6808
6809 if (pid < 0)
3a5c359a 6810 return -EINVAL;
1da177e4
LT
6811
6812 retval = -ESRCH;
6813 read_lock(&tasklist_lock);
6814 p = find_process_by_pid(pid);
6815 if (!p)
6816 goto out_unlock;
6817
6818 retval = security_task_getscheduler(p);
6819 if (retval)
6820 goto out_unlock;
6821
0d721cea 6822 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6823
1da177e4 6824 read_unlock(&tasklist_lock);
a4ec24b4 6825 jiffies_to_timespec(time_slice, &t);
1da177e4 6826 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6827 return retval;
3a5c359a 6828
1da177e4
LT
6829out_unlock:
6830 read_unlock(&tasklist_lock);
6831 return retval;
6832}
6833
7c731e0a 6834static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6835
82a1fcb9 6836void sched_show_task(struct task_struct *p)
1da177e4 6837{
1da177e4 6838 unsigned long free = 0;
36c8b586 6839 unsigned state;
1da177e4 6840
1da177e4 6841 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6842 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6843 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6844#if BITS_PER_LONG == 32
1da177e4 6845 if (state == TASK_RUNNING)
cc4ea795 6846 printk(KERN_CONT " running ");
1da177e4 6847 else
cc4ea795 6848 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6849#else
6850 if (state == TASK_RUNNING)
cc4ea795 6851 printk(KERN_CONT " running task ");
1da177e4 6852 else
cc4ea795 6853 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6854#endif
6855#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6856 free = stack_not_used(p);
1da177e4 6857#endif
aa47b7e0
DR
6858 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6859 task_pid_nr(p), task_pid_nr(p->real_parent),
6860 (unsigned long)task_thread_info(p)->flags);
1da177e4 6861
5fb5e6de 6862 show_stack(p, NULL);
1da177e4
LT
6863}
6864
e59e2ae2 6865void show_state_filter(unsigned long state_filter)
1da177e4 6866{
36c8b586 6867 struct task_struct *g, *p;
1da177e4 6868
4bd77321
IM
6869#if BITS_PER_LONG == 32
6870 printk(KERN_INFO
6871 " task PC stack pid father\n");
1da177e4 6872#else
4bd77321
IM
6873 printk(KERN_INFO
6874 " task PC stack pid father\n");
1da177e4
LT
6875#endif
6876 read_lock(&tasklist_lock);
6877 do_each_thread(g, p) {
6878 /*
6879 * reset the NMI-timeout, listing all files on a slow
6880 * console might take alot of time:
6881 */
6882 touch_nmi_watchdog();
39bc89fd 6883 if (!state_filter || (p->state & state_filter))
82a1fcb9 6884 sched_show_task(p);
1da177e4
LT
6885 } while_each_thread(g, p);
6886
04c9167f
JF
6887 touch_all_softlockup_watchdogs();
6888
dd41f596
IM
6889#ifdef CONFIG_SCHED_DEBUG
6890 sysrq_sched_debug_show();
6891#endif
1da177e4 6892 read_unlock(&tasklist_lock);
e59e2ae2
IM
6893 /*
6894 * Only show locks if all tasks are dumped:
6895 */
6896 if (state_filter == -1)
6897 debug_show_all_locks();
1da177e4
LT
6898}
6899
1df21055
IM
6900void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6901{
dd41f596 6902 idle->sched_class = &idle_sched_class;
1df21055
IM
6903}
6904
f340c0d1
IM
6905/**
6906 * init_idle - set up an idle thread for a given CPU
6907 * @idle: task in question
6908 * @cpu: cpu the idle task belongs to
6909 *
6910 * NOTE: this function does not set the idle thread's NEED_RESCHED
6911 * flag, to make booting more robust.
6912 */
5c1e1767 6913void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6914{
70b97a7f 6915 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6916 unsigned long flags;
6917
5cbd54ef
IM
6918 spin_lock_irqsave(&rq->lock, flags);
6919
dd41f596
IM
6920 __sched_fork(idle);
6921 idle->se.exec_start = sched_clock();
6922
b29739f9 6923 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6924 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6925 __set_task_cpu(idle, cpu);
1da177e4 6926
1da177e4 6927 rq->curr = rq->idle = idle;
4866cde0
NP
6928#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6929 idle->oncpu = 1;
6930#endif
1da177e4
LT
6931 spin_unlock_irqrestore(&rq->lock, flags);
6932
6933 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6934#if defined(CONFIG_PREEMPT)
6935 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6936#else
a1261f54 6937 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6938#endif
dd41f596
IM
6939 /*
6940 * The idle tasks have their own, simple scheduling class:
6941 */
6942 idle->sched_class = &idle_sched_class;
fb52607a 6943 ftrace_graph_init_task(idle);
1da177e4
LT
6944}
6945
6946/*
6947 * In a system that switches off the HZ timer nohz_cpu_mask
6948 * indicates which cpus entered this state. This is used
6949 * in the rcu update to wait only for active cpus. For system
6950 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6951 * always be CPU_BITS_NONE.
1da177e4 6952 */
6a7b3dc3 6953cpumask_var_t nohz_cpu_mask;
1da177e4 6954
19978ca6
IM
6955/*
6956 * Increase the granularity value when there are more CPUs,
6957 * because with more CPUs the 'effective latency' as visible
6958 * to users decreases. But the relationship is not linear,
6959 * so pick a second-best guess by going with the log2 of the
6960 * number of CPUs.
6961 *
6962 * This idea comes from the SD scheduler of Con Kolivas:
6963 */
6964static inline void sched_init_granularity(void)
6965{
6966 unsigned int factor = 1 + ilog2(num_online_cpus());
6967 const unsigned long limit = 200000000;
6968
6969 sysctl_sched_min_granularity *= factor;
6970 if (sysctl_sched_min_granularity > limit)
6971 sysctl_sched_min_granularity = limit;
6972
6973 sysctl_sched_latency *= factor;
6974 if (sysctl_sched_latency > limit)
6975 sysctl_sched_latency = limit;
6976
6977 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6978
6979 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6980}
6981
1da177e4
LT
6982#ifdef CONFIG_SMP
6983/*
6984 * This is how migration works:
6985 *
70b97a7f 6986 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6987 * runqueue and wake up that CPU's migration thread.
6988 * 2) we down() the locked semaphore => thread blocks.
6989 * 3) migration thread wakes up (implicitly it forces the migrated
6990 * thread off the CPU)
6991 * 4) it gets the migration request and checks whether the migrated
6992 * task is still in the wrong runqueue.
6993 * 5) if it's in the wrong runqueue then the migration thread removes
6994 * it and puts it into the right queue.
6995 * 6) migration thread up()s the semaphore.
6996 * 7) we wake up and the migration is done.
6997 */
6998
6999/*
7000 * Change a given task's CPU affinity. Migrate the thread to a
7001 * proper CPU and schedule it away if the CPU it's executing on
7002 * is removed from the allowed bitmask.
7003 *
7004 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7005 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7006 * call is not atomic; no spinlocks may be held.
7007 */
96f874e2 7008int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7009{
70b97a7f 7010 struct migration_req req;
1da177e4 7011 unsigned long flags;
70b97a7f 7012 struct rq *rq;
48f24c4d 7013 int ret = 0;
1da177e4
LT
7014
7015 rq = task_rq_lock(p, &flags);
96f874e2 7016 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7017 ret = -EINVAL;
7018 goto out;
7019 }
7020
9985b0ba 7021 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7022 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7023 ret = -EINVAL;
7024 goto out;
7025 }
7026
73fe6aae 7027 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7028 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7029 else {
96f874e2
RR
7030 cpumask_copy(&p->cpus_allowed, new_mask);
7031 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7032 }
7033
1da177e4 7034 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7035 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7036 goto out;
7037
1e5ce4f4 7038 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7039 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7040 struct task_struct *mt = rq->migration_thread;
7041
7042 get_task_struct(mt);
1da177e4
LT
7043 task_rq_unlock(rq, &flags);
7044 wake_up_process(rq->migration_thread);
693525e3 7045 put_task_struct(mt);
1da177e4
LT
7046 wait_for_completion(&req.done);
7047 tlb_migrate_finish(p->mm);
7048 return 0;
7049 }
7050out:
7051 task_rq_unlock(rq, &flags);
48f24c4d 7052
1da177e4
LT
7053 return ret;
7054}
cd8ba7cd 7055EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7056
7057/*
41a2d6cf 7058 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7059 * this because either it can't run here any more (set_cpus_allowed()
7060 * away from this CPU, or CPU going down), or because we're
7061 * attempting to rebalance this task on exec (sched_exec).
7062 *
7063 * So we race with normal scheduler movements, but that's OK, as long
7064 * as the task is no longer on this CPU.
efc30814
KK
7065 *
7066 * Returns non-zero if task was successfully migrated.
1da177e4 7067 */
efc30814 7068static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7069{
70b97a7f 7070 struct rq *rq_dest, *rq_src;
dd41f596 7071 int ret = 0, on_rq;
1da177e4 7072
e761b772 7073 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7074 return ret;
1da177e4
LT
7075
7076 rq_src = cpu_rq(src_cpu);
7077 rq_dest = cpu_rq(dest_cpu);
7078
7079 double_rq_lock(rq_src, rq_dest);
7080 /* Already moved. */
7081 if (task_cpu(p) != src_cpu)
b1e38734 7082 goto done;
1da177e4 7083 /* Affinity changed (again). */
96f874e2 7084 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7085 goto fail;
1da177e4 7086
dd41f596 7087 on_rq = p->se.on_rq;
6e82a3be 7088 if (on_rq)
2e1cb74a 7089 deactivate_task(rq_src, p, 0);
6e82a3be 7090
1da177e4 7091 set_task_cpu(p, dest_cpu);
dd41f596
IM
7092 if (on_rq) {
7093 activate_task(rq_dest, p, 0);
15afe09b 7094 check_preempt_curr(rq_dest, p, 0);
1da177e4 7095 }
b1e38734 7096done:
efc30814 7097 ret = 1;
b1e38734 7098fail:
1da177e4 7099 double_rq_unlock(rq_src, rq_dest);
efc30814 7100 return ret;
1da177e4
LT
7101}
7102
03b042bf
PM
7103#define RCU_MIGRATION_IDLE 0
7104#define RCU_MIGRATION_NEED_QS 1
7105#define RCU_MIGRATION_GOT_QS 2
7106#define RCU_MIGRATION_MUST_SYNC 3
7107
1da177e4
LT
7108/*
7109 * migration_thread - this is a highprio system thread that performs
7110 * thread migration by bumping thread off CPU then 'pushing' onto
7111 * another runqueue.
7112 */
95cdf3b7 7113static int migration_thread(void *data)
1da177e4 7114{
03b042bf 7115 int badcpu;
1da177e4 7116 int cpu = (long)data;
70b97a7f 7117 struct rq *rq;
1da177e4
LT
7118
7119 rq = cpu_rq(cpu);
7120 BUG_ON(rq->migration_thread != current);
7121
7122 set_current_state(TASK_INTERRUPTIBLE);
7123 while (!kthread_should_stop()) {
70b97a7f 7124 struct migration_req *req;
1da177e4 7125 struct list_head *head;
1da177e4 7126
1da177e4
LT
7127 spin_lock_irq(&rq->lock);
7128
7129 if (cpu_is_offline(cpu)) {
7130 spin_unlock_irq(&rq->lock);
371cbb38 7131 break;
1da177e4
LT
7132 }
7133
7134 if (rq->active_balance) {
7135 active_load_balance(rq, cpu);
7136 rq->active_balance = 0;
7137 }
7138
7139 head = &rq->migration_queue;
7140
7141 if (list_empty(head)) {
7142 spin_unlock_irq(&rq->lock);
7143 schedule();
7144 set_current_state(TASK_INTERRUPTIBLE);
7145 continue;
7146 }
70b97a7f 7147 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7148 list_del_init(head->next);
7149
03b042bf
PM
7150 if (req->task != NULL) {
7151 spin_unlock(&rq->lock);
7152 __migrate_task(req->task, cpu, req->dest_cpu);
7153 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7154 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7155 spin_unlock(&rq->lock);
7156 } else {
7157 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7158 spin_unlock(&rq->lock);
7159 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7160 }
674311d5 7161 local_irq_enable();
1da177e4
LT
7162
7163 complete(&req->done);
7164 }
7165 __set_current_state(TASK_RUNNING);
1da177e4 7166
1da177e4
LT
7167 return 0;
7168}
7169
7170#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7171
7172static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7173{
7174 int ret;
7175
7176 local_irq_disable();
7177 ret = __migrate_task(p, src_cpu, dest_cpu);
7178 local_irq_enable();
7179 return ret;
7180}
7181
054b9108 7182/*
3a4fa0a2 7183 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7184 */
48f24c4d 7185static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7186{
70b97a7f 7187 int dest_cpu;
6ca09dfc 7188 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7189
7190again:
7191 /* Look for allowed, online CPU in same node. */
7192 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7193 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7194 goto move;
7195
7196 /* Any allowed, online CPU? */
7197 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7198 if (dest_cpu < nr_cpu_ids)
7199 goto move;
7200
7201 /* No more Mr. Nice Guy. */
7202 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7203 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7204 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7205
e76bd8d9
RR
7206 /*
7207 * Don't tell them about moving exiting tasks or
7208 * kernel threads (both mm NULL), since they never
7209 * leave kernel.
7210 */
7211 if (p->mm && printk_ratelimit()) {
7212 printk(KERN_INFO "process %d (%s) no "
7213 "longer affine to cpu%d\n",
7214 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7215 }
e76bd8d9
RR
7216 }
7217
7218move:
7219 /* It can have affinity changed while we were choosing. */
7220 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7221 goto again;
1da177e4
LT
7222}
7223
7224/*
7225 * While a dead CPU has no uninterruptible tasks queued at this point,
7226 * it might still have a nonzero ->nr_uninterruptible counter, because
7227 * for performance reasons the counter is not stricly tracking tasks to
7228 * their home CPUs. So we just add the counter to another CPU's counter,
7229 * to keep the global sum constant after CPU-down:
7230 */
70b97a7f 7231static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7232{
1e5ce4f4 7233 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7234 unsigned long flags;
7235
7236 local_irq_save(flags);
7237 double_rq_lock(rq_src, rq_dest);
7238 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7239 rq_src->nr_uninterruptible = 0;
7240 double_rq_unlock(rq_src, rq_dest);
7241 local_irq_restore(flags);
7242}
7243
7244/* Run through task list and migrate tasks from the dead cpu. */
7245static void migrate_live_tasks(int src_cpu)
7246{
48f24c4d 7247 struct task_struct *p, *t;
1da177e4 7248
f7b4cddc 7249 read_lock(&tasklist_lock);
1da177e4 7250
48f24c4d
IM
7251 do_each_thread(t, p) {
7252 if (p == current)
1da177e4
LT
7253 continue;
7254
48f24c4d
IM
7255 if (task_cpu(p) == src_cpu)
7256 move_task_off_dead_cpu(src_cpu, p);
7257 } while_each_thread(t, p);
1da177e4 7258
f7b4cddc 7259 read_unlock(&tasklist_lock);
1da177e4
LT
7260}
7261
dd41f596
IM
7262/*
7263 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7264 * It does so by boosting its priority to highest possible.
7265 * Used by CPU offline code.
1da177e4
LT
7266 */
7267void sched_idle_next(void)
7268{
48f24c4d 7269 int this_cpu = smp_processor_id();
70b97a7f 7270 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7271 struct task_struct *p = rq->idle;
7272 unsigned long flags;
7273
7274 /* cpu has to be offline */
48f24c4d 7275 BUG_ON(cpu_online(this_cpu));
1da177e4 7276
48f24c4d
IM
7277 /*
7278 * Strictly not necessary since rest of the CPUs are stopped by now
7279 * and interrupts disabled on the current cpu.
