Merge tag 'spi-fix-v4.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[linux-2.6-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
7b60a685
MK
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
2db51dae
NG
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
c60369f0 61#include <linux/hardirq.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169 NR_ZS_STAT_TYPE,
170};
171
172#ifdef CONFIG_ZSMALLOC_STAT
173
174static struct dentry *zs_stat_root;
175
176struct zs_size_stat {
177 unsigned long objs[NR_ZS_STAT_TYPE];
178};
179
180#endif
181
40f9fb8c
MG
182/*
183 * number of size_classes
184 */
185static int zs_size_classes;
186
0959c63f
SJ
187/*
188 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
189 * n <= N / f, where
190 * n = number of allocated objects
191 * N = total number of objects zspage can store
6dd9737e 192 * f = fullness_threshold_frac
0959c63f
SJ
193 *
194 * Similarly, we assign zspage to:
195 * ZS_ALMOST_FULL when n > N / f
196 * ZS_EMPTY when n == 0
197 * ZS_FULL when n == N
198 *
199 * (see: fix_fullness_group())
200 */
201static const int fullness_threshold_frac = 4;
202
203struct size_class {
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
209 unsigned int index;
210
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage;
7b60a685
MK
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 bool huge;
0959c63f 215
0f050d99
GM
216#ifdef CONFIG_ZSMALLOC_STAT
217 struct zs_size_stat stats;
218#endif
219
0959c63f
SJ
220 spinlock_t lock;
221
0959c63f
SJ
222 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
223};
224
225/*
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, first_page->freelist gives head of this list.
228 *
229 * This must be power of 2 and less than or equal to ZS_ALIGN
230 */
231struct link_free {
2e40e163
MK
232 union {
233 /*
234 * Position of next free chunk (encodes <PFN, obj_idx>)
235 * It's valid for non-allocated object
236 */
237 void *next;
238 /*
239 * Handle of allocated object.
240 */
241 unsigned long handle;
242 };
0959c63f
SJ
243};
244
245struct zs_pool {
0f050d99
GM
246 char *name;
247
40f9fb8c 248 struct size_class **size_class;
2e40e163 249 struct kmem_cache *handle_cachep;
0959c63f
SJ
250
251 gfp_t flags; /* allocation flags used when growing pool */
13de8933 252 atomic_long_t pages_allocated;
0f050d99
GM
253
254#ifdef CONFIG_ZSMALLOC_STAT
255 struct dentry *stat_dentry;
256#endif
0959c63f 257};
61989a80
NG
258
259/*
260 * A zspage's class index and fullness group
261 * are encoded in its (first)page->mapping
262 */
263#define CLASS_IDX_BITS 28
264#define FULLNESS_BITS 4
265#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
266#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
267
f553646a 268struct mapping_area {
1b945aee 269#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
270 struct vm_struct *vm; /* vm area for mapping object that span pages */
271#else
272 char *vm_buf; /* copy buffer for objects that span pages */
273#endif
274 char *vm_addr; /* address of kmap_atomic()'ed pages */
275 enum zs_mapmode vm_mm; /* mapping mode */
7b60a685 276 bool huge;
f553646a
SJ
277};
278
2e40e163
MK
279static int create_handle_cache(struct zs_pool *pool)
280{
281 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
282 0, 0, NULL);
283 return pool->handle_cachep ? 0 : 1;
284}
285
286static void destroy_handle_cache(struct zs_pool *pool)
287{
02f7b414
SS
288 if (pool->handle_cachep)
289 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
290}
291
292static unsigned long alloc_handle(struct zs_pool *pool)
293{
294 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
295 pool->flags & ~__GFP_HIGHMEM);
296}
297
298static void free_handle(struct zs_pool *pool, unsigned long handle)
299{
300 kmem_cache_free(pool->handle_cachep, (void *)handle);
301}
302
303static void record_obj(unsigned long handle, unsigned long obj)
304{
305 *(unsigned long *)handle = obj;
306}
307
c795779d
DS
308/* zpool driver */
309
310#ifdef CONFIG_ZPOOL
311
479305fd
DS
312static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops,
313 struct zpool *zpool)
c795779d 314{
3eba0c6a 315 return zs_create_pool(name, gfp);
c795779d
DS
316}
317
318static void zs_zpool_destroy(void *pool)
319{
320 zs_destroy_pool(pool);
321}
322
323static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
324 unsigned long *handle)
325{
326 *handle = zs_malloc(pool, size);
327 return *handle ? 0 : -1;
328}
329static void zs_zpool_free(void *pool, unsigned long handle)
330{
331 zs_free(pool, handle);
332}
333
334static int zs_zpool_shrink(void *pool, unsigned int pages,
335 unsigned int *reclaimed)
336{
337 return -EINVAL;
338}
339
340static void *zs_zpool_map(void *pool, unsigned long handle,
341 enum zpool_mapmode mm)
342{
343 enum zs_mapmode zs_mm;
344
345 switch (mm) {
346 case ZPOOL_MM_RO:
347 zs_mm = ZS_MM_RO;
348 break;
349 case ZPOOL_MM_WO:
350 zs_mm = ZS_MM_WO;
351 break;
352 case ZPOOL_MM_RW: /* fallthru */
353 default:
354 zs_mm = ZS_MM_RW;
355 break;
356 }
357
358 return zs_map_object(pool, handle, zs_mm);
359}
360static void zs_zpool_unmap(void *pool, unsigned long handle)
361{
362 zs_unmap_object(pool, handle);
363}
364
365static u64 zs_zpool_total_size(void *pool)
366{
722cdc17 367 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
368}
369
370static struct zpool_driver zs_zpool_driver = {
371 .type = "zsmalloc",
372 .owner = THIS_MODULE,
373 .create = zs_zpool_create,
374 .destroy = zs_zpool_destroy,
375 .malloc = zs_zpool_malloc,
376 .free = zs_zpool_free,
377 .shrink = zs_zpool_shrink,
378 .map = zs_zpool_map,
379 .unmap = zs_zpool_unmap,
380 .total_size = zs_zpool_total_size,
381};
382
137f8cff 383MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
384#endif /* CONFIG_ZPOOL */
385
248ca1b0
MK
386static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
387{
388 return pages_per_zspage * PAGE_SIZE / size;
389}
390
61989a80
NG
391/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
392static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
393
394static int is_first_page(struct page *page)
395{
a27545bf 396 return PagePrivate(page);
61989a80
NG
397}
398
399static int is_last_page(struct page *page)
400{
a27545bf 401 return PagePrivate2(page);
61989a80
NG
402}
403
404static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
405 enum fullness_group *fullness)
406{
407 unsigned long m;
408 BUG_ON(!is_first_page(page));
409
410 m = (unsigned long)page->mapping;
411 *fullness = m & FULLNESS_MASK;
412 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
413}
414
415static void set_zspage_mapping(struct page *page, unsigned int class_idx,
416 enum fullness_group fullness)
417{
418 unsigned long m;
419 BUG_ON(!is_first_page(page));
420
421 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
422 (fullness & FULLNESS_MASK);
423 page->mapping = (struct address_space *)m;
424}
425
c3e3e88a
NC
426/*
427 * zsmalloc divides the pool into various size classes where each
428 * class maintains a list of zspages where each zspage is divided
429 * into equal sized chunks. Each allocation falls into one of these
430 * classes depending on its size. This function returns index of the
431 * size class which has chunk size big enough to hold the give size.
