Merge branch 'perfcounters-fixes-for-linus' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49
9f77da9f
PM
50#include "rcutree.h"
51
64db4cff
PM
52#ifdef CONFIG_DEBUG_LOCK_ALLOC
53static struct lock_class_key rcu_lock_key;
54struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56EXPORT_SYMBOL_GPL(rcu_lock_map);
57#endif
58
59/* Data structures. */
60
61#define RCU_STATE_INITIALIZER(name) { \
62 .level = { &name.node[0] }, \
63 .levelcnt = { \
64 NUM_RCU_LVL_0, /* root of hierarchy. */ \
65 NUM_RCU_LVL_1, \
66 NUM_RCU_LVL_2, \
67 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_SIGNAL_INIT, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76}
77
d6714c22
PM
78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 80
6258c4fb
IM
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 83
f41d911f 84extern long rcu_batches_completed_sched(void);
dd5d19ba 85static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
f41d911f
PM
86static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
87 struct rcu_node *rnp, unsigned long flags);
88static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
c935a331 89#ifdef CONFIG_HOTPLUG_CPU
33f76148 90static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
c935a331 91#endif /* #ifdef CONFIG_HOTPLUG_CPU */
f41d911f
PM
92static void __rcu_process_callbacks(struct rcu_state *rsp,
93 struct rcu_data *rdp);
94static void __call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *rcu),
96 struct rcu_state *rsp);
97static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
98static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
99 int preemptable);
100
101#include "rcutree_plugin.h"
102
b1f77b05 103/*
d6714c22 104 * Note a quiescent state. Because we do not need to know
b1f77b05 105 * how many quiescent states passed, just if there was at least
d6714c22 106 * one since the start of the grace period, this just sets a flag.
b1f77b05 107 */
d6714c22 108void rcu_sched_qs(int cpu)
b1f77b05 109{
f41d911f
PM
110 unsigned long flags;
111 struct rcu_data *rdp;
112
113 local_irq_save(flags);
114 rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05
IM
115 rdp->passed_quiesc = 1;
116 rdp->passed_quiesc_completed = rdp->completed;
f41d911f
PM
117 rcu_preempt_qs(cpu);
118 local_irq_restore(flags);
b1f77b05
IM
119}
120
d6714c22 121void rcu_bh_qs(int cpu)
b1f77b05 122{
f41d911f
PM
123 unsigned long flags;
124 struct rcu_data *rdp;
125
126 local_irq_save(flags);
127 rdp = &per_cpu(rcu_bh_data, cpu);
b1f77b05
IM
128 rdp->passed_quiesc = 1;
129 rdp->passed_quiesc_completed = rdp->completed;
f41d911f 130 local_irq_restore(flags);
b1f77b05 131}
64db4cff
PM
132
133#ifdef CONFIG_NO_HZ
90a4d2c0
PM
134DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
135 .dynticks_nesting = 1,
136 .dynticks = 1,
137};
64db4cff
PM
138#endif /* #ifdef CONFIG_NO_HZ */
139
140static int blimit = 10; /* Maximum callbacks per softirq. */
141static int qhimark = 10000; /* If this many pending, ignore blimit. */
142static int qlowmark = 100; /* Once only this many pending, use blimit. */
143
144static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 145static int rcu_pending(int cpu);
64db4cff
PM
146
147/*
d6714c22 148 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 149 */
d6714c22 150long rcu_batches_completed_sched(void)
64db4cff 151{
d6714c22 152 return rcu_sched_state.completed;
64db4cff 153}
d6714c22 154EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
155
156/*
157 * Return the number of RCU BH batches processed thus far for debug & stats.
158 */
159long rcu_batches_completed_bh(void)
160{
161 return rcu_bh_state.completed;
162}
163EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
164
165/*
166 * Does the CPU have callbacks ready to be invoked?
167 */
168static int
169cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
170{
171 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
172}
173
174/*
175 * Does the current CPU require a yet-as-unscheduled grace period?
176 */
177static int
178cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
179{
180 /* ACCESS_ONCE() because we are accessing outside of lock. */
181 return *rdp->nxttail[RCU_DONE_TAIL] &&
182 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
183}
184
185/*
186 * Return the root node of the specified rcu_state structure.
187 */
188static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
189{
190 return &rsp->node[0];
191}
192
193#ifdef CONFIG_SMP
194
195/*
196 * If the specified CPU is offline, tell the caller that it is in
197 * a quiescent state. Otherwise, whack it with a reschedule IPI.
198 * Grace periods can end up waiting on an offline CPU when that
199 * CPU is in the process of coming online -- it will be added to the
200 * rcu_node bitmasks before it actually makes it online. The same thing
201 * can happen while a CPU is in the process of coming online. Because this
202 * race is quite rare, we check for it after detecting that the grace
203 * period has been delayed rather than checking each and every CPU
204 * each and every time we start a new grace period.
205 */
206static int rcu_implicit_offline_qs(struct rcu_data *rdp)
207{
208 /*
209 * If the CPU is offline, it is in a quiescent state. We can
210 * trust its state not to change because interrupts are disabled.
211 */
212 if (cpu_is_offline(rdp->cpu)) {
213 rdp->offline_fqs++;
214 return 1;
215 }
216
f41d911f
PM
217 /* If preemptable RCU, no point in sending reschedule IPI. */
218 if (rdp->preemptable)
219 return 0;
220
64db4cff
PM
221 /* The CPU is online, so send it a reschedule IPI. */
222 if (rdp->cpu != smp_processor_id())
223 smp_send_reschedule(rdp->cpu);
224 else
225 set_need_resched();
226 rdp->resched_ipi++;
227 return 0;
228}
229
230#endif /* #ifdef CONFIG_SMP */
231
232#ifdef CONFIG_NO_HZ
64db4cff
PM
233
234/**
235 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
236 *
237 * Enter nohz mode, in other words, -leave- the mode in which RCU
238 * read-side critical sections can occur. (Though RCU read-side
239 * critical sections can occur in irq handlers in nohz mode, a possibility
240 * handled by rcu_irq_enter() and rcu_irq_exit()).
