arm64: dts: marvell: mcbin: enable uart headers
[linux-2.6-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <asm/tlbflush.h>
43#include <asm/pgtable.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
dd4123f3 55#include <linux/migrate.h>
48b4800a 56#include <linux/pagemap.h>
cdc346b3 57#include <linux/fs.h>
48b4800a
MK
58
59#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
60
61/*
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
66 */
67#define ZS_ALIGN 8
68
69/*
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 */
73#define ZS_MAX_ZSPAGE_ORDER 2
74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 80 * as single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
87#ifndef MAX_PHYSMEM_BITS
88#ifdef CONFIG_HIGHMEM64G
89#define MAX_PHYSMEM_BITS 36
90#else /* !CONFIG_HIGHMEM64G */
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
95#define MAX_PHYSMEM_BITS BITS_PER_LONG
96#endif
97#endif
98#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
99
100/*
101 * Memory for allocating for handle keeps object position by
102 * encoding <page, obj_idx> and the encoded value has a room
103 * in least bit(ie, look at obj_to_location).
104 * We use the bit to synchronize between object access by
105 * user and migration.
106 */
107#define HANDLE_PIN_BIT 0
108
109/*
110 * Head in allocated object should have OBJ_ALLOCATED_TAG
111 * to identify the object was allocated or not.
112 * It's okay to add the status bit in the least bit because
113 * header keeps handle which is 4byte-aligned address so we
114 * have room for two bit at least.
115 */
116#define OBJ_ALLOCATED_TAG 1
117#define OBJ_TAG_BITS 1
118#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
119#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120
cf8e0fed
JM
121#define FULLNESS_BITS 2
122#define CLASS_BITS 8
123#define ISOLATED_BITS 3
124#define MAGIC_VAL_BITS 8
125
0959c63f
SJ
126#define MAX(a, b) ((a) >= (b) ? (a) : (b))
127/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128#define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 130/* each chunk includes extra space to keep handle */
7b60a685 131#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
132
133/*
7eb52512 134 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
135 * trader-off here:
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 *
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144 * (reason above)
145 */
3783689a 146#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
147#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 149
0959c63f 150enum fullness_group {
0959c63f 151 ZS_EMPTY,
48b4800a
MK
152 ZS_ALMOST_EMPTY,
153 ZS_ALMOST_FULL,
154 ZS_FULL,
155 NR_ZS_FULLNESS,
0959c63f
SJ
156};
157
0f050d99 158enum zs_stat_type {
48b4800a
MK
159 CLASS_EMPTY,
160 CLASS_ALMOST_EMPTY,
161 CLASS_ALMOST_FULL,
162 CLASS_FULL,
0f050d99
GM
163 OBJ_ALLOCATED,
164 OBJ_USED,
48b4800a 165 NR_ZS_STAT_TYPE,
0f050d99
GM
166};
167
0f050d99
GM
168struct zs_size_stat {
169 unsigned long objs[NR_ZS_STAT_TYPE];
170};
171
57244594
SS
172#ifdef CONFIG_ZSMALLOC_STAT
173static struct dentry *zs_stat_root;
0f050d99
GM
174#endif
175
48b4800a
MK
176#ifdef CONFIG_COMPACTION
177static struct vfsmount *zsmalloc_mnt;
178#endif
179
0959c63f
SJ
180/*
181 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
182 * n <= N / f, where
183 * n = number of allocated objects
184 * N = total number of objects zspage can store
6dd9737e 185 * f = fullness_threshold_frac
0959c63f
SJ
186 *
187 * Similarly, we assign zspage to:
188 * ZS_ALMOST_FULL when n > N / f
189 * ZS_EMPTY when n == 0
190 * ZS_FULL when n == N
191 *
192 * (see: fix_fullness_group())
193 */
194static const int fullness_threshold_frac = 4;
195
196struct size_class {
57244594 197 spinlock_t lock;
48b4800a 198 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
199 /*
200 * Size of objects stored in this class. Must be multiple
201 * of ZS_ALIGN.
202 */
203 int size;
1fc6e27d 204 int objs_per_zspage;
7dfa4612
WY
205 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
206 int pages_per_zspage;
48b4800a
MK
207
208 unsigned int index;
209 struct zs_size_stat stats;
0959c63f
SJ
210};
211
48b4800a
MK
212/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
213static void SetPageHugeObject(struct page *page)
214{
215 SetPageOwnerPriv1(page);
216}
217
218static void ClearPageHugeObject(struct page *page)
219{
220 ClearPageOwnerPriv1(page);
221}
222
223static int PageHugeObject(struct page *page)
224{
225 return PageOwnerPriv1(page);
226}
227
0959c63f
SJ
228/*
229 * Placed within free objects to form a singly linked list.
3783689a 230 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
231 *
232 * This must be power of 2 and less than or equal to ZS_ALIGN
233 */
234struct link_free {
2e40e163
MK
235 union {
236 /*
bfd093f5 237 * Free object index;
2e40e163
MK
238 * It's valid for non-allocated object
239 */
bfd093f5 240 unsigned long next;
2e40e163
MK
241 /*
242 * Handle of allocated object.
243 */
244 unsigned long handle;
245 };
0959c63f
SJ
246};
247
248struct zs_pool {
6f3526d6 249 const char *name;
0f050d99 250
cf8e0fed 251 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 252 struct kmem_cache *handle_cachep;
3783689a 253 struct kmem_cache *zspage_cachep;
0959c63f 254
13de8933 255 atomic_long_t pages_allocated;
0f050d99 256
7d3f3938 257 struct zs_pool_stats stats;
ab9d306d
SS
258
259 /* Compact classes */
260 struct shrinker shrinker;
93144ca3 261
0f050d99
GM
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
48b4800a
MK
265#ifdef CONFIG_COMPACTION
266 struct inode *inode;
267 struct work_struct free_work;
268#endif
0959c63f 269};
61989a80 270
3783689a
MK
271struct zspage {
272 struct {
273 unsigned int fullness:FULLNESS_BITS;
85d492f2 274 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
275 unsigned int isolated:ISOLATED_BITS;
276 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
277 };
278 unsigned int inuse;
bfd093f5 279 unsigned int freeobj;
3783689a
MK
280 struct page *first_page;
281 struct list_head list; /* fullness list */
48b4800a
MK
282#ifdef CONFIG_COMPACTION
283 rwlock_t lock;
284#endif
3783689a 285};
61989a80 286
f553646a 287struct mapping_area {
1b945aee 288#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
289 struct vm_struct *vm; /* vm area for mapping object that span pages */
290#else
291 char *vm_buf; /* copy buffer for objects that span pages */
292#endif
293 char *vm_addr; /* address of kmap_atomic()'ed pages */
294 enum zs_mapmode vm_mm; /* mapping mode */
295};
296
48b4800a
MK
297#ifdef CONFIG_COMPACTION
298static int zs_register_migration(struct zs_pool *pool);
299static void zs_unregister_migration(struct zs_pool *pool);
300static void migrate_lock_init(struct zspage *zspage);
301static void migrate_read_lock(struct zspage *zspage);
302static void migrate_read_unlock(struct zspage *zspage);
303static void kick_deferred_free(struct zs_pool *pool);
304static void init_deferred_free(struct zs_pool *pool);
305static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
306#else
307static int zsmalloc_mount(void) { return 0; }
308static void zsmalloc_unmount(void) {}
309static int zs_register_migration(struct zs_pool *pool) { return 0; }
310static void zs_unregister_migration(struct zs_pool *pool) {}
311static void migrate_lock_init(struct zspage *zspage) {}
312static void migrate_read_lock(struct zspage *zspage) {}
313static void migrate_read_unlock(struct zspage *zspage) {}
314static void kick_deferred_free(struct zs_pool *pool) {}
315static void init_deferred_free(struct zs_pool *pool) {}
316static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
317#endif
318
3783689a 319static int create_cache(struct zs_pool *pool)
2e40e163
MK
320{
321 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
322 0, 0, NULL);
3783689a
MK
323 if (!pool->handle_cachep)
324 return 1;
325
326 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
327 0, 0, NULL);
328 if (!pool->zspage_cachep) {
329 kmem_cache_destroy(pool->handle_cachep);
330 pool->handle_cachep = NULL;
331 return 1;
332 }
333
334 return 0;
2e40e163
MK
335}
336
3783689a 337static void destroy_cache(struct zs_pool *pool)
2e40e163 338{
cd10add0 339 kmem_cache_destroy(pool->handle_cachep);
3783689a 340 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
341}
342
3783689a 343static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
344{
345 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 346 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
347}
348
3783689a 349static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
350{
351 kmem_cache_free(pool->handle_cachep, (void *)handle);
352}
353
3783689a
MK
354static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
355{
48b4800a
MK
356 return kmem_cache_alloc(pool->zspage_cachep,
357 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 358}
3783689a
MK
359
360static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
361{
362 kmem_cache_free(pool->zspage_cachep, zspage);
363}
364
2e40e163
MK
365static void record_obj(unsigned long handle, unsigned long obj)
366{
c102f07c
JL
367 /*
368 * lsb of @obj represents handle lock while other bits
369 * represent object value the handle is pointing so
370 * updating shouldn't do store tearing.
371 */
372 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
373}
374
c795779d
DS
375/* zpool driver */
376
377#ifdef CONFIG_ZPOOL
378
6f3526d6 379static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 380 const struct zpool_ops *zpool_ops,
479305fd 381 struct zpool *zpool)
c795779d 382{
d0d8da2d
SS
383 /*
384 * Ignore global gfp flags: zs_malloc() may be invoked from
385 * different contexts and its caller must provide a valid
386 * gfp mask.
