writeback: don't resort for a single super_block in move_expired_inodes()
[linux-block.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
03ba3782
JA
22#include <linux/kthread.h>
23#include <linux/freezer.h>
1da177e4
LT
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/backing-dev.h>
27#include <linux/buffer_head.h>
07f3f05c 28#include "internal.h"
1da177e4 29
66f3b8e2 30#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
f11b00f3 31
d0bceac7
JA
32/*
33 * We don't actually have pdflush, but this one is exported though /proc...
34 */
35int nr_pdflush_threads;
36
c4a77a6c
JA
37/*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40struct wb_writeback_args {
41 long nr_pages;
42 struct super_block *sb;
43 enum writeback_sync_modes sync_mode;
d3ddec76
WF
44 int for_kupdate:1;
45 int range_cyclic:1;
46 int for_background:1;
c4a77a6c
JA
47};
48
03ba3782
JA
49/*
50 * Work items for the bdi_writeback threads
f11b00f3 51 */
03ba3782 52struct bdi_work {
8010c3b6
JA
53 struct list_head list; /* pending work list */
54 struct rcu_head rcu_head; /* for RCU free/clear of work */
03ba3782 55
8010c3b6
JA
56 unsigned long seen; /* threads that have seen this work */
57 atomic_t pending; /* number of threads still to do work */
03ba3782 58
8010c3b6 59 struct wb_writeback_args args; /* writeback arguments */
03ba3782 60
8010c3b6 61 unsigned long state; /* flag bits, see WS_* */
03ba3782
JA
62};
63
64enum {
65 WS_USED_B = 0,
66 WS_ONSTACK_B,
67};
68
69#define WS_USED (1 << WS_USED_B)
70#define WS_ONSTACK (1 << WS_ONSTACK_B)
71
72static inline bool bdi_work_on_stack(struct bdi_work *work)
73{
74 return test_bit(WS_ONSTACK_B, &work->state);
75}
76
77static inline void bdi_work_init(struct bdi_work *work,
b6e51316 78 struct wb_writeback_args *args)
03ba3782
JA
79{
80 INIT_RCU_HEAD(&work->rcu_head);
b6e51316 81 work->args = *args;
03ba3782
JA
82 work->state = WS_USED;
83}
84
f11b00f3
AB
85/**
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
88 *
03ba3782
JA
89 * Determine whether there is writeback waiting to be handled against a
90 * backing device.
f11b00f3
AB
91 */
92int writeback_in_progress(struct backing_dev_info *bdi)
93{
03ba3782 94 return !list_empty(&bdi->work_list);
f11b00f3
AB
95}
96
03ba3782 97static void bdi_work_clear(struct bdi_work *work)
f11b00f3 98{
03ba3782
JA
99 clear_bit(WS_USED_B, &work->state);
100 smp_mb__after_clear_bit();
1ef7d9aa
NP
101 /*
102 * work can have disappeared at this point. bit waitq functions
103 * should be able to tolerate this, provided bdi_sched_wait does
104 * not dereference it's pointer argument.
105 */
03ba3782 106 wake_up_bit(&work->state, WS_USED_B);
f11b00f3
AB
107}
108
03ba3782 109static void bdi_work_free(struct rcu_head *head)
4195f73d 110{
03ba3782 111 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
4195f73d 112
03ba3782
JA
113 if (!bdi_work_on_stack(work))
114 kfree(work);
115 else
116 bdi_work_clear(work);
4195f73d
NP
117}
118
03ba3782 119static void wb_work_complete(struct bdi_work *work)
1da177e4 120{
c4a77a6c 121 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
77b9d059 122 int onstack = bdi_work_on_stack(work);
1da177e4
LT
123
124 /*
03ba3782
JA
125 * For allocated work, we can clear the done/seen bit right here.
126 * For on-stack work, we need to postpone both the clear and free
127 * to after the RCU grace period, since the stack could be invalidated
128 * as soon as bdi_work_clear() has done the wakeup.
1da177e4 129 */
77b9d059 130 if (!onstack)
03ba3782 131 bdi_work_clear(work);
77b9d059 132 if (sync_mode == WB_SYNC_NONE || onstack)
03ba3782
JA
133 call_rcu(&work->rcu_head, bdi_work_free);
134}
1da177e4 135
03ba3782
JA
136static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137{
1da177e4 138 /*
03ba3782
JA
139 * The caller has retrieved the work arguments from this work,
140 * drop our reference. If this is the last ref, delete and free it
1da177e4 141 */
03ba3782
JA
142 if (atomic_dec_and_test(&work->pending)) {
143 struct backing_dev_info *bdi = wb->bdi;
1da177e4 144
03ba3782
JA
145 spin_lock(&bdi->wb_lock);
146 list_del_rcu(&work->list);
147 spin_unlock(&bdi->wb_lock);
1da177e4 148
03ba3782
JA
149 wb_work_complete(work);
150 }
151}
1da177e4 152
03ba3782
JA
153static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154{
bcddc3f0
JA
155 work->seen = bdi->wb_mask;
156 BUG_ON(!work->seen);
157 atomic_set(&work->pending, bdi->wb_cnt);
158 BUG_ON(!bdi->wb_cnt);
1da177e4 159
bcddc3f0 160 /*
deed62ed
NP
161 * list_add_tail_rcu() contains the necessary barriers to
162 * make sure the above stores are seen before the item is
163 * noticed on the list
bcddc3f0 164 */
bcddc3f0
JA
165 spin_lock(&bdi->wb_lock);
166 list_add_tail_rcu(&work->list, &bdi->work_list);
167 spin_unlock(&bdi->wb_lock);
03ba3782
JA
168
169 /*
170 * If the default thread isn't there, make sure we add it. When
171 * it gets created and wakes up, we'll run this work.