241 */
242void rcu_enter_nohz(void)
243{
244 unsigned long flags;
245 struct rcu_dynticks *rdtp;
246
247 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
248 local_irq_save(flags);
249 rdtp = &__get_cpu_var(rcu_dynticks);
250 rdtp->dynticks++;
251 rdtp->dynticks_nesting--;
86848966 252 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
253 local_irq_restore(flags);
254}
255
256/*
257 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
258 *
259 * Exit nohz mode, in other words, -enter- the mode in which RCU
260 * read-side critical sections normally occur.
261 */
262void rcu_exit_nohz(void)
263{
264 unsigned long flags;
265 struct rcu_dynticks *rdtp;
266
267 local_irq_save(flags);
268 rdtp = &__get_cpu_var(rcu_dynticks);
269 rdtp->dynticks++;
270 rdtp->dynticks_nesting++;
86848966 271 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
272 local_irq_restore(flags);
273 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
274}
275
276/**
277 * rcu_nmi_enter - inform RCU of entry to NMI context
278 *
279 * If the CPU was idle with dynamic ticks active, and there is no
280 * irq handler running, this updates rdtp->dynticks_nmi to let the
281 * RCU grace-period handling know that the CPU is active.
282 */
283void rcu_nmi_enter(void)
284{
285 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
286
287 if (rdtp->dynticks & 0x1)
288 return;
289 rdtp->dynticks_nmi++;
86848966 290 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
291 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
292}
293
294/**
295 * rcu_nmi_exit - inform RCU of exit from NMI context
296 *
297 * If the CPU was idle with dynamic ticks active, and there is no
298 * irq handler running, this updates rdtp->dynticks_nmi to let the
299 * RCU grace-period handling know that the CPU is no longer active.
300 */
301void rcu_nmi_exit(void)
302{
303 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
304
305 if (rdtp->dynticks & 0x1)
306 return;
307 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
308 rdtp->dynticks_nmi++;
86848966 309 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
310}
311
312/**
313 * rcu_irq_enter - inform RCU of entry to hard irq context
314 *
315 * If the CPU was idle with dynamic ticks active, this updates the
316 * rdtp->dynticks to let the RCU handling know that the CPU is active.
317 */
318void rcu_irq_enter(void)
319{
320 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
321
322 if (rdtp->dynticks_nesting++)
323 return;
324 rdtp->dynticks++;
86848966 325 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
326 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
327}
328
329/**
330 * rcu_irq_exit - inform RCU of exit from hard irq context
331 *
332 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
333 * to put let the RCU handling be aware that the CPU is going back to idle
334 * with no ticks.
335 */
336void rcu_irq_exit(void)
337{
338 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
339
340 if (--rdtp->dynticks_nesting)
341 return;
342 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
343 rdtp->dynticks++;
86848966 344 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
345
346 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 347 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
348 __get_cpu_var(rcu_bh_data).nxtlist)
349 set_need_resched();
350}
351
352/*
353 * Record the specified "completed" value, which is later used to validate
354 * dynticks counter manipulations. Specify "rsp->completed - 1" to
355 * unconditionally invalidate any future dynticks manipulations (which is
356 * useful at the beginning of a grace period).
357 */
358static void dyntick_record_completed(struct rcu_state *rsp, long comp)
359{
360 rsp->dynticks_completed = comp;
361}
362
363#ifdef CONFIG_SMP
364
365/*
366 * Recall the previously recorded value of the completion for dynticks.
367 */
368static long dyntick_recall_completed(struct rcu_state *rsp)
369{
370 return rsp->dynticks_completed;
371}
372
373/*
374 * Snapshot the specified CPU's dynticks counter so that we can later
375 * credit them with an implicit quiescent state. Return 1 if this CPU
376 * is already in a quiescent state courtesy of dynticks idle mode.
377 */
378static int dyntick_save_progress_counter(struct rcu_data *rdp)
379{
380 int ret;
381 int snap;
382 int snap_nmi;
383
384 snap = rdp->dynticks->dynticks;
385 snap_nmi = rdp->dynticks->dynticks_nmi;
386 smp_mb(); /* Order sampling of snap with end of grace period. */
387 rdp->dynticks_snap = snap;
388 rdp->dynticks_nmi_snap = snap_nmi;
389 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
390 if (ret)
391 rdp->dynticks_fqs++;
392 return ret;
393}
394
395/*
396 * Return true if the specified CPU has passed through a quiescent
397 * state by virtue of being in or having passed through an dynticks
398 * idle state since the last call to dyntick_save_progress_counter()
399 * for this same CPU.
400 */
401static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
402{
403 long curr;
404 long curr_nmi;
405 long snap;
406 long snap_nmi;
407
408 curr = rdp->dynticks->dynticks;
409 snap = rdp->dynticks_snap;
410 curr_nmi = rdp->dynticks->dynticks_nmi;
411 snap_nmi = rdp->dynticks_nmi_snap;
412 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
413
414 /*
415 * If the CPU passed through or entered a dynticks idle phase with
416 * no active irq/NMI handlers, then we can safely pretend that the CPU
417 * already acknowledged the request to pass through a quiescent
418 * state. Either way, that CPU cannot possibly be in an RCU
419 * read-side critical section that started before the beginning
420 * of the current RCU grace period.
421 */
422 if ((curr != snap || (curr & 0x1) == 0) &&
423 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
424 rdp->dynticks_fqs++;
425 return 1;
426 }
427
428 /* Go check for the CPU being offline. */
429 return rcu_implicit_offline_qs(rdp);
430}
431
432#endif /* #ifdef CONFIG_SMP */
433
434#else /* #ifdef CONFIG_NO_HZ */
435
436static void dyntick_record_completed(struct rcu_state *rsp, long comp)
437{
438}
439
440#ifdef CONFIG_SMP
441
442/*
443 * If there are no dynticks, then the only way that a CPU can passively
444 * be in a quiescent state is to be offline. Unlike dynticks idle, which
445 * is a point in time during the prior (already finished) grace period,
446 * an offline CPU is always in a quiescent state, and thus can be
447 * unconditionally applied. So just return the current value of completed.