387 */
388 return zs_create_pool(name);
c795779d
DS
389}
390
391static void zs_zpool_destroy(void *pool)
392{
393 zs_destroy_pool(pool);
394}
395
396static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
397 unsigned long *handle)
398{
d0d8da2d 399 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
400 return *handle ? 0 : -1;
401}
402static void zs_zpool_free(void *pool, unsigned long handle)
403{
404 zs_free(pool, handle);
405}
406
c795779d
DS
407static void *zs_zpool_map(void *pool, unsigned long handle,
408 enum zpool_mapmode mm)
409{
410 enum zs_mapmode zs_mm;
411
412 switch (mm) {
413 case ZPOOL_MM_RO:
414 zs_mm = ZS_MM_RO;
415 break;
416 case ZPOOL_MM_WO:
417 zs_mm = ZS_MM_WO;
418 break;
419 case ZPOOL_MM_RW: /* fallthru */
420 default:
421 zs_mm = ZS_MM_RW;
422 break;
423 }
424
425 return zs_map_object(pool, handle, zs_mm);
426}
427static void zs_zpool_unmap(void *pool, unsigned long handle)
428{
429 zs_unmap_object(pool, handle);
430}
431
432static u64 zs_zpool_total_size(void *pool)
433{
722cdc17 434 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
435}
436
437static struct zpool_driver zs_zpool_driver = {
438 .type = "zsmalloc",
439 .owner = THIS_MODULE,
440 .create = zs_zpool_create,
441 .destroy = zs_zpool_destroy,
442 .malloc = zs_zpool_malloc,
443 .free = zs_zpool_free,
c795779d
DS
444 .map = zs_zpool_map,
445 .unmap = zs_zpool_unmap,
446 .total_size = zs_zpool_total_size,
447};
448
137f8cff 449MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
450#endif /* CONFIG_ZPOOL */
451
61989a80
NG
452/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
453static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
454
48b4800a
MK
455static bool is_zspage_isolated(struct zspage *zspage)
456{
457 return zspage->isolated;
458}
459
3457f414 460static __maybe_unused int is_first_page(struct page *page)
61989a80 461{
a27545bf 462 return PagePrivate(page);
61989a80
NG
463}
464
48b4800a 465/* Protected by class->lock */
3783689a 466static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 467{
3783689a 468 return zspage->inuse;
4f42047b
MK
469}
470
3783689a 471static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 472{
3783689a 473 zspage->inuse = val;
4f42047b
MK
474}
475
3783689a 476static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 477{
3783689a 478 zspage->inuse += val;
4f42047b
MK
479}
480
48b4800a 481static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 482{
48b4800a 483 struct page *first_page = zspage->first_page;
3783689a 484
48b4800a
MK
485 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
486 return first_page;
4f42047b
MK
487}
488
48b4800a 489static inline int get_first_obj_offset(struct page *page)
4f42047b 490{
48b4800a
MK
491 return page->units;
492}
3783689a 493
48b4800a
MK
494static inline void set_first_obj_offset(struct page *page, int offset)
495{
496 page->units = offset;
4f42047b
MK
497}
498
bfd093f5 499static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 500{
bfd093f5 501 return zspage->freeobj;
4f42047b
MK
502}
503
bfd093f5 504static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 505{
bfd093f5 506 zspage->freeobj = obj;
4f42047b
MK
507}
508
3783689a 509static void get_zspage_mapping(struct zspage *zspage,
a4209467 510 unsigned int *class_idx,
61989a80
NG
511 enum fullness_group *fullness)
512{
48b4800a
MK
513 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
514
3783689a
MK
515 *fullness = zspage->fullness;
516 *class_idx = zspage->class;
61989a80
NG
517}
518
3783689a 519static void set_zspage_mapping(struct zspage *zspage,
a4209467 520 unsigned int class_idx,
61989a80
NG
521 enum fullness_group fullness)
522{
3783689a
MK
523 zspage->class = class_idx;
524 zspage->fullness = fullness;
61989a80
NG
525}
526
c3e3e88a
NC
527/*
528 * zsmalloc divides the pool into various size classes where each
529 * class maintains a list of zspages where each zspage is divided
530 * into equal sized chunks. Each allocation falls into one of these
531 * classes depending on its size. This function returns index of the
532 * size class which has chunk size big enough to hold the give size.
533 */
61989a80
NG
534static int get_size_class_index(int size)
535{
536 int idx = 0;
537
538 if (likely(size > ZS_MIN_ALLOC_SIZE))
539 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
540 ZS_SIZE_CLASS_DELTA);
541
cf8e0fed 542 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
543}
544
3eb95fea 545/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 546static inline void zs_stat_inc(struct size_class *class,
3eb95fea 547 int type, unsigned long cnt)
248ca1b0 548{
48b4800a 549 class->stats.objs[type] += cnt;
248ca1b0
MK
550}
551
3eb95fea 552/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 553static inline void zs_stat_dec(struct size_class *class,
3eb95fea 554 int type, unsigned long cnt)
248ca1b0 555{
48b4800a 556 class->stats.objs[type] -= cnt;
248ca1b0
MK
557}
558
3eb95fea 559/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 560static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 561 int type)
248ca1b0 562{
48b4800a 563 return class->stats.objs[type];
248ca1b0
MK
564}
565
57244594
SS
566#ifdef CONFIG_ZSMALLOC_STAT
567
4abaac9b 568static void __init zs_stat_init(void)
248ca1b0 569{
4abaac9b
DS
570 if (!debugfs_initialized()) {
571 pr_warn("debugfs not available, stat dir not created\n");
572 return;
573 }
248ca1b0
MK
574
575 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
576 if (!zs_stat_root)
4abaac9b 577 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
578}
579
580static void __exit zs_stat_exit(void)
581{
582 debugfs_remove_recursive(zs_stat_root);
583}
584
1120ed54
SS
585static unsigned long zs_can_compact(struct size_class *class);
586
248ca1b0
MK
587static int zs_stats_size_show(struct seq_file *s, void *v)
588{
589 int i;
590 struct zs_pool *pool = s->private;
591 struct size_class *class;
592 int objs_per_zspage;
593 unsigned long class_almost_full, class_almost_empty;
1120ed54 594 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 597 unsigned long total_freeable = 0;
248ca1b0 598
1120ed54 599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
600 "class", "size", "almost_full", "almost_empty",
601 "obj_allocated", "obj_used", "pages_used",
1120ed54 602 "pages_per_zspage", "freeable");
248ca1b0 603
cf8e0fed 604 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
605 class = pool->size_class[i];
606
607 if (class->index != i)
608 continue;
609
610 spin_lock(&class->lock);
611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 615 freeable = zs_can_compact(class);
248ca1b0
MK
616 spin_unlock(&class->lock);
617
b4fd07a0 618 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
619 pages_used = obj_allocated / objs_per_zspage *
620 class->pages_per_zspage;
621
1120ed54
SS
622 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
624 i, class->size, class_almost_full, class_almost_empty,
625 obj_allocated, obj_used, pages_used,
1120ed54 626 class->pages_per_zspage, freeable);
248ca1b0
MK
627
628 total_class_almost_full += class_almost_full;
629 total_class_almost_empty += class_almost_empty;
630 total_objs += obj_allocated;
631 total_used_objs += obj_used;
632 total_pages += pages_used;
1120ed54 633 total_freeable += freeable;
248ca1b0
MK
634 }
635
636 seq_puts(s, "\n");
1120ed54 637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
638 "Total", "", total_class_almost_full,
639 total_class_almost_empty, total_objs,
1120ed54 640 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
641
642 return 0;
643}
644
645static int zs_stats_size_open(struct inode *inode, struct file *file)
646{
647 return single_open(file, zs_stats_size_show, inode->i_private);
648}
649
650static const struct file_operations zs_stat_size_ops = {
651 .open = zs_stats_size_open,
652 .read = seq_read,
653 .llseek = seq_lseek,
654 .release = single_release,
655};
656
d34f6157 657static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
658{
659 struct dentry *entry;
660
4abaac9b
DS
661 if (!zs_stat_root) {
662 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 663 return;
4abaac9b 664 }
248ca1b0
MK
665
666 entry = debugfs_create_dir(name, zs_stat_root);
667 if (!entry) {
668 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 669 return;
248ca1b0
MK
670 }
671 pool->stat_dentry = entry;
672
673 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
674 pool->stat_dentry, pool, &zs_stat_size_ops);
675 if (!entry) {
676 pr_warn("%s: debugfs file entry <%s> creation failed\n",
677 name, "classes");
4abaac9b
DS
678 debugfs_remove_recursive(pool->stat_dentry);
679 pool->stat_dentry = NULL;
248ca1b0 680 }
248ca1b0
MK
681}
682
683static void zs_pool_stat_destroy(struct zs_pool *pool)
684{
685 debugfs_remove_recursive(pool->stat_dentry);
686}
687
688#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 689static void __init zs_stat_init(void)
248ca1b0 690{
248ca1b0
MK
691}
692
693static void __exit zs_stat_exit(void)
694{
695}
696
d34f6157 697static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 698{
248ca1b0
MK
699}
700
701static inline void zs_pool_stat_destroy(struct zs_pool *pool)
702{
703}
248ca1b0
MK
704#endif
705
48b4800a 706
c3e3e88a
NC
707/*
708 * For each size class, zspages are divided into different groups
709 * depending on how "full" they are. This was done so that we could
710 * easily find empty or nearly empty zspages when we try to shrink
711 * the pool (not yet implemented). This function returns fullness
712 * status of the given page.
