Merge tag 'mac80211-for-davem-2015-08-14' of git://git.kernel.org/pub/scm/linux/kerne...
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
241994ed
JW
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
1da177e4
LT
107};
108
1da177e4
LT
109#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111#ifdef ARCH_HAS_PREFETCH
112#define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125#ifdef ARCH_HAS_PREFETCHW
126#define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135#else
136#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137#endif
138
139/*
140 * From 0 .. 100. Higher means more swappy.
141 */
142int vm_swappiness = 60;
d0480be4
WSH
143/*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147unsigned long vm_total_pages;
1da177e4
LT
148
149static LIST_HEAD(shrinker_list);
150static DECLARE_RWSEM(shrinker_rwsem);
151
c255a458 152#ifdef CONFIG_MEMCG
89b5fae5
JW
153static bool global_reclaim(struct scan_control *sc)
154{
f16015fb 155 return !sc->target_mem_cgroup;
89b5fae5 156}
97c9341f
TH
157
158/**
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
171static bool sane_reclaim(struct scan_control *sc)
172{
173 struct mem_cgroup *memcg = sc->target_mem_cgroup;
174
175 if (!memcg)
176 return true;
177#ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup))
179 return true;
180#endif
181 return false;
182}
91a45470 183#else
89b5fae5
JW
184static bool global_reclaim(struct scan_control *sc)
185{
186 return true;
187}
97c9341f
TH
188
189static bool sane_reclaim(struct scan_control *sc)
190{
191 return true;
192}
91a45470
KH
193#endif
194
a1c3bfb2 195static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
196{
197 int nr;
198
199 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
200 zone_page_state(zone, NR_INACTIVE_FILE);
201
202 if (get_nr_swap_pages() > 0)
203 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
204 zone_page_state(zone, NR_INACTIVE_ANON);
205
206 return nr;
207}
208
209bool zone_reclaimable(struct zone *zone)
210{
0d5d823a
MG
211 return zone_page_state(zone, NR_PAGES_SCANNED) <
212 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
213}
214
4d7dcca2 215static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 216{
c3c787e8 217 if (!mem_cgroup_disabled())
4d7dcca2 218 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 219
074291fe 220 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
221}
222
1da177e4 223/*
1d3d4437 224 * Add a shrinker callback to be called from the vm.
1da177e4 225 */
1d3d4437 226int register_shrinker(struct shrinker *shrinker)
1da177e4 227{
1d3d4437
GC
228 size_t size = sizeof(*shrinker->nr_deferred);
229
230 /*
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
234 */
235 if (nr_node_ids == 1)
236 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
237
238 if (shrinker->flags & SHRINKER_NUMA_AWARE)
239 size *= nr_node_ids;
240
241 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
242 if (!shrinker->nr_deferred)
243 return -ENOMEM;
244
8e1f936b
RR
245 down_write(&shrinker_rwsem);
246 list_add_tail(&shrinker->list, &shrinker_list);
247 up_write(&shrinker_rwsem);
1d3d4437 248 return 0;
1da177e4 249}
8e1f936b 250EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
251
252/*
253 * Remove one
254 */
8e1f936b 255void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
256{
257 down_write(&shrinker_rwsem);
258 list_del(&shrinker->list);
259 up_write(&shrinker_rwsem);
ae393321 260 kfree(shrinker->nr_deferred);
1da177e4 261}
8e1f936b 262EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
263
264#define SHRINK_BATCH 128
1d3d4437 265
cb731d6c
VD
266static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
267 struct shrinker *shrinker,
268 unsigned long nr_scanned,
269 unsigned long nr_eligible)
1d3d4437
GC
270{
271 unsigned long freed = 0;
272 unsigned long long delta;
273 long total_scan;
d5bc5fd3 274 long freeable;
1d3d4437
GC
275 long nr;
276 long new_nr;
277 int nid = shrinkctl->nid;
278 long batch_size = shrinker->batch ? shrinker->batch
279 : SHRINK_BATCH;
280
d5bc5fd3
VD
281 freeable = shrinker->count_objects(shrinker, shrinkctl);
282 if (freeable == 0)
1d3d4437
GC
283 return 0;
284
285 /*
286 * copy the current shrinker scan count into a local variable
287 * and zero it so that other concurrent shrinker invocations
288 * don't also do this scanning work.
289 */
290 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
291
292 total_scan = nr;
6b4f7799 293 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 294 delta *= freeable;
6b4f7799 295 do_div(delta, nr_eligible + 1);
1d3d4437
GC
296 total_scan += delta;
297 if (total_scan < 0) {
8612c663 298 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 299 shrinker->scan_objects, total_scan);
d5bc5fd3 300 total_scan = freeable;
1d3d4437
GC
301 }
302
303 /*
304 * We need to avoid excessive windup on filesystem shrinkers
305 * due to large numbers of GFP_NOFS allocations causing the
306 * shrinkers to return -1 all the time. This results in a large
307 * nr being built up so when a shrink that can do some work
308 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 309 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
310 * memory.
311 *
312 * Hence only allow the shrinker to scan the entire cache when
313 * a large delta change is calculated directly.
314 */
d5bc5fd3
VD
315 if (delta < freeable / 4)
316 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
317
318 /*
319 * Avoid risking looping forever due to too large nr value:
320 * never try to free more than twice the estimate number of
321 * freeable entries.
322 */
d5bc5fd3
VD
323 if (total_scan > freeable * 2)
324 total_scan = freeable * 2;
1d3d4437
GC
325
326 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
327 nr_scanned, nr_eligible,
328 freeable, delta, total_scan);
1d3d4437 329
0b1fb40a
VD
330 /*
331 * Normally, we should not scan less than batch_size objects in one
332 * pass to avoid too frequent shrinker calls, but if the slab has less
333 * than batch_size objects in total and we are really tight on memory,
334 * we will try to reclaim all available objects, otherwise we can end
335 * up failing allocations although there are plenty of reclaimable
336 * objects spread over several slabs with usage less than the
337 * batch_size.
338 *
339 * We detect the "tight on memory" situations by looking at the total
340 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 341 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
342 * scanning at high prio and therefore should try to reclaim as much as
343 * possible.
344 */
345 while (total_scan >= batch_size ||
d5bc5fd3 346 total_scan >= freeable) {
a0b02131 347 unsigned long ret;
0b1fb40a 348 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 349
0b1fb40a 350 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
351 ret = shrinker->scan_objects(shrinker, shrinkctl);
352 if (ret == SHRINK_STOP)
353 break;
354 freed += ret;
1d3d4437 355
0b1fb40a
VD
356 count_vm_events(SLABS_SCANNED, nr_to_scan);
357 total_scan -= nr_to_scan;
1d3d4437
GC
358
359 cond_resched();
360 }
361
362 /*
363 * move the unused scan count back into the shrinker in a
364 * manner that handles concurrent updates. If we exhausted the
365 * scan, there is no need to do an update.
366 */
367 if (total_scan > 0)
368 new_nr = atomic_long_add_return(total_scan,
369 &shrinker->nr_deferred[nid]);
370 else
371 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
372
df9024a8 373 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 374 return freed;
1495f230
YH
375}
376
6b4f7799 377/**
cb731d6c 378 * shrink_slab - shrink slab caches
6b4f7799
JW
379 * @gfp_mask: allocation context
380 * @nid: node whose slab caches to target
cb731d6c 381 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
382 * @nr_scanned: pressure numerator
383 * @nr_eligible: pressure denominator
1da177e4 384 *
6b4f7799 385 * Call the shrink functions to age shrinkable caches.
1da177e4 386 *
6b4f7799
JW
387 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
388 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 389 *
cb731d6c
VD
390 * @memcg specifies the memory cgroup to target. If it is not NULL,
391 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
392 * objects from the memory cgroup specified. Otherwise all shrinkers
393 * are called, and memcg aware shrinkers are supposed to scan the
394 * global list then.
395 *
6b4f7799
JW
396 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
397 * the available objects should be scanned. Page reclaim for example
398 * passes the number of pages scanned and the number of pages on the
399 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
400 * when it encountered mapped pages. The ratio is further biased by
401 * the ->seeks setting of the shrink function, which indicates the
402 * cost to recreate an object relative to that of an LRU page.
b15e0905 403 *
6b4f7799 404 * Returns the number of reclaimed slab objects.