448 */
449static long dyntick_recall_completed(struct rcu_state *rsp)
450{
451 return rsp->completed;
452}
453
454static int dyntick_save_progress_counter(struct rcu_data *rdp)
455{
456 return 0;
457}
458
459static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
460{
461 return rcu_implicit_offline_qs(rdp);
462}
463
464#endif /* #ifdef CONFIG_SMP */
465
466#endif /* #else #ifdef CONFIG_NO_HZ */
467
468#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
469
470static void record_gp_stall_check_time(struct rcu_state *rsp)
471{
472 rsp->gp_start = jiffies;
473 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
474}
475
476static void print_other_cpu_stall(struct rcu_state *rsp)
477{
478 int cpu;
479 long delta;
480 unsigned long flags;
481 struct rcu_node *rnp = rcu_get_root(rsp);
482 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
483 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
484
485 /* Only let one CPU complain about others per time interval. */
486
487 spin_lock_irqsave(&rnp->lock, flags);
488 delta = jiffies - rsp->jiffies_stall;
489 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
490 spin_unlock_irqrestore(&rnp->lock, flags);
491 return;
492 }
493 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
494 spin_unlock_irqrestore(&rnp->lock, flags);
495
496 /* OK, time to rat on our buddy... */
497
498 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
499 for (; rnp_cur < rnp_end; rnp_cur++) {
f41d911f 500 rcu_print_task_stall(rnp);
64db4cff
PM
501 if (rnp_cur->qsmask == 0)
502 continue;
503 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
504 if (rnp_cur->qsmask & (1UL << cpu))
505 printk(" %d", rnp_cur->grplo + cpu);
506 }
507 printk(" (detected by %d, t=%ld jiffies)\n",
508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
509 trigger_all_cpu_backtrace();
510
64db4cff
PM
511 force_quiescent_state(rsp, 0); /* Kick them all. */
512}
513
514static void print_cpu_stall(struct rcu_state *rsp)
515{
516 unsigned long flags;
517 struct rcu_node *rnp = rcu_get_root(rsp);
518
519 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
520 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
521 trigger_all_cpu_backtrace();
522
64db4cff
PM
523 spin_lock_irqsave(&rnp->lock, flags);
524 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
525 rsp->jiffies_stall =
526 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
527 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 528
64db4cff
PM
529 set_need_resched(); /* kick ourselves to get things going. */
530}
531
532static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
533{
534 long delta;
535 struct rcu_node *rnp;
536
537 delta = jiffies - rsp->jiffies_stall;
538 rnp = rdp->mynode;
539 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
540
541 /* We haven't checked in, so go dump stack. */
542 print_cpu_stall(rsp);
543
544 } else if (rsp->gpnum != rsp->completed &&
545 delta >= RCU_STALL_RAT_DELAY) {
546
547 /* They had two time units to dump stack, so complain. */
548 print_other_cpu_stall(rsp);
549 }
550}
551
552#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
553
554static void record_gp_stall_check_time(struct rcu_state *rsp)
555{
556}
557
558static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
559{
560}
561
562#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
563
564/*
565 * Update CPU-local rcu_data state to record the newly noticed grace period.
566 * This is used both when we started the grace period and when we notice
567 * that someone else started the grace period.
568 */
569static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
570{
571 rdp->qs_pending = 1;
572 rdp->passed_quiesc = 0;
573 rdp->gpnum = rsp->gpnum;
64db4cff
PM
574}
575
576/*
577 * Did someone else start a new RCU grace period start since we last
578 * checked? Update local state appropriately if so. Must be called
579 * on the CPU corresponding to rdp.
580 */
581static int
582check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
583{
584 unsigned long flags;
585 int ret = 0;
586
587 local_irq_save(flags);
588 if (rdp->gpnum != rsp->gpnum) {
589 note_new_gpnum(rsp, rdp);
590 ret = 1;
591 }
592 local_irq_restore(flags);
593 return ret;
594}
595
596/*
597 * Start a new RCU grace period if warranted, re-initializing the hierarchy
598 * in preparation for detecting the next grace period. The caller must hold
599 * the root node's ->lock, which is released before return. Hard irqs must
600 * be disabled.
601 */
602static void
603rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
604 __releases(rcu_get_root(rsp)->lock)
605{
606 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
607 struct rcu_node *rnp = rcu_get_root(rsp);
608 struct rcu_node *rnp_cur;
609 struct rcu_node *rnp_end;
610
611 if (!cpu_needs_another_gp(rsp, rdp)) {
612 spin_unlock_irqrestore(&rnp->lock, flags);
613 return;
614 }
615
616 /* Advance to a new grace period and initialize state. */
617 rsp->gpnum++;
618 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
619 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
620 record_gp_stall_check_time(rsp);
621 dyntick_record_completed(rsp, rsp->completed - 1);
622 note_new_gpnum(rsp, rdp);
623
624 /*
625 * Because we are first, we know that all our callbacks will
626 * be covered by this upcoming grace period, even the ones
627 * that were registered arbitrarily recently.
628 */
629 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
630 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
631
632 /* Special-case the common single-level case. */
633 if (NUM_RCU_NODES == 1) {
634 rnp->qsmask = rnp->qsmaskinit;
c12172c0 635 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
636 spin_unlock_irqrestore(&rnp->lock, flags);
637 return;
638 }
639
640 spin_unlock(&rnp->lock); /* leave irqs disabled. */
641
642
643 /* Exclude any concurrent CPU-hotplug operations. */
644 spin_lock(&rsp->onofflock); /* irqs already disabled. */
645
646 /*
647 * Set the quiescent-state-needed bits in all the non-leaf RCU
648 * nodes for all currently online CPUs. This operation relies
649 * on the layout of the hierarchy within the rsp->node[] array.
650 * Note that other CPUs will access only the leaves of the
651 * hierarchy, which still indicate that no grace period is in
652 * progress. In addition, we have excluded CPU-hotplug operations.
653 *
654 * We therefore do not need to hold any locks. Any required
655 * memory barriers will be supplied by the locks guarding the
656 * leaf rcu_nodes in the hierarchy.