1da177e4
LT
7280 */
7281 spin_lock_irqsave(&rq->lock, flags);
7282
dd41f596 7283 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7284
94bc9a7b
DA
7285 update_rq_clock(rq);
7286 activate_task(rq, p, 0);
1da177e4
LT
7287
7288 spin_unlock_irqrestore(&rq->lock, flags);
7289}
7290
48f24c4d
IM
7291/*
7292 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7293 * offline.
7294 */
7295void idle_task_exit(void)
7296{
7297 struct mm_struct *mm = current->active_mm;
7298
7299 BUG_ON(cpu_online(smp_processor_id()));
7300
7301 if (mm != &init_mm)
7302 switch_mm(mm, &init_mm, current);
7303 mmdrop(mm);
7304}
7305
054b9108 7306/* called under rq->lock with disabled interrupts */
36c8b586 7307static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7308{
70b97a7f 7309 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7310
7311 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7312 BUG_ON(!p->exit_state);
1da177e4
LT
7313
7314 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7315 BUG_ON(p->state == TASK_DEAD);
1da177e4 7316
48f24c4d 7317 get_task_struct(p);
1da177e4
LT
7318
7319 /*
7320 * Drop lock around migration; if someone else moves it,
41a2d6cf 7321 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7322 * fine.
7323 */
f7b4cddc 7324 spin_unlock_irq(&rq->lock);
48f24c4d 7325 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7326 spin_lock_irq(&rq->lock);
1da177e4 7327
48f24c4d 7328 put_task_struct(p);
1da177e4
LT
7329}
7330
7331/* release_task() removes task from tasklist, so we won't find dead tasks. */
7332static void migrate_dead_tasks(unsigned int dead_cpu)
7333{
70b97a7f 7334 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7335 struct task_struct *next;
48f24c4d 7336
dd41f596
IM
7337 for ( ; ; ) {
7338 if (!rq->nr_running)
7339 break;
a8e504d2 7340 update_rq_clock(rq);
b67802ea 7341 next = pick_next_task(rq);
dd41f596
IM
7342 if (!next)
7343 break;
79c53799 7344 next->sched_class->put_prev_task(rq, next);
dd41f596 7345 migrate_dead(dead_cpu, next);
e692ab53 7346
1da177e4
LT
7347 }
7348}
dce48a84
TG
7349
7350/*
7351 * remove the tasks which were accounted by rq from calc_load_tasks.
7352 */
7353static void calc_global_load_remove(struct rq *rq)
7354{
7355 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7356 rq->calc_load_active = 0;
dce48a84 7357}
1da177e4
LT
7358#endif /* CONFIG_HOTPLUG_CPU */
7359
e692ab53
NP
7360#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7361
7362static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7363 {
7364 .procname = "sched_domain",
c57baf1e 7365 .mode = 0555,
e0361851 7366 },
38605cae 7367 {0, },
e692ab53
NP
7368};
7369
7370static struct ctl_table sd_ctl_root[] = {
e0361851 7371 {
c57baf1e 7372 .ctl_name = CTL_KERN,
e0361851 7373 .procname = "kernel",
c57baf1e 7374 .mode = 0555,
e0361851
AD
7375 .child = sd_ctl_dir,
7376 },
38605cae 7377 {0, },
e692ab53
NP
7378};
7379
7380static struct ctl_table *sd_alloc_ctl_entry(int n)
7381{
7382 struct ctl_table *entry =
5cf9f062 7383 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7384
e692ab53
NP
7385 return entry;
7386}
7387
6382bc90
MM
7388static void sd_free_ctl_entry(struct ctl_table **tablep)
7389{
cd790076 7390 struct ctl_table *entry;
6382bc90 7391
cd790076
MM
7392 /*
7393 * In the intermediate directories, both the child directory and
7394 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7395 * will always be set. In the lowest directory the names are
cd790076
MM
7396 * static strings and all have proc handlers.
7397 */
7398 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7399 if (entry->child)
7400 sd_free_ctl_entry(&entry->child);
cd790076
MM
7401 if (entry->proc_handler == NULL)
7402 kfree(entry->procname);
7403 }
6382bc90
MM
7404
7405 kfree(*tablep);
7406 *tablep = NULL;
7407}
7408
e692ab53 7409static void
e0361851 7410set_table_entry(struct ctl_table *entry,
e692ab53
NP
7411 const char *procname, void *data, int maxlen,
7412 mode_t mode, proc_handler *proc_handler)
7413{
e692ab53
NP
7414 entry->procname = procname;
7415 entry->data = data;
7416 entry->maxlen = maxlen;
7417 entry->mode = mode;
7418 entry->proc_handler = proc_handler;
7419}
7420
7421static struct ctl_table *
7422sd_alloc_ctl_domain_table(struct sched_domain *sd)
7423{
a5d8c348 7424 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7425
ad1cdc1d
MM
7426 if (table == NULL)
7427 return NULL;
7428
e0361851 7429 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7430 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7431 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7432 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7433 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7434 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7435 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7436 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7437 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7438 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7439 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7440 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7441 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7442 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7443 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7444 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7445 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7446 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7447 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7448 &sd->cache_nice_tries,
7449 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7450 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7451 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7452 set_table_entry(&table[11], "name", sd->name,
7453 CORENAME_MAX_SIZE, 0444, proc_dostring);
7454 /* &table[12] is terminator */
e692ab53
NP
7455
7456 return table;
7457}
7458
9a4e7159 7459static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7460{
7461 struct ctl_table *entry, *table;
7462 struct sched_domain *sd;
7463 int domain_num = 0, i;
7464 char buf[32];
7465
7466 for_each_domain(cpu, sd)
7467 domain_num++;
7468 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7469 if (table == NULL)
7470 return NULL;
e692ab53
NP
7471
7472 i = 0;
7473 for_each_domain(cpu, sd) {
7474 snprintf(buf, 32, "domain%d", i);
e692ab53 7475 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7476 entry->mode = 0555;
e692ab53
NP
7477 entry->child = sd_alloc_ctl_domain_table(sd);
7478 entry++;
7479 i++;
7480 }
7481 return table;
7482}
7483
7484static struct ctl_table_header *sd_sysctl_header;
6382bc90 7485static void register_sched_domain_sysctl(void)
e692ab53
NP
7486{
7487 int i, cpu_num = num_online_cpus();
7488 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7489 char buf[32];
7490
7378547f
MM
7491 WARN_ON(sd_ctl_dir[0].child);
7492 sd_ctl_dir[0].child = entry;
7493
ad1cdc1d
MM
7494 if (entry == NULL)
7495 return;
7496
97b6ea7b 7497 for_each_online_cpu(i) {
e692ab53 7498 snprintf(buf, 32, "cpu%d", i);
e692ab53 7499 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7500 entry->mode = 0555;
e692ab53 7501 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7502 entry++;
e692ab53 7503 }
7378547f
MM
7504
7505 WARN_ON(sd_sysctl_header);
e692ab53
NP
7506 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7507}
6382bc90 7508
7378547f 7509/* may be called multiple times per register */
6382bc90
MM
7510static void unregister_sched_domain_sysctl(void)
7511{
7378547f
MM
7512 if (sd_sysctl_header)
7513 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7514 sd_sysctl_header = NULL;
7378547f
MM
7515 if (sd_ctl_dir[0].child)
7516 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7517}
e692ab53 7518#else
6382bc90
MM
7519static void register_sched_domain_sysctl(void)
7520{
7521}
7522static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7523{
7524}
7525#endif
7526
1f11eb6a
GH
7527static void set_rq_online(struct rq *rq)
7528{
7529 if (!rq->online) {
7530 const struct sched_class *class;
7531
c6c4927b 7532 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7533 rq->online = 1;
7534
7535 for_each_class(class) {
7536 if (class->rq_online)
7537 class->rq_online(rq);
7538 }
7539 }
7540}
7541
7542static void set_rq_offline(struct rq *rq)
7543{
7544 if (rq->online) {
7545 const struct sched_class *class;
7546
7547 for_each_class(class) {
7548 if (class->rq_offline)
7549 class->rq_offline(rq);
7550 }
7551
c6c4927b 7552 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7553 rq->online = 0;
7554 }
7555}
7556
1da177e4
LT
7557/*
7558 * migration_call - callback that gets triggered when a CPU is added.
7559 * Here we can start up the necessary migration thread for the new CPU.
7560 */
48f24c4d
IM
7561static int __cpuinit
7562migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7563{
1da177e4 7564 struct task_struct *p;
48f24c4d 7565 int cpu = (long)hcpu;
1da177e4 7566 unsigned long flags;
70b97a7f 7567 struct rq *rq;
1da177e4
LT
7568
7569 switch (action) {
5be9361c 7570
1da177e4 7571 case CPU_UP_PREPARE:
8bb78442 7572 case CPU_UP_PREPARE_FROZEN:
dd41f596 7573 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7574 if (IS_ERR(p))
7575 return NOTIFY_BAD;
1da177e4
LT
7576 kthread_bind(p, cpu);
7577 /* Must be high prio: stop_machine expects to yield to it. */
7578 rq = task_rq_lock(p, &flags);
dd41f596 7579 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7580 task_rq_unlock(rq, &flags);
371cbb38 7581 get_task_struct(p);
1da177e4 7582 cpu_rq(cpu)->migration_thread = p;
a468d389 7583 rq->calc_load_update = calc_load_update;
1da177e4 7584 break;
48f24c4d 7585
1da177e4 7586 case CPU_ONLINE:
8bb78442 7587 case CPU_ONLINE_FROZEN:
3a4fa0a2 7588 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7589 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7590
7591 /* Update our root-domain */
7592 rq = cpu_rq(cpu);
7593 spin_lock_irqsave(&rq->lock, flags);
7594 if (rq->rd) {
c6c4927b 7595 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7596
7597 set_rq_online(rq);
1f94ef59
GH
7598 }
7599 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7600 break;
48f24c4d 7601
1da177e4
LT
7602#ifdef CONFIG_HOTPLUG_CPU
7603 case CPU_UP_CANCELED:
8bb78442 7604 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7605 if (!cpu_rq(cpu)->migration_thread)
7606 break;
41a2d6cf 7607 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7608 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7609 cpumask_any(cpu_online_mask));
1da177e4 7610 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7611 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7612 cpu_rq(cpu)->migration_thread = NULL;
7613 break;
48f24c4d 7614
1da177e4 7615 case CPU_DEAD:
8bb78442 7616 case CPU_DEAD_FROZEN:
470fd646 7617 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7618 migrate_live_tasks(cpu);
7619 rq = cpu_rq(cpu);
7620 kthread_stop(rq->migration_thread);
371cbb38 7621 put_task_struct(rq->migration_thread);
1da177e4
LT
7622 rq->migration_thread = NULL;
7623 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7624 spin_lock_irq(&rq->lock);
a8e504d2 7625 update_rq_clock(rq);
2e1cb74a 7626 deactivate_task(rq, rq->idle, 0);
1da177e4 7627 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7628 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7629 rq->idle->sched_class = &idle_sched_class;
1da177e4 7630 migrate_dead_tasks(cpu);
d2da272a 7631 spin_unlock_irq(&rq->lock);
470fd646 7632 cpuset_unlock();
1da177e4
LT
7633 migrate_nr_uninterruptible(rq);
7634 BUG_ON(rq->nr_running != 0);
dce48a84 7635 calc_global_load_remove(rq);
41a2d6cf
IM
7636 /*
7637 * No need to migrate the tasks: it was best-effort if
7638 * they didn't take sched_hotcpu_mutex. Just wake up
7639 * the requestors.
7640 */
1da177e4
LT
7641 spin_lock_irq(&rq->lock);
7642 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7643 struct migration_req *req;
7644
1da177e4 7645 req = list_entry(rq->migration_queue.next,
70b97a7f 7646 struct migration_req, list);
1da177e4 7647 list_del_init(&req->list);
9a2bd244 7648 spin_unlock_irq(&rq->lock);
1da177e4 7649 complete(&req->done);
9a2bd244 7650 spin_lock_irq(&rq->lock);
1da177e4
LT
7651 }
7652 spin_unlock_irq(&rq->lock);
7653 break;
57d885fe 7654
08f503b0
GH
7655 case CPU_DYING:
7656 case CPU_DYING_FROZEN:
57d885fe
GH
7657 /* Update our root-domain */
7658 rq = cpu_rq(cpu);
7659 spin_lock_irqsave(&rq->lock, flags);
7660 if (rq->rd) {
c6c4927b 7661 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7662 set_rq_offline(rq);
57d885fe
GH
7663 }
7664 spin_unlock_irqrestore(&rq->lock, flags);
7665 break;
1da177e4
LT
7666#endif
7667 }
7668 return NOTIFY_OK;
7669}
7670
f38b0820
PM
7671/*
7672 * Register at high priority so that task migration (migrate_all_tasks)
7673 * happens before everything else. This has to be lower priority than
7674 * the notifier in the perf_counter subsystem, though.