432 */
61989a80
NG
433static int get_size_class_index(int size)
434{
435 int idx = 0;
436
437 if (likely(size > ZS_MIN_ALLOC_SIZE))
438 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
439 ZS_SIZE_CLASS_DELTA);
440
7b60a685 441 return min(zs_size_classes - 1, idx);
61989a80
NG
442}
443
248ca1b0
MK
444#ifdef CONFIG_ZSMALLOC_STAT
445
446static inline void zs_stat_inc(struct size_class *class,
447 enum zs_stat_type type, unsigned long cnt)
448{
449 class->stats.objs[type] += cnt;
450}
451
452static inline void zs_stat_dec(struct size_class *class,
453 enum zs_stat_type type, unsigned long cnt)
454{
455 class->stats.objs[type] -= cnt;
456}
457
458static inline unsigned long zs_stat_get(struct size_class *class,
459 enum zs_stat_type type)
460{
461 return class->stats.objs[type];
462}
463
464static int __init zs_stat_init(void)
465{
466 if (!debugfs_initialized())
467 return -ENODEV;
468
469 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
470 if (!zs_stat_root)
471 return -ENOMEM;
472
473 return 0;
474}
475
476static void __exit zs_stat_exit(void)
477{
478 debugfs_remove_recursive(zs_stat_root);
479}
480
481static int zs_stats_size_show(struct seq_file *s, void *v)
482{
483 int i;
484 struct zs_pool *pool = s->private;
485 struct size_class *class;
486 int objs_per_zspage;
487 unsigned long class_almost_full, class_almost_empty;
488 unsigned long obj_allocated, obj_used, pages_used;
489 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
490 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
491
492 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
493 "class", "size", "almost_full", "almost_empty",
494 "obj_allocated", "obj_used", "pages_used",
495 "pages_per_zspage");
496
497 for (i = 0; i < zs_size_classes; i++) {
498 class = pool->size_class[i];
499
500 if (class->index != i)
501 continue;
502
503 spin_lock(&class->lock);
504 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
505 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
506 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
507 obj_used = zs_stat_get(class, OBJ_USED);
508 spin_unlock(&class->lock);
509
510 objs_per_zspage = get_maxobj_per_zspage(class->size,
511 class->pages_per_zspage);
512 pages_used = obj_allocated / objs_per_zspage *
513 class->pages_per_zspage;
514
515 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
516 i, class->size, class_almost_full, class_almost_empty,
517 obj_allocated, obj_used, pages_used,
518 class->pages_per_zspage);
519
520 total_class_almost_full += class_almost_full;
521 total_class_almost_empty += class_almost_empty;
522 total_objs += obj_allocated;
523 total_used_objs += obj_used;
524 total_pages += pages_used;
525 }
526
527 seq_puts(s, "\n");
528 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
529 "Total", "", total_class_almost_full,
530 total_class_almost_empty, total_objs,
531 total_used_objs, total_pages);
532
533 return 0;
534}
535
536static int zs_stats_size_open(struct inode *inode, struct file *file)
537{
538 return single_open(file, zs_stats_size_show, inode->i_private);
539}
540
541static const struct file_operations zs_stat_size_ops = {
542 .open = zs_stats_size_open,
543 .read = seq_read,
544 .llseek = seq_lseek,
545 .release = single_release,
546};
547
548static int zs_pool_stat_create(char *name, struct zs_pool *pool)
549{
550 struct dentry *entry;
551
552 if (!zs_stat_root)
553 return -ENODEV;
554
555 entry = debugfs_create_dir(name, zs_stat_root);
556 if (!entry) {
557 pr_warn("debugfs dir <%s> creation failed\n", name);
558 return -ENOMEM;
559 }
560 pool->stat_dentry = entry;
561
562 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
563 pool->stat_dentry, pool, &zs_stat_size_ops);
564 if (!entry) {
565 pr_warn("%s: debugfs file entry <%s> creation failed\n",
566 name, "classes");
567 return -ENOMEM;
568 }
569
570 return 0;
571}
572
573static void zs_pool_stat_destroy(struct zs_pool *pool)
574{
575 debugfs_remove_recursive(pool->stat_dentry);
576}
577
578#else /* CONFIG_ZSMALLOC_STAT */
579
580static inline void zs_stat_inc(struct size_class *class,
581 enum zs_stat_type type, unsigned long cnt)
582{
583}
584
585static inline void zs_stat_dec(struct size_class *class,
586 enum zs_stat_type type, unsigned long cnt)
587{
588}
589
590static inline unsigned long zs_stat_get(struct size_class *class,
591 enum zs_stat_type type)
592{
593 return 0;
594}
595
596static int __init zs_stat_init(void)
597{
598 return 0;
599}
600
601static void __exit zs_stat_exit(void)
602{
603}
604
605static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
606{
607 return 0;
608}
609
610static inline void zs_pool_stat_destroy(struct zs_pool *pool)
611{
612}
613
614#endif
615
616
c3e3e88a
NC
617/*
618 * For each size class, zspages are divided into different groups
619 * depending on how "full" they are. This was done so that we could
620 * easily find empty or nearly empty zspages when we try to shrink
621 * the pool (not yet implemented). This function returns fullness
622 * status of the given page.
623 */
61989a80
NG
624static enum fullness_group get_fullness_group(struct page *page)
625{
626 int inuse, max_objects;
627 enum fullness_group fg;
628 BUG_ON(!is_first_page(page));
629
630 inuse = page->inuse;
631 max_objects = page->objects;
632
633 if (inuse == 0)
634 fg = ZS_EMPTY;
635 else if (inuse == max_objects)
636 fg = ZS_FULL;
d3d07c92 637 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
638 fg = ZS_ALMOST_EMPTY;
639 else
640 fg = ZS_ALMOST_FULL;
641
642 return fg;
643}
644
c3e3e88a
NC
645/*
646 * Each size class maintains various freelists and zspages are assigned
647 * to one of these freelists based on the number of live objects they
648 * have. This functions inserts the given zspage into the freelist
649 * identified by <class, fullness_group>.
650 */
61989a80
NG
651static void insert_zspage(struct page *page, struct size_class *class,
652 enum fullness_group fullness)
653{
654 struct page **head;
655
656 BUG_ON(!is_first_page(page));
657
658 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
659 return;
660
661 head = &class->fullness_list[fullness];
662 if (*head)
663 list_add_tail(&page->lru, &(*head)->lru);
664
665 *head = page;
248ca1b0
MK
666 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
667 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
668}
669
c3e3e88a
NC
670/*
671 * This function removes the given zspage from the freelist identified
672 * by <class, fullness_group>.