713 */
1fc6e27d 714static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 715 struct zspage *zspage)
61989a80 716{
1fc6e27d 717 int inuse, objs_per_zspage;
61989a80 718 enum fullness_group fg;
830e4bc5 719
3783689a 720 inuse = get_zspage_inuse(zspage);
1fc6e27d 721 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
722
723 if (inuse == 0)
724 fg = ZS_EMPTY;
1fc6e27d 725 else if (inuse == objs_per_zspage)
61989a80 726 fg = ZS_FULL;
1fc6e27d 727 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
728 fg = ZS_ALMOST_EMPTY;
729 else
730 fg = ZS_ALMOST_FULL;
731
732 return fg;
733}
734
c3e3e88a
NC
735/*
736 * Each size class maintains various freelists and zspages are assigned
737 * to one of these freelists based on the number of live objects they
738 * have. This functions inserts the given zspage into the freelist
739 * identified by <class, fullness_group>.
740 */
251cbb95 741static void insert_zspage(struct size_class *class,
3783689a
MK
742 struct zspage *zspage,
743 enum fullness_group fullness)
61989a80 744{
3783689a 745 struct zspage *head;
61989a80 746
48b4800a 747 zs_stat_inc(class, fullness, 1);
3783689a
MK
748 head = list_first_entry_or_null(&class->fullness_list[fullness],
749 struct zspage, list);
58f17117 750 /*
3783689a
MK
751 * We want to see more ZS_FULL pages and less almost empty/full.
752 * Put pages with higher ->inuse first.
58f17117 753 */
3783689a
MK
754 if (head) {
755 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
756 list_add(&zspage->list, &head->list);
757 return;
758 }
759 }
760 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
761}
762
c3e3e88a
NC
763/*
764 * This function removes the given zspage from the freelist identified
765 * by <class, fullness_group>.
766 */
251cbb95 767static void remove_zspage(struct size_class *class,
3783689a
MK
768 struct zspage *zspage,
769 enum fullness_group fullness)
61989a80 770{
3783689a 771 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 772 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 773
3783689a 774 list_del_init(&zspage->list);
48b4800a 775 zs_stat_dec(class, fullness, 1);
61989a80
NG
776}
777
c3e3e88a
NC
778/*
779 * Each size class maintains zspages in different fullness groups depending
780 * on the number of live objects they contain. When allocating or freeing
781 * objects, the fullness status of the page can change, say, from ALMOST_FULL
782 * to ALMOST_EMPTY when freeing an object. This function checks if such
783 * a status change has occurred for the given page and accordingly moves the
784 * page from the freelist of the old fullness group to that of the new
785 * fullness group.
786 */
c7806261 787static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 788 struct zspage *zspage)
61989a80
NG
789{
790 int class_idx;
61989a80
NG
791 enum fullness_group currfg, newfg;
792
3783689a
MK
793 get_zspage_mapping(zspage, &class_idx, &currfg);
794 newfg = get_fullness_group(class, zspage);
61989a80
NG
795 if (newfg == currfg)
796 goto out;
797
48b4800a
MK
798 if (!is_zspage_isolated(zspage)) {
799 remove_zspage(class, zspage, currfg);
800 insert_zspage(class, zspage, newfg);
801 }
802
3783689a 803 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
804
805out:
806 return newfg;
807}
808
809/*
810 * We have to decide on how many pages to link together
811 * to form a zspage for each size class. This is important
812 * to reduce wastage due to unusable space left at end of
813 * each zspage which is given as:
888fa374
YX
814 * wastage = Zp % class_size
815 * usage = Zp - wastage
61989a80
NG
816 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
817 *
818 * For example, for size class of 3/8 * PAGE_SIZE, we should
819 * link together 3 PAGE_SIZE sized pages to form a zspage
820 * since then we can perfectly fit in 8 such objects.
821 */
2e3b6154 822static int get_pages_per_zspage(int class_size)
61989a80
NG
823{
824 int i, max_usedpc = 0;
825 /* zspage order which gives maximum used size per KB */
826 int max_usedpc_order = 1;
827
84d4faab 828 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
829 int zspage_size;
830 int waste, usedpc;
831
832 zspage_size = i * PAGE_SIZE;
833 waste = zspage_size % class_size;
834 usedpc = (zspage_size - waste) * 100 / zspage_size;
835
836 if (usedpc > max_usedpc) {
837 max_usedpc = usedpc;
838 max_usedpc_order = i;
839 }
840 }
841
842 return max_usedpc_order;
843}
844
3783689a 845static struct zspage *get_zspage(struct page *page)
61989a80 846{
48b4800a
MK
847 struct zspage *zspage = (struct zspage *)page->private;
848
849 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
850 return zspage;
61989a80
NG
851}
852
853static struct page *get_next_page(struct page *page)
854{
48b4800a
MK
855 if (unlikely(PageHugeObject(page)))
856 return NULL;
857
858 return page->freelist;
61989a80
NG
859}
860
bfd093f5
MK
861/**
862 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
863 * @page: page object resides in zspage
864 * @obj_idx: object index
67296874 865 */
bfd093f5
MK
866static void obj_to_location(unsigned long obj, struct page **page,
867 unsigned int *obj_idx)
61989a80 868{
bfd093f5
MK
869 obj >>= OBJ_TAG_BITS;
870 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
871 *obj_idx = (obj & OBJ_INDEX_MASK);
872}
61989a80 873
bfd093f5
MK
874/**
875 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
876 * @page: page object resides in zspage
877 * @obj_idx: object index
878 */
879static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
880{
881 unsigned long obj;
61989a80 882
312fcae2 883 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 884 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 885 obj <<= OBJ_TAG_BITS;
61989a80 886
bfd093f5 887 return obj;
61989a80
NG
888}
889
2e40e163
MK
890static unsigned long handle_to_obj(unsigned long handle)
891{
892 return *(unsigned long *)handle;
893}
894
48b4800a 895static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 896{
48b4800a 897 if (unlikely(PageHugeObject(page))) {
830e4bc5 898 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 899 return page->index;
7b60a685
MK
900 } else
901 return *(unsigned long *)obj;
312fcae2
MK
902}
903
48b4800a
MK
904static inline int testpin_tag(unsigned long handle)
905{
906 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
907}
908
312fcae2
MK
909static inline int trypin_tag(unsigned long handle)
910{
1b8320b6 911 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
912}
913
914static void pin_tag(unsigned long handle)
915{
1b8320b6 916 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
917}
918
919static void unpin_tag(unsigned long handle)
920{
1b8320b6 921 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
922}
923
f4477e90
NG
924static void reset_page(struct page *page)
925{
48b4800a 926 __ClearPageMovable(page);
18fd06bf 927 ClearPagePrivate(page);
f4477e90 928 set_page_private(page, 0);
48b4800a
MK
929 page_mapcount_reset(page);
930 ClearPageHugeObject(page);
931 page->freelist = NULL;
932}
933
934/*
935 * To prevent zspage destroy during migration, zspage freeing should
936 * hold locks of all pages in the zspage.
937 */
938void lock_zspage(struct zspage *zspage)
939{
940 struct page *page = get_first_page(zspage);
941
942 do {
943 lock_page(page);
944 } while ((page = get_next_page(page)) != NULL);
945}
946
947int trylock_zspage(struct zspage *zspage)
948{
949 struct page *cursor, *fail;
950
951 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
952 get_next_page(cursor)) {
953 if (!trylock_page(cursor)) {
954 fail = cursor;
955 goto unlock;
956 }
957 }
958
959 return 1;
960unlock:
961 for (cursor = get_first_page(zspage); cursor != fail; cursor =
962 get_next_page(cursor))
963 unlock_page(cursor);
964
965 return 0;
f4477e90
NG
966}
967
48b4800a
MK
968static void __free_zspage(struct zs_pool *pool, struct size_class *class,
969 struct zspage *zspage)
61989a80 970{
3783689a 971 struct page *page, *next;
48b4800a
MK
972 enum fullness_group fg;
973 unsigned int class_idx;
974
975 get_zspage_mapping(zspage, &class_idx, &fg);
976
977 assert_spin_locked(&class->lock);
61989a80 978
3783689a 979 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 980 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 981
48b4800a 982 next = page = get_first_page(zspage);
3783689a 983 do {
48b4800a
MK
984 VM_BUG_ON_PAGE(!PageLocked(page), page);
985 next = get_next_page(page);
3783689a 986 reset_page(page);
48b4800a 987 unlock_page(page);
91537fee 988 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
989 put_page(page);
990 page = next;
991 } while (page != NULL);
61989a80 992
3783689a 993 cache_free_zspage(pool, zspage);
48b4800a 994
b4fd07a0 995 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
996 atomic_long_sub(class->pages_per_zspage,
997 &pool->pages_allocated);
998}
999
1000static void free_zspage(struct zs_pool *pool, struct size_class *class,
1001 struct zspage *zspage)
1002{
1003 VM_BUG_ON(get_zspage_inuse(zspage));
1004 VM_BUG_ON(list_empty(&zspage->list));
1005
1006 if (!trylock_zspage(zspage)) {
1007 kick_deferred_free(pool);
1008 return;
1009 }
1010
1011 remove_zspage(class, zspage, ZS_EMPTY);
1012 __free_zspage(pool, class, zspage);
61989a80
NG
1013}
1014
1015/* Initialize a newly allocated zspage */
3783689a 1016static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1017{
bfd093f5 1018 unsigned int freeobj = 1;
61989a80 1019 unsigned long off = 0;
48b4800a 1020 struct page *page = get_first_page(zspage);
830e4bc5 1021
61989a80
NG
1022 while (page) {
1023 struct page *next_page;
1024 struct link_free *link;
af4ee5e9 1025 void *vaddr;
61989a80 1026
3783689a 1027 set_first_obj_offset(page, off);
61989a80 1028
af4ee5e9
MK
1029 vaddr = kmap_atomic(page);
1030 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1031
1032 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1033 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1034 link += class->size / sizeof(*link);
61989a80
NG
1035 }
1036
1037 /*
1038 * We now come to the last (full or partial) object on this
1039 * page, which must point to the first object on the next
1040 * page (if present)
1041 */
1042 next_page = get_next_page(page);
bfd093f5 1043 if (next_page) {
3b1d9ca6 1044 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1045 } else {
1046 /*
3b1d9ca6 1047 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1048 * whether it's allocated object or not.