1da177e4 405 */
cb731d6c
VD
406static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
407 struct mem_cgroup *memcg,
408 unsigned long nr_scanned,
409 unsigned long nr_eligible)
1da177e4
LT
410{
411 struct shrinker *shrinker;
24f7c6b9 412 unsigned long freed = 0;
1da177e4 413
cb731d6c
VD
414 if (memcg && !memcg_kmem_is_active(memcg))
415 return 0;
416
6b4f7799
JW
417 if (nr_scanned == 0)
418 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 419
f06590bd 420 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
421 /*
422 * If we would return 0, our callers would understand that we
423 * have nothing else to shrink and give up trying. By returning
424 * 1 we keep it going and assume we'll be able to shrink next
425 * time.
426 */
427 freed = 1;
f06590bd
MK
428 goto out;
429 }
1da177e4
LT
430
431 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
432 struct shrink_control sc = {
433 .gfp_mask = gfp_mask,
434 .nid = nid,
cb731d6c 435 .memcg = memcg,
6b4f7799 436 };
ec97097b 437
cb731d6c
VD
438 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
439 continue;
440
6b4f7799
JW
441 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
442 sc.nid = 0;
1da177e4 443
cb731d6c 444 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 445 }
6b4f7799 446
1da177e4 447 up_read(&shrinker_rwsem);
f06590bd
MK
448out:
449 cond_resched();
24f7c6b9 450 return freed;
1da177e4
LT
451}
452
cb731d6c
VD
453void drop_slab_node(int nid)
454{
455 unsigned long freed;
456
457 do {
458 struct mem_cgroup *memcg = NULL;
459
460 freed = 0;
461 do {
462 freed += shrink_slab(GFP_KERNEL, nid, memcg,
463 1000, 1000);
464 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
465 } while (freed > 10);
466}
467
468void drop_slab(void)
469{
470 int nid;
471
472 for_each_online_node(nid)
473 drop_slab_node(nid);
474}
475
1da177e4
LT
476static inline int is_page_cache_freeable(struct page *page)
477{
ceddc3a5
JW
478 /*
479 * A freeable page cache page is referenced only by the caller
480 * that isolated the page, the page cache radix tree and
481 * optional buffer heads at page->private.
482 */
edcf4748 483 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
484}
485
703c2708 486static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 487{
930d9152 488 if (current->flags & PF_SWAPWRITE)
1da177e4 489 return 1;
703c2708 490 if (!inode_write_congested(inode))
1da177e4 491 return 1;
703c2708 492 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
493 return 1;
494 return 0;
495}
496
497/*
498 * We detected a synchronous write error writing a page out. Probably
499 * -ENOSPC. We need to propagate that into the address_space for a subsequent
500 * fsync(), msync() or close().
501 *
502 * The tricky part is that after writepage we cannot touch the mapping: nothing
503 * prevents it from being freed up. But we have a ref on the page and once
504 * that page is locked, the mapping is pinned.
505 *
506 * We're allowed to run sleeping lock_page() here because we know the caller has
507 * __GFP_FS.
508 */
509static void handle_write_error(struct address_space *mapping,
510 struct page *page, int error)
511{
7eaceacc 512 lock_page(page);
3e9f45bd
GC
513 if (page_mapping(page) == mapping)
514 mapping_set_error(mapping, error);
1da177e4
LT
515 unlock_page(page);
516}
517
04e62a29
CL
518/* possible outcome of pageout() */
519typedef enum {
520 /* failed to write page out, page is locked */
521 PAGE_KEEP,
522 /* move page to the active list, page is locked */
523 PAGE_ACTIVATE,
524 /* page has been sent to the disk successfully, page is unlocked */
525 PAGE_SUCCESS,
526 /* page is clean and locked */
527 PAGE_CLEAN,
528} pageout_t;
529
1da177e4 530/*
1742f19f
AM
531 * pageout is called by shrink_page_list() for each dirty page.
532 * Calls ->writepage().
1da177e4 533 */
c661b078 534static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 535 struct scan_control *sc)
1da177e4
LT
536{
537 /*
538 * If the page is dirty, only perform writeback if that write
539 * will be non-blocking. To prevent this allocation from being
540 * stalled by pagecache activity. But note that there may be
541 * stalls if we need to run get_block(). We could test
542 * PagePrivate for that.
543 *
8174202b 544 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
545 * this page's queue, we can perform writeback even if that
546 * will block.
547 *
548 * If the page is swapcache, write it back even if that would
549 * block, for some throttling. This happens by accident, because
550 * swap_backing_dev_info is bust: it doesn't reflect the
551 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
552 */
553 if (!is_page_cache_freeable(page))
554 return PAGE_KEEP;
555 if (!mapping) {
556 /*
557 * Some data journaling orphaned pages can have
558 * page->mapping == NULL while being dirty with clean buffers.
559 */
266cf658 560 if (page_has_private(page)) {
1da177e4
LT
561 if (try_to_free_buffers(page)) {
562 ClearPageDirty(page);
b1de0d13 563 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
564 return PAGE_CLEAN;
565 }
566 }
567 return PAGE_KEEP;
568 }
569 if (mapping->a_ops->writepage == NULL)
570 return PAGE_ACTIVATE;
703c2708 571 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
572 return PAGE_KEEP;
573
574 if (clear_page_dirty_for_io(page)) {
575 int res;
576 struct writeback_control wbc = {
577 .sync_mode = WB_SYNC_NONE,
578 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
579 .range_start = 0,
580 .range_end = LLONG_MAX,
1da177e4
LT
581 .for_reclaim = 1,
582 };
583
584 SetPageReclaim(page);
585 res = mapping->a_ops->writepage(page, &wbc);
586 if (res < 0)
587 handle_write_error(mapping, page, res);
994fc28c 588 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
589 ClearPageReclaim(page);
590 return PAGE_ACTIVATE;
591 }
c661b078 592
1da177e4
LT
593 if (!PageWriteback(page)) {
594 /* synchronous write or broken a_ops? */
595 ClearPageReclaim(page);
596 }
23b9da55 597 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 598 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
599 return PAGE_SUCCESS;
600 }
601
602 return PAGE_CLEAN;
603}
604
a649fd92 605/*
e286781d
NP
606 * Same as remove_mapping, but if the page is removed from the mapping, it
607 * gets returned with a refcount of 0.
a649fd92 608 */
a528910e
JW
609static int __remove_mapping(struct address_space *mapping, struct page *page,
610 bool reclaimed)
49d2e9cc 611{
c4843a75
GT
612 unsigned long flags;
613 struct mem_cgroup *memcg;
614
28e4d965
NP
615 BUG_ON(!PageLocked(page));
616 BUG_ON(mapping != page_mapping(page));
49d2e9cc 617
c4843a75
GT
618 memcg = mem_cgroup_begin_page_stat(page);
619 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 620 /*
0fd0e6b0
NP
621 * The non racy check for a busy page.
622 *
623 * Must be careful with the order of the tests. When someone has
624 * a ref to the page, it may be possible that they dirty it then
625 * drop the reference. So if PageDirty is tested before page_count
626 * here, then the following race may occur:
627 *
628 * get_user_pages(&page);
629 * [user mapping goes away]
630 * write_to(page);
631 * !PageDirty(page) [good]
632 * SetPageDirty(page);
633 * put_page(page);
634 * !page_count(page) [good, discard it]
635 *
636 * [oops, our write_to data is lost]
637 *
638 * Reversing the order of the tests ensures such a situation cannot
639 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
640 * load is not satisfied before that of page->_count.
641 *
642 * Note that if SetPageDirty is always performed via set_page_dirty,
643 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 644 */
e286781d 645 if (!page_freeze_refs(page, 2))
49d2e9cc 646 goto cannot_free;
e286781d
NP
647 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
648 if (unlikely(PageDirty(page))) {
649 page_unfreeze_refs(page, 2);
49d2e9cc 650 goto cannot_free;
e286781d 651 }
49d2e9cc
CL
652
653 if (PageSwapCache(page)) {
654 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 655 mem_cgroup_swapout(page, swap);
49d2e9cc 656 __delete_from_swap_cache(page);
c4843a75
GT
657 spin_unlock_irqrestore(&mapping->tree_lock, flags);
658 mem_cgroup_end_page_stat(memcg);
0a31bc97 659 swapcache_free(swap);
e286781d 660 } else {
6072d13c 661 void (*freepage)(struct page *);
a528910e 662 void *shadow = NULL;
6072d13c
LT
663
664 freepage = mapping->a_ops->freepage;
a528910e
JW
665 /*
666 * Remember a shadow entry for reclaimed file cache in
667 * order to detect refaults, thus thrashing, later on.