657 */
658
659 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
660 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
661 rnp_cur->qsmask = rnp_cur->qsmaskinit;
662
663 /*
664 * Now set up the leaf nodes. Here we must be careful. First,
665 * we need to hold the lock in order to exclude other CPUs, which
666 * might be contending for the leaf nodes' locks. Second, as
667 * soon as we initialize a given leaf node, its CPUs might run
668 * up the rest of the hierarchy. We must therefore acquire locks
669 * for each node that we touch during this stage. (But we still
670 * are excluding CPU-hotplug operations.)
671 *
672 * Note that the grace period cannot complete until we finish
673 * the initialization process, as there will be at least one
674 * qsmask bit set in the root node until that time, namely the
675 * one corresponding to this CPU.
676 */
677 rnp_end = &rsp->node[NUM_RCU_NODES];
678 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
679 for (; rnp_cur < rnp_end; rnp_cur++) {
680 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
681 rnp_cur->qsmask = rnp_cur->qsmaskinit;
682 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
683 }
684
685 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
686 spin_unlock_irqrestore(&rsp->onofflock, flags);
687}
688
689/*
690 * Advance this CPU's callbacks, but only if the current grace period
691 * has ended. This may be called only from the CPU to whom the rdp
692 * belongs.
693 */
694static void
695rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
696{
697 long completed_snap;
698 unsigned long flags;
699
700 local_irq_save(flags);
701 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
702
703 /* Did another grace period end? */
704 if (rdp->completed != completed_snap) {
705
706 /* Advance callbacks. No harm if list empty. */
707 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
708 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
709 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
710
711 /* Remember that we saw this grace-period completion. */
712 rdp->completed = completed_snap;
713 }
714 local_irq_restore(flags);
715}
716
f41d911f
PM
717/*
718 * Clean up after the prior grace period and let rcu_start_gp() start up
719 * the next grace period if one is needed. Note that the caller must
720 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
721 */
722static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
723 __releases(rnp->lock)
724{
725 rsp->completed = rsp->gpnum;
726 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
727 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
728}
729
64db4cff
PM
730/*
731 * Similar to cpu_quiet(), for which it is a helper function. Allows
732 * a group of CPUs to be quieted at one go, though all the CPUs in the
733 * group must be represented by the same leaf rcu_node structure.
734 * That structure's lock must be held upon entry, and it is released
735 * before return.
736 */
737static void
738cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
739 unsigned long flags)
740 __releases(rnp->lock)
741{
742 /* Walk up the rcu_node hierarchy. */
743 for (;;) {
744 if (!(rnp->qsmask & mask)) {
745
746 /* Our bit has already been cleared, so done. */
747 spin_unlock_irqrestore(&rnp->lock, flags);
748 return;
749 }
750 rnp->qsmask &= ~mask;
f41d911f 751 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
752
753 /* Other bits still set at this level, so done. */
754 spin_unlock_irqrestore(&rnp->lock, flags);
755 return;
756 }
757 mask = rnp->grpmask;
758 if (rnp->parent == NULL) {
759
760 /* No more levels. Exit loop holding root lock. */
761
762 break;
763 }
764 spin_unlock_irqrestore(&rnp->lock, flags);
765 rnp = rnp->parent;
766 spin_lock_irqsave(&rnp->lock, flags);
767 }
768
769 /*
770 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
771 * state for this grace period. Invoke cpu_quiet_msk_finish()
772 * to clean up and start the next grace period if one is needed.
64db4cff 773 */
f41d911f 774 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
775}
776
777/*
778 * Record a quiescent state for the specified CPU, which must either be
779 * the current CPU or an offline CPU. The lastcomp argument is used to
780 * make sure we are still in the grace period of interest. We don't want
781 * to end the current grace period based on quiescent states detected in
782 * an earlier grace period!
783 */
784static void
785cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
786{
787 unsigned long flags;
788 unsigned long mask;
789 struct rcu_node *rnp;
790
791 rnp = rdp->mynode;
792 spin_lock_irqsave(&rnp->lock, flags);
793 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
794
795 /*
796 * Someone beat us to it for this grace period, so leave.
797 * The race with GP start is resolved by the fact that we
798 * hold the leaf rcu_node lock, so that the per-CPU bits
799 * cannot yet be initialized -- so we would simply find our
800 * CPU's bit already cleared in cpu_quiet_msk() if this race
801 * occurred.
802 */
803 rdp->passed_quiesc = 0; /* try again later! */
804 spin_unlock_irqrestore(&rnp->lock, flags);
805 return;
806 }
807 mask = rdp->grpmask;
808 if ((rnp->qsmask & mask) == 0) {
809 spin_unlock_irqrestore(&rnp->lock, flags);
810 } else {
811 rdp->qs_pending = 0;
812
813 /*
814 * This GP can't end until cpu checks in, so all of our
815 * callbacks can be processed during the next GP.
816 */
817 rdp = rsp->rda[smp_processor_id()];
818 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
819
820 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
821 }
822}
823
824/*
825 * Check to see if there is a new grace period of which this CPU
826 * is not yet aware, and if so, set up local rcu_data state for it.
827 * Otherwise, see if this CPU has just passed through its first
828 * quiescent state for this grace period, and record that fact if so.
829 */
830static void
831rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
832{
833 /* If there is now a new grace period, record and return. */
834 if (check_for_new_grace_period(rsp, rdp))
835 return;
836
837 /*
838 * Does this CPU still need to do its part for current grace period?
839 * If no, return and let the other CPUs do their part as well.
840 */
841 if (!rdp->qs_pending)
842 return;
843
844 /*
845 * Was there a quiescent state since the beginning of the grace
846 * period? If no, then exit and wait for the next call.
847 */
848 if (!rdp->passed_quiesc)
849 return;
850
851 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
852 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
853}
854
855#ifdef CONFIG_HOTPLUG_CPU
856
857/*
858 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
859 * and move all callbacks from the outgoing CPU to the current one.