1049 */
01a6ad9a 1050 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1051 }
af4ee5e9 1052 kunmap_atomic(vaddr);
61989a80 1053 page = next_page;
5538c562 1054 off %= PAGE_SIZE;
61989a80 1055 }
bdb0af7c 1056
bfd093f5 1057 set_freeobj(zspage, 0);
61989a80
NG
1058}
1059
48b4800a
MK
1060static void create_page_chain(struct size_class *class, struct zspage *zspage,
1061 struct page *pages[])
61989a80 1062{
bdb0af7c
MK
1063 int i;
1064 struct page *page;
1065 struct page *prev_page = NULL;
48b4800a 1066 int nr_pages = class->pages_per_zspage;
61989a80
NG
1067
1068 /*
1069 * Allocate individual pages and link them together as:
48b4800a 1070 * 1. all pages are linked together using page->freelist
3783689a 1071 * 2. each sub-page point to zspage using page->private
61989a80 1072 *
3783689a 1073 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1074 * has this flag set).
61989a80 1075 */
bdb0af7c
MK
1076 for (i = 0; i < nr_pages; i++) {
1077 page = pages[i];
3783689a 1078 set_page_private(page, (unsigned long)zspage);
48b4800a 1079 page->freelist = NULL;
bdb0af7c 1080 if (i == 0) {
3783689a 1081 zspage->first_page = page;
a27545bf 1082 SetPagePrivate(page);
48b4800a
MK
1083 if (unlikely(class->objs_per_zspage == 1 &&
1084 class->pages_per_zspage == 1))
1085 SetPageHugeObject(page);
3783689a 1086 } else {
48b4800a 1087 prev_page->freelist = page;
61989a80 1088 }
61989a80
NG
1089 prev_page = page;
1090 }
bdb0af7c 1091}
61989a80 1092
bdb0af7c
MK
1093/*
1094 * Allocate a zspage for the given size class
1095 */
3783689a
MK
1096static struct zspage *alloc_zspage(struct zs_pool *pool,
1097 struct size_class *class,
1098 gfp_t gfp)
bdb0af7c
MK
1099{
1100 int i;
bdb0af7c 1101 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1102 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1103
1104 if (!zspage)
1105 return NULL;
1106
1107 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1108 zspage->magic = ZSPAGE_MAGIC;
1109 migrate_lock_init(zspage);
61989a80 1110
bdb0af7c
MK
1111 for (i = 0; i < class->pages_per_zspage; i++) {
1112 struct page *page;
61989a80 1113
3783689a 1114 page = alloc_page(gfp);
bdb0af7c 1115 if (!page) {
91537fee
MK
1116 while (--i >= 0) {
1117 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1118 __free_page(pages[i]);
91537fee 1119 }
3783689a 1120 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1121 return NULL;
1122 }
91537fee
MK
1123
1124 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1125 pages[i] = page;
61989a80
NG
1126 }
1127
48b4800a 1128 create_page_chain(class, zspage, pages);
3783689a 1129 init_zspage(class, zspage);
bdb0af7c 1130
3783689a 1131 return zspage;
61989a80
NG
1132}
1133
3783689a 1134static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1135{
1136 int i;
3783689a 1137 struct zspage *zspage;
61989a80 1138
48b4800a 1139 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1140 zspage = list_first_entry_or_null(&class->fullness_list[i],
1141 struct zspage, list);
1142 if (zspage)
61989a80
NG
1143 break;
1144 }
1145
3783689a 1146 return zspage;
61989a80
NG
1147}
1148
1b945aee 1149#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1150static inline int __zs_cpu_up(struct mapping_area *area)
1151{
1152 /*
1153 * Make sure we don't leak memory if a cpu UP notification
1154 * and zs_init() race and both call zs_cpu_up() on the same cpu
1155 */
1156 if (area->vm)
1157 return 0;
1158 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1159 if (!area->vm)
1160 return -ENOMEM;
1161 return 0;
1162}
1163
1164static inline void __zs_cpu_down(struct mapping_area *area)
1165{
1166 if (area->vm)
1167 free_vm_area(area->vm);
1168 area->vm = NULL;
1169}
1170
1171static inline void *__zs_map_object(struct mapping_area *area,
1172 struct page *pages[2], int off, int size)
1173{
f6f8ed47 1174 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1175 area->vm_addr = area->vm->addr;
1176 return area->vm_addr + off;
1177}
1178
1179static inline void __zs_unmap_object(struct mapping_area *area,
1180 struct page *pages[2], int off, int size)
1181{
1182 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1183
d95abbbb 1184 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1185}
1186
1b945aee 1187#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1188
1189static inline int __zs_cpu_up(struct mapping_area *area)
1190{
1191 /*
1192 * Make sure we don't leak memory if a cpu UP notification
1193 * and zs_init() race and both call zs_cpu_up() on the same cpu
1194 */
1195 if (area->vm_buf)
1196 return 0;
40f9fb8c 1197 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1198 if (!area->vm_buf)
1199 return -ENOMEM;
1200 return 0;
1201}
1202
1203static inline void __zs_cpu_down(struct mapping_area *area)
1204{
40f9fb8c 1205 kfree(area->vm_buf);
f553646a
SJ
1206 area->vm_buf = NULL;
1207}
1208
1209static void *__zs_map_object(struct mapping_area *area,
1210 struct page *pages[2], int off, int size)
5f601902 1211{
5f601902
SJ
1212 int sizes[2];
1213 void *addr;
f553646a 1214 char *buf = area->vm_buf;
5f601902 1215
f553646a
SJ
1216 /* disable page faults to match kmap_atomic() return conditions */
1217 pagefault_disable();
1218
1219 /* no read fastpath */
1220 if (area->vm_mm == ZS_MM_WO)
1221 goto out;
5f601902
SJ
1222
1223 sizes[0] = PAGE_SIZE - off;
1224 sizes[1] = size - sizes[0];
1225
5f601902
SJ
1226 /* copy object to per-cpu buffer */
1227 addr = kmap_atomic(pages[0]);
1228 memcpy(buf, addr + off, sizes[0]);
1229 kunmap_atomic(addr);
1230 addr = kmap_atomic(pages[1]);
1231 memcpy(buf + sizes[0], addr, sizes[1]);
1232 kunmap_atomic(addr);
f553646a
SJ
1233out:
1234 return area->vm_buf;
5f601902
SJ
1235}
1236
f553646a
SJ
1237static void __zs_unmap_object(struct mapping_area *area,
1238 struct page *pages[2], int off, int size)
5f601902 1239{
5f601902
SJ
1240 int sizes[2];
1241 void *addr;
2e40e163 1242 char *buf;
5f601902 1243
f553646a
SJ
1244 /* no write fastpath */
1245 if (area->vm_mm == ZS_MM_RO)
1246 goto out;
5f601902 1247
7b60a685 1248 buf = area->vm_buf;
a82cbf07
YX
1249 buf = buf + ZS_HANDLE_SIZE;
1250 size -= ZS_HANDLE_SIZE;
1251 off += ZS_HANDLE_SIZE;
2e40e163 1252
5f601902
SJ
1253 sizes[0] = PAGE_SIZE - off;
1254 sizes[1] = size - sizes[0];
1255
1256 /* copy per-cpu buffer to object */
1257 addr = kmap_atomic(pages[0]);
1258 memcpy(addr + off, buf, sizes[0]);
1259 kunmap_atomic(addr);
1260 addr = kmap_atomic(pages[1]);
1261 memcpy(addr, buf + sizes[0], sizes[1]);
1262 kunmap_atomic(addr);
f553646a
SJ
1263
1264out:
1265 /* enable page faults to match kunmap_atomic() return conditions */
1266 pagefault_enable();
5f601902 1267}
61989a80 1268
1b945aee 1269#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1270
215c89d0 1271static int zs_cpu_prepare(unsigned int cpu)
61989a80 1272{
61989a80
NG
1273 struct mapping_area *area;
1274
215c89d0
SAS
1275 area = &per_cpu(zs_map_area, cpu);
1276 return __zs_cpu_up(area);
61989a80
NG
1277}
1278
215c89d0 1279static int zs_cpu_dead(unsigned int cpu)
61989a80 1280{
215c89d0 1281 struct mapping_area *area;
40f9fb8c 1282
215c89d0
SAS
1283 area = &per_cpu(zs_map_area, cpu);
1284 __zs_cpu_down(area);
1285 return 0;
b1b00a5b
SS
1286}
1287
64d90465
GM
1288static bool can_merge(struct size_class *prev, int pages_per_zspage,
1289 int objs_per_zspage)
9eec4cd5 1290{
64d90465
GM
1291 if (prev->pages_per_zspage == pages_per_zspage &&
1292 prev->objs_per_zspage == objs_per_zspage)
1293 return true;
9eec4cd5 1294
64d90465 1295 return false;
9eec4cd5
JK
1296}
1297
3783689a 1298static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1299{
3783689a 1300 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1301}
1302
66cdef66
GM
1303unsigned long zs_get_total_pages(struct zs_pool *pool)
1304{
1305 return atomic_long_read(&pool->pages_allocated);
1306}
1307EXPORT_SYMBOL_GPL(zs_get_total_pages);
1308
4bbc0bc0 1309/**
66cdef66
GM
1310 * zs_map_object - get address of allocated object from handle.
1311 * @pool: pool from which the object was allocated
1312 * @handle: handle returned from zs_malloc
4bbc0bc0 1313 *
66cdef66
GM
1314 * Before using an object allocated from zs_malloc, it must be mapped using
1315 * this function. When done with the object, it must be unmapped using
1316 * zs_unmap_object.