172 */
173 if (unlikely(list_empty_careful(&bdi->wb_list)))
174 wake_up_process(default_backing_dev_info.wb.task);
175 else {
176 struct bdi_writeback *wb = &bdi->wb;
1da177e4 177
1ef7d9aa 178 if (wb->task)
03ba3782 179 wake_up_process(wb->task);
1da177e4 180 }
1da177e4
LT
181}
182
03ba3782
JA
183/*
184 * Used for on-stack allocated work items. The caller needs to wait until
185 * the wb threads have acked the work before it's safe to continue.
186 */
187static void bdi_wait_on_work_clear(struct bdi_work *work)
188{
189 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190 TASK_UNINTERRUPTIBLE);
191}
1da177e4 192
f11fcae8 193static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
b6e51316 194 struct wb_writeback_args *args)
1da177e4 195{
03ba3782
JA
196 struct bdi_work *work;
197
bcddc3f0
JA
198 /*
199 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 * wakeup the thread for old dirty data writeback
201 */
03ba3782 202 work = kmalloc(sizeof(*work), GFP_ATOMIC);
bcddc3f0 203 if (work) {
b6e51316 204 bdi_work_init(work, args);
bcddc3f0
JA
205 bdi_queue_work(bdi, work);
206 } else {
207 struct bdi_writeback *wb = &bdi->wb;
03ba3782 208
bcddc3f0
JA
209 if (wb->task)
210 wake_up_process(wb->task);
211 }
03ba3782
JA
212}
213
b6e51316
JA
214/**
215 * bdi_sync_writeback - start and wait for writeback
216 * @bdi: the backing device to write from
217 * @sb: write inodes from this super_block
218 *
219 * Description:
220 * This does WB_SYNC_ALL data integrity writeback and waits for the
221 * IO to complete. Callers must hold the sb s_umount semaphore for
222 * reading, to avoid having the super disappear before we are done.
223 */
224static void bdi_sync_writeback(struct backing_dev_info *bdi,
225 struct super_block *sb)
03ba3782 226{
b6e51316
JA
227 struct wb_writeback_args args = {
228 .sb = sb,
229 .sync_mode = WB_SYNC_ALL,
230 .nr_pages = LONG_MAX,
231 .range_cyclic = 0,
232 };
233 struct bdi_work work;
03ba3782 234
b6e51316
JA
235 bdi_work_init(&work, &args);
236 work.state |= WS_ONSTACK;
03ba3782 237
b6e51316
JA
238 bdi_queue_work(bdi, &work);
239 bdi_wait_on_work_clear(&work);
240}
241
242/**
243 * bdi_start_writeback - start writeback
244 * @bdi: the backing device to write from
245 * @nr_pages: the number of pages to write
246 *
247 * Description:
248 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
249 * started when this function returns, we make no guarentees on
250 * completion. Caller need not hold sb s_umount semaphore.
251 *
252 */
253void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
254{
255 struct wb_writeback_args args = {
256 .sync_mode = WB_SYNC_NONE,
257 .nr_pages = nr_pages,
258 .range_cyclic = 1,
259 };
260
d3ddec76
WF
261 /*
262 * We treat @nr_pages=0 as the special case to do background writeback,
263 * ie. to sync pages until the background dirty threshold is reached.
264 */
265 if (!nr_pages) {
266 args.nr_pages = LONG_MAX;
267 args.for_background = 1;
268 }
269
b6e51316 270 bdi_alloc_queue_work(bdi, &args);
1da177e4
LT
271}
272
6610a0bc
AM
273/*
274 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
275 * furthest end of its superblock's dirty-inode list.
276 *
277 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 278 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
279 * the case then the inode must have been redirtied while it was being written
280 * out and we don't reset its dirtied_when.
281 */
282static void redirty_tail(struct inode *inode)
283{
03ba3782 284 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
6610a0bc 285
03ba3782 286 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 287 struct inode *tail;
6610a0bc 288
03ba3782 289 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
66f3b8e2 290 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
291 inode->dirtied_when = jiffies;
292 }
03ba3782 293 list_move(&inode->i_list, &wb->b_dirty);
6610a0bc
AM
294}
295
c986d1e2 296/*
66f3b8e2 297 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 298 */
0e0f4fc2 299static void requeue_io(struct inode *inode)
c986d1e2 300{
03ba3782
JA
301 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
302
303 list_move(&inode->i_list, &wb->b_more_io);
c986d1e2
AM
304}
305
1c0eeaf5
JE
306static void inode_sync_complete(struct inode *inode)
307{
308 /*
309 * Prevent speculative execution through spin_unlock(&inode_lock);
310 */
311 smp_mb();
312 wake_up_bit(&inode->i_state, __I_SYNC);
313}
314
d2caa3c5
JL
315static bool inode_dirtied_after(struct inode *inode, unsigned long t)
316{
317 bool ret = time_after(inode->dirtied_when, t);
318#ifndef CONFIG_64BIT
319 /*
320 * For inodes being constantly redirtied, dirtied_when can get stuck.
321 * It _appears_ to be in the future, but is actually in distant past.