673 */
61989a80
NG
674static void remove_zspage(struct page *page, struct size_class *class,
675 enum fullness_group fullness)
676{
677 struct page **head;
678
679 BUG_ON(!is_first_page(page));
680
681 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
682 return;
683
684 head = &class->fullness_list[fullness];
685 BUG_ON(!*head);
686 if (list_empty(&(*head)->lru))
687 *head = NULL;
688 else if (*head == page)
689 *head = (struct page *)list_entry((*head)->lru.next,
690 struct page, lru);
691
692 list_del_init(&page->lru);
248ca1b0
MK
693 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
694 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
695}
696
c3e3e88a
NC
697/*
698 * Each size class maintains zspages in different fullness groups depending
699 * on the number of live objects they contain. When allocating or freeing
700 * objects, the fullness status of the page can change, say, from ALMOST_FULL
701 * to ALMOST_EMPTY when freeing an object. This function checks if such
702 * a status change has occurred for the given page and accordingly moves the
703 * page from the freelist of the old fullness group to that of the new
704 * fullness group.
705 */
c7806261 706static enum fullness_group fix_fullness_group(struct size_class *class,
61989a80
NG
707 struct page *page)
708{
709 int class_idx;
61989a80
NG
710 enum fullness_group currfg, newfg;
711
712 BUG_ON(!is_first_page(page));
713
714 get_zspage_mapping(page, &class_idx, &currfg);
715 newfg = get_fullness_group(page);
716 if (newfg == currfg)
717 goto out;
718
61989a80
NG
719 remove_zspage(page, class, currfg);
720 insert_zspage(page, class, newfg);
721 set_zspage_mapping(page, class_idx, newfg);
722
723out:
724 return newfg;
725}
726
727/*
728 * We have to decide on how many pages to link together
729 * to form a zspage for each size class. This is important
730 * to reduce wastage due to unusable space left at end of
731 * each zspage which is given as:
888fa374
YX
732 * wastage = Zp % class_size
733 * usage = Zp - wastage
61989a80
NG
734 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
735 *
736 * For example, for size class of 3/8 * PAGE_SIZE, we should
737 * link together 3 PAGE_SIZE sized pages to form a zspage
738 * since then we can perfectly fit in 8 such objects.
739 */
2e3b6154 740static int get_pages_per_zspage(int class_size)
61989a80
NG
741{
742 int i, max_usedpc = 0;
743 /* zspage order which gives maximum used size per KB */
744 int max_usedpc_order = 1;
745
84d4faab 746 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
747 int zspage_size;
748 int waste, usedpc;
749
750 zspage_size = i * PAGE_SIZE;
751 waste = zspage_size % class_size;
752 usedpc = (zspage_size - waste) * 100 / zspage_size;
753
754 if (usedpc > max_usedpc) {
755 max_usedpc = usedpc;
756 max_usedpc_order = i;
757 }
758 }
759
760 return max_usedpc_order;
761}
762
763/*
764 * A single 'zspage' is composed of many system pages which are
765 * linked together using fields in struct page. This function finds
766 * the first/head page, given any component page of a zspage.
767 */
768static struct page *get_first_page(struct page *page)
769{
770 if (is_first_page(page))
771 return page;
772 else
773 return page->first_page;
774}
775
776static struct page *get_next_page(struct page *page)
777{
778 struct page *next;
779
780 if (is_last_page(page))
781 next = NULL;
782 else if (is_first_page(page))
e842b976 783 next = (struct page *)page_private(page);
61989a80
NG
784 else
785 next = list_entry(page->lru.next, struct page, lru);
786
787 return next;
788}
789
67296874
OH
790/*
791 * Encode <page, obj_idx> as a single handle value.
312fcae2 792 * We use the least bit of handle for tagging.
67296874 793 */
312fcae2 794static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 795{
312fcae2 796 unsigned long obj;
61989a80
NG
797
798 if (!page) {
799 BUG_ON(obj_idx);
800 return NULL;
801 }
802
312fcae2
MK
803 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
804 obj |= ((obj_idx) & OBJ_INDEX_MASK);
805 obj <<= OBJ_TAG_BITS;
61989a80 806
312fcae2 807 return (void *)obj;
61989a80
NG
808}
809
67296874
OH
810/*
811 * Decode <page, obj_idx> pair from the given object handle. We adjust the
812 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 813 * location_to_obj().
67296874 814 */
312fcae2 815static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
816 unsigned long *obj_idx)
817{
312fcae2
MK
818 obj >>= OBJ_TAG_BITS;
819 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
820 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
821}
822
2e40e163
MK
823static unsigned long handle_to_obj(unsigned long handle)
824{
825 return *(unsigned long *)handle;
826}
827
7b60a685
MK
828static unsigned long obj_to_head(struct size_class *class, struct page *page,
829 void *obj)
312fcae2 830{
7b60a685
MK
831 if (class->huge) {
832 VM_BUG_ON(!is_first_page(page));
833 return *(unsigned long *)page_private(page);
834 } else
835 return *(unsigned long *)obj;
312fcae2
MK
836}
837
61989a80
NG
838static unsigned long obj_idx_to_offset(struct page *page,
839 unsigned long obj_idx, int class_size)
840{
841 unsigned long off = 0;
842
843 if (!is_first_page(page))
844 off = page->index;
845
846 return off + obj_idx * class_size;
847}
848
312fcae2
MK
849static inline int trypin_tag(unsigned long handle)
850{
851 unsigned long *ptr = (unsigned long *)handle;
852
853 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
854}
855
856static void pin_tag(unsigned long handle)
857{
858 while (!trypin_tag(handle));
859}
860
861static void unpin_tag(unsigned long handle)
862{
863 unsigned long *ptr = (unsigned long *)handle;
864
865 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
866}
867
f4477e90
NG
868static void reset_page(struct page *page)
869{
870 clear_bit(PG_private, &page->flags);
871 clear_bit(PG_private_2, &page->flags);
872 set_page_private(page, 0);
873 page->mapping = NULL;
874 page->freelist = NULL;
22b751c3 875 page_mapcount_reset(page);
f4477e90
NG
876}
877
61989a80
NG
878static void free_zspage(struct page *first_page)
879{
f4477e90 880 struct page *nextp, *tmp, *head_extra;
61989a80
NG
881
882 BUG_ON(!is_first_page(first_page));
883 BUG_ON(first_page->inuse);
884
f4477e90 885 head_extra = (struct page *)page_private(first_page);
61989a80 886
f4477e90 887 reset_page(first_page);
61989a80
NG
888 __free_page(first_page);
889
890 /* zspage with only 1 system page */
f4477e90 891 if (!head_extra)
61989a80
NG
892 return;
893
f4477e90 894 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 895 list_del(&nextp->lru);
f4477e90 896 reset_page(nextp);
61989a80
NG
897 __free_page(nextp);
898 }
f4477e90
NG
899 reset_page(head_extra);
900 __free_page(head_extra);
61989a80
NG
901}
902
903/* Initialize a newly allocated zspage */
904static void init_zspage(struct page *first_page, struct size_class *class)
905{
906 unsigned long off = 0;
907 struct page *page = first_page;
908
909 BUG_ON(!is_first_page(first_page));
910 while (page) {
911 struct page *next_page;
912 struct link_free *link;
5538c562 913 unsigned int i = 1;
af4ee5e9 914 void *vaddr;
61989a80
NG
915
916 /*
917 * page->index stores offset of first object starting
918 * in the page. For the first page, this is always 0,
919 * so we use first_page->index (aka ->freelist) to store
920 * head of corresponding zspage's freelist.