860 */
861static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
862{
863 int i;
864 unsigned long flags;
865 long lastcomp;
866 unsigned long mask;
867 struct rcu_data *rdp = rsp->rda[cpu];
868 struct rcu_data *rdp_me;
869 struct rcu_node *rnp;
870
871 /* Exclude any attempts to start a new grace period. */
872 spin_lock_irqsave(&rsp->onofflock, flags);
873
874 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
875 rnp = rdp->mynode;
876 mask = rdp->grpmask; /* rnp->grplo is constant. */
877 do {
878 spin_lock(&rnp->lock); /* irqs already disabled. */
879 rnp->qsmaskinit &= ~mask;
880 if (rnp->qsmaskinit != 0) {
f41d911f 881 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
882 break;
883 }
dd5d19ba 884 rcu_preempt_offline_tasks(rsp, rnp);
64db4cff 885 mask = rnp->grpmask;
f41d911f 886 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
887 rnp = rnp->parent;
888 } while (rnp != NULL);
889 lastcomp = rsp->completed;
890
891 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
892
893 /* Being offline is a quiescent state, so go record it. */
894 cpu_quiet(cpu, rsp, rdp, lastcomp);
895
896 /*
897 * Move callbacks from the outgoing CPU to the running CPU.
898 * Note that the outgoing CPU is now quiscent, so it is now
d6714c22 899 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
900 * Note also that we must carefully retain the order of the
901 * outgoing CPU's callbacks in order for rcu_barrier() to work
902 * correctly. Finally, note that we start all the callbacks
903 * afresh, even those that have passed through a grace period
904 * and are therefore ready to invoke. The theory is that hotplug
905 * events are rare, and that if they are frequent enough to
906 * indefinitely delay callbacks, you have far worse things to
907 * be worrying about.
908 */
909 rdp_me = rsp->rda[smp_processor_id()];
910 if (rdp->nxtlist != NULL) {
911 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
912 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
913 rdp->nxtlist = NULL;
914 for (i = 0; i < RCU_NEXT_SIZE; i++)
915 rdp->nxttail[i] = &rdp->nxtlist;
916 rdp_me->qlen += rdp->qlen;
917 rdp->qlen = 0;
918 }
919 local_irq_restore(flags);
920}
921
922/*
923 * Remove the specified CPU from the RCU hierarchy and move any pending
924 * callbacks that it might have to the current CPU. This code assumes
925 * that at least one CPU in the system will remain running at all times.
926 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
927 */
928static void rcu_offline_cpu(int cpu)
929{
d6714c22 930 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 931 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 932 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
933}
934
935#else /* #ifdef CONFIG_HOTPLUG_CPU */
936
937static void rcu_offline_cpu(int cpu)
938{
939}
940
941#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
942
943/*
944 * Invoke any RCU callbacks that have made it to the end of their grace
945 * period. Thottle as specified by rdp->blimit.
946 */
947static void rcu_do_batch(struct rcu_data *rdp)
948{
949 unsigned long flags;
950 struct rcu_head *next, *list, **tail;
951 int count;
952
953 /* If no callbacks are ready, just return.*/
954 if (!cpu_has_callbacks_ready_to_invoke(rdp))
955 return;
956
957 /*
958 * Extract the list of ready callbacks, disabling to prevent
959 * races with call_rcu() from interrupt handlers.
960 */
961 local_irq_save(flags);
962 list = rdp->nxtlist;
963 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
964 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
965 tail = rdp->nxttail[RCU_DONE_TAIL];
966 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
967 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
968 rdp->nxttail[count] = &rdp->nxtlist;
969 local_irq_restore(flags);
970
971 /* Invoke callbacks. */
972 count = 0;
973 while (list) {
974 next = list->next;
975 prefetch(next);
976 list->func(list);
977 list = next;
978 if (++count >= rdp->blimit)
979 break;
980 }
981
982 local_irq_save(flags);
983
984 /* Update count, and requeue any remaining callbacks. */
985 rdp->qlen -= count;
986 if (list != NULL) {
987 *tail = rdp->nxtlist;
988 rdp->nxtlist = list;
989 for (count = 0; count < RCU_NEXT_SIZE; count++)
990 if (&rdp->nxtlist == rdp->nxttail[count])
991 rdp->nxttail[count] = tail;
992 else
993 break;
994 }
995
996 /* Reinstate batch limit if we have worked down the excess. */
997 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
998 rdp->blimit = blimit;
999
1000 local_irq_restore(flags);
1001
1002 /* Re-raise the RCU softirq if there are callbacks remaining. */
1003 if (cpu_has_callbacks_ready_to_invoke(rdp))
1004 raise_softirq(RCU_SOFTIRQ);
1005}
1006
1007/*
1008 * Check to see if this CPU is in a non-context-switch quiescent state
1009 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1010 * Also schedule the RCU softirq handler.
1011 *
1012 * This function must be called with hardirqs disabled. It is normally
1013 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1014 * false, there is no point in invoking rcu_check_callbacks().
1015 */
1016void rcu_check_callbacks(int cpu, int user)
1017{
a157229c
PM
1018 if (!rcu_pending(cpu))
1019 return; /* if nothing for RCU to do. */
64db4cff 1020 if (user ||
a6826048
PM
1021 (idle_cpu(cpu) && rcu_scheduler_active &&
1022 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1023
1024 /*
1025 * Get here if this CPU took its interrupt from user
1026 * mode or from the idle loop, and if this is not a
1027 * nested interrupt. In this case, the CPU is in
d6714c22 1028 * a quiescent state, so note it.
64db4cff
PM
1029 *
1030 * No memory barrier is required here because both
d6714c22
PM
1031 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1032 * variables that other CPUs neither access nor modify,
1033 * at least not while the corresponding CPU is online.
64db4cff
PM
1034 */
1035
d6714c22
PM
1036 rcu_sched_qs(cpu);
1037 rcu_bh_qs(cpu);
64db4cff
PM
1038
1039 } else if (!in_softirq()) {
1040
1041 /*
1042 * Get here if this CPU did not take its interrupt from
1043 * softirq, in other words, if it is not interrupting
1044 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1045 * critical section, so note it.
64db4cff
PM
1046 */
1047
d6714c22 1048 rcu_bh_qs(cpu);
64db4cff 1049 }
f41d911f 1050 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1051 raise_softirq(RCU_SOFTIRQ);
1052}
1053
1054#ifdef CONFIG_SMP
1055
1056/*
1057 * Scan the leaf rcu_node structures, processing dyntick state for any that
1058 * have not yet encountered a quiescent state, using the function specified.