322 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 323 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
324 */
325 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
326#endif
327 return ret;
328}
329
2c136579
FW
330/*
331 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
332 */
333static void move_expired_inodes(struct list_head *delaying_queue,
334 struct list_head *dispatch_queue,
335 unsigned long *older_than_this)
336{
5c03449d
SL
337 LIST_HEAD(tmp);
338 struct list_head *pos, *node;
cf137307 339 struct super_block *sb = NULL;
5c03449d 340 struct inode *inode;
cf137307 341 int do_sb_sort = 0;
5c03449d 342
2c136579 343 while (!list_empty(delaying_queue)) {
5c03449d 344 inode = list_entry(delaying_queue->prev, struct inode, i_list);
2c136579 345 if (older_than_this &&
d2caa3c5 346 inode_dirtied_after(inode, *older_than_this))
2c136579 347 break;
cf137307
JA
348 if (sb && sb != inode->i_sb)
349 do_sb_sort = 1;
350 sb = inode->i_sb;
5c03449d
SL
351 list_move(&inode->i_list, &tmp);
352 }
353
cf137307
JA
354 /* just one sb in list, splice to dispatch_queue and we're done */
355 if (!do_sb_sort) {
356 list_splice(&tmp, dispatch_queue);
357 return;
358 }
359
5c03449d
SL
360 /* Move inodes from one superblock together */
361 while (!list_empty(&tmp)) {
362 inode = list_entry(tmp.prev, struct inode, i_list);
363 sb = inode->i_sb;
364 list_for_each_prev_safe(pos, node, &tmp) {
365 inode = list_entry(pos, struct inode, i_list);
366 if (inode->i_sb == sb)
367 list_move(&inode->i_list, dispatch_queue);
368 }
2c136579
FW
369 }
370}
371
372/*
373 * Queue all expired dirty inodes for io, eldest first.
374 */
03ba3782 375static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
66f3b8e2 376{
03ba3782
JA
377 list_splice_init(&wb->b_more_io, wb->b_io.prev);
378 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
66f3b8e2
JA
379}
380
03ba3782 381static int write_inode(struct inode *inode, int sync)
08d8e974 382{
03ba3782
JA
383 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
384 return inode->i_sb->s_op->write_inode(inode, sync);
385 return 0;
08d8e974 386}
08d8e974 387
1da177e4 388/*
01c03194
CH
389 * Wait for writeback on an inode to complete.
390 */
391static void inode_wait_for_writeback(struct inode *inode)
392{
393 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
394 wait_queue_head_t *wqh;
395
396 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
397 do {
398 spin_unlock(&inode_lock);
399 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
400 spin_lock(&inode_lock);
401 } while (inode->i_state & I_SYNC);
402}
403
404/*
405 * Write out an inode's dirty pages. Called under inode_lock. Either the
406 * caller has ref on the inode (either via __iget or via syscall against an fd)
407 * or the inode has I_WILL_FREE set (via generic_forget_inode)
408 *
1da177e4
LT
409 * If `wait' is set, wait on the writeout.
410 *
411 * The whole writeout design is quite complex and fragile. We want to avoid
412 * starvation of particular inodes when others are being redirtied, prevent
413 * livelocks, etc.
414 *
415 * Called under inode_lock.
416 */
417static int
01c03194 418writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 419{
1da177e4 420 struct address_space *mapping = inode->i_mapping;
1da177e4 421 int wait = wbc->sync_mode == WB_SYNC_ALL;
01c03194 422 unsigned dirty;
1da177e4
LT
423 int ret;
424
01c03194
CH
425 if (!atomic_read(&inode->i_count))
426 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
427 else
428 WARN_ON(inode->i_state & I_WILL_FREE);
429
430 if (inode->i_state & I_SYNC) {
431 /*
432 * If this inode is locked for writeback and we are not doing
66f3b8e2 433 * writeback-for-data-integrity, move it to b_more_io so that
01c03194
CH
434 * writeback can proceed with the other inodes on s_io.
435 *
436 * We'll have another go at writing back this inode when we
66f3b8e2 437 * completed a full scan of b_io.
01c03194
CH
438 */
439 if (!wait) {
440 requeue_io(inode);
441 return 0;
442 }
443
444 /*
445 * It's a data-integrity sync. We must wait.
446 */
447 inode_wait_for_writeback(inode);
448 }
449
1c0eeaf5 450 BUG_ON(inode->i_state & I_SYNC);
1da177e4 451
1c0eeaf5 452 /* Set I_SYNC, reset I_DIRTY */
1da177e4 453 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 454 inode->i_state |= I_SYNC;
1da177e4
LT
455 inode->i_state &= ~I_DIRTY;
456
457 spin_unlock(&inode_lock);
458
459 ret = do_writepages(mapping, wbc);
460
461 /* Don't write the inode if only I_DIRTY_PAGES was set */
462 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
463 int err = write_inode(inode, wait);
464 if (ret == 0)
465 ret = err;
466 }
467
468 if (wait) {
469 int err = filemap_fdatawait(mapping);
470 if (ret == 0)
471 ret = err;
472 }
473
474 spin_lock(&inode_lock);
1c0eeaf5 475 inode->i_state &= ~I_SYNC;
84a89245 476 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
ae1b7f7d
WF
477 if (inode->i_state & I_DIRTY) {
478 /*
479 * Someone redirtied the inode while were writing back
480 * the pages.