668 *
669 * But don't store shadows in an address space that is
670 * already exiting. This is not just an optizimation,
671 * inode reclaim needs to empty out the radix tree or
672 * the nodes are lost. Don't plant shadows behind its
673 * back.
674 */
675 if (reclaimed && page_is_file_cache(page) &&
676 !mapping_exiting(mapping))
677 shadow = workingset_eviction(mapping, page);
c4843a75
GT
678 __delete_from_page_cache(page, shadow, memcg);
679 spin_unlock_irqrestore(&mapping->tree_lock, flags);
680 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
681
682 if (freepage != NULL)
683 freepage(page);
49d2e9cc
CL
684 }
685
49d2e9cc
CL
686 return 1;
687
688cannot_free:
c4843a75
GT
689 spin_unlock_irqrestore(&mapping->tree_lock, flags);
690 mem_cgroup_end_page_stat(memcg);
49d2e9cc
CL
691 return 0;
692}
693
e286781d
NP
694/*
695 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
696 * someone else has a ref on the page, abort and return 0. If it was
697 * successfully detached, return 1. Assumes the caller has a single ref on
698 * this page.
699 */
700int remove_mapping(struct address_space *mapping, struct page *page)
701{
a528910e 702 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
703 /*
704 * Unfreezing the refcount with 1 rather than 2 effectively
705 * drops the pagecache ref for us without requiring another
706 * atomic operation.
707 */
708 page_unfreeze_refs(page, 1);
709 return 1;
710 }
711 return 0;
712}
713
894bc310
LS
714/**
715 * putback_lru_page - put previously isolated page onto appropriate LRU list
716 * @page: page to be put back to appropriate lru list
717 *
718 * Add previously isolated @page to appropriate LRU list.
719 * Page may still be unevictable for other reasons.
720 *
721 * lru_lock must not be held, interrupts must be enabled.
722 */
894bc310
LS
723void putback_lru_page(struct page *page)
724{
0ec3b74c 725 bool is_unevictable;
bbfd28ee 726 int was_unevictable = PageUnevictable(page);
894bc310 727
309381fe 728 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
729
730redo:
731 ClearPageUnevictable(page);
732
39b5f29a 733 if (page_evictable(page)) {
894bc310
LS
734 /*
735 * For evictable pages, we can use the cache.
736 * In event of a race, worst case is we end up with an
737 * unevictable page on [in]active list.
738 * We know how to handle that.
739 */
0ec3b74c 740 is_unevictable = false;
c53954a0 741 lru_cache_add(page);
894bc310
LS
742 } else {
743 /*
744 * Put unevictable pages directly on zone's unevictable
745 * list.
746 */
0ec3b74c 747 is_unevictable = true;
894bc310 748 add_page_to_unevictable_list(page);
6a7b9548 749 /*
21ee9f39
MK
750 * When racing with an mlock or AS_UNEVICTABLE clearing
751 * (page is unlocked) make sure that if the other thread
752 * does not observe our setting of PG_lru and fails
24513264 753 * isolation/check_move_unevictable_pages,
21ee9f39 754 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
755 * the page back to the evictable list.
756 *
21ee9f39 757 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
758 */
759 smp_mb();
894bc310 760 }
894bc310
LS
761
762 /*
763 * page's status can change while we move it among lru. If an evictable
764 * page is on unevictable list, it never be freed. To avoid that,
765 * check after we added it to the list, again.
766 */
0ec3b74c 767 if (is_unevictable && page_evictable(page)) {
894bc310
LS
768 if (!isolate_lru_page(page)) {
769 put_page(page);
770 goto redo;
771 }
772 /* This means someone else dropped this page from LRU
773 * So, it will be freed or putback to LRU again. There is
774 * nothing to do here.
775 */
776 }
777
0ec3b74c 778 if (was_unevictable && !is_unevictable)
bbfd28ee 779 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 780 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
781 count_vm_event(UNEVICTABLE_PGCULLED);
782
894bc310
LS
783 put_page(page); /* drop ref from isolate */
784}
785
dfc8d636
JW
786enum page_references {
787 PAGEREF_RECLAIM,
788 PAGEREF_RECLAIM_CLEAN,
64574746 789 PAGEREF_KEEP,
dfc8d636
JW
790 PAGEREF_ACTIVATE,
791};
792
793static enum page_references page_check_references(struct page *page,
794 struct scan_control *sc)
795{
64574746 796 int referenced_ptes, referenced_page;
dfc8d636 797 unsigned long vm_flags;
dfc8d636 798
c3ac9a8a
JW
799 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
800 &vm_flags);
64574746 801 referenced_page = TestClearPageReferenced(page);
dfc8d636 802
dfc8d636
JW
803 /*
804 * Mlock lost the isolation race with us. Let try_to_unmap()
805 * move the page to the unevictable list.
806 */
807 if (vm_flags & VM_LOCKED)
808 return PAGEREF_RECLAIM;
809
64574746 810 if (referenced_ptes) {
e4898273 811 if (PageSwapBacked(page))
64574746
JW
812 return PAGEREF_ACTIVATE;
813 /*
814 * All mapped pages start out with page table
815 * references from the instantiating fault, so we need
816 * to look twice if a mapped file page is used more
817 * than once.
818 *
819 * Mark it and spare it for another trip around the
820 * inactive list. Another page table reference will
821 * lead to its activation.
822 *
823 * Note: the mark is set for activated pages as well
824 * so that recently deactivated but used pages are
825 * quickly recovered.
826 */
827 SetPageReferenced(page);
828
34dbc67a 829 if (referenced_page || referenced_ptes > 1)
64574746
JW
830 return PAGEREF_ACTIVATE;
831
c909e993
KK
832 /*
833 * Activate file-backed executable pages after first usage.
834 */
835 if (vm_flags & VM_EXEC)
836 return PAGEREF_ACTIVATE;
837
64574746
JW
838 return PAGEREF_KEEP;
839 }
dfc8d636
JW
840
841 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 842 if (referenced_page && !PageSwapBacked(page))
64574746
JW
843 return PAGEREF_RECLAIM_CLEAN;
844
845 return PAGEREF_RECLAIM;
dfc8d636
JW
846}
847
e2be15f6
MG
848/* Check if a page is dirty or under writeback */
849static void page_check_dirty_writeback(struct page *page,
850 bool *dirty, bool *writeback)
851{
b4597226
MG
852 struct address_space *mapping;
853
e2be15f6
MG
854 /*
855 * Anonymous pages are not handled by flushers and must be written
856 * from reclaim context. Do not stall reclaim based on them
857 */
858 if (!page_is_file_cache(page)) {
859 *dirty = false;
860 *writeback = false;
861 return;
862 }
863
864 /* By default assume that the page flags are accurate */
865 *dirty = PageDirty(page);
866 *writeback = PageWriteback(page);
b4597226
MG
867
868 /* Verify dirty/writeback state if the filesystem supports it */
869 if (!page_has_private(page))
870 return;
871
872 mapping = page_mapping(page);
873 if (mapping && mapping->a_ops->is_dirty_writeback)
874 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
875}
876
1da177e4 877/*
1742f19f 878 * shrink_page_list() returns the number of reclaimed pages
1da177e4 879 */
1742f19f 880static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 881 struct zone *zone,
f84f6e2b 882 struct scan_control *sc,
02c6de8d 883 enum ttu_flags ttu_flags,
8e950282 884 unsigned long *ret_nr_dirty,
d43006d5 885 unsigned long *ret_nr_unqueued_dirty,
8e950282 886 unsigned long *ret_nr_congested,
02c6de8d 887 unsigned long *ret_nr_writeback,
b1a6f21e 888 unsigned long *ret_nr_immediate,
02c6de8d 889 bool force_reclaim)
1da177e4
LT
890{
891 LIST_HEAD(ret_pages);
abe4c3b5 892 LIST_HEAD(free_pages);
1da177e4 893 int pgactivate = 0;
d43006d5 894 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
895 unsigned long nr_dirty = 0;
896 unsigned long nr_congested = 0;
05ff5137 897 unsigned long nr_reclaimed = 0;
92df3a72 898 unsigned long nr_writeback = 0;
b1a6f21e 899 unsigned long nr_immediate = 0;
1da177e4
LT
900
901 cond_resched();
902
1da177e4
LT
903 while (!list_empty(page_list)) {
904 struct address_space *mapping;
905 struct page *page;
906 int may_enter_fs;
02c6de8d 907 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 908 bool dirty, writeback;
1da177e4
LT
909
910 cond_resched();
911
912 page = lru_to_page(page_list);
913 list_del(&page->lru);
914
529ae9aa 915 if (!trylock_page(page))
1da177e4
LT
916 goto keep;
917
309381fe
SL
918 VM_BUG_ON_PAGE(PageActive(page), page);
919 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
920
921 sc->nr_scanned++;
80e43426 922
39b5f29a 923 if (unlikely(!page_evictable(page)))
b291f000 924 goto cull_mlocked;
894bc310 925
a6dc60f8 926 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
927 goto keep_locked;
928
1da177e4
LT
929 /* Double the slab pressure for mapped and swapcache pages */
930 if (page_mapped(page) || PageSwapCache(page))
931 sc->nr_scanned++;
932
c661b078
AW
933 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
934 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
935
e2be15f6
MG
936 /*
937 * The number of dirty pages determines if a zone is marked
938 * reclaim_congested which affects wait_iff_congested. kswapd
939 * will stall and start writing pages if the tail of the LRU
940 * is all dirty unqueued pages.