4bbc0bc0 1317 *
66cdef66
GM
1318 * Only one object can be mapped per cpu at a time. There is no protection
1319 * against nested mappings.
1320 *
1321 * This function returns with preemption and page faults disabled.
4bbc0bc0 1322 */
66cdef66
GM
1323void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1324 enum zs_mapmode mm)
61989a80 1325{
3783689a 1326 struct zspage *zspage;
66cdef66 1327 struct page *page;
bfd093f5
MK
1328 unsigned long obj, off;
1329 unsigned int obj_idx;
61989a80 1330
66cdef66
GM
1331 unsigned int class_idx;
1332 enum fullness_group fg;
1333 struct size_class *class;
1334 struct mapping_area *area;
1335 struct page *pages[2];
2e40e163 1336 void *ret;
61989a80 1337
9eec4cd5 1338 /*
66cdef66
GM
1339 * Because we use per-cpu mapping areas shared among the
1340 * pools/users, we can't allow mapping in interrupt context
1341 * because it can corrupt another users mappings.
9eec4cd5 1342 */
1aedcafb 1343 BUG_ON(in_interrupt());
61989a80 1344
312fcae2
MK
1345 /* From now on, migration cannot move the object */
1346 pin_tag(handle);
1347
2e40e163
MK
1348 obj = handle_to_obj(handle);
1349 obj_to_location(obj, &page, &obj_idx);
3783689a 1350 zspage = get_zspage(page);
48b4800a
MK
1351
1352 /* migration cannot move any subpage in this zspage */
1353 migrate_read_lock(zspage);
1354
3783689a 1355 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1356 class = pool->size_class[class_idx];
bfd093f5 1357 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1358
66cdef66
GM
1359 area = &get_cpu_var(zs_map_area);
1360 area->vm_mm = mm;
1361 if (off + class->size <= PAGE_SIZE) {
1362 /* this object is contained entirely within a page */
1363 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1364 ret = area->vm_addr + off;
1365 goto out;
61989a80
NG
1366 }
1367
66cdef66
GM
1368 /* this object spans two pages */
1369 pages[0] = page;
1370 pages[1] = get_next_page(page);
1371 BUG_ON(!pages[1]);
9eec4cd5 1372
2e40e163
MK
1373 ret = __zs_map_object(area, pages, off, class->size);
1374out:
48b4800a 1375 if (likely(!PageHugeObject(page)))
7b60a685
MK
1376 ret += ZS_HANDLE_SIZE;
1377
1378 return ret;
61989a80 1379}
66cdef66 1380EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1381
66cdef66 1382void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1383{
3783689a 1384 struct zspage *zspage;
66cdef66 1385 struct page *page;
bfd093f5
MK
1386 unsigned long obj, off;
1387 unsigned int obj_idx;
61989a80 1388
66cdef66
GM
1389 unsigned int class_idx;
1390 enum fullness_group fg;
1391 struct size_class *class;
1392 struct mapping_area *area;
9eec4cd5 1393
2e40e163
MK
1394 obj = handle_to_obj(handle);
1395 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1396 zspage = get_zspage(page);
1397 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1398 class = pool->size_class[class_idx];
bfd093f5 1399 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1400
66cdef66
GM
1401 area = this_cpu_ptr(&zs_map_area);
1402 if (off + class->size <= PAGE_SIZE)
1403 kunmap_atomic(area->vm_addr);
1404 else {
1405 struct page *pages[2];
40f9fb8c 1406
66cdef66
GM
1407 pages[0] = page;
1408 pages[1] = get_next_page(page);
1409 BUG_ON(!pages[1]);
1410
1411 __zs_unmap_object(area, pages, off, class->size);
1412 }
1413 put_cpu_var(zs_map_area);
48b4800a
MK
1414
1415 migrate_read_unlock(zspage);
312fcae2 1416 unpin_tag(handle);
61989a80 1417}
66cdef66 1418EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1419
251cbb95 1420static unsigned long obj_malloc(struct size_class *class,
3783689a 1421 struct zspage *zspage, unsigned long handle)
c7806261 1422{
bfd093f5 1423 int i, nr_page, offset;
c7806261
MK
1424 unsigned long obj;
1425 struct link_free *link;
1426
1427 struct page *m_page;
bfd093f5 1428 unsigned long m_offset;
c7806261
MK
1429 void *vaddr;
1430
312fcae2 1431 handle |= OBJ_ALLOCATED_TAG;
3783689a 1432 obj = get_freeobj(zspage);
bfd093f5
MK
1433
1434 offset = obj * class->size;
1435 nr_page = offset >> PAGE_SHIFT;
1436 m_offset = offset & ~PAGE_MASK;
1437 m_page = get_first_page(zspage);
1438
1439 for (i = 0; i < nr_page; i++)
1440 m_page = get_next_page(m_page);
c7806261
MK
1441
1442 vaddr = kmap_atomic(m_page);
1443 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1444 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1445 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1446 /* record handle in the header of allocated chunk */
1447 link->handle = handle;
1448 else
3783689a
MK
1449 /* record handle to page->index */
1450 zspage->first_page->index = handle;
1451
c7806261 1452 kunmap_atomic(vaddr);
3783689a 1453 mod_zspage_inuse(zspage, 1);
c7806261
MK
1454 zs_stat_inc(class, OBJ_USED, 1);
1455
bfd093f5
MK
1456 obj = location_to_obj(m_page, obj);
1457
c7806261
MK
1458 return obj;
1459}
1460
1461
61989a80
NG
1462/**
1463 * zs_malloc - Allocate block of given size from pool.
1464 * @pool: pool to allocate from
1465 * @size: size of block to allocate
fd854463 1466 * @gfp: gfp flags when allocating object
61989a80 1467 *
00a61d86 1468 * On success, handle to the allocated object is returned,
c2344348 1469 * otherwise 0.
61989a80
NG
1470 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1471 */
d0d8da2d 1472unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1473{
2e40e163 1474 unsigned long handle, obj;
61989a80 1475 struct size_class *class;
48b4800a 1476 enum fullness_group newfg;
3783689a 1477 struct zspage *zspage;
61989a80 1478
7b60a685 1479 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1480 return 0;
1481
3783689a 1482 handle = cache_alloc_handle(pool, gfp);
2e40e163 1483 if (!handle)
c2344348 1484 return 0;
61989a80 1485
2e40e163
MK
1486 /* extra space in chunk to keep the handle */
1487 size += ZS_HANDLE_SIZE;
9eec4cd5 1488 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1489
1490 spin_lock(&class->lock);
3783689a 1491 zspage = find_get_zspage(class);
48b4800a
MK
1492 if (likely(zspage)) {
1493 obj = obj_malloc(class, zspage, handle);
1494 /* Now move the zspage to another fullness group, if required */
1495 fix_fullness_group(class, zspage);
1496 record_obj(handle, obj);
61989a80 1497 spin_unlock(&class->lock);
61989a80 1498
48b4800a
MK
1499 return handle;
1500 }
0f050d99 1501
48b4800a
MK
1502 spin_unlock(&class->lock);
1503
1504 zspage = alloc_zspage(pool, class, gfp);
1505 if (!zspage) {
1506 cache_free_handle(pool, handle);
1507 return 0;
61989a80
NG
1508 }
1509
48b4800a 1510 spin_lock(&class->lock);
3783689a 1511 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1512 newfg = get_fullness_group(class, zspage);
1513 insert_zspage(class, zspage, newfg);
1514 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1515 record_obj(handle, obj);
48b4800a
MK
1516 atomic_long_add(class->pages_per_zspage,
1517 &pool->pages_allocated);
b4fd07a0 1518 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1519
1520 /* We completely set up zspage so mark them as movable */
1521 SetZsPageMovable(pool, zspage);
61989a80
NG
1522 spin_unlock(&class->lock);
1523
2e40e163 1524 return handle;
61989a80
NG
1525}
1526EXPORT_SYMBOL_GPL(zs_malloc);
1527
1ee47165 1528static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1529{
1530 struct link_free *link;
3783689a
MK
1531 struct zspage *zspage;
1532 struct page *f_page;
bfd093f5
MK
1533 unsigned long f_offset;
1534 unsigned int f_objidx;
af4ee5e9 1535 void *vaddr;
61989a80 1536
312fcae2 1537 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1538 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1539 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1540 zspage = get_zspage(f_page);
61989a80 1541
c7806261 1542 vaddr = kmap_atomic(f_page);
61989a80
NG
1543
1544 /* Insert this object in containing zspage's freelist */
af4ee5e9 1545 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1546 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1547 kunmap_atomic(vaddr);
bfd093f5 1548 set_freeobj(zspage, f_objidx);
3783689a 1549 mod_zspage_inuse(zspage, -1);
0f050d99 1550 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1551}
1552
1553void zs_free(struct zs_pool *pool, unsigned long handle)
1554{
3783689a
MK
1555 struct zspage *zspage;
1556 struct page *f_page;
bfd093f5
MK
1557 unsigned long obj;
1558 unsigned int f_objidx;
c7806261
MK
1559 int class_idx;
1560 struct size_class *class;
1561 enum fullness_group fullness;
48b4800a 1562 bool isolated;
c7806261
MK
1563
1564 if (unlikely(!handle))
1565 return;
1566
312fcae2 1567 pin_tag(handle);
c7806261 1568 obj = handle_to_obj(handle);
c7806261 1569 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1570 zspage = get_zspage(f_page);
c7806261 1571
48b4800a
MK
1572 migrate_read_lock(zspage);
1573
3783689a 1574 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1575 class = pool->size_class[class_idx];
1576
1577 spin_lock(&class->lock);
1ee47165 1578 obj_free(class, obj);
3783689a 1579 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1580 if (fullness != ZS_EMPTY) {
1581 migrate_read_unlock(zspage);
1582 goto out;
312fcae2 1583 }
48b4800a
MK
1584
1585 isolated = is_zspage_isolated(zspage);
1586 migrate_read_unlock(zspage);
1587 /* If zspage is isolated, zs_page_putback will free the zspage */
1588 if (likely(!isolated))
1589 free_zspage(pool, class, zspage);
1590out:
1591
61989a80 1592 spin_unlock(&class->lock);
312fcae2 1593 unpin_tag(handle);
3783689a 1594 cache_free_handle(pool, handle);
312fcae2
MK
1595}
1596EXPORT_SYMBOL_GPL(zs_free);
1597
251cbb95
MK
1598static void zs_object_copy(struct size_class *class, unsigned long dst,
1599 unsigned long src)
312fcae2
MK
1600{
1601 struct page *s_page, *d_page;
bfd093f5 1602 unsigned int s_objidx, d_objidx;
312fcae2
MK
1603 unsigned long s_off, d_off;
1604 void *s_addr, *d_addr;
1605 int s_size, d_size, size;
1606 int written = 0;
1607
1608 s_size = d_size = class->size;
1609
1610 obj_to_location(src, &s_page, &s_objidx);
1611 obj_to_location(dst, &d_page, &d_objidx);
1612
bfd093f5
MK
1613 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1614 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1615
1616 if (s_off + class->size > PAGE_SIZE)
1617 s_size = PAGE_SIZE - s_off;
1618
1619 if (d_off + class->size > PAGE_SIZE)
1620 d_size = PAGE_SIZE - d_off;
1621
1622 s_addr = kmap_atomic(s_page);
1623 d_addr = kmap_atomic(d_page);
1624
1625 while (1) {
1626 size = min(s_size, d_size);
1627 memcpy(d_addr + d_off, s_addr + s_off, size);
1628 written += size;
1629
1630 if (written == class->size)
1631 break;
1632
495819ea
SS
1633 s_off += size;
1634 s_size -= size;
1635 d_off += size;
1636 d_size -= size;
1637
1638 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1639 kunmap_atomic(d_addr);
1640 kunmap_atomic(s_addr);
1641 s_page = get_next_page(s_page);
312fcae2
MK
1642 s_addr = kmap_atomic(s_page);
1643 d_addr = kmap_atomic(d_page);
1644 s_size = class->size - written;
1645 s_off = 0;
312fcae2
MK
1646 }
1647
495819ea 1648 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1649 kunmap_atomic(d_addr);
1650 d_page = get_next_page(d_page);
312fcae2
MK
1651 d_addr = kmap_atomic(d_page);
1652 d_size = class->size - written;
1653 d_off = 0;
312fcae2
MK
1654 }
1655 }
1656
1657 kunmap_atomic(d_addr);
1658 kunmap_atomic(s_addr);
1659}
1660
1661/*
1662 * Find alloced object in zspage from index object and
1663 * return handle.