1059 * Returns 1 if the current grace period ends while scanning (possibly
1060 * because we made it end).
1061 */
1062static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1063 int (*f)(struct rcu_data *))
1064{
1065 unsigned long bit;
1066 int cpu;
1067 unsigned long flags;
1068 unsigned long mask;
1069 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1070 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1071
1072 for (; rnp_cur < rnp_end; rnp_cur++) {
1073 mask = 0;
1074 spin_lock_irqsave(&rnp_cur->lock, flags);
1075 if (rsp->completed != lastcomp) {
1076 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1077 return 1;
1078 }
1079 if (rnp_cur->qsmask == 0) {
1080 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1081 continue;
1082 }
1083 cpu = rnp_cur->grplo;
1084 bit = 1;
1085 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1086 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1087 mask |= bit;
1088 }
1089 if (mask != 0 && rsp->completed == lastcomp) {
1090
1091 /* cpu_quiet_msk() releases rnp_cur->lock. */
1092 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1093 continue;
1094 }
1095 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1096 }
1097 return 0;
1098}
1099
1100/*
1101 * Force quiescent states on reluctant CPUs, and also detect which
1102 * CPUs are in dyntick-idle mode.
1103 */
1104static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1105{
1106 unsigned long flags;
1107 long lastcomp;
64db4cff
PM
1108 struct rcu_node *rnp = rcu_get_root(rsp);
1109 u8 signaled;
1110
1111 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1112 return; /* No grace period in progress, nothing to force. */
1113 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1114 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1115 return; /* Someone else is already on the job. */
1116 }
1117 if (relaxed &&
ef631b0c 1118 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1119 goto unlock_ret; /* no emergency and done recently. */
1120 rsp->n_force_qs++;
1121 spin_lock(&rnp->lock);
1122 lastcomp = rsp->completed;
1123 signaled = rsp->signaled;
1124 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1125 if (lastcomp == rsp->gpnum) {
1126 rsp->n_force_qs_ngp++;
1127 spin_unlock(&rnp->lock);
1128 goto unlock_ret; /* no GP in progress, time updated. */
1129 }
1130 spin_unlock(&rnp->lock);
1131 switch (signaled) {
1132 case RCU_GP_INIT:
1133
1134 break; /* grace period still initializing, ignore. */
1135
1136 case RCU_SAVE_DYNTICK:
1137
1138 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1139 break; /* So gcc recognizes the dead code. */
1140
1141 /* Record dyntick-idle state. */
1142 if (rcu_process_dyntick(rsp, lastcomp,
1143 dyntick_save_progress_counter))
1144 goto unlock_ret;
1145
1146 /* Update state, record completion counter. */
1147 spin_lock(&rnp->lock);
1148 if (lastcomp == rsp->completed) {
1149 rsp->signaled = RCU_FORCE_QS;
1150 dyntick_record_completed(rsp, lastcomp);
1151 }
1152 spin_unlock(&rnp->lock);
1153 break;
1154
1155 case RCU_FORCE_QS:
1156
1157 /* Check dyntick-idle state, send IPI to laggarts. */
1158 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1159 rcu_implicit_dynticks_qs))
1160 goto unlock_ret;
1161
1162 /* Leave state in case more forcing is required. */
1163
1164 break;
1165 }
1166unlock_ret:
1167 spin_unlock_irqrestore(&rsp->fqslock, flags);
1168}
1169
1170#else /* #ifdef CONFIG_SMP */
1171
1172static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1173{
1174 set_need_resched();
1175}
1176
1177#endif /* #else #ifdef CONFIG_SMP */
1178
1179/*
1180 * This does the RCU processing work from softirq context for the
1181 * specified rcu_state and rcu_data structures. This may be called
1182 * only from the CPU to whom the rdp belongs.
1183 */
1184static void
1185__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1186{
1187 unsigned long flags;
1188
2e597558
PM
1189 WARN_ON_ONCE(rdp->beenonline == 0);
1190
64db4cff
PM
1191 /*
1192 * If an RCU GP has gone long enough, go check for dyntick
1193 * idle CPUs and, if needed, send resched IPIs.
1194 */
ef631b0c 1195 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1196 force_quiescent_state(rsp, 1);
1197
1198 /*
1199 * Advance callbacks in response to end of earlier grace
1200 * period that some other CPU ended.
1201 */
1202 rcu_process_gp_end(rsp, rdp);
1203
1204 /* Update RCU state based on any recent quiescent states. */
1205 rcu_check_quiescent_state(rsp, rdp);
1206
1207 /* Does this CPU require a not-yet-started grace period? */
1208 if (cpu_needs_another_gp(rsp, rdp)) {
1209 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1210 rcu_start_gp(rsp, flags); /* releases above lock */
1211 }
1212
1213 /* If there are callbacks ready, invoke them. */
1214 rcu_do_batch(rdp);
1215}
1216
1217/*
1218 * Do softirq processing for the current CPU.
1219 */
1220static void rcu_process_callbacks(struct softirq_action *unused)
1221{
1222 /*
1223 * Memory references from any prior RCU read-side critical sections
1224 * executed by the interrupted code must be seen before any RCU
1225 * grace-period manipulations below.
1226 */
1227 smp_mb(); /* See above block comment. */
1228
d6714c22
PM
1229 __rcu_process_callbacks(&rcu_sched_state,
1230 &__get_cpu_var(rcu_sched_data));
64db4cff 1231 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1232 rcu_preempt_process_callbacks();
64db4cff
PM
1233
1234 /*
1235 * Memory references from any later RCU read-side critical sections
1236 * executed by the interrupted code must be seen after any RCU
1237 * grace-period manipulations above.
1238 */
1239 smp_mb(); /* See above block comment. */
1240}
1241
1242static void
1243__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1244 struct rcu_state *rsp)
1245{
1246 unsigned long flags;
1247 struct rcu_data *rdp;
1248
1249 head->func = func;
1250 head->next = NULL;
1251
1252 smp_mb(); /* Ensure RCU update seen before callback registry. */
1253
1254 /*
1255 * Opportunistically note grace-period endings and beginnings.