1da177e4 7675 */
26c2143b 7676static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7677 .notifier_call = migration_call,
7678 .priority = 10
7679};
7680
7babe8db 7681static int __init migration_init(void)
1da177e4
LT
7682{
7683 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7684 int err;
48f24c4d
IM
7685
7686 /* Start one for the boot CPU: */
07dccf33
AM
7687 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7688 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7689 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7690 register_cpu_notifier(&migration_notifier);
7babe8db 7691
a004cd42 7692 return 0;
1da177e4 7693}
7babe8db 7694early_initcall(migration_init);
1da177e4
LT
7695#endif
7696
7697#ifdef CONFIG_SMP
476f3534 7698
3e9830dc 7699#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7700
7c16ec58 7701static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7702 struct cpumask *groupmask)
1da177e4 7703{
4dcf6aff 7704 struct sched_group *group = sd->groups;
434d53b0 7705 char str[256];
1da177e4 7706
968ea6d8 7707 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7708 cpumask_clear(groupmask);
4dcf6aff
IM
7709
7710 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7711
7712 if (!(sd->flags & SD_LOAD_BALANCE)) {
7713 printk("does not load-balance\n");
7714 if (sd->parent)
7715 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7716 " has parent");
7717 return -1;
41c7ce9a
NP
7718 }
7719
eefd796a 7720 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7721
758b2cdc 7722 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7723 printk(KERN_ERR "ERROR: domain->span does not contain "
7724 "CPU%d\n", cpu);
7725 }
758b2cdc 7726 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7727 printk(KERN_ERR "ERROR: domain->groups does not contain"
7728 " CPU%d\n", cpu);
7729 }
1da177e4 7730
4dcf6aff 7731 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7732 do {
4dcf6aff
IM
7733 if (!group) {
7734 printk("\n");
7735 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7736 break;
7737 }
7738
18a3885f 7739 if (!group->cpu_power) {
4dcf6aff
IM
7740 printk(KERN_CONT "\n");
7741 printk(KERN_ERR "ERROR: domain->cpu_power not "
7742 "set\n");
7743 break;
7744 }
1da177e4 7745
758b2cdc 7746 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7747 printk(KERN_CONT "\n");
7748 printk(KERN_ERR "ERROR: empty group\n");
7749 break;
7750 }
1da177e4 7751
758b2cdc 7752 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7753 printk(KERN_CONT "\n");
7754 printk(KERN_ERR "ERROR: repeated CPUs\n");
7755 break;
7756 }
1da177e4 7757
758b2cdc 7758 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7759
968ea6d8 7760 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7761
7762 printk(KERN_CONT " %s", str);
18a3885f
PZ
7763 if (group->cpu_power != SCHED_LOAD_SCALE) {
7764 printk(KERN_CONT " (cpu_power = %d)",
7765 group->cpu_power);
381512cf 7766 }
1da177e4 7767
4dcf6aff
IM
7768 group = group->next;
7769 } while (group != sd->groups);
7770 printk(KERN_CONT "\n");
1da177e4 7771
758b2cdc 7772 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7773 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7774
758b2cdc
RR
7775 if (sd->parent &&
7776 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7777 printk(KERN_ERR "ERROR: parent span is not a superset "
7778 "of domain->span\n");
7779 return 0;
7780}
1da177e4 7781
4dcf6aff
IM
7782static void sched_domain_debug(struct sched_domain *sd, int cpu)
7783{
d5dd3db1 7784 cpumask_var_t groupmask;
4dcf6aff 7785 int level = 0;
1da177e4 7786
4dcf6aff
IM
7787 if (!sd) {
7788 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7789 return;
7790 }
1da177e4 7791
4dcf6aff
IM
7792 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7793
d5dd3db1 7794 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7795 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7796 return;
7797 }
7798
4dcf6aff 7799 for (;;) {
7c16ec58 7800 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7801 break;
1da177e4
LT
7802 level++;
7803 sd = sd->parent;
33859f7f 7804 if (!sd)
4dcf6aff
IM
7805 break;
7806 }
d5dd3db1 7807 free_cpumask_var(groupmask);
1da177e4 7808}
6d6bc0ad 7809#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7810# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7811#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7812
1a20ff27 7813static int sd_degenerate(struct sched_domain *sd)
245af2c7 7814{
758b2cdc 7815 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7816 return 1;
7817
7818 /* Following flags need at least 2 groups */
7819 if (sd->flags & (SD_LOAD_BALANCE |
7820 SD_BALANCE_NEWIDLE |
7821 SD_BALANCE_FORK |
89c4710e
SS
7822 SD_BALANCE_EXEC |
7823 SD_SHARE_CPUPOWER |
7824 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7825 if (sd->groups != sd->groups->next)
7826 return 0;
7827 }
7828
7829 /* Following flags don't use groups */
c88d5910 7830 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7831 return 0;
7832
7833 return 1;
7834}
7835
48f24c4d
IM
7836static int
7837sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7838{
7839 unsigned long cflags = sd->flags, pflags = parent->flags;
7840
7841 if (sd_degenerate(parent))
7842 return 1;
7843
758b2cdc 7844 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7845 return 0;
7846
245af2c7
SS
7847 /* Flags needing groups don't count if only 1 group in parent */
7848 if (parent->groups == parent->groups->next) {
7849 pflags &= ~(SD_LOAD_BALANCE |
7850 SD_BALANCE_NEWIDLE |
7851 SD_BALANCE_FORK |
89c4710e
SS
7852 SD_BALANCE_EXEC |
7853 SD_SHARE_CPUPOWER |
7854 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7855 if (nr_node_ids == 1)
7856 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7857 }
7858 if (~cflags & pflags)
7859 return 0;
7860
7861 return 1;
7862}
7863
c6c4927b
RR
7864static void free_rootdomain(struct root_domain *rd)
7865{
68e74568
RR
7866 cpupri_cleanup(&rd->cpupri);
7867
c6c4927b
RR
7868 free_cpumask_var(rd->rto_mask);
7869 free_cpumask_var(rd->online);
7870 free_cpumask_var(rd->span);
7871 kfree(rd);
7872}
7873
57d885fe
GH
7874static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7875{
a0490fa3 7876 struct root_domain *old_rd = NULL;
57d885fe 7877 unsigned long flags;
57d885fe
GH
7878
7879 spin_lock_irqsave(&rq->lock, flags);
7880
7881 if (rq->rd) {
a0490fa3 7882 old_rd = rq->rd;
57d885fe 7883
c6c4927b 7884 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7885 set_rq_offline(rq);
57d885fe 7886
c6c4927b 7887 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7888
a0490fa3
IM
7889 /*
7890 * If we dont want to free the old_rt yet then
7891 * set old_rd to NULL to skip the freeing later
7892 * in this function:
7893 */
7894 if (!atomic_dec_and_test(&old_rd->refcount))
7895 old_rd = NULL;
57d885fe
GH
7896 }
7897
7898 atomic_inc(&rd->refcount);
7899 rq->rd = rd;
7900
c6c4927b 7901 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7902 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7903 set_rq_online(rq);
57d885fe
GH
7904
7905 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7906
7907 if (old_rd)
7908 free_rootdomain(old_rd);
57d885fe
GH
7909}
7910
fd5e1b5d 7911static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7912{
36b7b6d4
PE
7913 gfp_t gfp = GFP_KERNEL;
7914
57d885fe
GH
7915 memset(rd, 0, sizeof(*rd));
7916
36b7b6d4
PE
7917 if (bootmem)
7918 gfp = GFP_NOWAIT;
c6c4927b 7919
36b7b6d4 7920 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7921 goto out;
36b7b6d4 7922 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7923 goto free_span;
36b7b6d4 7924 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7925 goto free_online;
6e0534f2 7926
0fb53029 7927 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7928 goto free_rto_mask;
c6c4927b 7929 return 0;
6e0534f2 7930
68e74568
RR
7931free_rto_mask:
7932 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7933free_online:
7934 free_cpumask_var(rd->online);
7935free_span:
7936 free_cpumask_var(rd->span);
0c910d28 7937out:
c6c4927b 7938 return -ENOMEM;
57d885fe
GH
7939}
7940
7941static void init_defrootdomain(void)
7942{
c6c4927b
RR
7943 init_rootdomain(&def_root_domain, true);
7944
57d885fe
GH
7945 atomic_set(&def_root_domain.refcount, 1);
7946}
7947
dc938520 7948static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7949{
7950 struct root_domain *rd;
7951
7952 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7953 if (!rd)
7954 return NULL;
7955
c6c4927b
RR
7956 if (init_rootdomain(rd, false) != 0) {
7957 kfree(rd);
7958 return NULL;
7959 }
57d885fe
GH
7960
7961 return rd;
7962}
7963
1da177e4 7964/*
0eab9146 7965 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7966 * hold the hotplug lock.
7967 */
0eab9146
IM
7968static void
7969cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7970{
70b97a7f 7971 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7972 struct sched_domain *tmp;
7973
7974 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7975 for (tmp = sd; tmp; ) {
245af2c7
SS
7976 struct sched_domain *parent = tmp->parent;
7977 if (!parent)
7978 break;
f29c9b1c 7979
1a848870 7980 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7981 tmp->parent = parent->parent;
1a848870
SS
7982 if (parent->parent)
7983 parent->parent->child = tmp;
f29c9b1c
LZ
7984 } else
7985 tmp = tmp->parent;
245af2c7
SS
7986 }
7987
1a848870 7988 if (sd && sd_degenerate(sd)) {
245af2c7 7989 sd = sd->parent;
1a848870
SS
7990 if (sd)
7991 sd->child = NULL;
7992 }
1da177e4
LT
7993
7994 sched_domain_debug(sd, cpu);
7995
57d885fe 7996 rq_attach_root(rq, rd);
674311d5 7997 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7998}
7999
8000/* cpus with isolated domains */
dcc30a35 8001static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8002
8003/* Setup the mask of cpus configured for isolated domains */
8004static int __init isolated_cpu_setup(char *str)
8005{
968ea6d8 8006 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8007 return 1;
8008}
8009
8927f494 8010__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8011
8012/*
6711cab4
SS
8013 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8014 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8015 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8016 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8017 *
8018 * init_sched_build_groups will build a circular linked list of the groups
8019 * covered by the given span, and will set each group's ->cpumask correctly,
8020 * and ->cpu_power to 0.
8021 */
a616058b 8022static void
96f874e2
RR
8023init_sched_build_groups(const struct cpumask *span,
8024 const struct cpumask *cpu_map,
8025 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8026 struct sched_group **sg,
96f874e2
RR
8027 struct cpumask *tmpmask),
8028 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8029{
8030 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8031 int i;
8032
96f874e2 8033 cpumask_clear(covered);
7c16ec58 8034
abcd083a 8035 for_each_cpu(i, span) {
6711cab4 8036 struct sched_group *sg;
7c16ec58 8037 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8038 int j;
8039
758b2cdc 8040 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8041 continue;
8042
758b2cdc 8043 cpumask_clear(sched_group_cpus(sg));
18a3885f 8044 sg->cpu_power = 0;
1da177e4 8045
abcd083a 8046 for_each_cpu(j, span) {
7c16ec58 8047 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8048 continue;
8049
96f874e2 8050 cpumask_set_cpu(j, covered);
758b2cdc 8051 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8052 }
8053 if (!first)
8054 first = sg;
8055 if (last)
8056 last->next = sg;
8057 last = sg;
8058 }
8059 last->next = first;
8060}
8061
9c1cfda2 8062#define SD_NODES_PER_DOMAIN 16
1da177e4 8063
9c1cfda2 8064#ifdef CONFIG_NUMA
198e2f18 8065
9c1cfda2
JH
8066/**
8067 * find_next_best_node - find the next node to include in a sched_domain
8068 * @node: node whose sched_domain we're building
8069 * @used_nodes: nodes already in the sched_domain
8070 *
41a2d6cf 8071 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8072 * finds the closest node not already in the @used_nodes map.
8073 *
8074 * Should use nodemask_t.
8075 */
c5f59f08 8076static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8077{
8078 int i, n, val, min_val, best_node = 0;
8079
8080 min_val = INT_MAX;
8081
076ac2af 8082 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8083 /* Start at @node */
076ac2af 8084 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8085
8086 if (!nr_cpus_node(n))
8087 continue;
8088
8089 /* Skip already used nodes */
c5f59f08 8090 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8091 continue;
8092
8093 /* Simple min distance search */
8094 val = node_distance(node, n);
8095
8096 if (val < min_val) {
8097 min_val = val;
8098 best_node = n;
8099 }
8100 }
8101
c5f59f08 8102 node_set(best_node, *used_nodes);
9c1cfda2
JH
8103 return best_node;
8104}
8105
8106/**
8107 * sched_domain_node_span - get a cpumask for a node's sched_domain
8108 * @node: node whose cpumask we're constructing
73486722 8109 * @span: resulting cpumask
9c1cfda2 8110 *
41a2d6cf 8111 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8112 * should be one that prevents unnecessary balancing, but also spreads tasks
8113 * out optimally.
8114 */
96f874e2 8115static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8116{
c5f59f08 8117 nodemask_t used_nodes;
48f24c4d 8118 int i;
9c1cfda2 8119
6ca09dfc 8120 cpumask_clear(span);
c5f59f08 8121 nodes_clear(used_nodes);
9c1cfda2 8122
6ca09dfc 8123 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8124 node_set(node, used_nodes);
9c1cfda2
JH
8125
8126 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8127 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8128
6ca09dfc 8129 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8130 }
9c1cfda2 8131}
6d6bc0ad 8132#endif /* CONFIG_NUMA */
9c1cfda2 8133
5c45bf27 8134int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8135
6c99e9ad
RR
8136/*
8137 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8138 *
8139 * ( See the the comments in include/linux/sched.h:struct sched_group
8140 * and struct sched_domain. )
6c99e9ad
RR
8141 */
8142struct static_sched_group {
8143 struct sched_group sg;
8144 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8145};
8146
8147struct static_sched_domain {
8148 struct sched_domain sd;
8149 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8150};
8151
49a02c51
AH
8152struct s_data {
8153#ifdef CONFIG_NUMA
8154 int sd_allnodes;
8155 cpumask_var_t domainspan;
8156 cpumask_var_t covered;
8157 cpumask_var_t notcovered;
8158#endif
8159 cpumask_var_t nodemask;
8160 cpumask_var_t this_sibling_map;
8161 cpumask_var_t this_core_map;
8162 cpumask_var_t send_covered;
8163 cpumask_var_t tmpmask;
8164 struct sched_group **sched_group_nodes;
8165 struct root_domain *rd;
8166};
8167
2109b99e
AH
8168enum s_alloc {
8169 sa_sched_groups = 0,
8170 sa_rootdomain,
8171 sa_tmpmask,
8172 sa_send_covered,
8173 sa_this_core_map,
8174 sa_this_sibling_map,
8175 sa_nodemask,
8176 sa_sched_group_nodes,
8177#ifdef CONFIG_NUMA
8178 sa_notcovered,
8179 sa_covered,
8180 sa_domainspan,
8181#endif
8182 sa_none,
8183};
8184
9c1cfda2 8185/*
48f24c4d 8186 * SMT sched-domains:
9c1cfda2 8187 */
1da177e4 8188#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8189static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8190static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8191
41a2d6cf 8192static int
96f874e2
RR
8193cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8194 struct sched_group **sg, struct cpumask *unused)
1da177e4 8195{
6711cab4 8196 if (sg)
6c99e9ad 8197 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8198 return cpu;
8199}
6d6bc0ad 8200#endif /* CONFIG_SCHED_SMT */
1da177e4 8201
48f24c4d
IM
8202/*
8203 * multi-core sched-domains:
8204 */
1e9f28fa 8205#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8206static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8207static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8208#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8209
8210#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8211static int
96f874e2
RR
8212cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8213 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8214{
6711cab4 8215 int group;
7c16ec58 8216
c69fc56d 8217 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8218 group = cpumask_first(mask);
6711cab4 8219 if (sg)
6c99e9ad 8220 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8221 return group;
1e9f28fa
SS
8222}
8223#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8224static int
96f874e2
RR
8225cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8226 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8227{
6711cab4 8228 if (sg)
6c99e9ad 8229 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8230 return cpu;
8231}
8232#endif
8233
6c99e9ad
RR
8234static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8235static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8236
41a2d6cf 8237static int
96f874e2
RR
8238cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8239 struct sched_group **sg, struct cpumask *mask)
1da177e4 8240{
6711cab4 8241 int group;
48f24c4d 8242#ifdef CONFIG_SCHED_MC
6ca09dfc 8243 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8244 group = cpumask_first(mask);
1e9f28fa 8245#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8246 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8247 group = cpumask_first(mask);
1da177e4 8248#else
6711cab4 8249 group = cpu;
1da177e4 8250#endif
6711cab4 8251 if (sg)
6c99e9ad 8252 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8253 return group;
1da177e4
LT
8254}
8255
8256#ifdef CONFIG_NUMA
1da177e4 8257/*
9c1cfda2
JH
8258 * The init_sched_build_groups can't handle what we want to do with node
8259 * groups, so roll our own. Now each node has its own list of groups which
8260 * gets dynamically allocated.
1da177e4 8261 */
62ea9ceb 8262static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8263static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8264
62ea9ceb 8265static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8266static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8267
96f874e2
RR
8268static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8269 struct sched_group **sg,
8270 struct cpumask *nodemask)
9c1cfda2 8271{
6711cab4
SS
8272 int group;
8273
6ca09dfc 8274 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8275 group = cpumask_first(nodemask);
6711cab4
SS
8276
8277 if (sg)
6c99e9ad 8278 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8279 return group;
1da177e4 8280}
6711cab4 8281
08069033
SS
8282static void init_numa_sched_groups_power(struct sched_group *group_head)
8283{
8284 struct sched_group *sg = group_head;
8285 int j;
8286
8287 if (!sg)
8288 return;
3a5c359a 8289 do {
758b2cdc 8290 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8291 struct sched_domain *sd;
08069033 8292
6c99e9ad 8293 sd = &per_cpu(phys_domains, j).sd;
13318a71 8294 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8295 /*
8296 * Only add "power" once for each
8297 * physical package.