481 */
482 redirty_tail(inode);
483 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
1da177e4
LT
484 /*
485 * We didn't write back all the pages. nfs_writepages()
486 * sometimes bales out without doing anything. Redirty
66f3b8e2 487 * the inode; Move it from b_io onto b_more_io/b_dirty.
1b43ef91
AM
488 */
489 /*
490 * akpm: if the caller was the kupdate function we put
66f3b8e2 491 * this inode at the head of b_dirty so it gets first
1b43ef91
AM
492 * consideration. Otherwise, move it to the tail, for
493 * the reasons described there. I'm not really sure
494 * how much sense this makes. Presumably I had a good
495 * reasons for doing it this way, and I'd rather not
496 * muck with it at present.
1da177e4
LT
497 */
498 if (wbc->for_kupdate) {
499 /*
2c136579 500 * For the kupdate function we move the inode
66f3b8e2 501 * to b_more_io so it will get more writeout as
2c136579 502 * soon as the queue becomes uncongested.
1da177e4
LT
503 */
504 inode->i_state |= I_DIRTY_PAGES;
8bc3be27
FW
505 if (wbc->nr_to_write <= 0) {
506 /*
507 * slice used up: queue for next turn
508 */
509 requeue_io(inode);
510 } else {
511 /*
512 * somehow blocked: retry later
513 */
514 redirty_tail(inode);
515 }
1da177e4
LT
516 } else {
517 /*
518 * Otherwise fully redirty the inode so that
519 * other inodes on this superblock will get some
520 * writeout. Otherwise heavy writing to one
521 * file would indefinitely suspend writeout of
522 * all the other files.
523 */
524 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 525 redirty_tail(inode);
1da177e4 526 }
1da177e4
LT
527 } else if (atomic_read(&inode->i_count)) {
528 /*
529 * The inode is clean, inuse
530 */
531 list_move(&inode->i_list, &inode_in_use);
532 } else {
533 /*
534 * The inode is clean, unused
535 */
536 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
537 }
538 }
1c0eeaf5 539 inode_sync_complete(inode);
1da177e4
LT
540 return ret;
541}
542
03ba3782
JA
543/*
544 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
545 * before calling writeback. So make sure that we do pin it, so it doesn't
546 * go away while we are writing inodes from it.
547 *
548 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
549 * 1 if we failed.
550 */
551static int pin_sb_for_writeback(struct writeback_control *wbc,
552 struct inode *inode)
553{
554 struct super_block *sb = inode->i_sb;
555
556 /*
557 * Caller must already hold the ref for this
558 */
559 if (wbc->sync_mode == WB_SYNC_ALL) {
560 WARN_ON(!rwsem_is_locked(&sb->s_umount));
561 return 0;
562 }
563
564 spin_lock(&sb_lock);
565 sb->s_count++;
566 if (down_read_trylock(&sb->s_umount)) {
567 if (sb->s_root) {
568 spin_unlock(&sb_lock);
569 return 0;
570 }
571 /*
572 * umounted, drop rwsem again and fall through to failure
573 */
574 up_read(&sb->s_umount);
575 }
576
577 sb->s_count--;
578 spin_unlock(&sb_lock);
579 return 1;
580}
581
582static void unpin_sb_for_writeback(struct writeback_control *wbc,
583 struct inode *inode)
584{
585 struct super_block *sb = inode->i_sb;
586
587 if (wbc->sync_mode == WB_SYNC_ALL)
588 return;
589
590 up_read(&sb->s_umount);
591 put_super(sb);
592}
593
594static void writeback_inodes_wb(struct bdi_writeback *wb,
595 struct writeback_control *wbc)
1da177e4 596{
03ba3782 597 struct super_block *sb = wbc->sb;
66f3b8e2 598 const int is_blkdev_sb = sb_is_blkdev_sb(sb);
1da177e4
LT
599 const unsigned long start = jiffies; /* livelock avoidance */
600
ae8547b0 601 spin_lock(&inode_lock);
1da177e4 602
03ba3782
JA
603 if (!wbc->for_kupdate || list_empty(&wb->b_io))
604 queue_io(wb, wbc->older_than_this);
66f3b8e2 605
03ba3782
JA
606 while (!list_empty(&wb->b_io)) {
607 struct inode *inode = list_entry(wb->b_io.prev,
1da177e4 608 struct inode, i_list);
1da177e4
LT
609 long pages_skipped;
610
66f3b8e2
JA
611 /*
612 * super block given and doesn't match, skip this inode
613 */
614 if (sb && sb != inode->i_sb) {
615 redirty_tail(inode);
616 continue;
617 }
618
03ba3782 619 if (!bdi_cap_writeback_dirty(wb->bdi)) {
9852a0e7 620 redirty_tail(inode);
66f3b8e2 621 if (is_blkdev_sb) {
1da177e4
LT
622 /*
623 * Dirty memory-backed blockdev: the ramdisk
624 * driver does this. Skip just this inode
625 */
626 continue;
627 }
628 /*
629 * Dirty memory-backed inode against a filesystem other
630 * than the kernel-internal bdev filesystem. Skip the
631 * entire superblock.
632 */
633 break;
634 }
635
84a89245 636 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
7ef0d737
NP
637 requeue_io(inode);
638 continue;
639 }
640
03ba3782 641 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
1da177e4 642 wbc->encountered_congestion = 1;
66f3b8e2 643 if (!is_blkdev_sb)
1da177e4 644 break; /* Skip a congested fs */
0e0f4fc2 645 requeue_io(inode);
1da177e4
LT
646 continue; /* Skip a congested blockdev */
647 }
648
d2caa3c5
JL
649 /*
650 * Was this inode dirtied after sync_sb_inodes was called?