921 */
922 if (page != first_page)
923 page->index = off;
924
af4ee5e9
MK
925 vaddr = kmap_atomic(page);
926 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
927
928 while ((off += class->size) < PAGE_SIZE) {
312fcae2 929 link->next = location_to_obj(page, i++);
5538c562 930 link += class->size / sizeof(*link);
61989a80
NG
931 }
932
933 /*
934 * We now come to the last (full or partial) object on this
935 * page, which must point to the first object on the next
936 * page (if present)
937 */
938 next_page = get_next_page(page);
312fcae2 939 link->next = location_to_obj(next_page, 0);
af4ee5e9 940 kunmap_atomic(vaddr);
61989a80 941 page = next_page;
5538c562 942 off %= PAGE_SIZE;
61989a80
NG
943 }
944}
945
946/*
947 * Allocate a zspage for the given size class
948 */
949static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
950{
951 int i, error;
b4b700c5 952 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
953
954 /*
955 * Allocate individual pages and link them together as:
956 * 1. first page->private = first sub-page
957 * 2. all sub-pages are linked together using page->lru
958 * 3. each sub-page is linked to the first page using page->first_page
959 *
960 * For each size class, First/Head pages are linked together using
961 * page->lru. Also, we set PG_private to identify the first page
962 * (i.e. no other sub-page has this flag set) and PG_private_2 to
963 * identify the last page.
964 */
965 error = -ENOMEM;
2e3b6154 966 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 967 struct page *page;
61989a80
NG
968
969 page = alloc_page(flags);
970 if (!page)
971 goto cleanup;
972
973 INIT_LIST_HEAD(&page->lru);
974 if (i == 0) { /* first page */
a27545bf 975 SetPagePrivate(page);
61989a80
NG
976 set_page_private(page, 0);
977 first_page = page;
978 first_page->inuse = 0;
979 }
980 if (i == 1)
e842b976 981 set_page_private(first_page, (unsigned long)page);
61989a80
NG
982 if (i >= 1)
983 page->first_page = first_page;
984 if (i >= 2)
985 list_add(&page->lru, &prev_page->lru);
2e3b6154 986 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 987 SetPagePrivate2(page);
61989a80
NG
988 prev_page = page;
989 }
990
991 init_zspage(first_page, class);
992
312fcae2 993 first_page->freelist = location_to_obj(first_page, 0);
61989a80 994 /* Maximum number of objects we can store in this zspage */
2e3b6154 995 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
996
997 error = 0; /* Success */
998
999cleanup:
1000 if (unlikely(error) && first_page) {
1001 free_zspage(first_page);
1002 first_page = NULL;
1003 }
1004
1005 return first_page;
1006}
1007
1008static struct page *find_get_zspage(struct size_class *class)
1009{
1010 int i;
1011 struct page *page;
1012
1013 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1014 page = class->fullness_list[i];
1015 if (page)
1016 break;
1017 }
1018
1019 return page;
1020}
1021
1b945aee 1022#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1023static inline int __zs_cpu_up(struct mapping_area *area)
1024{
1025 /*
1026 * Make sure we don't leak memory if a cpu UP notification
1027 * and zs_init() race and both call zs_cpu_up() on the same cpu
1028 */
1029 if (area->vm)
1030 return 0;
1031 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1032 if (!area->vm)
1033 return -ENOMEM;
1034 return 0;
1035}
1036
1037static inline void __zs_cpu_down(struct mapping_area *area)
1038{
1039 if (area->vm)
1040 free_vm_area(area->vm);
1041 area->vm = NULL;
1042}
1043
1044static inline void *__zs_map_object(struct mapping_area *area,
1045 struct page *pages[2], int off, int size)
1046{
f6f8ed47 1047 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1048 area->vm_addr = area->vm->addr;
1049 return area->vm_addr + off;
1050}
1051
1052static inline void __zs_unmap_object(struct mapping_area *area,
1053 struct page *pages[2], int off, int size)
1054{
1055 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1056
d95abbbb 1057 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1058}
1059
1b945aee 1060#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1061
1062static inline int __zs_cpu_up(struct mapping_area *area)
1063{
1064 /*
1065 * Make sure we don't leak memory if a cpu UP notification
1066 * and zs_init() race and both call zs_cpu_up() on the same cpu
1067 */
1068 if (area->vm_buf)
1069 return 0;
40f9fb8c 1070 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1071 if (!area->vm_buf)
1072 return -ENOMEM;
1073 return 0;
1074}
1075
1076static inline void __zs_cpu_down(struct mapping_area *area)
1077{
40f9fb8c 1078 kfree(area->vm_buf);
f553646a
SJ
1079 area->vm_buf = NULL;
1080}
1081
1082static void *__zs_map_object(struct mapping_area *area,
1083 struct page *pages[2], int off, int size)
5f601902 1084{
5f601902
SJ
1085 int sizes[2];
1086 void *addr;
f553646a 1087 char *buf = area->vm_buf;
5f601902 1088
f553646a
SJ
1089 /* disable page faults to match kmap_atomic() return conditions */
1090 pagefault_disable();
1091
1092 /* no read fastpath */
1093 if (area->vm_mm == ZS_MM_WO)
1094 goto out;
5f601902
SJ
1095
1096 sizes[0] = PAGE_SIZE - off;
1097 sizes[1] = size - sizes[0];
1098
5f601902
SJ
1099 /* copy object to per-cpu buffer */
1100 addr = kmap_atomic(pages[0]);