8298 */
8299 continue;
8300 }
08069033 8301
18a3885f 8302 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8303 }
8304 sg = sg->next;
8305 } while (sg != group_head);
08069033 8306}
0601a88d
AH
8307
8308static int build_numa_sched_groups(struct s_data *d,
8309 const struct cpumask *cpu_map, int num)
8310{
8311 struct sched_domain *sd;
8312 struct sched_group *sg, *prev;
8313 int n, j;
8314
8315 cpumask_clear(d->covered);
8316 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8317 if (cpumask_empty(d->nodemask)) {
8318 d->sched_group_nodes[num] = NULL;
8319 goto out;
8320 }
8321
8322 sched_domain_node_span(num, d->domainspan);
8323 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8324
8325 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8326 GFP_KERNEL, num);
8327 if (!sg) {
8328 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8329 num);
8330 return -ENOMEM;
8331 }
8332 d->sched_group_nodes[num] = sg;
8333
8334 for_each_cpu(j, d->nodemask) {
8335 sd = &per_cpu(node_domains, j).sd;
8336 sd->groups = sg;
8337 }
8338
18a3885f 8339 sg->cpu_power = 0;
0601a88d
AH
8340 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8341 sg->next = sg;
8342 cpumask_or(d->covered, d->covered, d->nodemask);
8343
8344 prev = sg;
8345 for (j = 0; j < nr_node_ids; j++) {
8346 n = (num + j) % nr_node_ids;
8347 cpumask_complement(d->notcovered, d->covered);
8348 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8349 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8350 if (cpumask_empty(d->tmpmask))
8351 break;
8352 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8353 if (cpumask_empty(d->tmpmask))
8354 continue;
8355 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8356 GFP_KERNEL, num);
8357 if (!sg) {
8358 printk(KERN_WARNING
8359 "Can not alloc domain group for node %d\n", j);
8360 return -ENOMEM;
8361 }
18a3885f 8362 sg->cpu_power = 0;
0601a88d
AH
8363 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8364 sg->next = prev->next;
8365 cpumask_or(d->covered, d->covered, d->tmpmask);
8366 prev->next = sg;
8367 prev = sg;
8368 }
8369out:
8370 return 0;
8371}
6d6bc0ad 8372#endif /* CONFIG_NUMA */
1da177e4 8373
a616058b 8374#ifdef CONFIG_NUMA
51888ca2 8375/* Free memory allocated for various sched_group structures */
96f874e2
RR
8376static void free_sched_groups(const struct cpumask *cpu_map,
8377 struct cpumask *nodemask)
51888ca2 8378{
a616058b 8379 int cpu, i;
51888ca2 8380
abcd083a 8381 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8382 struct sched_group **sched_group_nodes
8383 = sched_group_nodes_bycpu[cpu];
8384
51888ca2
SV
8385 if (!sched_group_nodes)
8386 continue;
8387
076ac2af 8388 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8389 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8390
6ca09dfc 8391 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8392 if (cpumask_empty(nodemask))
51888ca2
SV
8393 continue;
8394
8395 if (sg == NULL)
8396 continue;
8397 sg = sg->next;
8398next_sg:
8399 oldsg = sg;
8400 sg = sg->next;
8401 kfree(oldsg);
8402 if (oldsg != sched_group_nodes[i])
8403 goto next_sg;
8404 }
8405 kfree(sched_group_nodes);
8406 sched_group_nodes_bycpu[cpu] = NULL;
8407 }
51888ca2 8408}
6d6bc0ad 8409#else /* !CONFIG_NUMA */
96f874e2
RR
8410static void free_sched_groups(const struct cpumask *cpu_map,
8411 struct cpumask *nodemask)
a616058b
SS
8412{
8413}
6d6bc0ad 8414#endif /* CONFIG_NUMA */
51888ca2 8415
89c4710e
SS
8416/*
8417 * Initialize sched groups cpu_power.
8418 *
8419 * cpu_power indicates the capacity of sched group, which is used while
8420 * distributing the load between different sched groups in a sched domain.
8421 * Typically cpu_power for all the groups in a sched domain will be same unless
8422 * there are asymmetries in the topology. If there are asymmetries, group
8423 * having more cpu_power will pickup more load compared to the group having
8424 * less cpu_power.
89c4710e
SS
8425 */
8426static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8427{
8428 struct sched_domain *child;
8429 struct sched_group *group;
f93e65c1
PZ
8430 long power;
8431 int weight;
89c4710e
SS
8432
8433 WARN_ON(!sd || !sd->groups);
8434
13318a71 8435 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8436 return;
8437
8438 child = sd->child;
8439
18a3885f 8440 sd->groups->cpu_power = 0;
5517d86b 8441
f93e65c1
PZ
8442 if (!child) {
8443 power = SCHED_LOAD_SCALE;
8444 weight = cpumask_weight(sched_domain_span(sd));
8445 /*
8446 * SMT siblings share the power of a single core.
a52bfd73
PZ
8447 * Usually multiple threads get a better yield out of
8448 * that one core than a single thread would have,
8449 * reflect that in sd->smt_gain.
f93e65c1 8450 */
a52bfd73
PZ
8451 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8452 power *= sd->smt_gain;
f93e65c1 8453 power /= weight;
a52bfd73
PZ
8454 power >>= SCHED_LOAD_SHIFT;
8455 }
18a3885f 8456 sd->groups->cpu_power += power;
89c4710e
SS
8457 return;
8458 }
8459
89c4710e 8460 /*
f93e65c1 8461 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8462 */
8463 group = child->groups;
8464 do {
18a3885f 8465 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8466 group = group->next;
8467 } while (group != child->groups);
8468}
8469
7c16ec58
MT
8470/*
8471 * Initializers for schedule domains
8472 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8473 */
8474
a5d8c348
IM
8475#ifdef CONFIG_SCHED_DEBUG
8476# define SD_INIT_NAME(sd, type) sd->name = #type
8477#else
8478# define SD_INIT_NAME(sd, type) do { } while (0)
8479#endif
8480
7c16ec58 8481#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8482
7c16ec58
MT
8483#define SD_INIT_FUNC(type) \
8484static noinline void sd_init_##type(struct sched_domain *sd) \
8485{ \
8486 memset(sd, 0, sizeof(*sd)); \
8487 *sd = SD_##type##_INIT; \
1d3504fc 8488 sd->level = SD_LV_##type; \
a5d8c348 8489 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8490}
8491
8492SD_INIT_FUNC(CPU)
8493#ifdef CONFIG_NUMA
8494 SD_INIT_FUNC(ALLNODES)
8495 SD_INIT_FUNC(NODE)
8496#endif
8497#ifdef CONFIG_SCHED_SMT
8498 SD_INIT_FUNC(SIBLING)
8499#endif
8500#ifdef CONFIG_SCHED_MC
8501 SD_INIT_FUNC(MC)
8502#endif
8503
1d3504fc
HS
8504static int default_relax_domain_level = -1;
8505
8506static int __init setup_relax_domain_level(char *str)
8507{
30e0e178
LZ
8508 unsigned long val;
8509
8510 val = simple_strtoul(str, NULL, 0);
8511 if (val < SD_LV_MAX)
8512 default_relax_domain_level = val;
8513
1d3504fc
HS
8514 return 1;
8515}
8516__setup("relax_domain_level=", setup_relax_domain_level);
8517
8518static void set_domain_attribute(struct sched_domain *sd,
8519 struct sched_domain_attr *attr)
8520{
8521 int request;
8522
8523 if (!attr || attr->relax_domain_level < 0) {
8524 if (default_relax_domain_level < 0)
8525 return;
8526 else
8527 request = default_relax_domain_level;
8528 } else
8529 request = attr->relax_domain_level;
8530 if (request < sd->level) {
8531 /* turn off idle balance on this domain */
c88d5910 8532 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8533 } else {
8534 /* turn on idle balance on this domain */
c88d5910 8535 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8536 }
8537}
8538
2109b99e
AH
8539static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8540 const struct cpumask *cpu_map)
8541{
8542 switch (what) {
8543 case sa_sched_groups:
8544 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8545 d->sched_group_nodes = NULL;
8546 case sa_rootdomain:
8547 free_rootdomain(d->rd); /* fall through */
8548 case sa_tmpmask:
8549 free_cpumask_var(d->tmpmask); /* fall through */
8550 case sa_send_covered:
8551 free_cpumask_var(d->send_covered); /* fall through */
8552 case sa_this_core_map:
8553 free_cpumask_var(d->this_core_map); /* fall through */
8554 case sa_this_sibling_map:
8555 free_cpumask_var(d->this_sibling_map); /* fall through */
8556 case sa_nodemask:
8557 free_cpumask_var(d->nodemask); /* fall through */
8558 case sa_sched_group_nodes:
d1b55138 8559#ifdef CONFIG_NUMA
2109b99e
AH
8560 kfree(d->sched_group_nodes); /* fall through */
8561 case sa_notcovered:
8562 free_cpumask_var(d->notcovered); /* fall through */
8563 case sa_covered:
8564 free_cpumask_var(d->covered); /* fall through */
8565 case sa_domainspan:
8566 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8567#endif
2109b99e
AH
8568 case sa_none:
8569 break;
8570 }
8571}
3404c8d9 8572
2109b99e
AH
8573static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8574 const struct cpumask *cpu_map)
8575{
3404c8d9 8576#ifdef CONFIG_NUMA
2109b99e
AH
8577 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8578 return sa_none;
8579 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8580 return sa_domainspan;
8581 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8582 return sa_covered;
8583 /* Allocate the per-node list of sched groups */
8584 d->sched_group_nodes = kcalloc(nr_node_ids,
8585 sizeof(struct sched_group *), GFP_KERNEL);
8586 if (!d->sched_group_nodes) {
d1b55138 8587 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8588 return sa_notcovered;
d1b55138 8589 }
2109b99e 8590 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8591#endif
2109b99e
AH
8592 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8593 return sa_sched_group_nodes;
8594 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8595 return sa_nodemask;
8596 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8597 return sa_this_sibling_map;
8598 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8599 return sa_this_core_map;
8600 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8601 return sa_send_covered;
8602 d->rd = alloc_rootdomain();
8603 if (!d->rd) {
57d885fe 8604 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8605 return sa_tmpmask;
57d885fe 8606 }
2109b99e
AH
8607 return sa_rootdomain;
8608}
57d885fe 8609
7f4588f3
AH
8610static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8611 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8612{
8613 struct sched_domain *sd = NULL;
7c16ec58 8614#ifdef CONFIG_NUMA
7f4588f3 8615 struct sched_domain *parent;
1da177e4 8616
7f4588f3
AH
8617 d->sd_allnodes = 0;
8618 if (cpumask_weight(cpu_map) >
8619 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8620 sd = &per_cpu(allnodes_domains, i).sd;
8621 SD_INIT(sd, ALLNODES);
1d3504fc 8622 set_domain_attribute(sd, attr);
7f4588f3
AH
8623 cpumask_copy(sched_domain_span(sd), cpu_map);
8624 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8625 d->sd_allnodes = 1;
8626 }
8627 parent = sd;
8628
8629 sd = &per_cpu(node_domains, i).sd;
8630 SD_INIT(sd, NODE);
8631 set_domain_attribute(sd, attr);
8632 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8633 sd->parent = parent;
8634 if (parent)
8635 parent->child = sd;
8636 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8637#endif
7f4588f3
AH
8638 return sd;
8639}
1da177e4 8640
87cce662
AH
8641static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8642 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8643 struct sched_domain *parent, int i)
8644{
8645 struct sched_domain *sd;
8646 sd = &per_cpu(phys_domains, i).sd;
8647 SD_INIT(sd, CPU);
8648 set_domain_attribute(sd, attr);
8649 cpumask_copy(sched_domain_span(sd), d->nodemask);
8650 sd->parent = parent;
8651 if (parent)
8652 parent->child = sd;
8653 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8654 return sd;
8655}
1da177e4 8656
410c4081
AH
8657static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8658 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8659 struct sched_domain *parent, int i)
8660{
8661 struct sched_domain *sd = parent;
1e9f28fa 8662#ifdef CONFIG_SCHED_MC
410c4081
AH
8663 sd = &per_cpu(core_domains, i).sd;
8664 SD_INIT(sd, MC);
8665 set_domain_attribute(sd, attr);
8666 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8667 sd->parent = parent;
8668 parent->child = sd;
8669 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8670#endif
410c4081
AH
8671 return sd;
8672}
1e9f28fa 8673
d8173535
AH
8674static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8675 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8676 struct sched_domain *parent, int i)
8677{
8678 struct sched_domain *sd = parent;
1da177e4 8679#ifdef CONFIG_SCHED_SMT
d8173535
AH
8680 sd = &per_cpu(cpu_domains, i).sd;
8681 SD_INIT(sd, SIBLING);
8682 set_domain_attribute(sd, attr);
8683 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8684 sd->parent = parent;
8685 parent->child = sd;
8686 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8687#endif
d8173535
AH
8688 return sd;
8689}
1da177e4 8690
0e8e85c9
AH
8691static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8692 const struct cpumask *cpu_map, int cpu)
8693{
8694 switch (l) {
1da177e4 8695#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8696 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8697 cpumask_and(d->this_sibling_map, cpu_map,
8698 topology_thread_cpumask(cpu));
8699 if (cpu == cpumask_first(d->this_sibling_map))
8700 init_sched_build_groups(d->this_sibling_map, cpu_map,
8701 &cpu_to_cpu_group,
8702 d->send_covered, d->tmpmask);
8703 break;
1da177e4 8704#endif
1e9f28fa 8705#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8706 case SD_LV_MC: /* set up multi-core groups */
8707 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8708 if (cpu == cpumask_first(d->this_core_map))
8709 init_sched_build_groups(d->this_core_map, cpu_map,
8710 &cpu_to_core_group,
8711 d->send_covered, d->tmpmask);
8712 break;
1e9f28fa 8713#endif
86548096
AH
8714 case SD_LV_CPU: /* set up physical groups */
8715 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8716 if (!cpumask_empty(d->nodemask))
8717 init_sched_build_groups(d->nodemask, cpu_map,
8718 &cpu_to_phys_group,
8719 d->send_covered, d->tmpmask);
8720 break;
1da177e4 8721#ifdef CONFIG_NUMA
de616e36
AH
8722 case SD_LV_ALLNODES:
8723 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8724 d->send_covered, d->tmpmask);
8725 break;
8726#endif
0e8e85c9
AH
8727 default:
8728 break;
7c16ec58 8729 }
0e8e85c9 8730}
9c1cfda2 8731
2109b99e
AH
8732/*
8733 * Build sched domains for a given set of cpus and attach the sched domains
8734 * to the individual cpus
8735 */
8736static int __build_sched_domains(const struct cpumask *cpu_map,
8737 struct sched_domain_attr *attr)
8738{
8739 enum s_alloc alloc_state = sa_none;
8740 struct s_data d;
294b0c96 8741 struct sched_domain *sd;
2109b99e 8742 int i;
7c16ec58 8743#ifdef CONFIG_NUMA
2109b99e 8744 d.sd_allnodes = 0;
7c16ec58 8745#endif
9c1cfda2 8746
2109b99e
AH
8747 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8748 if (alloc_state != sa_rootdomain)
8749 goto error;
8750 alloc_state = sa_sched_groups;
9c1cfda2 8751
1da177e4 8752 /*
1a20ff27 8753 * Set up domains for cpus specified by the cpu_map.