941 */
942 page_check_dirty_writeback(page, &dirty, &writeback);
943 if (dirty || writeback)
944 nr_dirty++;
945
946 if (dirty && !writeback)
947 nr_unqueued_dirty++;
948
d04e8acd
MG
949 /*
950 * Treat this page as congested if the underlying BDI is or if
951 * pages are cycling through the LRU so quickly that the
952 * pages marked for immediate reclaim are making it to the
953 * end of the LRU a second time.
954 */
e2be15f6 955 mapping = page_mapping(page);
1da58ee2 956 if (((dirty || writeback) && mapping &&
703c2708 957 inode_write_congested(mapping->host)) ||
d04e8acd 958 (writeback && PageReclaim(page)))
e2be15f6
MG
959 nr_congested++;
960
283aba9f
MG
961 /*
962 * If a page at the tail of the LRU is under writeback, there
963 * are three cases to consider.
964 *
965 * 1) If reclaim is encountering an excessive number of pages
966 * under writeback and this page is both under writeback and
967 * PageReclaim then it indicates that pages are being queued
968 * for IO but are being recycled through the LRU before the
969 * IO can complete. Waiting on the page itself risks an
970 * indefinite stall if it is impossible to writeback the
971 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
972 * note that the LRU is being scanned too quickly and the
973 * caller can stall after page list has been processed.
283aba9f 974 *
97c9341f 975 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
976 * not marked for immediate reclaim, or the caller does not
977 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
978 * not to fs). In this case mark the page for immediate
97c9341f 979 * reclaim and continue scanning.
283aba9f 980 *
ecf5fc6e
MH
981 * Require may_enter_fs because we would wait on fs, which
982 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
983 * enter reclaim, and deadlock if it waits on a page for
984 * which it is needed to do the write (loop masks off
985 * __GFP_IO|__GFP_FS for this reason); but more thought
986 * would probably show more reasons.
987 *
97c9341f 988 * 3) Legacy memcg encounters a page that is not already marked
283aba9f
MG
989 * PageReclaim. memcg does not have any dirty pages
990 * throttling so we could easily OOM just because too many
991 * pages are in writeback and there is nothing else to
992 * reclaim. Wait for the writeback to complete.
993 */
c661b078 994 if (PageWriteback(page)) {
283aba9f
MG
995 /* Case 1 above */
996 if (current_is_kswapd() &&
997 PageReclaim(page) &&
57054651 998 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
999 nr_immediate++;
1000 goto keep_locked;
283aba9f
MG
1001
1002 /* Case 2 above */
97c9341f 1003 } else if (sane_reclaim(sc) ||
ecf5fc6e 1004 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1005 /*
1006 * This is slightly racy - end_page_writeback()
1007 * might have just cleared PageReclaim, then
1008 * setting PageReclaim here end up interpreted
1009 * as PageReadahead - but that does not matter
1010 * enough to care. What we do want is for this
1011 * page to have PageReclaim set next time memcg
1012 * reclaim reaches the tests above, so it will
1013 * then wait_on_page_writeback() to avoid OOM;
1014 * and it's also appropriate in global reclaim.
1015 */
1016 SetPageReclaim(page);
e62e384e 1017 nr_writeback++;
283aba9f 1018
c3b94f44 1019 goto keep_locked;
283aba9f
MG
1020
1021 /* Case 3 above */
1022 } else {
1023 wait_on_page_writeback(page);
e62e384e 1024 }
c661b078 1025 }
1da177e4 1026
02c6de8d
MK
1027 if (!force_reclaim)
1028 references = page_check_references(page, sc);
1029
dfc8d636
JW
1030 switch (references) {
1031 case PAGEREF_ACTIVATE:
1da177e4 1032 goto activate_locked;
64574746
JW
1033 case PAGEREF_KEEP:
1034 goto keep_locked;
dfc8d636
JW
1035 case PAGEREF_RECLAIM:
1036 case PAGEREF_RECLAIM_CLEAN:
1037 ; /* try to reclaim the page below */
1038 }
1da177e4 1039
1da177e4
LT
1040 /*
1041 * Anonymous process memory has backing store?
1042 * Try to allocate it some swap space here.
1043 */
b291f000 1044 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1045 if (!(sc->gfp_mask & __GFP_IO))
1046 goto keep_locked;
5bc7b8ac 1047 if (!add_to_swap(page, page_list))
1da177e4 1048 goto activate_locked;
63eb6b93 1049 may_enter_fs = 1;
1da177e4 1050
e2be15f6
MG
1051 /* Adding to swap updated mapping */
1052 mapping = page_mapping(page);
1053 }
1da177e4
LT
1054
1055 /*
1056 * The page is mapped into the page tables of one or more
1057 * processes. Try to unmap it here.
1058 */
1059 if (page_mapped(page) && mapping) {
02c6de8d 1060 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
1061 case SWAP_FAIL:
1062 goto activate_locked;
1063 case SWAP_AGAIN:
1064 goto keep_locked;
b291f000
NP
1065 case SWAP_MLOCK:
1066 goto cull_mlocked;
1da177e4
LT
1067 case SWAP_SUCCESS:
1068 ; /* try to free the page below */
1069 }
1070 }
1071
1072 if (PageDirty(page)) {
ee72886d
MG
1073 /*
1074 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1075 * avoid risk of stack overflow but only writeback
1076 * if many dirty pages have been encountered.
ee72886d 1077 */
f84f6e2b 1078 if (page_is_file_cache(page) &&
9e3b2f8c 1079 (!current_is_kswapd() ||
57054651 1080 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1081 /*
1082 * Immediately reclaim when written back.
1083 * Similar in principal to deactivate_page()
1084 * except we already have the page isolated
1085 * and know it's dirty
1086 */
1087 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1088 SetPageReclaim(page);
1089
ee72886d
MG
1090 goto keep_locked;
1091 }
1092
dfc8d636 1093 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1094 goto keep_locked;
4dd4b920 1095 if (!may_enter_fs)
1da177e4 1096 goto keep_locked;
52a8363e 1097 if (!sc->may_writepage)
1da177e4
LT
1098 goto keep_locked;
1099
1100 /* Page is dirty, try to write it out here */
7d3579e8 1101 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1102 case PAGE_KEEP:
1103 goto keep_locked;
1104 case PAGE_ACTIVATE:
1105 goto activate_locked;
1106 case PAGE_SUCCESS:
7d3579e8 1107 if (PageWriteback(page))
41ac1999 1108 goto keep;
7d3579e8 1109 if (PageDirty(page))
1da177e4 1110 goto keep;
7d3579e8 1111
1da177e4
LT
1112 /*
1113 * A synchronous write - probably a ramdisk. Go
1114 * ahead and try to reclaim the page.
1115 */
529ae9aa 1116 if (!trylock_page(page))
1da177e4
LT
1117 goto keep;
1118 if (PageDirty(page) || PageWriteback(page))
1119 goto keep_locked;
1120 mapping = page_mapping(page);
1121 case PAGE_CLEAN:
1122 ; /* try to free the page below */
1123 }
1124 }
1125
1126 /*
1127 * If the page has buffers, try to free the buffer mappings
1128 * associated with this page. If we succeed we try to free
1129 * the page as well.
1130 *
1131 * We do this even if the page is PageDirty().