1101 memcpy(buf, addr + off, sizes[0]);
1102 kunmap_atomic(addr);
1103 addr = kmap_atomic(pages[1]);
1104 memcpy(buf + sizes[0], addr, sizes[1]);
1105 kunmap_atomic(addr);
f553646a
SJ
1106out:
1107 return area->vm_buf;
5f601902
SJ
1108}
1109
f553646a
SJ
1110static void __zs_unmap_object(struct mapping_area *area,
1111 struct page *pages[2], int off, int size)
5f601902 1112{
5f601902
SJ
1113 int sizes[2];
1114 void *addr;
2e40e163 1115 char *buf;
5f601902 1116
f553646a
SJ
1117 /* no write fastpath */
1118 if (area->vm_mm == ZS_MM_RO)
1119 goto out;
5f601902 1120
7b60a685
MK
1121 buf = area->vm_buf;
1122 if (!area->huge) {
1123 buf = buf + ZS_HANDLE_SIZE;
1124 size -= ZS_HANDLE_SIZE;
1125 off += ZS_HANDLE_SIZE;
1126 }
2e40e163 1127
5f601902
SJ
1128 sizes[0] = PAGE_SIZE - off;
1129 sizes[1] = size - sizes[0];
1130
1131 /* copy per-cpu buffer to object */
1132 addr = kmap_atomic(pages[0]);
1133 memcpy(addr + off, buf, sizes[0]);
1134 kunmap_atomic(addr);
1135 addr = kmap_atomic(pages[1]);
1136 memcpy(addr, buf + sizes[0], sizes[1]);
1137 kunmap_atomic(addr);
f553646a
SJ
1138
1139out:
1140 /* enable page faults to match kunmap_atomic() return conditions */
1141 pagefault_enable();
5f601902 1142}
61989a80 1143
1b945aee 1144#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1145
61989a80
NG
1146static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1147 void *pcpu)
1148{
f553646a 1149 int ret, cpu = (long)pcpu;
61989a80
NG
1150 struct mapping_area *area;
1151
1152 switch (action) {
1153 case CPU_UP_PREPARE:
1154 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1155 ret = __zs_cpu_up(area);
1156 if (ret)
1157 return notifier_from_errno(ret);
61989a80
NG
1158 break;
1159 case CPU_DEAD:
1160 case CPU_UP_CANCELED:
1161 area = &per_cpu(zs_map_area, cpu);
f553646a 1162 __zs_cpu_down(area);
61989a80
NG
1163 break;
1164 }
1165
1166 return NOTIFY_OK;
1167}
1168
1169static struct notifier_block zs_cpu_nb = {
1170 .notifier_call = zs_cpu_notifier
1171};
1172
b1b00a5b 1173static int zs_register_cpu_notifier(void)
61989a80 1174{
b1b00a5b 1175 int cpu, uninitialized_var(ret);
61989a80 1176
f0e71fcd
SB
1177 cpu_notifier_register_begin();
1178
1179 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1180 for_each_online_cpu(cpu) {
1181 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1182 if (notifier_to_errno(ret))
1183 break;
61989a80 1184 }
f0e71fcd
SB
1185
1186 cpu_notifier_register_done();
b1b00a5b
SS
1187 return notifier_to_errno(ret);
1188}
f0e71fcd 1189
66cdef66 1190static void zs_unregister_cpu_notifier(void)
40f9fb8c 1191{
66cdef66 1192 int cpu;
40f9fb8c 1193
66cdef66 1194 cpu_notifier_register_begin();
40f9fb8c 1195
66cdef66
GM
1196 for_each_online_cpu(cpu)
1197 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1198 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1199
66cdef66 1200 cpu_notifier_register_done();
b1b00a5b
SS
1201}
1202
66cdef66 1203static void init_zs_size_classes(void)
b1b00a5b 1204{
66cdef66 1205 int nr;
c795779d 1206
66cdef66
GM
1207 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1208 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1209 nr += 1;
40f9fb8c 1210
66cdef66 1211 zs_size_classes = nr;
61989a80
NG
1212}
1213
9eec4cd5
JK
1214static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1215{
1216 if (prev->pages_per_zspage != pages_per_zspage)
1217 return false;
1218
1219 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1220 != get_maxobj_per_zspage(size, pages_per_zspage))
1221 return false;
1222
1223 return true;
1224}
1225
312fcae2
MK
1226static bool zspage_full(struct page *page)
1227{
1228 BUG_ON(!is_first_page(page));
1229
1230 return page->inuse == page->objects;
1231}
1232
66cdef66
GM
1233unsigned long zs_get_total_pages(struct zs_pool *pool)
1234{
1235 return atomic_long_read(&pool->pages_allocated);
1236}
1237EXPORT_SYMBOL_GPL(zs_get_total_pages);
1238
4bbc0bc0 1239/**
66cdef66
GM
1240 * zs_map_object - get address of allocated object from handle.
1241 * @pool: pool from which the object was allocated
1242 * @handle: handle returned from zs_malloc
4bbc0bc0 1243 *
66cdef66
GM
1244 * Before using an object allocated from zs_malloc, it must be mapped using
1245 * this function. When done with the object, it must be unmapped using
1246 * zs_unmap_object.
4bbc0bc0 1247 *
66cdef66
GM
1248 * Only one object can be mapped per cpu at a time. There is no protection
1249 * against nested mappings.
1250 *
1251 * This function returns with preemption and page faults disabled.
4bbc0bc0 1252 */
66cdef66
GM
1253void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1254 enum zs_mapmode mm)
61989a80 1255{
66cdef66 1256 struct page *page;
2e40e163 1257 unsigned long obj, obj_idx, off;
61989a80 1258
66cdef66
GM
1259 unsigned int class_idx;
1260 enum fullness_group fg;
1261 struct size_class *class;
1262 struct mapping_area *area;
1263 struct page *pages[2];
2e40e163 1264 void *ret;
61989a80 1265
66cdef66 1266 BUG_ON(!handle);
40f9fb8c 1267
9eec4cd5 1268 /*
66cdef66
GM
1269 * Because we use per-cpu mapping areas shared among the
1270 * pools/users, we can't allow mapping in interrupt context
1271 * because it can corrupt another users mappings.