1256 * Note that we might see a beginning right after we see an
1257 * end, but never vice versa, since this CPU has to pass through
1258 * a quiescent state betweentimes.
1259 */
1260 local_irq_save(flags);
1261 rdp = rsp->rda[smp_processor_id()];
1262 rcu_process_gp_end(rsp, rdp);
1263 check_for_new_grace_period(rsp, rdp);
1264
1265 /* Add the callback to our list. */
1266 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1267 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1268
1269 /* Start a new grace period if one not already started. */
1270 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1271 unsigned long nestflag;
1272 struct rcu_node *rnp_root = rcu_get_root(rsp);
1273
1274 spin_lock_irqsave(&rnp_root->lock, nestflag);
1275 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1276 }
1277
1278 /* Force the grace period if too many callbacks or too long waiting. */
1279 if (unlikely(++rdp->qlen > qhimark)) {
1280 rdp->blimit = LONG_MAX;
1281 force_quiescent_state(rsp, 0);
ef631b0c 1282 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1283 force_quiescent_state(rsp, 1);
1284 local_irq_restore(flags);
1285}
1286
1287/*
d6714c22 1288 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1289 */
d6714c22 1290void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1291{
d6714c22 1292 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1293}
d6714c22 1294EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1295
1296/*
1297 * Queue an RCU for invocation after a quicker grace period.
1298 */
1299void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1300{
1301 __call_rcu(head, func, &rcu_bh_state);
1302}
1303EXPORT_SYMBOL_GPL(call_rcu_bh);
1304
1305/*
1306 * Check to see if there is any immediate RCU-related work to be done
1307 * by the current CPU, for the specified type of RCU, returning 1 if so.
1308 * The checks are in order of increasing expense: checks that can be
1309 * carried out against CPU-local state are performed first. However,
1310 * we must check for CPU stalls first, else we might not get a chance.
1311 */
1312static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1313{
1314 rdp->n_rcu_pending++;
1315
1316 /* Check for CPU stalls, if enabled. */
1317 check_cpu_stall(rsp, rdp);
1318
1319 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1320 if (rdp->qs_pending) {
1321 rdp->n_rp_qs_pending++;
64db4cff 1322 return 1;
7ba5c840 1323 }
64db4cff
PM
1324
1325 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1326 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1327 rdp->n_rp_cb_ready++;
64db4cff 1328 return 1;
7ba5c840 1329 }
64db4cff
PM
1330
1331 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1332 if (cpu_needs_another_gp(rsp, rdp)) {
1333 rdp->n_rp_cpu_needs_gp++;
64db4cff 1334 return 1;
7ba5c840 1335 }
64db4cff
PM
1336
1337 /* Has another RCU grace period completed? */
7ba5c840
PM
1338 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1339 rdp->n_rp_gp_completed++;
64db4cff 1340 return 1;
7ba5c840 1341 }
64db4cff
PM
1342
1343 /* Has a new RCU grace period started? */
7ba5c840
PM
1344 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1345 rdp->n_rp_gp_started++;
64db4cff 1346 return 1;
7ba5c840 1347 }
64db4cff
PM
1348
1349 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1350 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
7ba5c840
PM
1351 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1352 rdp->n_rp_need_fqs++;
64db4cff 1353 return 1;
7ba5c840 1354 }
64db4cff
PM
1355
1356 /* nothing to do */
7ba5c840 1357 rdp->n_rp_need_nothing++;
64db4cff
PM
1358 return 0;
1359}
1360
1361/*
1362 * Check to see if there is any immediate RCU-related work to be done
1363 * by the current CPU, returning 1 if so. This function is part of the
1364 * RCU implementation; it is -not- an exported member of the RCU API.
1365 */
a157229c 1366static int rcu_pending(int cpu)
64db4cff 1367{
d6714c22 1368 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1369 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1370 rcu_preempt_pending(cpu);
64db4cff
PM
1371}
1372
1373/*
1374 * Check to see if any future RCU-related work will need to be done
1375 * by the current CPU, even if none need be done immediately, returning
1376 * 1 if so. This function is part of the RCU implementation; it is -not-
1377 * an exported member of the RCU API.
1378 */
1379int rcu_needs_cpu(int cpu)
1380{
1381 /* RCU callbacks either ready or pending? */
d6714c22 1382 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1383 per_cpu(rcu_bh_data, cpu).nxtlist ||
1384 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1385}
1386
1387/*
27569620 1388 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1389 */
27569620
PM
1390static void __init
1391rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1392{
1393 unsigned long flags;
1394 int i;
27569620
PM
1395 struct rcu_data *rdp = rsp->rda[cpu];
1396 struct rcu_node *rnp = rcu_get_root(rsp);
1397
1398 /* Set up local state, ensuring consistent view of global state. */
1399 spin_lock_irqsave(&rnp->lock, flags);
1400 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1401 rdp->nxtlist = NULL;
1402 for (i = 0; i < RCU_NEXT_SIZE; i++)
1403 rdp->nxttail[i] = &rdp->nxtlist;
1404 rdp->qlen = 0;
1405#ifdef CONFIG_NO_HZ
1406 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1407#endif /* #ifdef CONFIG_NO_HZ */
1408 rdp->cpu = cpu;
1409 spin_unlock_irqrestore(&rnp->lock, flags);
1410}
1411
1412/*
1413 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1414 * offline event can be happening at a given time. Note also that we
1415 * can accept some slop in the rsp->completed access due to the fact
1416 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1417 */
e4fa4c97 1418static void __cpuinit
f41d911f 1419rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1420{
1421 unsigned long flags;
64db4cff
PM
1422 long lastcomp;
1423 unsigned long mask;
1424 struct rcu_data *rdp = rsp->rda[cpu];
1425 struct rcu_node *rnp = rcu_get_root(rsp);
1426
1427 /* Set up local state, ensuring consistent view of global state. */
1428 spin_lock_irqsave(&rnp->lock, flags);
1429 lastcomp = rsp->completed;
1430 rdp->completed = lastcomp;
1431 rdp->gpnum = lastcomp;
1432 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1433 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1434 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1435 rdp->preemptable = preemptable;
64db4cff 1436 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1437 rdp->blimit = blimit;
64db4cff
PM
1438 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1439
1440 /*
1441 * A new grace period might start here. If so, we won't be part
1442 * of it, but that is OK, as we are currently in a quiescent state.