1da177e4 8754 */
abcd083a 8755 for_each_cpu(i, cpu_map) {
49a02c51
AH
8756 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8757 cpu_map);
9761eea8 8758
7f4588f3 8759 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8760 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8761 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8762 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8763 }
9c1cfda2 8764
abcd083a 8765 for_each_cpu(i, cpu_map) {
0e8e85c9 8766 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8767 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8768 }
9c1cfda2 8769
1da177e4 8770 /* Set up physical groups */
86548096
AH
8771 for (i = 0; i < nr_node_ids; i++)
8772 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8773
1da177e4
LT
8774#ifdef CONFIG_NUMA
8775 /* Set up node groups */
de616e36
AH
8776 if (d.sd_allnodes)
8777 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8778
0601a88d
AH
8779 for (i = 0; i < nr_node_ids; i++)
8780 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8781 goto error;
1da177e4
LT
8782#endif
8783
8784 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8785#ifdef CONFIG_SCHED_SMT
abcd083a 8786 for_each_cpu(i, cpu_map) {
294b0c96 8787 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8788 init_sched_groups_power(i, sd);
5c45bf27 8789 }
1da177e4 8790#endif
1e9f28fa 8791#ifdef CONFIG_SCHED_MC
abcd083a 8792 for_each_cpu(i, cpu_map) {
294b0c96 8793 sd = &per_cpu(core_domains, i).sd;
89c4710e 8794 init_sched_groups_power(i, sd);
5c45bf27
SS
8795 }
8796#endif
1e9f28fa 8797
abcd083a 8798 for_each_cpu(i, cpu_map) {
294b0c96 8799 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8800 init_sched_groups_power(i, sd);
1da177e4
LT
8801 }
8802
9c1cfda2 8803#ifdef CONFIG_NUMA
076ac2af 8804 for (i = 0; i < nr_node_ids; i++)
49a02c51 8805 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8806
49a02c51 8807 if (d.sd_allnodes) {
6711cab4 8808 struct sched_group *sg;
f712c0c7 8809
96f874e2 8810 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8811 d.tmpmask);
f712c0c7
SS
8812 init_numa_sched_groups_power(sg);
8813 }
9c1cfda2
JH
8814#endif
8815
1da177e4 8816 /* Attach the domains */
abcd083a 8817 for_each_cpu(i, cpu_map) {
1da177e4 8818#ifdef CONFIG_SCHED_SMT
6c99e9ad 8819 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8820#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8821 sd = &per_cpu(core_domains, i).sd;
1da177e4 8822#else
6c99e9ad 8823 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8824#endif
49a02c51 8825 cpu_attach_domain(sd, d.rd, i);
1da177e4 8826 }
51888ca2 8827
2109b99e
AH
8828 d.sched_group_nodes = NULL; /* don't free this we still need it */
8829 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8830 return 0;
51888ca2 8831
51888ca2 8832error:
2109b99e
AH
8833 __free_domain_allocs(&d, alloc_state, cpu_map);
8834 return -ENOMEM;
1da177e4 8835}
029190c5 8836
96f874e2 8837static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8838{
8839 return __build_sched_domains(cpu_map, NULL);
8840}
8841
96f874e2 8842static struct cpumask *doms_cur; /* current sched domains */
029190c5 8843static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8844static struct sched_domain_attr *dattr_cur;
8845 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8846
8847/*
8848 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8849 * cpumask) fails, then fallback to a single sched domain,
8850 * as determined by the single cpumask fallback_doms.
029190c5 8851 */
4212823f 8852static cpumask_var_t fallback_doms;
029190c5 8853
ee79d1bd
HC
8854/*
8855 * arch_update_cpu_topology lets virtualized architectures update the
8856 * cpu core maps. It is supposed to return 1 if the topology changed
8857 * or 0 if it stayed the same.
8858 */
8859int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8860{
ee79d1bd 8861 return 0;
22e52b07
HC
8862}
8863
1a20ff27 8864/*
41a2d6cf 8865 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8866 * For now this just excludes isolated cpus, but could be used to
8867 * exclude other special cases in the future.
1a20ff27 8868 */
96f874e2 8869static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8870{
7378547f
MM
8871 int err;
8872
22e52b07 8873 arch_update_cpu_topology();
029190c5 8874 ndoms_cur = 1;
96f874e2 8875 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8876 if (!doms_cur)
4212823f 8877 doms_cur = fallback_doms;
dcc30a35 8878 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8879 dattr_cur = NULL;
7378547f 8880 err = build_sched_domains(doms_cur);
6382bc90 8881 register_sched_domain_sysctl();
7378547f
MM
8882
8883 return err;
1a20ff27
DG
8884}
8885
96f874e2
RR
8886static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8887 struct cpumask *tmpmask)
1da177e4 8888{
7c16ec58 8889 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8890}
1da177e4 8891
1a20ff27
DG
8892/*
8893 * Detach sched domains from a group of cpus specified in cpu_map
8894 * These cpus will now be attached to the NULL domain
8895 */
96f874e2 8896static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8897{
96f874e2
RR
8898 /* Save because hotplug lock held. */
8899 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8900 int i;
8901
abcd083a 8902 for_each_cpu(i, cpu_map)
57d885fe 8903 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8904 synchronize_sched();
96f874e2 8905 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8906}
8907
1d3504fc
HS
8908/* handle null as "default" */
8909static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8910 struct sched_domain_attr *new, int idx_new)
8911{
8912 struct sched_domain_attr tmp;
8913
8914 /* fast path */
8915 if (!new && !cur)
8916 return 1;
8917
8918 tmp = SD_ATTR_INIT;
8919 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8920 new ? (new + idx_new) : &tmp,
8921 sizeof(struct sched_domain_attr));
8922}
8923
029190c5
PJ
8924/*
8925 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8926 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8927 * doms_new[] to the current sched domain partitioning, doms_cur[].
8928 * It destroys each deleted domain and builds each new domain.
8929 *
96f874e2 8930 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8931 * The masks don't intersect (don't overlap.) We should setup one
8932 * sched domain for each mask. CPUs not in any of the cpumasks will
8933 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8934 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8935 * it as it is.
8936 *
41a2d6cf
IM
8937 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8938 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8939 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8940 * ndoms_new == 1, and partition_sched_domains() will fallback to
8941 * the single partition 'fallback_doms', it also forces the domains
8942 * to be rebuilt.
029190c5 8943 *
96f874e2 8944 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8945 * ndoms_new == 0 is a special case for destroying existing domains,
8946 * and it will not create the default domain.
dfb512ec 8947 *
029190c5
PJ
8948 * Call with hotplug lock held
8949 */
96f874e2
RR
8950/* FIXME: Change to struct cpumask *doms_new[] */
8951void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8952 struct sched_domain_attr *dattr_new)
029190c5 8953{
dfb512ec 8954 int i, j, n;
d65bd5ec 8955 int new_topology;
029190c5 8956
712555ee 8957 mutex_lock(&sched_domains_mutex);
a1835615 8958
7378547f
MM
8959 /* always unregister in case we don't destroy any domains */
8960 unregister_sched_domain_sysctl();
8961
d65bd5ec
HC
8962 /* Let architecture update cpu core mappings. */
8963 new_topology = arch_update_cpu_topology();
8964
dfb512ec 8965 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8966
8967 /* Destroy deleted domains */
8968 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8969 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8970 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8971 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8972 goto match1;
8973 }
8974 /* no match - a current sched domain not in new doms_new[] */
8975 detach_destroy_domains(doms_cur + i);
8976match1:
8977 ;
8978 }
8979
e761b772
MK
8980 if (doms_new == NULL) {
8981 ndoms_cur = 0;
4212823f 8982 doms_new = fallback_doms;
dcc30a35 8983 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8984 WARN_ON_ONCE(dattr_new);
e761b772
MK
8985 }
8986
029190c5
PJ
8987 /* Build new domains */
8988 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8989 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8990 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8991 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8992 goto match2;
8993 }
8994 /* no match - add a new doms_new */
1d3504fc
HS
8995 __build_sched_domains(doms_new + i,
8996 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8997match2:
8998 ;
8999 }
9000
9001 /* Remember the new sched domains */
4212823f 9002 if (doms_cur != fallback_doms)
029190c5 9003 kfree(doms_cur);
1d3504fc 9004 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9005 doms_cur = doms_new;
1d3504fc 9006 dattr_cur = dattr_new;
029190c5 9007 ndoms_cur = ndoms_new;
7378547f
MM
9008
9009 register_sched_domain_sysctl();
a1835615 9010
712555ee 9011 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9012}
9013
5c45bf27 9014#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9015static void arch_reinit_sched_domains(void)
5c45bf27 9016{
95402b38 9017 get_online_cpus();
dfb512ec
MK
9018
9019 /* Destroy domains first to force the rebuild */
9020 partition_sched_domains(0, NULL, NULL);
9021
e761b772 9022 rebuild_sched_domains();
95402b38 9023 put_online_cpus();
5c45bf27
SS
9024}
9025
9026static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9027{
afb8a9b7 9028 unsigned int level = 0;
5c45bf27 9029
afb8a9b7
GS
9030 if (sscanf(buf, "%u", &level) != 1)
9031 return -EINVAL;
9032
9033 /*
9034 * level is always be positive so don't check for
9035 * level < POWERSAVINGS_BALANCE_NONE which is 0
9036 * What happens on 0 or 1 byte write,
9037 * need to check for count as well?
9038 */
9039
9040 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9041 return -EINVAL;
9042
9043 if (smt)
afb8a9b7 9044 sched_smt_power_savings = level;
5c45bf27 9045 else
afb8a9b7 9046 sched_mc_power_savings = level;
5c45bf27 9047
c70f22d2 9048 arch_reinit_sched_domains();
5c45bf27 9049
c70f22d2 9050 return count;
5c45bf27
SS
9051}
9052
5c45bf27 9053#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9054static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9055 char *page)
5c45bf27
SS
9056{
9057 return sprintf(page, "%u\n", sched_mc_power_savings);
9058}
f718cd4a 9059static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9060 const char *buf, size_t count)
5c45bf27
SS
9061{
9062 return sched_power_savings_store(buf, count, 0);
9063}
f718cd4a
AK
9064static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9065 sched_mc_power_savings_show,
9066 sched_mc_power_savings_store);
5c45bf27
SS
9067#endif
9068
9069#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9070static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9071 char *page)
5c45bf27
SS
9072{
9073 return sprintf(page, "%u\n", sched_smt_power_savings);
9074}
f718cd4a 9075static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9076 const char *buf, size_t count)
5c45bf27
SS
9077{
9078 return sched_power_savings_store(buf, count, 1);
9079}
f718cd4a
AK
9080static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9081 sched_smt_power_savings_show,
6707de00
AB
9082 sched_smt_power_savings_store);
9083#endif
9084
39aac648 9085int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9086{
9087 int err = 0;
9088
9089#ifdef CONFIG_SCHED_SMT
9090 if (smt_capable())
9091 err = sysfs_create_file(&cls->kset.kobj,
9092 &attr_sched_smt_power_savings.attr);
9093#endif
9094#ifdef CONFIG_SCHED_MC
9095 if (!err && mc_capable())
9096 err = sysfs_create_file(&cls->kset.kobj,
9097 &attr_sched_mc_power_savings.attr);
9098#endif
9099 return err;
9100}
6d6bc0ad 9101#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9102
e761b772 9103#ifndef CONFIG_CPUSETS
1da177e4 9104/*
e761b772
MK
9105 * Add online and remove offline CPUs from the scheduler domains.
9106 * When cpusets are enabled they take over this function.
1da177e4
LT
9107 */
9108static int update_sched_domains(struct notifier_block *nfb,
9109 unsigned long action, void *hcpu)
e761b772
MK
9110{
9111 switch (action) {
9112 case CPU_ONLINE:
9113 case CPU_ONLINE_FROZEN:
9114 case CPU_DEAD:
9115 case CPU_DEAD_FROZEN:
dfb512ec 9116 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9117 return NOTIFY_OK;
9118
9119 default:
9120 return NOTIFY_DONE;
9121 }
9122}
9123#endif
9124
9125static int update_runtime(struct notifier_block *nfb,
9126 unsigned long action, void *hcpu)
1da177e4 9127{
7def2be1
PZ
9128 int cpu = (int)(long)hcpu;
9129
1da177e4 9130 switch (action) {
1da177e4 9131 case CPU_DOWN_PREPARE:
8bb78442 9132 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9133 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9134 return NOTIFY_OK;
9135
1da177e4 9136 case CPU_DOWN_FAILED:
8bb78442 9137 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9138 case CPU_ONLINE:
8bb78442 9139 case CPU_ONLINE_FROZEN:
7def2be1 9140 enable_runtime(cpu_rq(cpu));
e761b772
MK
9141 return NOTIFY_OK;
9142
1da177e4
LT
9143 default:
9144 return NOTIFY_DONE;
9145 }
1da177e4 9146}
1da177e4
LT
9147
9148void __init sched_init_smp(void)
9149{
dcc30a35
RR
9150 cpumask_var_t non_isolated_cpus;
9151
9152 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9153 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9154
434d53b0
MT
9155#if defined(CONFIG_NUMA)
9156 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9157 GFP_KERNEL);
9158 BUG_ON(sched_group_nodes_bycpu == NULL);
9159#endif
95402b38 9160 get_online_cpus();
712555ee 9161 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9162 arch_init_sched_domains(cpu_online_mask);
9163 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9164 if (cpumask_empty(non_isolated_cpus))
9165 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9166 mutex_unlock(&sched_domains_mutex);
95402b38 9167 put_online_cpus();
e761b772
MK
9168
9169#ifndef CONFIG_CPUSETS
1da177e4
LT
9170 /* XXX: Theoretical race here - CPU may be hotplugged now */
9171 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9172#endif
9173
9174 /* RT runtime code needs to handle some hotplug events */
9175 hotcpu_notifier(update_runtime, 0);
9176
b328ca18 9177 init_hrtick();
5c1e1767
NP
9178
9179 /* Move init over to a non-isolated CPU */
dcc30a35 9180 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9181 BUG();
19978ca6 9182 sched_init_granularity();
dcc30a35 9183 free_cpumask_var(non_isolated_cpus);
4212823f 9184
0e3900e6 9185 init_sched_rt_class();
1da177e4
LT
9186}
9187#else
9188void __init sched_init_smp(void)
9189{
19978ca6 9190 sched_init_granularity();
1da177e4
LT
9191}
9192#endif /* CONFIG_SMP */
9193
cd1bb94b
AB
9194const_debug unsigned int sysctl_timer_migration = 1;
9195
1da177e4
LT
9196int in_sched_functions(unsigned long addr)
9197{
1da177e4
LT
9198 return in_lock_functions(addr) ||
9199 (addr >= (unsigned long)__sched_text_start
9200 && addr < (unsigned long)__sched_text_end);
9201}
9202
a9957449 9203static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9204{
9205 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9206 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9207#ifdef CONFIG_FAIR_GROUP_SCHED
9208 cfs_rq->rq = rq;
9209#endif
67e9fb2a 9210 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9211}
9212
fa85ae24
PZ
9213static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9214{
9215 struct rt_prio_array *array;
9216 int i;
9217
9218 array = &rt_rq->active;
9219 for (i = 0; i < MAX_RT_PRIO; i++) {
9220 INIT_LIST_HEAD(array->queue + i);
9221 __clear_bit(i, array->bitmap);
9222 }
9223 /* delimiter for bitsearch: */
9224 __set_bit(MAX_RT_PRIO, array->bitmap);
9225
052f1dc7 9226#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9227 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9228#ifdef CONFIG_SMP
e864c499 9229 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9230#endif
48d5e258 9231#endif
fa85ae24
PZ
9232#ifdef CONFIG_SMP
9233 rt_rq->rt_nr_migratory = 0;
fa85ae24 9234 rt_rq->overloaded = 0;
c20b08e3 9235 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9236#endif
9237
9238 rt_rq->rt_time = 0;
9239 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9240 rt_rq->rt_runtime = 0;
9241 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9242
052f1dc7 9243#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9244 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9245 rt_rq->rq = rq;
9246#endif
fa85ae24
PZ
9247}
9248
6f505b16 9249#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9250static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9251 struct sched_entity *se, int cpu, int add,
9252 struct sched_entity *parent)
6f505b16 9253{
ec7dc8ac 9254 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9255 tg->cfs_rq[cpu] = cfs_rq;
9256 init_cfs_rq(cfs_rq, rq);
9257 cfs_rq->tg = tg;
9258 if (add)
9259 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9260
9261 tg->se[cpu] = se;
354d60c2
DG
9262 /* se could be NULL for init_task_group */
9263 if (!se)
9264 return;
9265
ec7dc8ac
DG
9266 if (!parent)
9267 se->cfs_rq = &rq->cfs;
9268 else
9269 se->cfs_rq = parent->my_q;
9270
6f505b16
PZ
9271 se->my_q = cfs_rq;
9272 se->load.weight = tg->shares;
e05510d0 9273 se->load.inv_weight = 0;
ec7dc8ac 9274 se->parent = parent;
6f505b16 9275}
052f1dc7 9276#endif
6f505b16 9277
052f1dc7 9278#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9279static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9280 struct sched_rt_entity *rt_se, int cpu, int add,
9281 struct sched_rt_entity *parent)
6f505b16 9282{
ec7dc8ac
DG
9283 struct rq *rq = cpu_rq(cpu);
9284
6f505b16
PZ
9285 tg->rt_rq[cpu] = rt_rq;
9286 init_rt_rq(rt_rq, rq);
9287 rt_rq->tg = tg;
9288 rt_rq->rt_se = rt_se;
ac086bc2 9289 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9290 if (add)
9291 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9292
9293 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9294 if (!rt_se)
9295 return;
9296
ec7dc8ac
DG
9297 if (!parent)
9298 rt_se->rt_rq = &rq->rt;
9299 else
9300 rt_se->rt_rq = parent->my_q;
9301
6f505b16 9302 rt_se->my_q = rt_rq;
ec7dc8ac 9303 rt_se->parent = parent;
6f505b16
PZ
9304 INIT_LIST_HEAD(&rt_se->run_list);
9305}
9306#endif
9307
1da177e4
LT
9308void __init sched_init(void)
9309{
dd41f596 9310 int i, j;
434d53b0
MT
9311 unsigned long alloc_size = 0, ptr;
9312
9313#ifdef CONFIG_FAIR_GROUP_SCHED
9314 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9315#endif
9316#ifdef CONFIG_RT_GROUP_SCHED
9317 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9318#endif
9319#ifdef CONFIG_USER_SCHED
9320 alloc_size *= 2;
df7c8e84
RR
9321#endif
9322#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9323 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9324#endif
9325 /*
9326 * As sched_init() is called before page_alloc is setup,
9327 * we use alloc_bootmem().