1664 */
251cbb95 1665static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1666 struct page *page, int *obj_idx)
312fcae2
MK
1667{
1668 unsigned long head;
1669 int offset = 0;
cf675acb 1670 int index = *obj_idx;
312fcae2
MK
1671 unsigned long handle = 0;
1672 void *addr = kmap_atomic(page);
1673
3783689a 1674 offset = get_first_obj_offset(page);
312fcae2
MK
1675 offset += class->size * index;
1676
1677 while (offset < PAGE_SIZE) {
48b4800a 1678 head = obj_to_head(page, addr + offset);
312fcae2
MK
1679 if (head & OBJ_ALLOCATED_TAG) {
1680 handle = head & ~OBJ_ALLOCATED_TAG;
1681 if (trypin_tag(handle))
1682 break;
1683 handle = 0;
1684 }
1685
1686 offset += class->size;
1687 index++;
1688 }
1689
1690 kunmap_atomic(addr);
cf675acb
GM
1691
1692 *obj_idx = index;
1693
312fcae2
MK
1694 return handle;
1695}
1696
1697struct zs_compact_control {
3783689a 1698 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1699 struct page *s_page;
1700 /* Destination page for migration which should be a first page
1701 * of zspage. */
1702 struct page *d_page;
1703 /* Starting object index within @s_page which used for live object
1704 * in the subpage. */
41b88e14 1705 int obj_idx;
312fcae2
MK
1706};
1707
1708static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1709 struct zs_compact_control *cc)
1710{
1711 unsigned long used_obj, free_obj;
1712 unsigned long handle;
1713 struct page *s_page = cc->s_page;
1714 struct page *d_page = cc->d_page;
41b88e14 1715 int obj_idx = cc->obj_idx;
312fcae2
MK
1716 int ret = 0;
1717
1718 while (1) {
cf675acb 1719 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1720 if (!handle) {
1721 s_page = get_next_page(s_page);
1722 if (!s_page)
1723 break;
41b88e14 1724 obj_idx = 0;
312fcae2
MK
1725 continue;
1726 }
1727
1728 /* Stop if there is no more space */
3783689a 1729 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1730 unpin_tag(handle);
1731 ret = -ENOMEM;
1732 break;
1733 }
1734
1735 used_obj = handle_to_obj(handle);
3783689a 1736 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1737 zs_object_copy(class, free_obj, used_obj);
41b88e14 1738 obj_idx++;
c102f07c
JL
1739 /*
1740 * record_obj updates handle's value to free_obj and it will
1741 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1742 * breaks synchronization using pin_tag(e,g, zs_free) so
1743 * let's keep the lock bit.
1744 */
1745 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1746 record_obj(handle, free_obj);
1747 unpin_tag(handle);
1ee47165 1748 obj_free(class, used_obj);
312fcae2
MK
1749 }
1750
1751 /* Remember last position in this iteration */
1752 cc->s_page = s_page;
41b88e14 1753 cc->obj_idx = obj_idx;
312fcae2
MK
1754
1755 return ret;
1756}
1757
3783689a 1758static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1759{
1760 int i;
3783689a
MK
1761 struct zspage *zspage;
1762 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1763
3783689a
MK
1764 if (!source) {
1765 fg[0] = ZS_ALMOST_FULL;
1766 fg[1] = ZS_ALMOST_EMPTY;
1767 }
1768
1769 for (i = 0; i < 2; i++) {
1770 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1771 struct zspage, list);
1772 if (zspage) {
48b4800a 1773 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1774 remove_zspage(class, zspage, fg[i]);
1775 return zspage;
312fcae2
MK
1776 }
1777 }
1778
3783689a 1779 return zspage;
312fcae2
MK
1780}
1781
860c707d 1782/*
3783689a 1783 * putback_zspage - add @zspage into right class's fullness list
860c707d 1784 * @class: destination class
3783689a 1785 * @zspage: target page
860c707d 1786 *
3783689a 1787 * Return @zspage's fullness_group
860c707d 1788 */
4aa409ca 1789static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1790 struct zspage *zspage)
312fcae2 1791{
312fcae2
MK
1792 enum fullness_group fullness;
1793
48b4800a
MK
1794 VM_BUG_ON(is_zspage_isolated(zspage));
1795
3783689a
MK
1796 fullness = get_fullness_group(class, zspage);
1797 insert_zspage(class, zspage, fullness);
1798 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1799
860c707d 1800 return fullness;
61989a80 1801}
312fcae2 1802
48b4800a
MK
1803#ifdef CONFIG_COMPACTION
1804static struct dentry *zs_mount(struct file_system_type *fs_type,
1805 int flags, const char *dev_name, void *data)
1806{
1807 static const struct dentry_operations ops = {
1808 .d_dname = simple_dname,
1809 };
1810
1811 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1812}
1813
1814static struct file_system_type zsmalloc_fs = {
1815 .name = "zsmalloc",
1816 .mount = zs_mount,
1817 .kill_sb = kill_anon_super,
1818};
1819
1820static int zsmalloc_mount(void)
1821{
1822 int ret = 0;
1823
1824 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1825 if (IS_ERR(zsmalloc_mnt))
1826 ret = PTR_ERR(zsmalloc_mnt);
1827
1828 return ret;
1829}
1830
1831static void zsmalloc_unmount(void)
1832{
1833 kern_unmount(zsmalloc_mnt);
1834}
1835
1836static void migrate_lock_init(struct zspage *zspage)
1837{
1838 rwlock_init(&zspage->lock);
1839}
1840
1841static void migrate_read_lock(struct zspage *zspage)
1842{
1843 read_lock(&zspage->lock);
1844}
1845
1846static void migrate_read_unlock(struct zspage *zspage)
1847{
1848 read_unlock(&zspage->lock);
1849}
1850
1851static void migrate_write_lock(struct zspage *zspage)
1852{
1853 write_lock(&zspage->lock);
1854}
1855
1856static void migrate_write_unlock(struct zspage *zspage)
1857{
1858 write_unlock(&zspage->lock);
1859}
1860
1861/* Number of isolated subpage for *page migration* in this zspage */
1862static void inc_zspage_isolation(struct zspage *zspage)
1863{
1864 zspage->isolated++;
1865}
1866
1867static void dec_zspage_isolation(struct zspage *zspage)
1868{
1869 zspage->isolated--;
1870}
1871
1872static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1873 struct page *newpage, struct page *oldpage)
1874{
1875 struct page *page;
1876 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1877 int idx = 0;
1878
1879 page = get_first_page(zspage);
1880 do {
1881 if (page == oldpage)
1882 pages[idx] = newpage;
1883 else
1884 pages[idx] = page;
1885 idx++;
1886 } while ((page = get_next_page(page)) != NULL);
1887
1888 create_page_chain(class, zspage, pages);
1889 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1890 if (unlikely(PageHugeObject(oldpage)))
1891 newpage->index = oldpage->index;
1892 __SetPageMovable(newpage, page_mapping(oldpage));
1893}
1894
1895bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1896{
1897 struct zs_pool *pool;
1898 struct size_class *class;
1899 int class_idx;
1900 enum fullness_group fullness;
1901 struct zspage *zspage;
1902 struct address_space *mapping;
1903
1904 /*
1905 * Page is locked so zspage couldn't be destroyed. For detail, look at
1906 * lock_zspage in free_zspage.