1132 * try_to_release_page() does not perform I/O, but it is
1133 * possible for a page to have PageDirty set, but it is actually
1134 * clean (all its buffers are clean). This happens if the
1135 * buffers were written out directly, with submit_bh(). ext3
894bc310 1136 * will do this, as well as the blockdev mapping.
1da177e4
LT
1137 * try_to_release_page() will discover that cleanness and will
1138 * drop the buffers and mark the page clean - it can be freed.
1139 *
1140 * Rarely, pages can have buffers and no ->mapping. These are
1141 * the pages which were not successfully invalidated in
1142 * truncate_complete_page(). We try to drop those buffers here
1143 * and if that worked, and the page is no longer mapped into
1144 * process address space (page_count == 1) it can be freed.
1145 * Otherwise, leave the page on the LRU so it is swappable.
1146 */
266cf658 1147 if (page_has_private(page)) {
1da177e4
LT
1148 if (!try_to_release_page(page, sc->gfp_mask))
1149 goto activate_locked;
e286781d
NP
1150 if (!mapping && page_count(page) == 1) {
1151 unlock_page(page);
1152 if (put_page_testzero(page))
1153 goto free_it;
1154 else {
1155 /*
1156 * rare race with speculative reference.
1157 * the speculative reference will free
1158 * this page shortly, so we may
1159 * increment nr_reclaimed here (and
1160 * leave it off the LRU).
1161 */
1162 nr_reclaimed++;
1163 continue;
1164 }
1165 }
1da177e4
LT
1166 }
1167
a528910e 1168 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1169 goto keep_locked;
1da177e4 1170
a978d6f5
NP
1171 /*
1172 * At this point, we have no other references and there is
1173 * no way to pick any more up (removed from LRU, removed
1174 * from pagecache). Can use non-atomic bitops now (and
1175 * we obviously don't have to worry about waking up a process
1176 * waiting on the page lock, because there are no references.
1177 */
1178 __clear_page_locked(page);
e286781d 1179free_it:
05ff5137 1180 nr_reclaimed++;
abe4c3b5
MG
1181
1182 /*
1183 * Is there need to periodically free_page_list? It would
1184 * appear not as the counts should be low
1185 */
1186 list_add(&page->lru, &free_pages);
1da177e4
LT
1187 continue;
1188
b291f000 1189cull_mlocked:
63d6c5ad
HD
1190 if (PageSwapCache(page))
1191 try_to_free_swap(page);
b291f000
NP
1192 unlock_page(page);
1193 putback_lru_page(page);
1194 continue;
1195
1da177e4 1196activate_locked:
68a22394
RR
1197 /* Not a candidate for swapping, so reclaim swap space. */
1198 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1199 try_to_free_swap(page);
309381fe 1200 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1201 SetPageActive(page);
1202 pgactivate++;
1203keep_locked:
1204 unlock_page(page);
1205keep:
1206 list_add(&page->lru, &ret_pages);
309381fe 1207 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1208 }
abe4c3b5 1209
747db954 1210 mem_cgroup_uncharge_list(&free_pages);
b745bc85 1211 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1212
1da177e4 1213 list_splice(&ret_pages, page_list);
f8891e5e 1214 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1215
8e950282
MG
1216 *ret_nr_dirty += nr_dirty;
1217 *ret_nr_congested += nr_congested;
d43006d5 1218 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1219 *ret_nr_writeback += nr_writeback;
b1a6f21e 1220 *ret_nr_immediate += nr_immediate;
05ff5137 1221 return nr_reclaimed;
1da177e4
LT
1222}
1223
02c6de8d
MK
1224unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1225 struct list_head *page_list)
1226{
1227 struct scan_control sc = {
1228 .gfp_mask = GFP_KERNEL,
1229 .priority = DEF_PRIORITY,
1230 .may_unmap = 1,
1231 };
8e950282 1232 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1233 struct page *page, *next;
1234 LIST_HEAD(clean_pages);
1235
1236 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1237 if (page_is_file_cache(page) && !PageDirty(page) &&
1238 !isolated_balloon_page(page)) {
02c6de8d
MK
1239 ClearPageActive(page);
1240 list_move(&page->lru, &clean_pages);
1241 }
1242 }
1243
1244 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1245 TTU_UNMAP|TTU_IGNORE_ACCESS,
1246 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1247 list_splice(&clean_pages, page_list);
83da7510 1248 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1249 return ret;
1250}
1251
5ad333eb
AW
1252/*
1253 * Attempt to remove the specified page from its LRU. Only take this page
1254 * if it is of the appropriate PageActive status. Pages which are being
1255 * freed elsewhere are also ignored.
1256 *
1257 * page: page to consider
1258 * mode: one of the LRU isolation modes defined above
1259 *
1260 * returns 0 on success, -ve errno on failure.
1261 */
f3fd4a61 1262int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1263{
1264 int ret = -EINVAL;
1265
1266 /* Only take pages on the LRU. */
1267 if (!PageLRU(page))
1268 return ret;
1269
e46a2879
MK
1270 /* Compaction should not handle unevictable pages but CMA can do so */
1271 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1272 return ret;
1273
5ad333eb 1274 ret = -EBUSY;
08e552c6 1275
c8244935
MG
1276 /*
1277 * To minimise LRU disruption, the caller can indicate that it only
1278 * wants to isolate pages it will be able to operate on without
1279 * blocking - clean pages for the most part.
1280 *
1281 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1282 * is used by reclaim when it is cannot write to backing storage
1283 *
1284 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1285 * that it is possible to migrate without blocking
1286 */
1287 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1288 /* All the caller can do on PageWriteback is block */
1289 if (PageWriteback(page))
1290 return ret;
1291
1292 if (PageDirty(page)) {
1293 struct address_space *mapping;
1294
1295 /* ISOLATE_CLEAN means only clean pages */
1296 if (mode & ISOLATE_CLEAN)
1297 return ret;
1298
1299 /*
1300 * Only pages without mappings or that have a
1301 * ->migratepage callback are possible to migrate
1302 * without blocking
1303 */
1304 mapping = page_mapping(page);
1305 if (mapping && !mapping->a_ops->migratepage)
1306 return ret;
1307 }
1308 }
39deaf85 1309
f80c0673
MK
1310 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1311 return ret;
1312
5ad333eb
AW
1313 if (likely(get_page_unless_zero(page))) {
1314 /*
1315 * Be careful not to clear PageLRU until after we're
1316 * sure the page is not being freed elsewhere -- the
1317 * page release code relies on it.
1318 */
1319 ClearPageLRU(page);
1320 ret = 0;
1321 }
1322
1323 return ret;
1324}
1325
1da177e4
LT
1326/*
1327 * zone->lru_lock is heavily contended. Some of the functions that
1328 * shrink the lists perform better by taking out a batch of pages
1329 * and working on them outside the LRU lock.
1330 *
1331 * For pagecache intensive workloads, this function is the hottest
1332 * spot in the kernel (apart from copy_*_user functions).
1333 *
1334 * Appropriate locks must be held before calling this function.
1335 *
1336 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1337 * @lruvec: The LRU vector to pull pages from.
1da177e4 1338 * @dst: The temp list to put pages on to.
f626012d 1339 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1340 * @sc: The scan_control struct for this reclaim session
5ad333eb 1341 * @mode: One of the LRU isolation modes
3cb99451 1342 * @lru: LRU list id for isolating
1da177e4
LT
1343 *
1344 * returns how many pages were moved onto *@dst.
1345 */
69e05944 1346static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1347 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1348 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1349 isolate_mode_t mode, enum lru_list lru)
1da177e4 1350{
75b00af7 1351 struct list_head *src = &lruvec->lists[lru];
69e05944 1352 unsigned long nr_taken = 0;
c9b02d97 1353 unsigned long scan;
1da177e4 1354
c9b02d97 1355 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1356 struct page *page;
fa9add64 1357 int nr_pages;
5ad333eb 1358
1da177e4
LT
1359 page = lru_to_page(src);
1360 prefetchw_prev_lru_page(page, src, flags);
1361
309381fe 1362 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1363
f3fd4a61 1364 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1365 case 0:
fa9add64
HD
1366 nr_pages = hpage_nr_pages(page);
1367 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1368 list_move(&page->lru, dst);
fa9add64 1369 nr_taken += nr_pages;
5ad333eb
AW
1370 break;
1371
1372 case -EBUSY:
1373 /* else it is being freed elsewhere */
1374 list_move(&page->lru, src);
1375 continue;
46453a6e 1376
5ad333eb
AW
1377 default:
1378 BUG();
1379 }
1da177e4
LT
1380 }
1381
f626012d 1382 *nr_scanned = scan;
75b00af7
HD
1383 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1384 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1385 return nr_taken;
1386}
1387
62695a84
NP
1388/**
1389 * isolate_lru_page - tries to isolate a page from its LRU list
1390 * @page: page to isolate from its LRU list
1391 *
1392 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1393 * vmstat statistic corresponding to whatever LRU list the page was on.