651 * This keeps sync from extra jobs and livelock.
652 */
653 if (inode_dirtied_after(inode, start))
1da177e4
LT
654 break;
655
03ba3782
JA
656 if (pin_sb_for_writeback(wbc, inode)) {
657 requeue_io(inode);
658 continue;
659 }
1da177e4 660
84a89245 661 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
1da177e4
LT
662 __iget(inode);
663 pages_skipped = wbc->pages_skipped;
01c03194 664 writeback_single_inode(inode, wbc);
03ba3782 665 unpin_sb_for_writeback(wbc, inode);
1da177e4
LT
666 if (wbc->pages_skipped != pages_skipped) {
667 /*
668 * writeback is not making progress due to locked
669 * buffers. Skip this inode for now.
670 */
f57b9b7b 671 redirty_tail(inode);
1da177e4
LT
672 }
673 spin_unlock(&inode_lock);
1da177e4 674 iput(inode);
4ffc8444 675 cond_resched();
1da177e4 676 spin_lock(&inode_lock);
8bc3be27
FW
677 if (wbc->nr_to_write <= 0) {
678 wbc->more_io = 1;
1da177e4 679 break;
8bc3be27 680 }
03ba3782 681 if (!list_empty(&wb->b_more_io))
8bc3be27 682 wbc->more_io = 1;
1da177e4 683 }
38f21977 684
66f3b8e2
JA
685 spin_unlock(&inode_lock);
686 /* Leave any unwritten inodes on b_io */
687}
688
03ba3782
JA
689void writeback_inodes_wbc(struct writeback_control *wbc)
690{
691 struct backing_dev_info *bdi = wbc->bdi;
692
693 writeback_inodes_wb(&bdi->wb, wbc);
694}
695
66f3b8e2 696/*
03ba3782
JA
697 * The maximum number of pages to writeout in a single bdi flush/kupdate
698 * operation. We do this so we don't hold I_SYNC against an inode for
699 * enormous amounts of time, which would block a userspace task which has
700 * been forced to throttle against that inode. Also, the code reevaluates
701 * the dirty each time it has written this many pages.
702 */
703#define MAX_WRITEBACK_PAGES 1024
704
705static inline bool over_bground_thresh(void)
706{
707 unsigned long background_thresh, dirty_thresh;
708
709 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
710
711 return (global_page_state(NR_FILE_DIRTY) +
712 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
713}
714
715/*
716 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 717 *
03ba3782
JA
718 * Define "old": the first time one of an inode's pages is dirtied, we mark the
719 * dirtying-time in the inode's address_space. So this periodic writeback code
720 * just walks the superblock inode list, writing back any inodes which are
721 * older than a specific point in time.
66f3b8e2 722 *
03ba3782
JA
723 * Try to run once per dirty_writeback_interval. But if a writeback event
724 * takes longer than a dirty_writeback_interval interval, then leave a
725 * one-second gap.
66f3b8e2 726 *
03ba3782
JA
727 * older_than_this takes precedence over nr_to_write. So we'll only write back
728 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 729 */
c4a77a6c
JA
730static long wb_writeback(struct bdi_writeback *wb,
731 struct wb_writeback_args *args)
66f3b8e2 732{
03ba3782
JA
733 struct writeback_control wbc = {
734 .bdi = wb->bdi,
c4a77a6c
JA
735 .sb = args->sb,
736 .sync_mode = args->sync_mode,
03ba3782 737 .older_than_this = NULL,
c4a77a6c
JA
738 .for_kupdate = args->for_kupdate,
739 .range_cyclic = args->range_cyclic,
03ba3782
JA
740 };
741 unsigned long oldest_jif;
742 long wrote = 0;
a5989bdc 743 struct inode *inode;
66f3b8e2 744
03ba3782
JA
745 if (wbc.for_kupdate) {
746 wbc.older_than_this = &oldest_jif;
747 oldest_jif = jiffies -
748 msecs_to_jiffies(dirty_expire_interval * 10);
749 }
c4a77a6c
JA
750 if (!wbc.range_cyclic) {
751 wbc.range_start = 0;
752 wbc.range_end = LLONG_MAX;
753 }
38f21977 754
03ba3782
JA
755 for (;;) {
756 /*
d3ddec76 757 * Stop writeback when nr_pages has been consumed
03ba3782 758 */
d3ddec76 759 if (args->nr_pages <= 0)
03ba3782 760 break;
66f3b8e2 761
38f21977 762 /*
d3ddec76
WF
763 * For background writeout, stop when we are below the
764 * background dirty threshold
38f21977 765 */
d3ddec76 766 if (args->for_background && !over_bground_thresh())
03ba3782 767 break;
38f21977 768
03ba3782
JA
769 wbc.more_io = 0;
770 wbc.encountered_congestion = 0;
771 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
772 wbc.pages_skipped = 0;
773 writeback_inodes_wb(wb, &wbc);
c4a77a6c 774 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
03ba3782
JA
775 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
776
777 /*
71fd05a8 778 * If we consumed everything, see if we have more
03ba3782 779 */
71fd05a8
JA
780 if (wbc.nr_to_write <= 0)
781 continue;
782 /*
783 * Didn't write everything and we don't have more IO, bail
784 */
785 if (!wbc.more_io)
03ba3782 786 break;
71fd05a8
JA
787 /*
788 * Did we write something? Try for more
789 */
790 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
791 continue;
792 /*
793 * Nothing written. Wait for some inode to
794 * become available for writeback. Otherwise
795 * we'll just busyloop.