9eec4cd5 1272 */
66cdef66 1273 BUG_ON(in_interrupt());
61989a80 1274
312fcae2
MK
1275 /* From now on, migration cannot move the object */
1276 pin_tag(handle);
1277
2e40e163
MK
1278 obj = handle_to_obj(handle);
1279 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1280 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1281 class = pool->size_class[class_idx];
1282 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1283
66cdef66
GM
1284 area = &get_cpu_var(zs_map_area);
1285 area->vm_mm = mm;
1286 if (off + class->size <= PAGE_SIZE) {
1287 /* this object is contained entirely within a page */
1288 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1289 ret = area->vm_addr + off;
1290 goto out;
61989a80
NG
1291 }
1292
66cdef66
GM
1293 /* this object spans two pages */
1294 pages[0] = page;
1295 pages[1] = get_next_page(page);
1296 BUG_ON(!pages[1]);
9eec4cd5 1297
2e40e163
MK
1298 ret = __zs_map_object(area, pages, off, class->size);
1299out:
7b60a685
MK
1300 if (!class->huge)
1301 ret += ZS_HANDLE_SIZE;
1302
1303 return ret;
61989a80 1304}
66cdef66 1305EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1306
66cdef66 1307void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1308{
66cdef66 1309 struct page *page;
2e40e163 1310 unsigned long obj, obj_idx, off;
61989a80 1311
66cdef66
GM
1312 unsigned int class_idx;
1313 enum fullness_group fg;
1314 struct size_class *class;
1315 struct mapping_area *area;
9eec4cd5 1316
66cdef66 1317 BUG_ON(!handle);
9eec4cd5 1318
2e40e163
MK
1319 obj = handle_to_obj(handle);
1320 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1321 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1322 class = pool->size_class[class_idx];
1323 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1324
66cdef66
GM
1325 area = this_cpu_ptr(&zs_map_area);
1326 if (off + class->size <= PAGE_SIZE)
1327 kunmap_atomic(area->vm_addr);
1328 else {
1329 struct page *pages[2];
40f9fb8c 1330
66cdef66
GM
1331 pages[0] = page;
1332 pages[1] = get_next_page(page);
1333 BUG_ON(!pages[1]);
1334
1335 __zs_unmap_object(area, pages, off, class->size);
1336 }
1337 put_cpu_var(zs_map_area);
312fcae2 1338 unpin_tag(handle);
61989a80 1339}
66cdef66 1340EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1341
c7806261
MK
1342static unsigned long obj_malloc(struct page *first_page,
1343 struct size_class *class, unsigned long handle)
1344{
1345 unsigned long obj;
1346 struct link_free *link;
1347
1348 struct page *m_page;
1349 unsigned long m_objidx, m_offset;
1350 void *vaddr;
1351
312fcae2 1352 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1353 obj = (unsigned long)first_page->freelist;
1354 obj_to_location(obj, &m_page, &m_objidx);
1355 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1356
1357 vaddr = kmap_atomic(m_page);
1358 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1359 first_page->freelist = link->next;
7b60a685
MK
1360 if (!class->huge)
1361 /* record handle in the header of allocated chunk */
1362 link->handle = handle;
1363 else
1364 /* record handle in first_page->private */
1365 set_page_private(first_page, handle);
c7806261
MK
1366 kunmap_atomic(vaddr);
1367 first_page->inuse++;
1368 zs_stat_inc(class, OBJ_USED, 1);
1369
1370 return obj;
1371}
1372
1373
61989a80
NG
1374/**
1375 * zs_malloc - Allocate block of given size from pool.
1376 * @pool: pool to allocate from
1377 * @size: size of block to allocate
61989a80 1378 *
00a61d86 1379 * On success, handle to the allocated object is returned,
c2344348 1380 * otherwise 0.
61989a80
NG
1381 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1382 */
c2344348 1383unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1384{
2e40e163 1385 unsigned long handle, obj;
61989a80 1386 struct size_class *class;
c7806261 1387 struct page *first_page;
61989a80 1388
7b60a685 1389 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1390 return 0;
1391
1392 handle = alloc_handle(pool);
1393 if (!handle)
c2344348 1394 return 0;
61989a80 1395
2e40e163
MK
1396 /* extra space in chunk to keep the handle */
1397 size += ZS_HANDLE_SIZE;
9eec4cd5 1398 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1399
1400 spin_lock(&class->lock);
1401 first_page = find_get_zspage(class);
1402
1403 if (!first_page) {
1404 spin_unlock(&class->lock);
1405 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1406 if (unlikely(!first_page)) {
1407 free_handle(pool, handle);
c2344348 1408 return 0;
2e40e163 1409 }
61989a80
NG
1410
1411 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1412 atomic_long_add(class->pages_per_zspage,
1413 &pool->pages_allocated);
0f050d99 1414
61989a80 1415 spin_lock(&class->lock);
0f050d99
GM
1416 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1417 class->size, class->pages_per_zspage));
61989a80
NG
1418 }
1419
c7806261 1420 obj = obj_malloc(first_page, class, handle);
61989a80 1421 /* Now move the zspage to another fullness group, if required */
c7806261 1422 fix_fullness_group(class, first_page);
2e40e163 1423 record_obj(handle, obj);
61989a80
NG
1424 spin_unlock(&class->lock);
1425
2e40e163 1426 return handle;
61989a80
NG
1427}
1428EXPORT_SYMBOL_GPL(zs_malloc);
1429
c7806261
MK
1430static void obj_free(struct zs_pool *pool, struct size_class *class,
1431 unsigned long obj)
61989a80
NG
1432{
1433 struct link_free *link;
1434 struct page *first_page, *f_page;
c7806261 1435 unsigned long f_objidx, f_offset;
af4ee5e9 1436 void *vaddr;
61989a80 1437 int class_idx;
61989a80
NG
1438 enum fullness_group fullness;
1439
c7806261 1440 BUG_ON(!obj);
61989a80 1441
312fcae2 1442 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1443 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1444 first_page = get_first_page(f_page);
1445
1446 get_zspage_mapping(first_page, &class_idx, &fullness);
61989a80
NG
1447 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1448
c7806261 1449 vaddr = kmap_atomic(f_page);
61989a80
NG
1450
1451 /* Insert this object in containing zspage's freelist */
af4ee5e9 1452 link = (struct link_free *)(vaddr + f_offset);
61989a80 1453 link->next = first_page->freelist;
7b60a685
MK
1454 if (class->huge)
1455 set_page_private(first_page, 0);
af4ee5e9 1456 kunmap_atomic(vaddr);
c2344348 1457 first_page->freelist = (void *)obj;
61989a80 1458 first_page->inuse--;
0f050d99 1459 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1460}
1461
1462void zs_free(struct zs_pool *pool, unsigned long handle)
1463{
1464 struct page *first_page, *f_page;
1465 unsigned long obj, f_objidx;
1466 int class_idx;
1467 struct size_class *class;
1468 enum fullness_group fullness;
1469
1470 if (unlikely(!handle))
1471 return;
1472
312fcae2 1473 pin_tag(handle);
c7806261 1474 obj = handle_to_obj(handle);
c7806261
MK
1475 obj_to_location(obj, &f_page, &f_objidx);
1476 first_page = get_first_page(f_page);
1477
1478 get_zspage_mapping(first_page, &class_idx, &fullness);
1479 class = pool->size_class[class_idx];
1480
1481 spin_lock(&class->lock);
1482 obj_free(pool, class, obj);
1483 fullness = fix_fullness_group(class, first_page);
312fcae2 1484 if (fullness == ZS_EMPTY) {
0f050d99
GM
1485 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1486 class->size, class->pages_per_zspage));
312fcae2
MK
1487 atomic_long_sub(class->pages_per_zspage,
1488 &pool->pages_allocated);
1489 free_zspage(first_page);
1490 }
61989a80 1491 spin_unlock(&class->lock);
312fcae2 1492 unpin_tag(handle);
61989a80 1493
312fcae2
MK
1494 free_handle(pool, handle);
1495}
1496EXPORT_SYMBOL_GPL(zs_free);
1497
1498static void zs_object_copy(unsigned long src, unsigned long dst,
1499 struct size_class *class)
1500{
1501 struct page *s_page, *d_page;
1502 unsigned long s_objidx, d_objidx;
1503 unsigned long s_off, d_off;
1504 void *s_addr, *d_addr;
1505 int s_size, d_size, size;
1506 int written = 0;
1507
1508 s_size = d_size = class->size;
1509
1510 obj_to_location(src, &s_page, &s_objidx);
1511 obj_to_location(dst, &d_page, &d_objidx);
1512
1513 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1514 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1515
1516 if (s_off + class->size > PAGE_SIZE)
1517 s_size = PAGE_SIZE - s_off;
1518
1519 if (d_off + class->size > PAGE_SIZE)
1520 d_size = PAGE_SIZE - d_off;
1521
1522 s_addr = kmap_atomic(s_page);
1523 d_addr = kmap_atomic(d_page);
1524
1525 while (1) {
1526 size = min(s_size, d_size);
1527 memcpy(d_addr + d_off, s_addr + s_off, size);
1528 written += size;
1529
1530 if (written == class->size)
1531 break;
1532
495819ea
SS
1533 s_off += size;
1534 s_size -= size;
1535 d_off += size;
1536 d_size -= size;
1537
1538 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1539 kunmap_atomic(d_addr);
1540 kunmap_atomic(s_addr);
1541 s_page = get_next_page(s_page);
1542 BUG_ON(!s_page);
1543 s_addr = kmap_atomic(s_page);
1544 d_addr = kmap_atomic(d_page);
1545 s_size = class->size - written;
1546 s_off = 0;
312fcae2
MK
1547 }
1548
495819ea 1549 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1550 kunmap_atomic(d_addr);
1551 d_page = get_next_page(d_page);
1552 BUG_ON(!d_page);
1553 d_addr = kmap_atomic(d_page);
1554 d_size = class->size - written;
1555 d_off = 0;
312fcae2
MK
1556 }
1557 }
1558
1559 kunmap_atomic(d_addr);
1560 kunmap_atomic(s_addr);
1561}
1562
1563/*
1564 * Find alloced object in zspage from index object and
1565 * return handle.