9328 */
9329 if (alloc_size) {
36b7b6d4 9330 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9331
9332#ifdef CONFIG_FAIR_GROUP_SCHED
9333 init_task_group.se = (struct sched_entity **)ptr;
9334 ptr += nr_cpu_ids * sizeof(void **);
9335
9336 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9337 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9338
9339#ifdef CONFIG_USER_SCHED
9340 root_task_group.se = (struct sched_entity **)ptr;
9341 ptr += nr_cpu_ids * sizeof(void **);
9342
9343 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9344 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9345#endif /* CONFIG_USER_SCHED */
9346#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9347#ifdef CONFIG_RT_GROUP_SCHED
9348 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9349 ptr += nr_cpu_ids * sizeof(void **);
9350
9351 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9352 ptr += nr_cpu_ids * sizeof(void **);
9353
9354#ifdef CONFIG_USER_SCHED
9355 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9356 ptr += nr_cpu_ids * sizeof(void **);
9357
9358 root_task_group.rt_rq = (struct rt_rq **)ptr;
9359 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9360#endif /* CONFIG_USER_SCHED */
9361#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9362#ifdef CONFIG_CPUMASK_OFFSTACK
9363 for_each_possible_cpu(i) {
9364 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9365 ptr += cpumask_size();
9366 }
9367#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9368 }
dd41f596 9369
57d885fe
GH
9370#ifdef CONFIG_SMP
9371 init_defrootdomain();
9372#endif
9373
d0b27fa7
PZ
9374 init_rt_bandwidth(&def_rt_bandwidth,
9375 global_rt_period(), global_rt_runtime());
9376
9377#ifdef CONFIG_RT_GROUP_SCHED
9378 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9379 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9380#ifdef CONFIG_USER_SCHED
9381 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9382 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9383#endif /* CONFIG_USER_SCHED */
9384#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9385
052f1dc7 9386#ifdef CONFIG_GROUP_SCHED
6f505b16 9387 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9388 INIT_LIST_HEAD(&init_task_group.children);
9389
9390#ifdef CONFIG_USER_SCHED
9391 INIT_LIST_HEAD(&root_task_group.children);
9392 init_task_group.parent = &root_task_group;
9393 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9394#endif /* CONFIG_USER_SCHED */
9395#endif /* CONFIG_GROUP_SCHED */
6f505b16 9396
0a945022 9397 for_each_possible_cpu(i) {
70b97a7f 9398 struct rq *rq;
1da177e4
LT
9399
9400 rq = cpu_rq(i);
9401 spin_lock_init(&rq->lock);
7897986b 9402 rq->nr_running = 0;
dce48a84
TG
9403 rq->calc_load_active = 0;
9404 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9405 init_cfs_rq(&rq->cfs, rq);
6f505b16 9406 init_rt_rq(&rq->rt, rq);
dd41f596 9407#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9408 init_task_group.shares = init_task_group_load;
6f505b16 9409 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9410#ifdef CONFIG_CGROUP_SCHED
9411 /*
9412 * How much cpu bandwidth does init_task_group get?
9413 *
9414 * In case of task-groups formed thr' the cgroup filesystem, it
9415 * gets 100% of the cpu resources in the system. This overall
9416 * system cpu resource is divided among the tasks of
9417 * init_task_group and its child task-groups in a fair manner,
9418 * based on each entity's (task or task-group's) weight
9419 * (se->load.weight).
9420 *
9421 * In other words, if init_task_group has 10 tasks of weight
9422 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9423 * then A0's share of the cpu resource is:
9424 *
0d905bca 9425 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9426 *
9427 * We achieve this by letting init_task_group's tasks sit
9428 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9429 */
ec7dc8ac 9430 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9431#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9432 root_task_group.shares = NICE_0_LOAD;
9433 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9434 /*
9435 * In case of task-groups formed thr' the user id of tasks,
9436 * init_task_group represents tasks belonging to root user.
9437 * Hence it forms a sibling of all subsequent groups formed.
9438 * In this case, init_task_group gets only a fraction of overall
9439 * system cpu resource, based on the weight assigned to root
9440 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9441 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9442 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9443 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9444 */
ec7dc8ac 9445 init_tg_cfs_entry(&init_task_group,
84e9dabf 9446 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9447 &per_cpu(init_sched_entity, i), i, 1,
9448 root_task_group.se[i]);
6f505b16 9449
052f1dc7 9450#endif
354d60c2
DG
9451#endif /* CONFIG_FAIR_GROUP_SCHED */
9452
9453 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9454#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9455 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9456#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9457 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9458#elif defined CONFIG_USER_SCHED
eff766a6 9459 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9460 init_tg_rt_entry(&init_task_group,
6f505b16 9461 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9462 &per_cpu(init_sched_rt_entity, i), i, 1,
9463 root_task_group.rt_se[i]);
354d60c2 9464#endif
dd41f596 9465#endif
1da177e4 9466
dd41f596
IM
9467 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9468 rq->cpu_load[j] = 0;
1da177e4 9469#ifdef CONFIG_SMP
41c7ce9a 9470 rq->sd = NULL;
57d885fe 9471 rq->rd = NULL;
3f029d3c 9472 rq->post_schedule = 0;
1da177e4 9473 rq->active_balance = 0;
dd41f596 9474 rq->next_balance = jiffies;
1da177e4 9475 rq->push_cpu = 0;
0a2966b4 9476 rq->cpu = i;
1f11eb6a 9477 rq->online = 0;
1da177e4
LT
9478 rq->migration_thread = NULL;
9479 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9480 rq_attach_root(rq, &def_root_domain);
1da177e4 9481#endif
8f4d37ec 9482 init_rq_hrtick(rq);
1da177e4 9483 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9484 }
9485
2dd73a4f 9486 set_load_weight(&init_task);
b50f60ce 9487
e107be36
AK
9488#ifdef CONFIG_PREEMPT_NOTIFIERS
9489 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9490#endif
9491
c9819f45 9492#ifdef CONFIG_SMP
962cf36c 9493 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9494#endif
9495
b50f60ce
HC
9496#ifdef CONFIG_RT_MUTEXES
9497 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9498#endif
9499
1da177e4
LT
9500 /*
9501 * The boot idle thread does lazy MMU switching as well:
9502 */
9503 atomic_inc(&init_mm.mm_count);
9504 enter_lazy_tlb(&init_mm, current);
9505
9506 /*
9507 * Make us the idle thread. Technically, schedule() should not be
9508 * called from this thread, however somewhere below it might be,
9509 * but because we are the idle thread, we just pick up running again
9510 * when this runqueue becomes "idle".
9511 */
9512 init_idle(current, smp_processor_id());
dce48a84
TG
9513
9514 calc_load_update = jiffies + LOAD_FREQ;
9515
dd41f596
IM
9516 /*
9517 * During early bootup we pretend to be a normal task:
9518 */
9519 current->sched_class = &fair_sched_class;
6892b75e 9520
6a7b3dc3 9521 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9522 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9523#ifdef CONFIG_SMP
7d1e6a9b 9524#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9525 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9526 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9527#endif
4bdddf8f 9528 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9529#endif /* SMP */
6a7b3dc3 9530
0d905bca
IM
9531 perf_counter_init();
9532
6892b75e 9533 scheduler_running = 1;
1da177e4
LT
9534}
9535
9536#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9537static inline int preempt_count_equals(int preempt_offset)
9538{
9539 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9540
9541 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9542}
9543
9544void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9545{
48f24c4d 9546#ifdef in_atomic
1da177e4
LT
9547 static unsigned long prev_jiffy; /* ratelimiting */
9548
e4aafea2
FW
9549 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9550 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9551 return;
9552 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9553 return;
9554 prev_jiffy = jiffies;
9555
9556 printk(KERN_ERR
9557 "BUG: sleeping function called from invalid context at %s:%d\n",
9558 file, line);
9559 printk(KERN_ERR
9560 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9561 in_atomic(), irqs_disabled(),
9562 current->pid, current->comm);
9563
9564 debug_show_held_locks(current);
9565 if (irqs_disabled())
9566 print_irqtrace_events(current);
9567 dump_stack();
1da177e4
LT
9568#endif
9569}
9570EXPORT_SYMBOL(__might_sleep);
9571#endif
9572
9573#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9574static void normalize_task(struct rq *rq, struct task_struct *p)
9575{
9576 int on_rq;
3e51f33f 9577
3a5e4dc1
AK
9578 update_rq_clock(rq);
9579 on_rq = p->se.on_rq;
9580 if (on_rq)
9581 deactivate_task(rq, p, 0);
9582 __setscheduler(rq, p, SCHED_NORMAL, 0);
9583 if (on_rq) {
9584 activate_task(rq, p, 0);
9585 resched_task(rq->curr);
9586 }
9587}
9588
1da177e4
LT
9589void normalize_rt_tasks(void)
9590{
a0f98a1c 9591 struct task_struct *g, *p;
1da177e4 9592 unsigned long flags;
70b97a7f 9593 struct rq *rq;
1da177e4 9594
4cf5d77a 9595 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9596 do_each_thread(g, p) {
178be793
IM
9597 /*
9598 * Only normalize user tasks:
9599 */
9600 if (!p->mm)
9601 continue;
9602
6cfb0d5d 9603 p->se.exec_start = 0;
6cfb0d5d 9604#ifdef CONFIG_SCHEDSTATS
dd41f596 9605 p->se.wait_start = 0;
dd41f596 9606 p->se.sleep_start = 0;
dd41f596 9607 p->se.block_start = 0;
6cfb0d5d 9608#endif
dd41f596
IM
9609
9610 if (!rt_task(p)) {
9611 /*
9612 * Renice negative nice level userspace
9613 * tasks back to 0:
9614 */
9615 if (TASK_NICE(p) < 0 && p->mm)
9616 set_user_nice(p, 0);
1da177e4 9617 continue;
dd41f596 9618 }
1da177e4 9619
4cf5d77a 9620 spin_lock(&p->pi_lock);
b29739f9 9621 rq = __task_rq_lock(p);
1da177e4 9622
178be793 9623 normalize_task(rq, p);
3a5e4dc1 9624
b29739f9 9625 __task_rq_unlock(rq);
4cf5d77a 9626 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9627 } while_each_thread(g, p);
9628
4cf5d77a 9629 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9630}
9631
9632#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9633
9634#ifdef CONFIG_IA64
9635/*
9636 * These functions are only useful for the IA64 MCA handling.
9637 *
9638 * They can only be called when the whole system has been
9639 * stopped - every CPU needs to be quiescent, and no scheduling
9640 * activity can take place. Using them for anything else would
9641 * be a serious bug, and as a result, they aren't even visible
9642 * under any other configuration.
9643 */
9644
9645/**
9646 * curr_task - return the current task for a given cpu.
9647 * @cpu: the processor in question.
9648 *
9649 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9650 */
36c8b586 9651struct task_struct *curr_task(int cpu)
1df5c10a
LT
9652{
9653 return cpu_curr(cpu);
9654}
9655
9656/**
9657 * set_curr_task - set the current task for a given cpu.
9658 * @cpu: the processor in question.
9659 * @p: the task pointer to set.
9660 *
9661 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9662 * are serviced on a separate stack. It allows the architecture to switch the
9663 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9664 * must be called with all CPU's synchronized, and interrupts disabled, the
9665 * and caller must save the original value of the current task (see
9666 * curr_task() above) and restore that value before reenabling interrupts and
9667 * re-starting the system.