796 */
797 spin_lock(&inode_lock);
798 if (!list_empty(&wb->b_more_io)) {
799 inode = list_entry(wb->b_more_io.prev,
800 struct inode, i_list);
801 inode_wait_for_writeback(inode);
03ba3782 802 }
71fd05a8 803 spin_unlock(&inode_lock);
03ba3782
JA
804 }
805
806 return wrote;
807}
808
809/*
810 * Return the next bdi_work struct that hasn't been processed by this
8010c3b6
JA
811 * wb thread yet. ->seen is initially set for each thread that exists
812 * for this device, when a thread first notices a piece of work it
813 * clears its bit. Depending on writeback type, the thread will notify
814 * completion on either receiving the work (WB_SYNC_NONE) or after
815 * it is done (WB_SYNC_ALL).
03ba3782
JA
816 */
817static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
818 struct bdi_writeback *wb)
819{
820 struct bdi_work *work, *ret = NULL;
821
822 rcu_read_lock();
823
824 list_for_each_entry_rcu(work, &bdi->work_list, list) {
77fad5e6 825 if (!test_bit(wb->nr, &work->seen))
03ba3782 826 continue;
77fad5e6 827 clear_bit(wb->nr, &work->seen);
03ba3782
JA
828
829 ret = work;
830 break;
831 }
832
833 rcu_read_unlock();
834 return ret;
835}
836
837static long wb_check_old_data_flush(struct bdi_writeback *wb)
838{
839 unsigned long expired;
840 long nr_pages;
841
842 expired = wb->last_old_flush +
843 msecs_to_jiffies(dirty_writeback_interval * 10);
844 if (time_before(jiffies, expired))
845 return 0;
846
847 wb->last_old_flush = jiffies;
848 nr_pages = global_page_state(NR_FILE_DIRTY) +
849 global_page_state(NR_UNSTABLE_NFS) +
850 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
851
c4a77a6c
JA
852 if (nr_pages) {
853 struct wb_writeback_args args = {
854 .nr_pages = nr_pages,
855 .sync_mode = WB_SYNC_NONE,
856 .for_kupdate = 1,
857 .range_cyclic = 1,
858 };
859
860 return wb_writeback(wb, &args);
861 }
03ba3782
JA
862
863 return 0;
864}
865
866/*
867 * Retrieve work items and do the writeback they describe
868 */
869long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
870{
871 struct backing_dev_info *bdi = wb->bdi;
872 struct bdi_work *work;
c4a77a6c 873 long wrote = 0;
03ba3782
JA
874
875 while ((work = get_next_work_item(bdi, wb)) != NULL) {
c4a77a6c 876 struct wb_writeback_args args = work->args;
03ba3782
JA
877
878 /*
879 * Override sync mode, in case we must wait for completion
880 */
881 if (force_wait)
c4a77a6c 882 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
03ba3782
JA
883
884 /*
885 * If this isn't a data integrity operation, just notify
886 * that we have seen this work and we are now starting it.
887 */
c4a77a6c 888 if (args.sync_mode == WB_SYNC_NONE)
03ba3782
JA
889 wb_clear_pending(wb, work);
890
c4a77a6c 891 wrote += wb_writeback(wb, &args);
03ba3782
JA
892
893 /*
894 * This is a data integrity writeback, so only do the
895 * notification when we have completed the work.
896 */
c4a77a6c 897 if (args.sync_mode == WB_SYNC_ALL)
03ba3782
JA
898 wb_clear_pending(wb, work);
899 }
900
901 /*
902 * Check for periodic writeback, kupdated() style
903 */
904 wrote += wb_check_old_data_flush(wb);
905
906 return wrote;
907}
908
909/*
910 * Handle writeback of dirty data for the device backed by this bdi. Also
911 * wakes up periodically and does kupdated style flushing.
912 */
913int bdi_writeback_task(struct bdi_writeback *wb)
914{
915 unsigned long last_active = jiffies;
916 unsigned long wait_jiffies = -1UL;
917 long pages_written;
918
919 while (!kthread_should_stop()) {
920 pages_written = wb_do_writeback(wb, 0);
921
922 if (pages_written)
923 last_active = jiffies;
924 else if (wait_jiffies != -1UL) {
925 unsigned long max_idle;
926
38f21977 927 /*
03ba3782
JA
928 * Longest period of inactivity that we tolerate. If we
929 * see dirty data again later, the task will get
930 * recreated automatically.
38f21977 931 */
03ba3782
JA
932 max_idle = max(5UL * 60 * HZ, wait_jiffies);
933 if (time_after(jiffies, max_idle + last_active))
934 break;
935 }
936
937 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
49db0414 938 schedule_timeout_interruptible(wait_jiffies);
03ba3782
JA
939 try_to_freeze();
940 }
941
942 return 0;
943}
944
945/*
b6e51316
JA
946 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
947 * writeback, for integrity writeback see bdi_sync_writeback().