1394 *
1395 * Returns 0 if the page was removed from an LRU list.
1396 * Returns -EBUSY if the page was not on an LRU list.
1397 *
1398 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1399 * the active list, it will have PageActive set. If it was found on
1400 * the unevictable list, it will have the PageUnevictable bit set. That flag
1401 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1402 *
1403 * The vmstat statistic corresponding to the list on which the page was
1404 * found will be decremented.
1405 *
1406 * Restrictions:
1407 * (1) Must be called with an elevated refcount on the page. This is a
1408 * fundamentnal difference from isolate_lru_pages (which is called
1409 * without a stable reference).
1410 * (2) the lru_lock must not be held.
1411 * (3) interrupts must be enabled.
1412 */
1413int isolate_lru_page(struct page *page)
1414{
1415 int ret = -EBUSY;
1416
309381fe 1417 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1418
62695a84
NP
1419 if (PageLRU(page)) {
1420 struct zone *zone = page_zone(page);
fa9add64 1421 struct lruvec *lruvec;
62695a84
NP
1422
1423 spin_lock_irq(&zone->lru_lock);
fa9add64 1424 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1425 if (PageLRU(page)) {
894bc310 1426 int lru = page_lru(page);
0c917313 1427 get_page(page);
62695a84 1428 ClearPageLRU(page);
fa9add64
HD
1429 del_page_from_lru_list(page, lruvec, lru);
1430 ret = 0;
62695a84
NP
1431 }
1432 spin_unlock_irq(&zone->lru_lock);
1433 }
1434 return ret;
1435}
1436
35cd7815 1437/*
d37dd5dc
FW
1438 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1439 * then get resheduled. When there are massive number of tasks doing page
1440 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1441 * the LRU list will go small and be scanned faster than necessary, leading to
1442 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1443 */
1444static int too_many_isolated(struct zone *zone, int file,
1445 struct scan_control *sc)
1446{
1447 unsigned long inactive, isolated;
1448
1449 if (current_is_kswapd())
1450 return 0;
1451
97c9341f 1452 if (!sane_reclaim(sc))
35cd7815
RR
1453 return 0;
1454
1455 if (file) {
1456 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1457 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1458 } else {
1459 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1460 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1461 }
1462
3cf23841
FW
1463 /*
1464 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1465 * won't get blocked by normal direct-reclaimers, forming a circular
1466 * deadlock.
1467 */
1468 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1469 inactive >>= 3;
1470
35cd7815
RR
1471 return isolated > inactive;
1472}
1473
66635629 1474static noinline_for_stack void
75b00af7 1475putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1476{
27ac81d8
KK
1477 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1478 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1479 LIST_HEAD(pages_to_free);
66635629 1480
66635629
MG
1481 /*
1482 * Put back any unfreeable pages.
1483 */
66635629 1484 while (!list_empty(page_list)) {
3f79768f 1485 struct page *page = lru_to_page(page_list);
66635629 1486 int lru;
3f79768f 1487
309381fe 1488 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1489 list_del(&page->lru);
39b5f29a 1490 if (unlikely(!page_evictable(page))) {
66635629
MG
1491 spin_unlock_irq(&zone->lru_lock);
1492 putback_lru_page(page);
1493 spin_lock_irq(&zone->lru_lock);
1494 continue;
1495 }
fa9add64
HD
1496
1497 lruvec = mem_cgroup_page_lruvec(page, zone);
1498
7a608572 1499 SetPageLRU(page);
66635629 1500 lru = page_lru(page);
fa9add64
HD
1501 add_page_to_lru_list(page, lruvec, lru);
1502
66635629
MG
1503 if (is_active_lru(lru)) {
1504 int file = is_file_lru(lru);
9992af10
RR
1505 int numpages = hpage_nr_pages(page);
1506 reclaim_stat->recent_rotated[file] += numpages;
66635629 1507 }
2bcf8879
HD
1508 if (put_page_testzero(page)) {
1509 __ClearPageLRU(page);
1510 __ClearPageActive(page);
fa9add64 1511 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1512
1513 if (unlikely(PageCompound(page))) {
1514 spin_unlock_irq(&zone->lru_lock);
747db954 1515 mem_cgroup_uncharge(page);
2bcf8879
HD
1516 (*get_compound_page_dtor(page))(page);
1517 spin_lock_irq(&zone->lru_lock);
1518 } else
1519 list_add(&page->lru, &pages_to_free);
66635629
MG
1520 }
1521 }
66635629 1522
3f79768f
HD
1523 /*
1524 * To save our caller's stack, now use input list for pages to free.
1525 */
1526 list_splice(&pages_to_free, page_list);
66635629
MG
1527}
1528
399ba0b9
N
1529/*
1530 * If a kernel thread (such as nfsd for loop-back mounts) services
1531 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1532 * In that case we should only throttle if the backing device it is
1533 * writing to is congested. In other cases it is safe to throttle.
1534 */
1535static int current_may_throttle(void)
1536{
1537 return !(current->flags & PF_LESS_THROTTLE) ||
1538 current->backing_dev_info == NULL ||
1539 bdi_write_congested(current->backing_dev_info);
1540}
1541
1da177e4 1542/*
1742f19f
AM
1543 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1544 * of reclaimed pages
1da177e4 1545 */
66635629 1546static noinline_for_stack unsigned long
1a93be0e 1547shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1548 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1549{
1550 LIST_HEAD(page_list);
e247dbce 1551 unsigned long nr_scanned;
05ff5137 1552 unsigned long nr_reclaimed = 0;
e247dbce 1553 unsigned long nr_taken;
8e950282
MG
1554 unsigned long nr_dirty = 0;
1555 unsigned long nr_congested = 0;
e2be15f6 1556 unsigned long nr_unqueued_dirty = 0;
92df3a72 1557 unsigned long nr_writeback = 0;
b1a6f21e 1558 unsigned long nr_immediate = 0;
f3fd4a61 1559 isolate_mode_t isolate_mode = 0;
3cb99451 1560 int file = is_file_lru(lru);
1a93be0e
KK
1561 struct zone *zone = lruvec_zone(lruvec);
1562 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1563
35cd7815 1564 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1565 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1566
1567 /* We are about to die and free our memory. Return now. */
1568 if (fatal_signal_pending(current))
1569 return SWAP_CLUSTER_MAX;
1570 }
1571
1da177e4 1572 lru_add_drain();
f80c0673
MK
1573
1574 if (!sc->may_unmap)
61317289 1575 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1576 if (!sc->may_writepage)
61317289 1577 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1578
1da177e4 1579 spin_lock_irq(&zone->lru_lock);
b35ea17b 1580
5dc35979
KK
1581 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1582 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1583
1584 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1585 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1586
89b5fae5 1587 if (global_reclaim(sc)) {
0d5d823a 1588 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1589 if (current_is_kswapd())
75b00af7 1590 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1591 else
75b00af7 1592 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1593 }
d563c050 1594 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1595
d563c050 1596 if (nr_taken == 0)
66635629 1597 return 0;
5ad333eb 1598
02c6de8d 1599 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1600 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1601 &nr_writeback, &nr_immediate,
1602 false);
c661b078 1603
3f79768f
HD
1604 spin_lock_irq(&zone->lru_lock);
1605
95d918fc 1606 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1607
904249aa
YH
1608 if (global_reclaim(sc)) {
1609 if (current_is_kswapd())
1610 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1611 nr_reclaimed);
1612 else
1613 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1614 nr_reclaimed);
1615 }
a74609fa 1616
27ac81d8 1617 putback_inactive_pages(lruvec, &page_list);
3f79768f 1618
95d918fc 1619 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1620
1621 spin_unlock_irq(&zone->lru_lock);
1622
747db954 1623 mem_cgroup_uncharge_list(&page_list);
b745bc85 1624 free_hot_cold_page_list(&page_list, true);
e11da5b4 1625
92df3a72
MG
1626 /*
1627 * If reclaim is isolating dirty pages under writeback, it implies
1628 * that the long-lived page allocation rate is exceeding the page
1629 * laundering rate. Either the global limits are not being effective
1630 * at throttling processes due to the page distribution throughout
1631 * zones or there is heavy usage of a slow backing device. The
1632 * only option is to throttle from reclaim context which is not ideal
1633 * as there is no guarantee the dirtying process is throttled in the
1634 * same way balance_dirty_pages() manages.