9668 *
9669 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9670 */
36c8b586 9671void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9672{
9673 cpu_curr(cpu) = p;
9674}
9675
9676#endif
29f59db3 9677
bccbe08a
PZ
9678#ifdef CONFIG_FAIR_GROUP_SCHED
9679static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9680{
9681 int i;
9682
9683 for_each_possible_cpu(i) {
9684 if (tg->cfs_rq)
9685 kfree(tg->cfs_rq[i]);
9686 if (tg->se)
9687 kfree(tg->se[i]);
6f505b16
PZ
9688 }
9689
9690 kfree(tg->cfs_rq);
9691 kfree(tg->se);
6f505b16
PZ
9692}
9693
ec7dc8ac
DG
9694static
9695int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9696{
29f59db3 9697 struct cfs_rq *cfs_rq;
eab17229 9698 struct sched_entity *se;
9b5b7751 9699 struct rq *rq;
29f59db3
SV
9700 int i;
9701
434d53b0 9702 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9703 if (!tg->cfs_rq)
9704 goto err;
434d53b0 9705 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9706 if (!tg->se)
9707 goto err;
052f1dc7
PZ
9708
9709 tg->shares = NICE_0_LOAD;
29f59db3
SV
9710
9711 for_each_possible_cpu(i) {
9b5b7751 9712 rq = cpu_rq(i);
29f59db3 9713
eab17229
LZ
9714 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9715 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9716 if (!cfs_rq)
9717 goto err;
9718
eab17229
LZ
9719 se = kzalloc_node(sizeof(struct sched_entity),
9720 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9721 if (!se)
9722 goto err;
9723
eab17229 9724 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9725 }
9726
9727 return 1;
9728
9729 err:
9730 return 0;
9731}
9732
9733static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9734{
9735 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9736 &cpu_rq(cpu)->leaf_cfs_rq_list);
9737}
9738
9739static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9740{
9741 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9742}
6d6bc0ad 9743#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9744static inline void free_fair_sched_group(struct task_group *tg)
9745{
9746}
9747
ec7dc8ac
DG
9748static inline
9749int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9750{
9751 return 1;
9752}
9753
9754static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9755{
9756}
9757
9758static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9759{
9760}
6d6bc0ad 9761#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9762
9763#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9764static void free_rt_sched_group(struct task_group *tg)
9765{
9766 int i;
9767
d0b27fa7
PZ
9768 destroy_rt_bandwidth(&tg->rt_bandwidth);
9769
bccbe08a
PZ
9770 for_each_possible_cpu(i) {
9771 if (tg->rt_rq)
9772 kfree(tg->rt_rq[i]);
9773 if (tg->rt_se)
9774 kfree(tg->rt_se[i]);
9775 }
9776
9777 kfree(tg->rt_rq);
9778 kfree(tg->rt_se);
9779}
9780
ec7dc8ac
DG
9781static
9782int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9783{
9784 struct rt_rq *rt_rq;
eab17229 9785 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9786 struct rq *rq;
9787 int i;
9788
434d53b0 9789 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9790 if (!tg->rt_rq)
9791 goto err;
434d53b0 9792 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9793 if (!tg->rt_se)
9794 goto err;
9795
d0b27fa7
PZ
9796 init_rt_bandwidth(&tg->rt_bandwidth,
9797 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9798
9799 for_each_possible_cpu(i) {
9800 rq = cpu_rq(i);
9801
eab17229
LZ
9802 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9803 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9804 if (!rt_rq)
9805 goto err;
29f59db3 9806
eab17229
LZ
9807 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9808 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9809 if (!rt_se)
9810 goto err;
29f59db3 9811
eab17229 9812 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9813 }
9814
bccbe08a
PZ
9815 return 1;
9816
9817 err:
9818 return 0;
9819}
9820
9821static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9822{
9823 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9824 &cpu_rq(cpu)->leaf_rt_rq_list);
9825}
9826
9827static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9828{
9829 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9830}
6d6bc0ad 9831#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9832static inline void free_rt_sched_group(struct task_group *tg)
9833{
9834}
9835
ec7dc8ac
DG
9836static inline
9837int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9838{
9839 return 1;
9840}
9841
9842static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9843{
9844}
9845
9846static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9847{
9848}
6d6bc0ad 9849#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9850
d0b27fa7 9851#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9852static void free_sched_group(struct task_group *tg)
9853{
9854 free_fair_sched_group(tg);
9855 free_rt_sched_group(tg);
9856 kfree(tg);
9857}
9858
9859/* allocate runqueue etc for a new task group */
ec7dc8ac 9860struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9861{
9862 struct task_group *tg;
9863 unsigned long flags;
9864 int i;
9865
9866 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9867 if (!tg)
9868 return ERR_PTR(-ENOMEM);
9869
ec7dc8ac 9870 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9871 goto err;
9872
ec7dc8ac 9873 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9874 goto err;
9875
8ed36996 9876 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9877 for_each_possible_cpu(i) {
bccbe08a
PZ
9878 register_fair_sched_group(tg, i);
9879 register_rt_sched_group(tg, i);
9b5b7751 9880 }
6f505b16 9881 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9882
9883 WARN_ON(!parent); /* root should already exist */
9884
9885 tg->parent = parent;
f473aa5e 9886 INIT_LIST_HEAD(&tg->children);
09f2724a 9887 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9888 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9889
9b5b7751 9890 return tg;
29f59db3
SV
9891
9892err:
6f505b16 9893 free_sched_group(tg);
29f59db3
SV
9894 return ERR_PTR(-ENOMEM);
9895}
9896
9b5b7751 9897/* rcu callback to free various structures associated with a task group */
6f505b16 9898static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9899{
29f59db3 9900 /* now it should be safe to free those cfs_rqs */
6f505b16 9901 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9902}
9903
9b5b7751 9904/* Destroy runqueue etc associated with a task group */
4cf86d77 9905void sched_destroy_group(struct task_group *tg)
29f59db3 9906{
8ed36996 9907 unsigned long flags;
9b5b7751 9908 int i;
29f59db3 9909
8ed36996 9910 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9911 for_each_possible_cpu(i) {
bccbe08a
PZ
9912 unregister_fair_sched_group(tg, i);
9913 unregister_rt_sched_group(tg, i);
9b5b7751 9914 }
6f505b16 9915 list_del_rcu(&tg->list);
f473aa5e 9916 list_del_rcu(&tg->siblings);
8ed36996 9917 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9918
9b5b7751 9919 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9920 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9921}
9922
9b5b7751 9923/* change task's runqueue when it moves between groups.
3a252015
IM
9924 * The caller of this function should have put the task in its new group
9925 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9926 * reflect its new group.
9b5b7751
SV
9927 */
9928void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9929{
9930 int on_rq, running;
9931 unsigned long flags;
9932 struct rq *rq;
9933
9934 rq = task_rq_lock(tsk, &flags);
9935
29f59db3
SV
9936 update_rq_clock(rq);
9937
051a1d1a 9938 running = task_current(rq, tsk);
29f59db3
SV
9939 on_rq = tsk->se.on_rq;
9940
0e1f3483 9941 if (on_rq)
29f59db3 9942 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9943 if (unlikely(running))
9944 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9945
6f505b16 9946 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9947
810b3817
PZ
9948#ifdef CONFIG_FAIR_GROUP_SCHED
9949 if (tsk->sched_class->moved_group)
9950 tsk->sched_class->moved_group(tsk);
9951#endif
9952
0e1f3483
HS
9953 if (unlikely(running))
9954 tsk->sched_class->set_curr_task(rq);
9955 if (on_rq)
7074badb 9956 enqueue_task(rq, tsk, 0);
29f59db3 9957
29f59db3
SV
9958 task_rq_unlock(rq, &flags);
9959}
6d6bc0ad 9960#endif /* CONFIG_GROUP_SCHED */
29f59db3 9961
052f1dc7 9962#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9963static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9964{
9965 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9966 int on_rq;
9967
29f59db3 9968 on_rq = se->on_rq;
62fb1851 9969 if (on_rq)
29f59db3
SV
9970 dequeue_entity(cfs_rq, se, 0);
9971
9972 se->load.weight = shares;
e05510d0 9973 se->load.inv_weight = 0;
29f59db3 9974
62fb1851 9975 if (on_rq)
29f59db3 9976 enqueue_entity(cfs_rq, se, 0);
c09595f6 9977}
62fb1851 9978
c09595f6
PZ
9979static void set_se_shares(struct sched_entity *se, unsigned long shares)
9980{
9981 struct cfs_rq *cfs_rq = se->cfs_rq;
9982 struct rq *rq = cfs_rq->rq;
9983 unsigned long flags;
9984
9985 spin_lock_irqsave(&rq->lock, flags);
9986 __set_se_shares(se, shares);
9987 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9988}
9989
8ed36996
PZ
9990static DEFINE_MUTEX(shares_mutex);
9991
4cf86d77 9992int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9993{
9994 int i;
8ed36996 9995 unsigned long flags;
c61935fd 9996
ec7dc8ac
DG
9997 /*
9998 * We can't change the weight of the root cgroup.
9999 */
10000 if (!tg->se[0])
10001 return -EINVAL;
10002
18d95a28
PZ
10003 if (shares < MIN_SHARES)
10004 shares = MIN_SHARES;
cb4ad1ff
MX
10005 else if (shares > MAX_SHARES)
10006 shares = MAX_SHARES;
62fb1851 10007
8ed36996 10008 mutex_lock(&shares_mutex);
9b5b7751 10009 if (tg->shares == shares)
5cb350ba 10010 goto done;
29f59db3 10011
8ed36996 10012 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10013 for_each_possible_cpu(i)
10014 unregister_fair_sched_group(tg, i);
f473aa5e 10015 list_del_rcu(&tg->siblings);
8ed36996 10016 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10017
10018 /* wait for any ongoing reference to this group to finish */
10019 synchronize_sched();
10020
10021 /*
10022 * Now we are free to modify the group's share on each cpu
10023 * w/o tripping rebalance_share or load_balance_fair.
10024 */
9b5b7751 10025 tg->shares = shares;
c09595f6
PZ
10026 for_each_possible_cpu(i) {
10027 /*
10028 * force a rebalance
10029 */
10030 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10031 set_se_shares(tg->se[i], shares);
c09595f6 10032 }
29f59db3 10033
6b2d7700
SV
10034 /*
10035 * Enable load balance activity on this group, by inserting it back on
10036 * each cpu's rq->leaf_cfs_rq_list.
10037 */
8ed36996 10038 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10039 for_each_possible_cpu(i)
10040 register_fair_sched_group(tg, i);
f473aa5e 10041 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10042 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10043done:
8ed36996 10044 mutex_unlock(&shares_mutex);
9b5b7751 10045 return 0;
29f59db3
SV
10046}
10047
5cb350ba
DG
10048unsigned long sched_group_shares(struct task_group *tg)
10049{
10050 return tg->shares;
10051}
052f1dc7 10052#endif
5cb350ba 10053
052f1dc7 10054#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10055/*
9f0c1e56 10056 * Ensure that the real time constraints are schedulable.
6f505b16 10057 */
9f0c1e56
PZ
10058static DEFINE_MUTEX(rt_constraints_mutex);
10059
10060static unsigned long to_ratio(u64 period, u64 runtime)
10061{
10062 if (runtime == RUNTIME_INF)
9a7e0b18 10063 return 1ULL << 20;
9f0c1e56 10064
9a7e0b18 10065 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10066}
10067
9a7e0b18
PZ
10068/* Must be called with tasklist_lock held */
10069static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10070{
9a7e0b18 10071 struct task_struct *g, *p;
b40b2e8e 10072
9a7e0b18
PZ
10073 do_each_thread(g, p) {
10074 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10075 return 1;
10076 } while_each_thread(g, p);
b40b2e8e 10077
9a7e0b18
PZ
10078 return 0;
10079}
b40b2e8e 10080
9a7e0b18
PZ
10081struct rt_schedulable_data {
10082 struct task_group *tg;
10083 u64 rt_period;
10084 u64 rt_runtime;
10085};
b40b2e8e 10086
9a7e0b18
PZ
10087static int tg_schedulable(struct task_group *tg, void *data)
10088{
10089 struct rt_schedulable_data *d = data;
10090 struct task_group *child;
10091 unsigned long total, sum = 0;
10092 u64 period, runtime;
b40b2e8e 10093
9a7e0b18
PZ
10094 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10095 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10096
9a7e0b18
PZ
10097 if (tg == d->tg) {
10098 period = d->rt_period;
10099 runtime = d->rt_runtime;
b40b2e8e 10100 }
b40b2e8e 10101
98a4826b
PZ
10102#ifdef CONFIG_USER_SCHED
10103 if (tg == &root_task_group) {
10104 period = global_rt_period();
10105 runtime = global_rt_runtime();
10106 }
10107#endif
10108
4653f803
PZ
10109 /*
10110 * Cannot have more runtime than the period.
10111 */
10112 if (runtime > period && runtime != RUNTIME_INF)
10113 return -EINVAL;
6f505b16 10114
4653f803
PZ
10115 /*
10116 * Ensure we don't starve existing RT tasks.
10117 */
9a7e0b18
PZ
10118 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10119 return -EBUSY;
6f505b16 10120
9a7e0b18 10121 total = to_ratio(period, runtime);
6f505b16 10122
4653f803
PZ
10123 /*
10124 * Nobody can have more than the global setting allows.
10125 */
10126 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10127 return -EINVAL;
6f505b16 10128
4653f803
PZ
10129 /*
10130 * The sum of our children's runtime should not exceed our own.
10131 */
9a7e0b18
PZ
10132 list_for_each_entry_rcu(child, &tg->children, siblings) {
10133 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10134 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10135
9a7e0b18
PZ
10136 if (child == d->tg) {
10137 period = d->rt_period;
10138 runtime = d->rt_runtime;
10139 }
6f505b16 10140
9a7e0b18 10141 sum += to_ratio(period, runtime);
9f0c1e56 10142 }
6f505b16 10143
9a7e0b18
PZ
10144 if (sum > total)
10145 return -EINVAL;
10146
10147 return 0;
6f505b16
PZ
10148}
10149
9a7e0b18 10150static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10151{
9a7e0b18
PZ
10152 struct rt_schedulable_data data = {
10153 .tg = tg,
10154 .rt_period = period,
10155 .rt_runtime = runtime,
10156 };
10157
10158 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10159}
10160
d0b27fa7
PZ
10161static int tg_set_bandwidth(struct task_group *tg,
10162 u64 rt_period, u64 rt_runtime)
6f505b16 10163{
ac086bc2 10164 int i, err = 0;
9f0c1e56 10165
9f0c1e56 10166 mutex_lock(&rt_constraints_mutex);
521f1a24 10167 read_lock(&tasklist_lock);
9a7e0b18
PZ
10168 err = __rt_schedulable(tg, rt_period, rt_runtime);
10169 if (err)
9f0c1e56 10170 goto unlock;
ac086bc2
PZ
10171
10172 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10173 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10174 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10175
10176 for_each_possible_cpu(i) {
10177 struct rt_rq *rt_rq = tg->rt_rq[i];
10178
10179 spin_lock(&rt_rq->rt_runtime_lock);
10180 rt_rq->rt_runtime = rt_runtime;
10181 spin_unlock(&rt_rq->rt_runtime_lock);
10182 }
10183 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10184 unlock:
521f1a24 10185 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10186 mutex_unlock(&rt_constraints_mutex);
10187
10188 return err;
6f505b16
PZ
10189}
10190
d0b27fa7
PZ
10191int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10192{
10193 u64 rt_runtime, rt_period;
10194
10195 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10196 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10197 if (rt_runtime_us < 0)
10198 rt_runtime = RUNTIME_INF;
10199
10200 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10201}
10202
9f0c1e56
PZ
10203long sched_group_rt_runtime(struct task_group *tg)
10204{
10205 u64 rt_runtime_us;
10206
d0b27fa7 10207 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10208 return -1;
10209
d0b27fa7 10210 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10211 do_div(rt_runtime_us, NSEC_PER_USEC);
10212 return rt_runtime_us;
10213}
d0b27fa7
PZ
10214
10215int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10216{
10217 u64 rt_runtime, rt_period;
10218
10219 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10220 rt_runtime = tg->rt_bandwidth.rt_runtime;
10221
619b0488
R
10222 if (rt_period == 0)
10223 return -EINVAL;
10224
d0b27fa7
PZ
10225 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10226}
10227
10228long sched_group_rt_period(struct task_group *tg)
10229{
10230 u64 rt_period_us;
10231
10232 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10233 do_div(rt_period_us, NSEC_PER_USEC);
10234 return rt_period_us;
10235}
10236
10237static int sched_rt_global_constraints(void)
10238{
4653f803 10239 u64 runtime, period;
d0b27fa7
PZ
10240 int ret = 0;
10241
ec5d4989
HS
10242 if (sysctl_sched_rt_period <= 0)
10243 return -EINVAL;
10244
4653f803
PZ
10245 runtime = global_rt_runtime();
10246 period = global_rt_period();
10247
10248 /*
10249 * Sanity check on the sysctl variables.
10250 */
10251 if (runtime > period && runtime != RUNTIME_INF)
10252 return -EINVAL;
10b612f4 10253
d0b27fa7 10254 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10255 read_lock(&tasklist_lock);
4653f803 10256 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10257 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10258 mutex_unlock(&rt_constraints_mutex);
10259
10260 return ret;
10261}
54e99124
DG
10262
10263int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10264{
10265 /* Don't accept realtime tasks when there is no way for them to run */
10266 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10267 return 0;
10268
10269 return 1;
10270}
10271
6d6bc0ad 10272#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10273static int sched_rt_global_constraints(void)
10274{
ac086bc2
PZ
10275 unsigned long flags;
10276 int i;
10277
ec5d4989
HS
10278 if (sysctl_sched_rt_period <= 0)
10279 return -EINVAL;
10280
60aa605d
PZ
10281 /*
10282 * There's always some RT tasks in the root group
10283 * -- migration, kstopmachine etc..