1566 */
1567static unsigned long find_alloced_obj(struct page *page, int index,
1568 struct size_class *class)
1569{
1570 unsigned long head;
1571 int offset = 0;
1572 unsigned long handle = 0;
1573 void *addr = kmap_atomic(page);
1574
1575 if (!is_first_page(page))
1576 offset = page->index;
1577 offset += class->size * index;
1578
1579 while (offset < PAGE_SIZE) {
7b60a685 1580 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1581 if (head & OBJ_ALLOCATED_TAG) {
1582 handle = head & ~OBJ_ALLOCATED_TAG;
1583 if (trypin_tag(handle))
1584 break;
1585 handle = 0;
1586 }
1587
1588 offset += class->size;
1589 index++;
1590 }
1591
1592 kunmap_atomic(addr);
1593 return handle;
1594}
1595
1596struct zs_compact_control {
1597 /* Source page for migration which could be a subpage of zspage. */
1598 struct page *s_page;
1599 /* Destination page for migration which should be a first page
1600 * of zspage. */
1601 struct page *d_page;
1602 /* Starting object index within @s_page which used for live object
1603 * in the subpage. */
1604 int index;
1605 /* how many of objects are migrated */
1606 int nr_migrated;
1607};
1608
1609static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1610 struct zs_compact_control *cc)
1611{
1612 unsigned long used_obj, free_obj;
1613 unsigned long handle;
1614 struct page *s_page = cc->s_page;
1615 struct page *d_page = cc->d_page;
1616 unsigned long index = cc->index;
1617 int nr_migrated = 0;
1618 int ret = 0;
1619
1620 while (1) {
1621 handle = find_alloced_obj(s_page, index, class);
1622 if (!handle) {
1623 s_page = get_next_page(s_page);
1624 if (!s_page)
1625 break;
1626 index = 0;
1627 continue;
1628 }
1629
1630 /* Stop if there is no more space */
1631 if (zspage_full(d_page)) {
1632 unpin_tag(handle);
1633 ret = -ENOMEM;
1634 break;
1635 }
1636
1637 used_obj = handle_to_obj(handle);
1638 free_obj = obj_malloc(d_page, class, handle);
1639 zs_object_copy(used_obj, free_obj, class);
1640 index++;
1641 record_obj(handle, free_obj);
1642 unpin_tag(handle);
1643 obj_free(pool, class, used_obj);
1644 nr_migrated++;
1645 }
1646
1647 /* Remember last position in this iteration */
1648 cc->s_page = s_page;
1649 cc->index = index;
1650 cc->nr_migrated = nr_migrated;
1651
1652 return ret;
1653}
1654
1655static struct page *alloc_target_page(struct size_class *class)
1656{
1657 int i;
1658 struct page *page;
1659
1660 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1661 page = class->fullness_list[i];
1662 if (page) {
1663 remove_zspage(page, class, i);
1664 break;
1665 }
1666 }
1667
1668 return page;
1669}
1670
1671static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1672 struct page *first_page)
1673{
312fcae2
MK
1674 enum fullness_group fullness;
1675
1676 BUG_ON(!is_first_page(first_page));
1677
839373e6 1678 fullness = get_fullness_group(first_page);
312fcae2 1679 insert_zspage(first_page, class, fullness);
839373e6
MK
1680 set_zspage_mapping(first_page, class->index, fullness);
1681
13de8933 1682 if (fullness == ZS_EMPTY) {
312fcae2
MK
1683 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1684 class->size, class->pages_per_zspage));
13de8933
MK
1685 atomic_long_sub(class->pages_per_zspage,
1686 &pool->pages_allocated);
312fcae2 1687
61989a80 1688 free_zspage(first_page);
13de8933 1689 }
61989a80 1690}
312fcae2
MK
1691
1692static struct page *isolate_source_page(struct size_class *class)
1693{
1694 struct page *page;
1695
1696 page = class->fullness_list[ZS_ALMOST_EMPTY];
1697 if (page)
1698 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1699
1700 return page;
1701}
1702
1703static unsigned long __zs_compact(struct zs_pool *pool,
1704 struct size_class *class)
1705{
1706 int nr_to_migrate;
1707 struct zs_compact_control cc;
1708 struct page *src_page;
1709 struct page *dst_page = NULL;
1710 unsigned long nr_total_migrated = 0;
1711
312fcae2
MK
1712 spin_lock(&class->lock);
1713 while ((src_page = isolate_source_page(class))) {
1714
1715 BUG_ON(!is_first_page(src_page));
1716
1717 /* The goal is to migrate all live objects in source page */
1718 nr_to_migrate = src_page->inuse;
1719 cc.index = 0;
1720 cc.s_page = src_page;
1721
1722 while ((dst_page = alloc_target_page(class))) {
1723 cc.d_page = dst_page;
1724 /*
1725 * If there is no more space in dst_page, try to
1726 * allocate another zspage.