03ba3782 948 */
b6e51316 949static void bdi_writeback_all(struct super_block *sb, long nr_pages)
03ba3782 950{
b6e51316
JA
951 struct wb_writeback_args args = {
952 .sb = sb,
953 .nr_pages = nr_pages,
954 .sync_mode = WB_SYNC_NONE,
955 };
03ba3782 956 struct backing_dev_info *bdi;
03ba3782 957
cfc4ba53 958 rcu_read_lock();
03ba3782 959
cfc4ba53 960 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
03ba3782
JA
961 if (!bdi_has_dirty_io(bdi))
962 continue;
38f21977 963
b6e51316 964 bdi_alloc_queue_work(bdi, &args);
03ba3782
JA
965 }
966
cfc4ba53 967 rcu_read_unlock();
1da177e4
LT
968}
969
970/*
03ba3782
JA
971 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
972 * the whole world.
973 */
974void wakeup_flusher_threads(long nr_pages)
975{
03ba3782
JA
976 if (nr_pages == 0)
977 nr_pages = global_page_state(NR_FILE_DIRTY) +
978 global_page_state(NR_UNSTABLE_NFS);
b6e51316 979 bdi_writeback_all(NULL, nr_pages);
03ba3782
JA
980}
981
982static noinline void block_dump___mark_inode_dirty(struct inode *inode)
983{
984 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
985 struct dentry *dentry;
986 const char *name = "?";
987
988 dentry = d_find_alias(inode);
989 if (dentry) {
990 spin_lock(&dentry->d_lock);
991 name = (const char *) dentry->d_name.name;
992 }
993 printk(KERN_DEBUG
994 "%s(%d): dirtied inode %lu (%s) on %s\n",
995 current->comm, task_pid_nr(current), inode->i_ino,
996 name, inode->i_sb->s_id);
997 if (dentry) {
998 spin_unlock(&dentry->d_lock);
999 dput(dentry);
1000 }
1001 }
1002}
1003
1004/**
1005 * __mark_inode_dirty - internal function
1006 * @inode: inode to mark
1007 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1008 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1009 * mark_inode_dirty_sync.
1da177e4 1010 *
03ba3782
JA
1011 * Put the inode on the super block's dirty list.
1012 *
1013 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1014 * dirty list only if it is hashed or if it refers to a blockdev.
1015 * If it was not hashed, it will never be added to the dirty list
1016 * even if it is later hashed, as it will have been marked dirty already.
1017 *
1018 * In short, make sure you hash any inodes _before_ you start marking
1019 * them dirty.
1da177e4 1020 *
03ba3782
JA
1021 * This function *must* be atomic for the I_DIRTY_PAGES case -
1022 * set_page_dirty() is called under spinlock in several places.
1da177e4 1023 *
03ba3782
JA
1024 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1025 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1026 * the kernel-internal blockdev inode represents the dirtying time of the
1027 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1028 * page->mapping->host, so the page-dirtying time is recorded in the internal
1029 * blockdev inode.
1da177e4 1030 */
03ba3782 1031void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1032{
03ba3782 1033 struct super_block *sb = inode->i_sb;
1da177e4 1034
03ba3782
JA
1035 /*
1036 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1037 * dirty the inode itself
1038 */
1039 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1040 if (sb->s_op->dirty_inode)
1041 sb->s_op->dirty_inode(inode);
1042 }
1043
1044 /*
1045 * make sure that changes are seen by all cpus before we test i_state
1046 * -- mikulas
1047 */
1048 smp_mb();
1049
1050 /* avoid the locking if we can */
1051 if ((inode->i_state & flags) == flags)
1052 return;
1053
1054 if (unlikely(block_dump))
1055 block_dump___mark_inode_dirty(inode);
1056
1057 spin_lock(&inode_lock);
1058 if ((inode->i_state & flags) != flags) {
1059 const int was_dirty = inode->i_state & I_DIRTY;
1060
1061 inode->i_state |= flags;
1062
1063 /*
1064 * If the inode is being synced, just update its dirty state.
1065 * The unlocker will place the inode on the appropriate
1066 * superblock list, based upon its state.
1067 */
1068 if (inode->i_state & I_SYNC)
1069 goto out;
1070
1071 /*
1072 * Only add valid (hashed) inodes to the superblock's
1073 * dirty list. Add blockdev inodes as well.
1074 */
1075 if (!S_ISBLK(inode->i_mode)) {
1076 if (hlist_unhashed(&inode->i_hash))
1077 goto out;
1078 }
1079 if (inode->i_state & (I_FREEING|I_CLEAR))
1080 goto out;
1081
1082 /*
1083 * If the inode was already on b_dirty/b_io/b_more_io, don't
1084 * reposition it (that would break b_dirty time-ordering).
1085 */
1086 if (!was_dirty) {
1087 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
500b067c
JA
1088 struct backing_dev_info *bdi = wb->bdi;
1089
1090 if (bdi_cap_writeback_dirty(bdi) &&
1091 !test_bit(BDI_registered, &bdi->state)) {
1092 WARN_ON(1);
1093 printk(KERN_ERR "bdi-%s not registered\n",
1094 bdi->name);
1095 }
03ba3782
JA
1096
1097 inode->dirtied_when = jiffies;
1098 list_move(&inode->i_list, &wb->b_dirty);
1da177e4 1099 }
1da177e4 1100 }
03ba3782
JA
1101out:
1102 spin_unlock(&inode_lock);
1103}
1104EXPORT_SYMBOL(__mark_inode_dirty);
1105
1106/*
1107 * Write out a superblock's list of dirty inodes. A wait will be performed
1108 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1109 *
1110 * If older_than_this is non-NULL, then only write out inodes which
1111 * had their first dirtying at a time earlier than *older_than_this.