1635 *
8e950282
MG
1636 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1637 * of pages under pages flagged for immediate reclaim and stall if any
1638 * are encountered in the nr_immediate check below.
92df3a72 1639 */
918fc718 1640 if (nr_writeback && nr_writeback == nr_taken)
57054651 1641 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1642
d43006d5 1643 /*
97c9341f
TH
1644 * Legacy memcg will stall in page writeback so avoid forcibly
1645 * stalling here.
d43006d5 1646 */
97c9341f 1647 if (sane_reclaim(sc)) {
8e950282
MG
1648 /*
1649 * Tag a zone as congested if all the dirty pages scanned were
1650 * backed by a congested BDI and wait_iff_congested will stall.
1651 */
1652 if (nr_dirty && nr_dirty == nr_congested)
57054651 1653 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1654
b1a6f21e
MG
1655 /*
1656 * If dirty pages are scanned that are not queued for IO, it
1657 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1658 * the zone ZONE_DIRTY and kswapd will start writing pages from
1659 * reclaim context.
b1a6f21e
MG
1660 */
1661 if (nr_unqueued_dirty == nr_taken)
57054651 1662 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1663
1664 /*
b738d764
LT
1665 * If kswapd scans pages marked marked for immediate
1666 * reclaim and under writeback (nr_immediate), it implies
1667 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1668 * they are written so also forcibly stall.
1669 */
b738d764 1670 if (nr_immediate && current_may_throttle())
b1a6f21e 1671 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1672 }
d43006d5 1673
8e950282
MG
1674 /*
1675 * Stall direct reclaim for IO completions if underlying BDIs or zone
1676 * is congested. Allow kswapd to continue until it starts encountering
1677 * unqueued dirty pages or cycling through the LRU too quickly.
1678 */
399ba0b9
N
1679 if (!sc->hibernation_mode && !current_is_kswapd() &&
1680 current_may_throttle())
8e950282
MG
1681 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1682
e11da5b4
MG
1683 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1684 zone_idx(zone),
1685 nr_scanned, nr_reclaimed,
9e3b2f8c 1686 sc->priority,
23b9da55 1687 trace_shrink_flags(file));
05ff5137 1688 return nr_reclaimed;
1da177e4
LT
1689}
1690
1691/*
1692 * This moves pages from the active list to the inactive list.
1693 *
1694 * We move them the other way if the page is referenced by one or more
1695 * processes, from rmap.
1696 *
1697 * If the pages are mostly unmapped, the processing is fast and it is
1698 * appropriate to hold zone->lru_lock across the whole operation. But if
1699 * the pages are mapped, the processing is slow (page_referenced()) so we
1700 * should drop zone->lru_lock around each page. It's impossible to balance
1701 * this, so instead we remove the pages from the LRU while processing them.
1702 * It is safe to rely on PG_active against the non-LRU pages in here because
1703 * nobody will play with that bit on a non-LRU page.
1704 *
1705 * The downside is that we have to touch page->_count against each page.
1706 * But we had to alter page->flags anyway.
1707 */
1cfb419b 1708
fa9add64 1709static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1710 struct list_head *list,
2bcf8879 1711 struct list_head *pages_to_free,
3eb4140f
WF
1712 enum lru_list lru)
1713{
fa9add64 1714 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1715 unsigned long pgmoved = 0;
3eb4140f 1716 struct page *page;
fa9add64 1717 int nr_pages;
3eb4140f 1718
3eb4140f
WF
1719 while (!list_empty(list)) {
1720 page = lru_to_page(list);
fa9add64 1721 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1722
309381fe 1723 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1724 SetPageLRU(page);
1725
fa9add64
HD
1726 nr_pages = hpage_nr_pages(page);
1727 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1728 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1729 pgmoved += nr_pages;
3eb4140f 1730
2bcf8879
HD
1731 if (put_page_testzero(page)) {
1732 __ClearPageLRU(page);
1733 __ClearPageActive(page);
fa9add64 1734 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1735
1736 if (unlikely(PageCompound(page))) {
1737 spin_unlock_irq(&zone->lru_lock);
747db954 1738 mem_cgroup_uncharge(page);
2bcf8879
HD
1739 (*get_compound_page_dtor(page))(page);
1740 spin_lock_irq(&zone->lru_lock);
1741 } else
1742 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1743 }
1744 }
1745 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1746 if (!is_active_lru(lru))
1747 __count_vm_events(PGDEACTIVATE, pgmoved);
1748}
1cfb419b 1749
f626012d 1750static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1751 struct lruvec *lruvec,
f16015fb 1752 struct scan_control *sc,
9e3b2f8c 1753 enum lru_list lru)
1da177e4 1754{
44c241f1 1755 unsigned long nr_taken;
f626012d 1756 unsigned long nr_scanned;
6fe6b7e3 1757 unsigned long vm_flags;
1da177e4 1758 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1759 LIST_HEAD(l_active);
b69408e8 1760 LIST_HEAD(l_inactive);
1da177e4 1761 struct page *page;
1a93be0e 1762 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1763 unsigned long nr_rotated = 0;
f3fd4a61 1764 isolate_mode_t isolate_mode = 0;
3cb99451 1765 int file = is_file_lru(lru);
1a93be0e 1766 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1767
1768 lru_add_drain();
f80c0673
MK
1769
1770 if (!sc->may_unmap)
61317289 1771 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1772 if (!sc->may_writepage)
61317289 1773 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1774
1da177e4 1775 spin_lock_irq(&zone->lru_lock);
925b7673 1776
5dc35979
KK
1777 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1778 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1779 if (global_reclaim(sc))
0d5d823a 1780 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1781
b7c46d15 1782 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1783
f626012d 1784 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1785 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1786 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1787 spin_unlock_irq(&zone->lru_lock);
1788
1da177e4
LT
1789 while (!list_empty(&l_hold)) {
1790 cond_resched();
1791 page = lru_to_page(&l_hold);
1792 list_del(&page->lru);
7e9cd484 1793
39b5f29a 1794 if (unlikely(!page_evictable(page))) {
894bc310
LS
1795 putback_lru_page(page);
1796 continue;
1797 }
1798
cc715d99
MG
1799 if (unlikely(buffer_heads_over_limit)) {
1800 if (page_has_private(page) && trylock_page(page)) {
1801 if (page_has_private(page))
1802 try_to_release_page(page, 0);
1803 unlock_page(page);
1804 }
1805 }
1806
c3ac9a8a
JW
1807 if (page_referenced(page, 0, sc->target_mem_cgroup,
1808 &vm_flags)) {
9992af10 1809 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1810 /*
1811 * Identify referenced, file-backed active pages and
1812 * give them one more trip around the active list. So
1813 * that executable code get better chances to stay in
1814 * memory under moderate memory pressure. Anon pages
1815 * are not likely to be evicted by use-once streaming
1816 * IO, plus JVM can create lots of anon VM_EXEC pages,
1817 * so we ignore them here.
1818 */
41e20983 1819 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1820 list_add(&page->lru, &l_active);
1821 continue;
1822 }
1823 }
7e9cd484 1824
5205e56e 1825 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1826 list_add(&page->lru, &l_inactive);
1827 }
1828
b555749a 1829 /*
8cab4754 1830 * Move pages back to the lru list.
b555749a 1831 */
2a1dc509 1832 spin_lock_irq(&zone->lru_lock);
556adecb 1833 /*
8cab4754
WF
1834 * Count referenced pages from currently used mappings as rotated,
1835 * even though only some of them are actually re-activated. This
1836 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1837 * get_scan_count.
7e9cd484 1838 */
b7c46d15 1839 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1840
fa9add64
HD
1841 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1842 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1843 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1844 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1845
747db954 1846 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1847 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1848}
1849
74e3f3c3 1850#ifdef CONFIG_SWAP
14797e23 1851static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1852{
1853 unsigned long active, inactive;
1854
1855 active = zone_page_state(zone, NR_ACTIVE_ANON);
1856 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1857
1858 if (inactive * zone->inactive_ratio < active)
1859 return 1;
1860
1861 return 0;
1862}
1863
14797e23
KM
1864/**
1865 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1866 * @lruvec: LRU vector to check
14797e23
KM
1867 *
1868 * Returns true if the zone does not have enough inactive anon pages,
1869 * meaning some active anon pages need to be deactivated.