1907 */
1908 VM_BUG_ON_PAGE(!PageMovable(page), page);
1909 VM_BUG_ON_PAGE(PageIsolated(page), page);
1910
1911 zspage = get_zspage(page);
1912
1913 /*
1914 * Without class lock, fullness could be stale while class_idx is okay
1915 * because class_idx is constant unless page is freed so we should get
1916 * fullness again under class lock.
1917 */
1918 get_zspage_mapping(zspage, &class_idx, &fullness);
1919 mapping = page_mapping(page);
1920 pool = mapping->private_data;
1921 class = pool->size_class[class_idx];
1922
1923 spin_lock(&class->lock);
1924 if (get_zspage_inuse(zspage) == 0) {
1925 spin_unlock(&class->lock);
1926 return false;
1927 }
1928
1929 /* zspage is isolated for object migration */
1930 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1931 spin_unlock(&class->lock);
1932 return false;
1933 }
1934
1935 /*
1936 * If this is first time isolation for the zspage, isolate zspage from
1937 * size_class to prevent further object allocation from the zspage.
1938 */
1939 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1940 get_zspage_mapping(zspage, &class_idx, &fullness);
1941 remove_zspage(class, zspage, fullness);
1942 }
1943
1944 inc_zspage_isolation(zspage);
1945 spin_unlock(&class->lock);
1946
1947 return true;
1948}
1949
1950int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1951 struct page *page, enum migrate_mode mode)
1952{
1953 struct zs_pool *pool;
1954 struct size_class *class;
1955 int class_idx;
1956 enum fullness_group fullness;
1957 struct zspage *zspage;
1958 struct page *dummy;
1959 void *s_addr, *d_addr, *addr;
1960 int offset, pos;
1961 unsigned long handle, head;
1962 unsigned long old_obj, new_obj;
1963 unsigned int obj_idx;
1964 int ret = -EAGAIN;
1965
2916ecc0
JG
1966 /*
1967 * We cannot support the _NO_COPY case here, because copy needs to
1968 * happen under the zs lock, which does not work with
1969 * MIGRATE_SYNC_NO_COPY workflow.
1970 */
1971 if (mode == MIGRATE_SYNC_NO_COPY)
1972 return -EINVAL;
1973
48b4800a
MK
1974 VM_BUG_ON_PAGE(!PageMovable(page), page);
1975 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1976
1977 zspage = get_zspage(page);
1978
1979 /* Concurrent compactor cannot migrate any subpage in zspage */
1980 migrate_write_lock(zspage);
1981 get_zspage_mapping(zspage, &class_idx, &fullness);
1982 pool = mapping->private_data;
1983 class = pool->size_class[class_idx];
1984 offset = get_first_obj_offset(page);
1985
1986 spin_lock(&class->lock);
1987 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1988 /*
1989 * Set "offset" to end of the page so that every loops
1990 * skips unnecessary object scanning.
1991 */
1992 offset = PAGE_SIZE;
48b4800a
MK
1993 }
1994
1995 pos = offset;
1996 s_addr = kmap_atomic(page);
1997 while (pos < PAGE_SIZE) {
1998 head = obj_to_head(page, s_addr + pos);
1999 if (head & OBJ_ALLOCATED_TAG) {
2000 handle = head & ~OBJ_ALLOCATED_TAG;
2001 if (!trypin_tag(handle))
2002 goto unpin_objects;
2003 }
2004 pos += class->size;
2005 }
2006
2007 /*
2008 * Here, any user cannot access all objects in the zspage so let's move.
2009 */
2010 d_addr = kmap_atomic(newpage);
2011 memcpy(d_addr, s_addr, PAGE_SIZE);
2012 kunmap_atomic(d_addr);
2013
2014 for (addr = s_addr + offset; addr < s_addr + pos;
2015 addr += class->size) {
2016 head = obj_to_head(page, addr);
2017 if (head & OBJ_ALLOCATED_TAG) {
2018 handle = head & ~OBJ_ALLOCATED_TAG;
2019 if (!testpin_tag(handle))
2020 BUG();
2021
2022 old_obj = handle_to_obj(handle);
2023 obj_to_location(old_obj, &dummy, &obj_idx);
2024 new_obj = (unsigned long)location_to_obj(newpage,
2025 obj_idx);
2026 new_obj |= BIT(HANDLE_PIN_BIT);
2027 record_obj(handle, new_obj);
2028 }
2029 }
2030
2031 replace_sub_page(class, zspage, newpage, page);
2032 get_page(newpage);
2033
2034 dec_zspage_isolation(zspage);
2035
2036 /*
2037 * Page migration is done so let's putback isolated zspage to
2038 * the list if @page is final isolated subpage in the zspage.
2039 */
2040 if (!is_zspage_isolated(zspage))
2041 putback_zspage(class, zspage);
2042
2043 reset_page(page);
2044 put_page(page);
2045 page = newpage;
2046
dd4123f3 2047 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2048unpin_objects:
2049 for (addr = s_addr + offset; addr < s_addr + pos;
2050 addr += class->size) {
2051 head = obj_to_head(page, addr);
2052 if (head & OBJ_ALLOCATED_TAG) {
2053 handle = head & ~OBJ_ALLOCATED_TAG;
2054 if (!testpin_tag(handle))
2055 BUG();
2056 unpin_tag(handle);
2057 }
2058 }
2059 kunmap_atomic(s_addr);
48b4800a
MK
2060 spin_unlock(&class->lock);
2061 migrate_write_unlock(zspage);
2062
2063 return ret;
2064}
2065
2066void zs_page_putback(struct page *page)
2067{
2068 struct zs_pool *pool;
2069 struct size_class *class;
2070 int class_idx;
2071 enum fullness_group fg;
2072 struct address_space *mapping;
2073 struct zspage *zspage;
2074
2075 VM_BUG_ON_PAGE(!PageMovable(page), page);
2076 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2077
2078 zspage = get_zspage(page);
2079 get_zspage_mapping(zspage, &class_idx, &fg);
2080 mapping = page_mapping(page);
2081 pool = mapping->private_data;
2082 class = pool->size_class[class_idx];
2083
2084 spin_lock(&class->lock);
2085 dec_zspage_isolation(zspage);
2086 if (!is_zspage_isolated(zspage)) {
2087 fg = putback_zspage(class, zspage);
2088 /*
2089 * Due to page_lock, we cannot free zspage immediately
2090 * so let's defer.
2091 */
2092 if (fg == ZS_EMPTY)
2093 schedule_work(&pool->free_work);
2094 }
2095 spin_unlock(&class->lock);
2096}
2097
2098const struct address_space_operations zsmalloc_aops = {
2099 .isolate_page = zs_page_isolate,
2100 .migratepage = zs_page_migrate,
2101 .putback_page = zs_page_putback,
2102};
2103
2104static int zs_register_migration(struct zs_pool *pool)
2105{
2106 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2107 if (IS_ERR(pool->inode)) {
2108 pool->inode = NULL;
2109 return 1;
2110 }
2111
2112 pool->inode->i_mapping->private_data = pool;
2113 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2114 return 0;
2115}
2116
2117static void zs_unregister_migration(struct zs_pool *pool)
2118{
2119 flush_work(&pool->free_work);
c3491eca 2120 iput(pool->inode);
48b4800a
MK
2121}
2122
2123/*
2124 * Caller should hold page_lock of all pages in the zspage
2125 * In here, we cannot use zspage meta data.
2126 */
2127static void async_free_zspage(struct work_struct *work)
2128{
2129 int i;
2130 struct size_class *class;
2131 unsigned int class_idx;
2132 enum fullness_group fullness;
2133 struct zspage *zspage, *tmp;
2134 LIST_HEAD(free_pages);
2135 struct zs_pool *pool = container_of(work, struct zs_pool,
2136 free_work);
2137
cf8e0fed 2138 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2139 class = pool->size_class[i];
2140 if (class->index != i)
2141 continue;
2142
2143 spin_lock(&class->lock);
2144 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2145 spin_unlock(&class->lock);
2146 }
2147
2148
2149 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2150 list_del(&zspage->list);
2151 lock_zspage(zspage);
2152
2153 get_zspage_mapping(zspage, &class_idx, &fullness);
2154 VM_BUG_ON(fullness != ZS_EMPTY);
2155 class = pool->size_class[class_idx];
2156 spin_lock(&class->lock);
2157 __free_zspage(pool, pool->size_class[class_idx], zspage);
2158 spin_unlock(&class->lock);
2159 }
2160};
2161
2162static void kick_deferred_free(struct zs_pool *pool)
2163{
2164 schedule_work(&pool->free_work);
2165}
2166
2167static void init_deferred_free(struct zs_pool *pool)
2168{
2169 INIT_WORK(&pool->free_work, async_free_zspage);
2170}
2171
2172static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2173{
2174 struct page *page = get_first_page(zspage);
2175
2176 do {
2177 WARN_ON(!trylock_page(page));
2178 __SetPageMovable(page, pool->inode->i_mapping);
2179 unlock_page(page);
2180 } while ((page = get_next_page(page)) != NULL);
2181}
2182#endif
2183
04f05909
SS
2184/*
2185 *
2186 * Based on the number of unused allocated objects calculate
2187 * and return the number of pages that we can free.