1112 *
03ba3782
JA
1113 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1114 * This function assumes that the blockdev superblock's inodes are backed by
1115 * a variety of queues, so all inodes are searched. For other superblocks,
1116 * assume that all inodes are backed by the same queue.
1117 *
1118 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1119 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1120 * on the writer throttling path, and we get decent balancing between many
1121 * throttled threads: we don't want them all piling up on inode_sync_wait.
1122 */
b6e51316 1123static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
1124{
1125 struct inode *inode, *old_inode = NULL;
1126
1127 /*
1128 * We need to be protected against the filesystem going from
1129 * r/o to r/w or vice versa.
1130 */
b6e51316 1131 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782
JA
1132
1133 spin_lock(&inode_lock);
1134
1135 /*
1136 * Data integrity sync. Must wait for all pages under writeback,
1137 * because there may have been pages dirtied before our sync
1138 * call, but which had writeout started before we write it out.
1139 * In which case, the inode may not be on the dirty list, but
1140 * we still have to wait for that writeout.
1141 */
b6e51316 1142 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
03ba3782
JA
1143 struct address_space *mapping;
1144
1145 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1146 continue;
1147 mapping = inode->i_mapping;
1148 if (mapping->nrpages == 0)
1149 continue;
1150 __iget(inode);
1151 spin_unlock(&inode_lock);
1152 /*
1153 * We hold a reference to 'inode' so it couldn't have
1154 * been removed from s_inodes list while we dropped the
1155 * inode_lock. We cannot iput the inode now as we can
1156 * be holding the last reference and we cannot iput it
1157 * under inode_lock. So we keep the reference and iput
1158 * it later.
1159 */
1160 iput(old_inode);
1161 old_inode = inode;
1162
1163 filemap_fdatawait(mapping);
1164
1165 cond_resched();
1166
1167 spin_lock(&inode_lock);
1168 }
1169 spin_unlock(&inode_lock);
1170 iput(old_inode);
1da177e4
LT
1171}
1172
d8a8559c
JA
1173/**
1174 * writeback_inodes_sb - writeback dirty inodes from given super_block
1175 * @sb: the superblock
1da177e4 1176 *
d8a8559c
JA
1177 * Start writeback on some inodes on this super_block. No guarantees are made
1178 * on how many (if any) will be written, and this function does not wait
1179 * for IO completion of submitted IO. The number of pages submitted is
1180 * returned.
1da177e4 1181 */
b6e51316 1182void writeback_inodes_sb(struct super_block *sb)
1da177e4 1183{
d8a8559c
JA
1184 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1185 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1186 long nr_to_write;
1da177e4 1187
d8a8559c 1188 nr_to_write = nr_dirty + nr_unstable +
38f21977 1189 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
38f21977 1190
b6e51316 1191 bdi_writeback_all(sb, nr_to_write);
d8a8559c
JA
1192}
1193EXPORT_SYMBOL(writeback_inodes_sb);
1194
1195/**
1196 * sync_inodes_sb - sync sb inode pages
1197 * @sb: the superblock
1198 *
1199 * This function writes and waits on any dirty inode belonging to this
1200 * super_block. The number of pages synced is returned.
1201 */
b6e51316 1202void sync_inodes_sb(struct super_block *sb)
d8a8559c 1203{
b6e51316
JA
1204 bdi_sync_writeback(sb->s_bdi, sb);
1205 wait_sb_inodes(sb);
1da177e4 1206}
d8a8559c 1207EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 1208
1da177e4 1209/**
7f04c26d
AA
1210 * write_inode_now - write an inode to disk
1211 * @inode: inode to write to disk
1212 * @sync: whether the write should be synchronous or not
1213 *
1214 * This function commits an inode to disk immediately if it is dirty. This is
1215 * primarily needed by knfsd.
1da177e4 1216 *
7f04c26d 1217 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 1218 */
1da177e4
LT
1219int write_inode_now(struct inode *inode, int sync)
1220{
1221 int ret;
1222 struct writeback_control wbc = {
1223 .nr_to_write = LONG_MAX,
18914b18 1224 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
1225 .range_start = 0,
1226 .range_end = LLONG_MAX,
1da177e4
LT
1227 };
1228
1229 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 1230 wbc.nr_to_write = 0;
1da177e4
LT
1231
1232 might_sleep();
1233 spin_lock(&inode_lock);
01c03194 1234 ret = writeback_single_inode(inode, &wbc);
1da177e4
LT
1235 spin_unlock(&inode_lock);
1236 if (sync)
1c0eeaf5 1237 inode_sync_wait(inode);
1da177e4
LT
1238 return ret;
1239}
1240EXPORT_SYMBOL(write_inode_now);
1241
1242/**
1243 * sync_inode - write an inode and its pages to disk.
1244 * @inode: the inode to sync
1245 * @wbc: controls the writeback mode
1246 *
1247 * sync_inode() will write an inode and its pages to disk. It will also
1248 * correctly update the inode on its superblock's dirty inode lists and will
1249 * update inode->i_state.
1250 *
1251 * The caller must have a ref on the inode.
1252 */
1253int sync_inode(struct inode *inode, struct writeback_control *wbc)
1254{
1255 int ret;
1256
1257 spin_lock(&inode_lock);
01c03194 1258 ret = writeback_single_inode(inode, wbc);
1da177e4
LT
1259 spin_unlock(&inode_lock);
1260 return ret;
1261}
1262EXPORT_SYMBOL(sync_inode);