10284 */
10285 if (sysctl_sched_rt_runtime == 0)
10286 return -EBUSY;
10287
ac086bc2
PZ
10288 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10289 for_each_possible_cpu(i) {
10290 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10291
10292 spin_lock(&rt_rq->rt_runtime_lock);
10293 rt_rq->rt_runtime = global_rt_runtime();
10294 spin_unlock(&rt_rq->rt_runtime_lock);
10295 }
10296 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10297
d0b27fa7
PZ
10298 return 0;
10299}
6d6bc0ad 10300#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10301
10302int sched_rt_handler(struct ctl_table *table, int write,
10303 struct file *filp, void __user *buffer, size_t *lenp,
10304 loff_t *ppos)
10305{
10306 int ret;
10307 int old_period, old_runtime;
10308 static DEFINE_MUTEX(mutex);
10309
10310 mutex_lock(&mutex);
10311 old_period = sysctl_sched_rt_period;
10312 old_runtime = sysctl_sched_rt_runtime;
10313
10314 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10315
10316 if (!ret && write) {
10317 ret = sched_rt_global_constraints();
10318 if (ret) {
10319 sysctl_sched_rt_period = old_period;
10320 sysctl_sched_rt_runtime = old_runtime;
10321 } else {
10322 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10323 def_rt_bandwidth.rt_period =
10324 ns_to_ktime(global_rt_period());
10325 }
10326 }
10327 mutex_unlock(&mutex);
10328
10329 return ret;
10330}
68318b8e 10331
052f1dc7 10332#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10333
10334/* return corresponding task_group object of a cgroup */
2b01dfe3 10335static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10336{
2b01dfe3
PM
10337 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10338 struct task_group, css);
68318b8e
SV
10339}
10340
10341static struct cgroup_subsys_state *
2b01dfe3 10342cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10343{
ec7dc8ac 10344 struct task_group *tg, *parent;
68318b8e 10345
2b01dfe3 10346 if (!cgrp->parent) {
68318b8e 10347 /* This is early initialization for the top cgroup */
68318b8e
SV
10348 return &init_task_group.css;
10349 }
10350
ec7dc8ac
DG
10351 parent = cgroup_tg(cgrp->parent);
10352 tg = sched_create_group(parent);
68318b8e
SV
10353 if (IS_ERR(tg))
10354 return ERR_PTR(-ENOMEM);
10355
68318b8e
SV
10356 return &tg->css;
10357}
10358
41a2d6cf
IM
10359static void
10360cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10361{
2b01dfe3 10362 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10363
10364 sched_destroy_group(tg);
10365}
10366
41a2d6cf
IM
10367static int
10368cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10369 struct task_struct *tsk)
68318b8e 10370{
b68aa230 10371#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10372 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10373 return -EINVAL;
10374#else
68318b8e
SV
10375 /* We don't support RT-tasks being in separate groups */
10376 if (tsk->sched_class != &fair_sched_class)
10377 return -EINVAL;
b68aa230 10378#endif
68318b8e
SV
10379
10380 return 0;
10381}
10382
10383static void
2b01dfe3 10384cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10385 struct cgroup *old_cont, struct task_struct *tsk)
10386{
10387 sched_move_task(tsk);
10388}
10389
052f1dc7 10390#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10391static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10392 u64 shareval)
68318b8e 10393{
2b01dfe3 10394 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10395}
10396
f4c753b7 10397static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10398{
2b01dfe3 10399 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10400
10401 return (u64) tg->shares;
10402}
6d6bc0ad 10403#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10404
052f1dc7 10405#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10406static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10407 s64 val)
6f505b16 10408{
06ecb27c 10409 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10410}
10411
06ecb27c 10412static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10413{
06ecb27c 10414 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10415}
d0b27fa7
PZ
10416
10417static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10418 u64 rt_period_us)
10419{
10420 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10421}
10422
10423static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10424{
10425 return sched_group_rt_period(cgroup_tg(cgrp));
10426}
6d6bc0ad 10427#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10428
fe5c7cc2 10429static struct cftype cpu_files[] = {
052f1dc7 10430#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10431 {
10432 .name = "shares",
f4c753b7
PM
10433 .read_u64 = cpu_shares_read_u64,
10434 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10435 },
052f1dc7
PZ
10436#endif
10437#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10438 {
9f0c1e56 10439 .name = "rt_runtime_us",
06ecb27c
PM
10440 .read_s64 = cpu_rt_runtime_read,
10441 .write_s64 = cpu_rt_runtime_write,
6f505b16 10442 },
d0b27fa7
PZ
10443 {
10444 .name = "rt_period_us",
f4c753b7
PM
10445 .read_u64 = cpu_rt_period_read_uint,
10446 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10447 },
052f1dc7 10448#endif
68318b8e
SV
10449};
10450
10451static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10452{
fe5c7cc2 10453 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10454}
10455
10456struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10457 .name = "cpu",
10458 .create = cpu_cgroup_create,
10459 .destroy = cpu_cgroup_destroy,
10460 .can_attach = cpu_cgroup_can_attach,
10461 .attach = cpu_cgroup_attach,
10462 .populate = cpu_cgroup_populate,
10463 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10464 .early_init = 1,
10465};
10466
052f1dc7 10467#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10468
10469#ifdef CONFIG_CGROUP_CPUACCT
10470
10471/*
10472 * CPU accounting code for task groups.
10473 *
10474 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10475 * (balbir@in.ibm.com).
10476 */
10477
934352f2 10478/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10479struct cpuacct {
10480 struct cgroup_subsys_state css;
10481 /* cpuusage holds pointer to a u64-type object on every cpu */
10482 u64 *cpuusage;
ef12fefa 10483 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10484 struct cpuacct *parent;
d842de87
SV
10485};
10486
10487struct cgroup_subsys cpuacct_subsys;
10488
10489/* return cpu accounting group corresponding to this container */
32cd756a 10490static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10491{
32cd756a 10492 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10493 struct cpuacct, css);
10494}
10495
10496/* return cpu accounting group to which this task belongs */
10497static inline struct cpuacct *task_ca(struct task_struct *tsk)
10498{
10499 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10500 struct cpuacct, css);
10501}
10502
10503/* create a new cpu accounting group */
10504static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10505 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10506{
10507 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10508 int i;
d842de87
SV
10509
10510 if (!ca)
ef12fefa 10511 goto out;
d842de87
SV
10512
10513 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10514 if (!ca->cpuusage)
10515 goto out_free_ca;
10516
10517 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10518 if (percpu_counter_init(&ca->cpustat[i], 0))
10519 goto out_free_counters;
d842de87 10520
934352f2
BR
10521 if (cgrp->parent)
10522 ca->parent = cgroup_ca(cgrp->parent);
10523
d842de87 10524 return &ca->css;
ef12fefa
BR
10525
10526out_free_counters:
10527 while (--i >= 0)
10528 percpu_counter_destroy(&ca->cpustat[i]);
10529 free_percpu(ca->cpuusage);
10530out_free_ca:
10531 kfree(ca);
10532out:
10533 return ERR_PTR(-ENOMEM);
d842de87
SV
10534}
10535
10536/* destroy an existing cpu accounting group */
41a2d6cf 10537static void
32cd756a 10538cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10539{
32cd756a 10540 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10541 int i;
d842de87 10542
ef12fefa
BR
10543 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10544 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10545 free_percpu(ca->cpuusage);
10546 kfree(ca);
10547}
10548
720f5498
KC
10549static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10550{
b36128c8 10551 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10552 u64 data;
10553
10554#ifndef CONFIG_64BIT
10555 /*
10556 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10557 */
10558 spin_lock_irq(&cpu_rq(cpu)->lock);
10559 data = *cpuusage;
10560 spin_unlock_irq(&cpu_rq(cpu)->lock);
10561#else
10562 data = *cpuusage;
10563#endif
10564
10565 return data;
10566}
10567
10568static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10569{
b36128c8 10570 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10571
10572#ifndef CONFIG_64BIT
10573 /*
10574 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10575 */
10576 spin_lock_irq(&cpu_rq(cpu)->lock);
10577 *cpuusage = val;
10578 spin_unlock_irq(&cpu_rq(cpu)->lock);
10579#else
10580 *cpuusage = val;
10581#endif
10582}
10583
d842de87 10584/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10585static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10586{
32cd756a 10587 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10588 u64 totalcpuusage = 0;
10589 int i;
10590
720f5498
KC
10591 for_each_present_cpu(i)
10592 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10593
10594 return totalcpuusage;
10595}
10596
0297b803
DG
10597static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10598 u64 reset)
10599{
10600 struct cpuacct *ca = cgroup_ca(cgrp);
10601 int err = 0;
10602 int i;
10603
10604 if (reset) {
10605 err = -EINVAL;
10606 goto out;
10607 }
10608
720f5498
KC
10609 for_each_present_cpu(i)
10610 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10611
0297b803
DG
10612out:
10613 return err;
10614}
10615
e9515c3c
KC
10616static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10617 struct seq_file *m)
10618{
10619 struct cpuacct *ca = cgroup_ca(cgroup);
10620 u64 percpu;
10621 int i;
10622
10623 for_each_present_cpu(i) {
10624 percpu = cpuacct_cpuusage_read(ca, i);
10625 seq_printf(m, "%llu ", (unsigned long long) percpu);
10626 }
10627 seq_printf(m, "\n");
10628 return 0;
10629}
10630
ef12fefa
BR
10631static const char *cpuacct_stat_desc[] = {
10632 [CPUACCT_STAT_USER] = "user",
10633 [CPUACCT_STAT_SYSTEM] = "system",
10634};
10635
10636static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10637 struct cgroup_map_cb *cb)
10638{
10639 struct cpuacct *ca = cgroup_ca(cgrp);
10640 int i;
10641
10642 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10643 s64 val = percpu_counter_read(&ca->cpustat[i]);
10644 val = cputime64_to_clock_t(val);
10645 cb->fill(cb, cpuacct_stat_desc[i], val);
10646 }
10647 return 0;
10648}
10649
d842de87
SV
10650static struct cftype files[] = {
10651 {
10652 .name = "usage",
f4c753b7
PM
10653 .read_u64 = cpuusage_read,
10654 .write_u64 = cpuusage_write,
d842de87 10655 },
e9515c3c
KC
10656 {
10657 .name = "usage_percpu",
10658 .read_seq_string = cpuacct_percpu_seq_read,
10659 },
ef12fefa
BR
10660 {
10661 .name = "stat",
10662 .read_map = cpuacct_stats_show,
10663 },
d842de87
SV
10664};
10665
32cd756a 10666static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10667{
32cd756a 10668 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10669}
10670
10671/*
10672 * charge this task's execution time to its accounting group.
10673 *
10674 * called with rq->lock held.
10675 */
10676static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10677{
10678 struct cpuacct *ca;
934352f2 10679 int cpu;
d842de87 10680
c40c6f85 10681 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10682 return;
10683
934352f2 10684 cpu = task_cpu(tsk);
a18b83b7
BR
10685
10686 rcu_read_lock();
10687
d842de87 10688 ca = task_ca(tsk);
d842de87 10689
934352f2 10690 for (; ca; ca = ca->parent) {
b36128c8 10691 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10692 *cpuusage += cputime;
10693 }
a18b83b7
BR
10694
10695 rcu_read_unlock();
d842de87
SV
10696}
10697
ef12fefa
BR
10698/*
10699 * Charge the system/user time to the task's accounting group.
10700 */
10701static void cpuacct_update_stats(struct task_struct *tsk,
10702 enum cpuacct_stat_index idx, cputime_t val)
10703{
10704 struct cpuacct *ca;
10705
10706 if (unlikely(!cpuacct_subsys.active))
10707 return;
10708
10709 rcu_read_lock();
10710 ca = task_ca(tsk);
10711
10712 do {
10713 percpu_counter_add(&ca->cpustat[idx], val);
10714 ca = ca->parent;
10715 } while (ca);
10716 rcu_read_unlock();
10717}
10718
d842de87
SV
10719struct cgroup_subsys cpuacct_subsys = {
10720 .name = "cpuacct",
10721 .create = cpuacct_create,
10722 .destroy = cpuacct_destroy,
10723 .populate = cpuacct_populate,
10724 .subsys_id = cpuacct_subsys_id,
10725};
10726#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10727
10728#ifndef CONFIG_SMP
10729
10730int rcu_expedited_torture_stats(char *page)
10731{
10732 return 0;
10733}
10734EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10735
10736void synchronize_sched_expedited(void)
10737{
10738}
10739EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10740
10741#else /* #ifndef CONFIG_SMP */
10742
10743static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10744static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10745
10746#define RCU_EXPEDITED_STATE_POST -2
10747#define RCU_EXPEDITED_STATE_IDLE -1
10748
10749static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10750
10751int rcu_expedited_torture_stats(char *page)
10752{
10753 int cnt = 0;
10754 int cpu;
10755
10756 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10757 for_each_online_cpu(cpu) {
10758 cnt += sprintf(&page[cnt], " %d:%d",
10759 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10760 }
10761 cnt += sprintf(&page[cnt], "\n");
10762 return cnt;
10763}
10764EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10765
10766static long synchronize_sched_expedited_count;
10767
10768/*
10769 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10770 * approach to force grace period to end quickly. This consumes
10771 * significant time on all CPUs, and is thus not recommended for
10772 * any sort of common-case code.
10773 *
10774 * Note that it is illegal to call this function while holding any
10775 * lock that is acquired by a CPU-hotplug notifier. Failing to
10776 * observe this restriction will result in deadlock.
10777 */
10778void synchronize_sched_expedited(void)
10779{
10780 int cpu;
10781 unsigned long flags;
10782 bool need_full_sync = 0;
10783 struct rq *rq;
10784 struct migration_req *req;
10785 long snap;
10786 int trycount = 0;
10787
10788 smp_mb(); /* ensure prior mod happens before capturing snap. */
10789 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10790 get_online_cpus();
10791 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10792 put_online_cpus();
10793 if (trycount++ < 10)
10794 udelay(trycount * num_online_cpus());
10795 else {
10796 synchronize_sched();
10797 return;
10798 }
10799 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10800 smp_mb(); /* ensure test happens before caller kfree */
10801 return;
10802 }
10803 get_online_cpus();
10804 }
10805 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10806 for_each_online_cpu(cpu) {
10807 rq = cpu_rq(cpu);
10808 req = &per_cpu(rcu_migration_req, cpu);
10809 init_completion(&req->done);
10810 req->task = NULL;
10811 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10812 spin_lock_irqsave(&rq->lock, flags);
10813 list_add(&req->list, &rq->migration_queue);
10814 spin_unlock_irqrestore(&rq->lock, flags);
10815 wake_up_process(rq->migration_thread);
10816 }
10817 for_each_online_cpu(cpu) {
10818 rcu_expedited_state = cpu;
10819 req = &per_cpu(rcu_migration_req, cpu);
10820 rq = cpu_rq(cpu);
10821 wait_for_completion(&req->done);
10822 spin_lock_irqsave(&rq->lock, flags);
10823 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10824 need_full_sync = 1;
10825 req->dest_cpu = RCU_MIGRATION_IDLE;
10826 spin_unlock_irqrestore(&rq->lock, flags);
10827 }
10828 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10829 mutex_unlock(&rcu_sched_expedited_mutex);
10830 put_online_cpus();
10831 if (need_full_sync)
10832 synchronize_sched();
10833}
10834EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10835
10836#endif /* #else #ifndef CONFIG_SMP */