04f05909
SS
2188 */
2189static unsigned long zs_can_compact(struct size_class *class)
2190{
2191 unsigned long obj_wasted;
44f43e99
SS
2192 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2193 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2194
44f43e99
SS
2195 if (obj_allocated <= obj_used)
2196 return 0;
04f05909 2197
44f43e99 2198 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2199 obj_wasted /= class->objs_per_zspage;
04f05909 2200
6cbf16b3 2201 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2202}
2203
7d3f3938 2204static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2205{
312fcae2 2206 struct zs_compact_control cc;
3783689a
MK
2207 struct zspage *src_zspage;
2208 struct zspage *dst_zspage = NULL;
312fcae2 2209
312fcae2 2210 spin_lock(&class->lock);
3783689a 2211 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2212
04f05909
SS
2213 if (!zs_can_compact(class))
2214 break;
2215
41b88e14 2216 cc.obj_idx = 0;
48b4800a 2217 cc.s_page = get_first_page(src_zspage);
312fcae2 2218
3783689a 2219 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2220 cc.d_page = get_first_page(dst_zspage);
312fcae2 2221 /*
0dc63d48
SS
2222 * If there is no more space in dst_page, resched
2223 * and see if anyone had allocated another zspage.
312fcae2
MK
2224 */
2225 if (!migrate_zspage(pool, class, &cc))
2226 break;
2227
4aa409ca 2228 putback_zspage(class, dst_zspage);
312fcae2
MK
2229 }
2230
2231 /* Stop if we couldn't find slot */
3783689a 2232 if (dst_zspage == NULL)
312fcae2
MK
2233 break;
2234
4aa409ca
MK
2235 putback_zspage(class, dst_zspage);
2236 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2237 free_zspage(pool, class, src_zspage);
6cbf16b3 2238 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2239 }
312fcae2 2240 spin_unlock(&class->lock);
312fcae2
MK
2241 cond_resched();
2242 spin_lock(&class->lock);
2243 }
2244
3783689a 2245 if (src_zspage)
4aa409ca 2246 putback_zspage(class, src_zspage);
312fcae2 2247
7d3f3938 2248 spin_unlock(&class->lock);
312fcae2
MK
2249}
2250
2251unsigned long zs_compact(struct zs_pool *pool)
2252{
2253 int i;
312fcae2
MK
2254 struct size_class *class;
2255
cf8e0fed 2256 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2257 class = pool->size_class[i];
2258 if (!class)
2259 continue;
2260 if (class->index != i)
2261 continue;
7d3f3938 2262 __zs_compact(pool, class);
312fcae2
MK
2263 }
2264
860c707d 2265 return pool->stats.pages_compacted;
312fcae2
MK
2266}
2267EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2268
7d3f3938
SS
2269void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2270{
2271 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2272}
2273EXPORT_SYMBOL_GPL(zs_pool_stats);
2274
ab9d306d
SS
2275static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2276 struct shrink_control *sc)
2277{
2278 unsigned long pages_freed;
2279 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2280 shrinker);
2281
2282 pages_freed = pool->stats.pages_compacted;
2283 /*
2284 * Compact classes and calculate compaction delta.
2285 * Can run concurrently with a manually triggered
2286 * (by user) compaction.
2287 */
2288 pages_freed = zs_compact(pool) - pages_freed;
2289
2290 return pages_freed ? pages_freed : SHRINK_STOP;
2291}
2292
2293static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2294 struct shrink_control *sc)
2295{
2296 int i;
2297 struct size_class *class;
2298 unsigned long pages_to_free = 0;
2299 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2300 shrinker);
2301
cf8e0fed 2302 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2303 class = pool->size_class[i];
2304 if (!class)
2305 continue;
2306 if (class->index != i)
2307 continue;
2308
ab9d306d 2309 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2310 }
2311
2312 return pages_to_free;
2313}
2314
2315static void zs_unregister_shrinker(struct zs_pool *pool)
2316{
93144ca3 2317 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2318}
2319
2320static int zs_register_shrinker(struct zs_pool *pool)
2321{
2322 pool->shrinker.scan_objects = zs_shrinker_scan;
2323 pool->shrinker.count_objects = zs_shrinker_count;
2324 pool->shrinker.batch = 0;
2325 pool->shrinker.seeks = DEFAULT_SEEKS;
2326
2327 return register_shrinker(&pool->shrinker);
2328}
2329
00a61d86 2330/**
66cdef66 2331 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2332 * @name: pool name to be created
166cfda7 2333 *
66cdef66
GM
2334 * This function must be called before anything when using
2335 * the zsmalloc allocator.
166cfda7 2336 *
66cdef66
GM
2337 * On success, a pointer to the newly created pool is returned,
2338 * otherwise NULL.
396b7fd6 2339 */
d0d8da2d 2340struct zs_pool *zs_create_pool(const char *name)
61989a80 2341{
66cdef66
GM
2342 int i;
2343 struct zs_pool *pool;
2344 struct size_class *prev_class = NULL;
61989a80 2345
66cdef66
GM
2346 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2347 if (!pool)
2348 return NULL;
61989a80 2349
48b4800a 2350 init_deferred_free(pool);
61989a80 2351
2e40e163
MK
2352 pool->name = kstrdup(name, GFP_KERNEL);
2353 if (!pool->name)
2354 goto err;
2355
3783689a 2356 if (create_cache(pool))
2e40e163
MK
2357 goto err;
2358
c60369f0 2359 /*
399d8eeb 2360 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2361 * for merging should be larger or equal to current size.
c60369f0 2362 */
cf8e0fed 2363 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2364 int size;
2365 int pages_per_zspage;
64d90465 2366 int objs_per_zspage;
66cdef66 2367 struct size_class *class;
3783689a 2368 int fullness = 0;
c60369f0 2369
66cdef66
GM
2370 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2371 if (size > ZS_MAX_ALLOC_SIZE)
2372 size = ZS_MAX_ALLOC_SIZE;
2373 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2374 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2375
66cdef66
GM
2376 /*
2377 * size_class is used for normal zsmalloc operation such
2378 * as alloc/free for that size. Although it is natural that we
2379 * have one size_class for each size, there is a chance that we
2380 * can get more memory utilization if we use one size_class for
2381 * many different sizes whose size_class have same
2382 * characteristics. So, we makes size_class point to
2383 * previous size_class if possible.
2384 */
2385 if (prev_class) {
64d90465 2386 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2387 pool->size_class[i] = prev_class;
2388 continue;
2389 }
2390 }
2391
2392 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2393 if (!class)
2394 goto err;
2395
2396 class->size = size;
2397 class->index = i;
2398 class->pages_per_zspage = pages_per_zspage;
64d90465 2399 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2400 spin_lock_init(&class->lock);
2401 pool->size_class[i] = class;
48b4800a
MK
2402 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2403 fullness++)
3783689a 2404 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2405
2406 prev_class = class;
61989a80
NG
2407 }
2408
d34f6157
DS
2409 /* debug only, don't abort if it fails */
2410 zs_pool_stat_create(pool, name);
0f050d99 2411
48b4800a
MK
2412 if (zs_register_migration(pool))
2413 goto err;
2414
ab9d306d 2415 /*
93144ca3
AK
2416 * Not critical since shrinker is only used to trigger internal
2417 * defragmentation of the pool which is pretty optional thing. If
2418 * registration fails we still can use the pool normally and user can
2419 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2420 */
93144ca3
AK
2421 zs_register_shrinker(pool);
2422
66cdef66
GM
2423 return pool;
2424
2425err:
2426 zs_destroy_pool(pool);
2427 return NULL;
61989a80 2428}
66cdef66 2429EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2430
66cdef66 2431void zs_destroy_pool(struct zs_pool *pool)
61989a80 2432{
66cdef66 2433 int i;
61989a80 2434
ab9d306d 2435 zs_unregister_shrinker(pool);
48b4800a 2436 zs_unregister_migration(pool);
0f050d99
GM
2437 zs_pool_stat_destroy(pool);
2438
cf8e0fed 2439 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2440 int fg;
2441 struct size_class *class = pool->size_class[i];
61989a80 2442
66cdef66
GM
2443 if (!class)
2444 continue;
61989a80 2445
66cdef66
GM
2446 if (class->index != i)
2447 continue;
61989a80 2448
48b4800a 2449 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2450 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2451 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2452 class->size, fg);
2453 }
2454 }
2455 kfree(class);
2456 }
f553646a 2457
3783689a 2458 destroy_cache(pool);
0f050d99 2459 kfree(pool->name);
66cdef66
GM
2460 kfree(pool);
2461}
2462EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2463
66cdef66
GM
2464static int __init zs_init(void)
2465{
48b4800a
MK
2466 int ret;
2467
2468 ret = zsmalloc_mount();
2469 if (ret)
2470 goto out;
2471
215c89d0
SAS
2472 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2473 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2474 if (ret)
215c89d0 2475 goto hp_setup_fail;
66cdef66 2476
66cdef66
GM
2477#ifdef CONFIG_ZPOOL
2478 zpool_register_driver(&zs_zpool_driver);
2479#endif
0f050d99 2480
4abaac9b
DS
2481 zs_stat_init();
2482
66cdef66 2483 return 0;
0f050d99 2484
215c89d0 2485hp_setup_fail:
48b4800a
MK
2486 zsmalloc_unmount();
2487out:
0f050d99 2488 return ret;
61989a80 2489}
61989a80 2490
66cdef66 2491static void __exit zs_exit(void)
61989a80 2492{
66cdef66
GM
2493#ifdef CONFIG_ZPOOL
2494 zpool_unregister_driver(&zs_zpool_driver);
2495#endif
48b4800a 2496 zsmalloc_unmount();
215c89d0 2497 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2498
2499 zs_stat_exit();
61989a80 2500}
069f101f
BH
2501
2502module_init(zs_init);
2503module_exit(zs_exit);
2504
2505MODULE_LICENSE("Dual BSD/GPL");
2506MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");