1443 */
1444
1445 /* Exclude any attempts to start a new GP on large systems. */
1446 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1447
1448 /* Add CPU to rcu_node bitmasks. */
1449 rnp = rdp->mynode;
1450 mask = rdp->grpmask;
1451 do {
1452 /* Exclude any attempts to start a new GP on small systems. */
1453 spin_lock(&rnp->lock); /* irqs already disabled. */
1454 rnp->qsmaskinit |= mask;
1455 mask = rnp->grpmask;
1456 spin_unlock(&rnp->lock); /* irqs already disabled. */
1457 rnp = rnp->parent;
1458 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1459
1460 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1461
1462 /*
1463 * A new grace period might start here. If so, we will be part of
1464 * it, and its gpnum will be greater than ours, so we will
1465 * participate. It is also possible for the gpnum to have been
1466 * incremented before this function was called, and the bitmasks
1467 * to not be filled out until now, in which case we will also
1468 * participate due to our gpnum being behind.
1469 */
1470
1471 /* Since it is coming online, the CPU is in a quiescent state. */
1472 cpu_quiet(cpu, rsp, rdp, lastcomp);
1473 local_irq_restore(flags);
1474}
1475
1476static void __cpuinit rcu_online_cpu(int cpu)
1477{
f41d911f
PM
1478 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1479 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1480 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1481}
1482
1483/*
f41d911f 1484 * Handle CPU online/offline notification events.
64db4cff 1485 */
2e597558
PM
1486int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1487 unsigned long action, void *hcpu)
64db4cff
PM
1488{
1489 long cpu = (long)hcpu;
1490
1491 switch (action) {
1492 case CPU_UP_PREPARE:
1493 case CPU_UP_PREPARE_FROZEN:
1494 rcu_online_cpu(cpu);
1495 break;
1496 case CPU_DEAD:
1497 case CPU_DEAD_FROZEN:
1498 case CPU_UP_CANCELED:
1499 case CPU_UP_CANCELED_FROZEN:
1500 rcu_offline_cpu(cpu);
1501 break;
1502 default:
1503 break;
1504 }
1505 return NOTIFY_OK;
1506}
1507
1508/*
1509 * Compute the per-level fanout, either using the exact fanout specified
1510 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1511 */
1512#ifdef CONFIG_RCU_FANOUT_EXACT
1513static void __init rcu_init_levelspread(struct rcu_state *rsp)
1514{
1515 int i;
1516
1517 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1518 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1519}
1520#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1521static void __init rcu_init_levelspread(struct rcu_state *rsp)
1522{
1523 int ccur;
1524 int cprv;
1525 int i;
1526
1527 cprv = NR_CPUS;
1528 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1529 ccur = rsp->levelcnt[i];
1530 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1531 cprv = ccur;
1532 }
1533}
1534#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1535
1536/*
1537 * Helper function for rcu_init() that initializes one rcu_state structure.
1538 */
1539static void __init rcu_init_one(struct rcu_state *rsp)
1540{
1541 int cpustride = 1;
1542 int i;
1543 int j;
1544 struct rcu_node *rnp;
1545
1546 /* Initialize the level-tracking arrays. */
1547
1548 for (i = 1; i < NUM_RCU_LVLS; i++)
1549 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1550 rcu_init_levelspread(rsp);
1551
1552 /* Initialize the elements themselves, starting from the leaves. */
1553
1554 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1555 cpustride *= rsp->levelspread[i];
1556 rnp = rsp->level[i];
1557 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1558 spin_lock_init(&rnp->lock);
f41d911f 1559 rnp->gpnum = 0;
64db4cff
PM
1560 rnp->qsmask = 0;
1561 rnp->qsmaskinit = 0;
1562 rnp->grplo = j * cpustride;
1563 rnp->grphi = (j + 1) * cpustride - 1;
1564 if (rnp->grphi >= NR_CPUS)
1565 rnp->grphi = NR_CPUS - 1;
1566 if (i == 0) {
1567 rnp->grpnum = 0;
1568 rnp->grpmask = 0;
1569 rnp->parent = NULL;
1570 } else {
1571 rnp->grpnum = j % rsp->levelspread[i - 1];
1572 rnp->grpmask = 1UL << rnp->grpnum;
1573 rnp->parent = rsp->level[i - 1] +
1574 j / rsp->levelspread[i - 1];
1575 }
1576 rnp->level = i;
f41d911f
PM
1577 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1578 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1579 }
1580 }
1581}
1582
1583/*
f41d911f
PM
1584 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1585 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1586 * structure.
64db4cff 1587 */
65cf8f86 1588#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1589do { \
65cf8f86 1590 rcu_init_one(rsp); \
64db4cff
PM
1591 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1592 j = 0; \
1593 for_each_possible_cpu(i) { \
1594 if (i > rnp[j].grphi) \
1595 j++; \
1596 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1597 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1598 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1599 } \
1600} while (0)
1601
f41d911f
PM
1602#ifdef CONFIG_TREE_PREEMPT_RCU
1603
1604void __init __rcu_init_preempt(void)
1605{
1606 int i; /* All used by RCU_INIT_FLAVOR(). */
1607 int j;
1608 struct rcu_node *rnp;
1609
1610 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1611}
1612
1613#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1614
1615void __init __rcu_init_preempt(void)
1616{
1617}
1618
1619#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
64db4cff
PM
1620
1621void __init __rcu_init(void)
1622{
f41d911f 1623 int i; /* All used by RCU_INIT_FLAVOR(). */
64db4cff
PM
1624 int j;
1625 struct rcu_node *rnp;
1626
f41d911f 1627 rcu_bootup_announce();
64db4cff
PM
1628#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1629 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1630#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1631 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1632 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1633 __rcu_init_preempt();
2e597558 1634 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1635}
1636
1637module_param(blimit, int, 0);
1638module_param(qhimark, int, 0);
1639module_param(qlowmark, int, 0);