1727 */
1728 if (!migrate_zspage(pool, class, &cc))
1729 break;
1730
1731 putback_zspage(pool, class, dst_page);
1732 nr_total_migrated += cc.nr_migrated;
1733 nr_to_migrate -= cc.nr_migrated;
1734 }
1735
1736 /* Stop if we couldn't find slot */
1737 if (dst_page == NULL)
1738 break;
1739
1740 putback_zspage(pool, class, dst_page);
1741 putback_zspage(pool, class, src_page);
1742 spin_unlock(&class->lock);
1743 nr_total_migrated += cc.nr_migrated;
1744 cond_resched();
1745 spin_lock(&class->lock);
1746 }
1747
1748 if (src_page)
1749 putback_zspage(pool, class, src_page);
1750
1751 spin_unlock(&class->lock);
1752
1753 return nr_total_migrated;
1754}
1755
1756unsigned long zs_compact(struct zs_pool *pool)
1757{
1758 int i;
1759 unsigned long nr_migrated = 0;
1760 struct size_class *class;
1761
1762 for (i = zs_size_classes - 1; i >= 0; i--) {
1763 class = pool->size_class[i];
1764 if (!class)
1765 continue;
1766 if (class->index != i)
1767 continue;
1768 nr_migrated += __zs_compact(pool, class);
1769 }
1770
312fcae2
MK
1771 return nr_migrated;
1772}
1773EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1774
00a61d86 1775/**
66cdef66
GM
1776 * zs_create_pool - Creates an allocation pool to work from.
1777 * @flags: allocation flags used to allocate pool metadata
166cfda7 1778 *
66cdef66
GM
1779 * This function must be called before anything when using
1780 * the zsmalloc allocator.
166cfda7 1781 *
66cdef66
GM
1782 * On success, a pointer to the newly created pool is returned,
1783 * otherwise NULL.
396b7fd6 1784 */
3eba0c6a 1785struct zs_pool *zs_create_pool(char *name, gfp_t flags)
61989a80 1786{
66cdef66
GM
1787 int i;
1788 struct zs_pool *pool;
1789 struct size_class *prev_class = NULL;
61989a80 1790
66cdef66
GM
1791 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1792 if (!pool)
1793 return NULL;
61989a80 1794
66cdef66
GM
1795 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1796 GFP_KERNEL);
1797 if (!pool->size_class) {
1798 kfree(pool);
1799 return NULL;
1800 }
61989a80 1801
2e40e163
MK
1802 pool->name = kstrdup(name, GFP_KERNEL);
1803 if (!pool->name)
1804 goto err;
1805
1806 if (create_handle_cache(pool))
1807 goto err;
1808
c60369f0 1809 /*
66cdef66
GM
1810 * Iterate reversly, because, size of size_class that we want to use
1811 * for merging should be larger or equal to current size.
c60369f0 1812 */
66cdef66
GM
1813 for (i = zs_size_classes - 1; i >= 0; i--) {
1814 int size;
1815 int pages_per_zspage;
1816 struct size_class *class;
c60369f0 1817
66cdef66
GM
1818 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1819 if (size > ZS_MAX_ALLOC_SIZE)
1820 size = ZS_MAX_ALLOC_SIZE;
1821 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1822
66cdef66
GM
1823 /*
1824 * size_class is used for normal zsmalloc operation such
1825 * as alloc/free for that size. Although it is natural that we
1826 * have one size_class for each size, there is a chance that we
1827 * can get more memory utilization if we use one size_class for
1828 * many different sizes whose size_class have same
1829 * characteristics. So, we makes size_class point to
1830 * previous size_class if possible.
1831 */
1832 if (prev_class) {
1833 if (can_merge(prev_class, size, pages_per_zspage)) {
1834 pool->size_class[i] = prev_class;
1835 continue;
1836 }
1837 }
1838
1839 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1840 if (!class)
1841 goto err;
1842
1843 class->size = size;
1844 class->index = i;
1845 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1846 if (pages_per_zspage == 1 &&
1847 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1848 class->huge = true;
66cdef66
GM
1849 spin_lock_init(&class->lock);
1850 pool->size_class[i] = class;
1851
1852 prev_class = class;
61989a80
NG
1853 }
1854
66cdef66 1855 pool->flags = flags;
b7418510 1856
0f050d99
GM
1857 if (zs_pool_stat_create(name, pool))
1858 goto err;
1859
66cdef66
GM
1860 return pool;
1861
1862err:
1863 zs_destroy_pool(pool);
1864 return NULL;
61989a80 1865}
66cdef66 1866EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1867
66cdef66 1868void zs_destroy_pool(struct zs_pool *pool)
61989a80 1869{
66cdef66 1870 int i;
61989a80 1871
0f050d99
GM
1872 zs_pool_stat_destroy(pool);
1873
66cdef66
GM
1874 for (i = 0; i < zs_size_classes; i++) {
1875 int fg;
1876 struct size_class *class = pool->size_class[i];
61989a80 1877
66cdef66
GM
1878 if (!class)
1879 continue;
61989a80 1880
66cdef66
GM
1881 if (class->index != i)
1882 continue;
61989a80 1883
66cdef66
GM
1884 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1885 if (class->fullness_list[fg]) {
1886 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1887 class->size, fg);
1888 }
1889 }
1890 kfree(class);
1891 }
f553646a 1892
2e40e163 1893 destroy_handle_cache(pool);
66cdef66 1894 kfree(pool->size_class);
0f050d99 1895 kfree(pool->name);
66cdef66
GM
1896 kfree(pool);
1897}
1898EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 1899
66cdef66
GM
1900static int __init zs_init(void)
1901{
1902 int ret = zs_register_cpu_notifier();
1903
0f050d99
GM
1904 if (ret)
1905 goto notifier_fail;
66cdef66
GM
1906
1907 init_zs_size_classes();
1908
1909#ifdef CONFIG_ZPOOL
1910 zpool_register_driver(&zs_zpool_driver);
1911#endif
0f050d99
GM
1912
1913 ret = zs_stat_init();
1914 if (ret) {
1915 pr_err("zs stat initialization failed\n");
1916 goto stat_fail;
1917 }
66cdef66 1918 return 0;
0f050d99
GM
1919
1920stat_fail:
1921#ifdef CONFIG_ZPOOL
1922 zpool_unregister_driver(&zs_zpool_driver);
1923#endif
1924notifier_fail:
1925 zs_unregister_cpu_notifier();
1926
1927 return ret;
61989a80 1928}
61989a80 1929
66cdef66 1930static void __exit zs_exit(void)
61989a80 1931{
66cdef66
GM
1932#ifdef CONFIG_ZPOOL
1933 zpool_unregister_driver(&zs_zpool_driver);
1934#endif
1935 zs_unregister_cpu_notifier();
0f050d99
GM
1936
1937 zs_stat_exit();
61989a80 1938}
069f101f
BH
1939
1940module_init(zs_init);
1941module_exit(zs_exit);
1942
1943MODULE_LICENSE("Dual BSD/GPL");
1944MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");