1870 */
c56d5c7d 1871static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1872{
74e3f3c3
MK
1873 /*
1874 * If we don't have swap space, anonymous page deactivation
1875 * is pointless.
1876 */
1877 if (!total_swap_pages)
1878 return 0;
1879
c3c787e8 1880 if (!mem_cgroup_disabled())
c56d5c7d 1881 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1882
c56d5c7d 1883 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1884}
74e3f3c3 1885#else
c56d5c7d 1886static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1887{
1888 return 0;
1889}
1890#endif
14797e23 1891
56e49d21
RR
1892/**
1893 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1894 * @lruvec: LRU vector to check
56e49d21
RR
1895 *
1896 * When the system is doing streaming IO, memory pressure here
1897 * ensures that active file pages get deactivated, until more
1898 * than half of the file pages are on the inactive list.
1899 *
1900 * Once we get to that situation, protect the system's working
1901 * set from being evicted by disabling active file page aging.
1902 *
1903 * This uses a different ratio than the anonymous pages, because
1904 * the page cache uses a use-once replacement algorithm.
1905 */
c56d5c7d 1906static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1907{
e3790144
JW
1908 unsigned long inactive;
1909 unsigned long active;
1910
1911 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1912 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1913
e3790144 1914 return active > inactive;
56e49d21
RR
1915}
1916
75b00af7 1917static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1918{
75b00af7 1919 if (is_file_lru(lru))
c56d5c7d 1920 return inactive_file_is_low(lruvec);
b39415b2 1921 else
c56d5c7d 1922 return inactive_anon_is_low(lruvec);
b39415b2
RR
1923}
1924
4f98a2fe 1925static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1926 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1927{
b39415b2 1928 if (is_active_lru(lru)) {
75b00af7 1929 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1930 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1931 return 0;
1932 }
1933
1a93be0e 1934 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1935}
1936
9a265114
JW
1937enum scan_balance {
1938 SCAN_EQUAL,
1939 SCAN_FRACT,
1940 SCAN_ANON,
1941 SCAN_FILE,
1942};
1943
4f98a2fe
RR
1944/*
1945 * Determine how aggressively the anon and file LRU lists should be
1946 * scanned. The relative value of each set of LRU lists is determined
1947 * by looking at the fraction of the pages scanned we did rotate back
1948 * onto the active list instead of evict.
1949 *
be7bd59d
WL
1950 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1951 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1952 */
02695175 1953static void get_scan_count(struct lruvec *lruvec, int swappiness,
6b4f7799
JW
1954 struct scan_control *sc, unsigned long *nr,
1955 unsigned long *lru_pages)
4f98a2fe 1956{
9a265114
JW
1957 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1958 u64 fraction[2];
1959 u64 denominator = 0; /* gcc */
1960 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1961 unsigned long anon_prio, file_prio;
9a265114 1962 enum scan_balance scan_balance;
0bf1457f 1963 unsigned long anon, file;
9a265114 1964 bool force_scan = false;
4f98a2fe 1965 unsigned long ap, fp;
4111304d 1966 enum lru_list lru;
6f04f48d
SS
1967 bool some_scanned;
1968 int pass;
246e87a9 1969
f11c0ca5
JW
1970 /*
1971 * If the zone or memcg is small, nr[l] can be 0. This
1972 * results in no scanning on this priority and a potential
1973 * priority drop. Global direct reclaim can go to the next
1974 * zone and tends to have no problems. Global kswapd is for
1975 * zone balancing and it needs to scan a minimum amount. When
1976 * reclaiming for a memcg, a priority drop can cause high
1977 * latencies, so it's better to scan a minimum amount there as
1978 * well.
1979 */
90cbc250
VD
1980 if (current_is_kswapd()) {
1981 if (!zone_reclaimable(zone))
1982 force_scan = true;
1983 if (!mem_cgroup_lruvec_online(lruvec))
1984 force_scan = true;
1985 }
89b5fae5 1986 if (!global_reclaim(sc))
a4d3e9e7 1987 force_scan = true;
76a33fc3
SL
1988
1989 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1990 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1991 scan_balance = SCAN_FILE;
76a33fc3
SL
1992 goto out;
1993 }
4f98a2fe 1994
10316b31
JW
1995 /*
1996 * Global reclaim will swap to prevent OOM even with no
1997 * swappiness, but memcg users want to use this knob to
1998 * disable swapping for individual groups completely when
1999 * using the memory controller's swap limit feature would be
2000 * too expensive.
2001 */
02695175 2002 if (!global_reclaim(sc) && !swappiness) {
9a265114 2003 scan_balance = SCAN_FILE;
10316b31
JW
2004 goto out;
2005 }
2006
2007 /*
2008 * Do not apply any pressure balancing cleverness when the
2009 * system is close to OOM, scan both anon and file equally
2010 * (unless the swappiness setting disagrees with swapping).
2011 */
02695175 2012 if (!sc->priority && swappiness) {
9a265114 2013 scan_balance = SCAN_EQUAL;
10316b31
JW
2014 goto out;
2015 }
2016
62376251
JW
2017 /*
2018 * Prevent the reclaimer from falling into the cache trap: as
2019 * cache pages start out inactive, every cache fault will tip
2020 * the scan balance towards the file LRU. And as the file LRU
2021 * shrinks, so does the window for rotation from references.
2022 * This means we have a runaway feedback loop where a tiny
2023 * thrashing file LRU becomes infinitely more attractive than
2024 * anon pages. Try to detect this based on file LRU size.
2025 */
2026 if (global_reclaim(sc)) {
2ab051e1
JM
2027 unsigned long zonefile;
2028 unsigned long zonefree;
2029
2030 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2031 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2032 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 2033
2ab051e1 2034 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
2035 scan_balance = SCAN_ANON;
2036 goto out;
2037 }
2038 }
2039
7c5bd705
JW
2040 /*
2041 * There is enough inactive page cache, do not reclaim
2042 * anything from the anonymous working set right now.
2043 */
2044 if (!inactive_file_is_low(lruvec)) {
9a265114 2045 scan_balance = SCAN_FILE;
7c5bd705
JW
2046 goto out;
2047 }
2048
9a265114
JW
2049 scan_balance = SCAN_FRACT;
2050
58c37f6e
KM
2051 /*
2052 * With swappiness at 100, anonymous and file have the same priority.
2053 * This scanning priority is essentially the inverse of IO cost.
2054 */
02695175 2055 anon_prio = swappiness;
75b00af7 2056 file_prio = 200 - anon_prio;
58c37f6e 2057
4f98a2fe
RR
2058 /*
2059 * OK, so we have swap space and a fair amount of page cache
2060 * pages. We use the recently rotated / recently scanned
2061 * ratios to determine how valuable each cache is.
2062 *
2063 * Because workloads change over time (and to avoid overflow)
2064 * we keep these statistics as a floating average, which ends
2065 * up weighing recent references more than old ones.
2066 *
2067 * anon in [0], file in [1]
2068 */
2ab051e1
JM
2069
2070 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2071 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2072 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2073 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2074
90126375 2075 spin_lock_irq(&zone->lru_lock);
6e901571 2076 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2077 reclaim_stat->recent_scanned[0] /= 2;
2078 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2079 }
2080
6e901571 2081 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2082 reclaim_stat->recent_scanned[1] /= 2;
2083 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2084 }
2085
4f98a2fe 2086 /*
00d8089c
RR
2087 * The amount of pressure on anon vs file pages is inversely
2088 * proportional to the fraction of recently scanned pages on
2089 * each list that were recently referenced and in active use.
4f98a2fe 2090 */
fe35004f 2091 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2092 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2093
fe35004f 2094 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2095 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2096 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2097
76a33fc3
SL
2098 fraction[0] = ap;
2099 fraction[1] = fp;
2100 denominator = ap + fp + 1;
2101out:
6f04f48d
SS
2102 some_scanned = false;
2103 /* Only use force_scan on second pass. */
2104 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2105 *lru_pages = 0;
6f04f48d
SS
2106 for_each_evictable_lru(lru) {
2107 int file = is_file_lru(lru);
2108 unsigned long size;
2109 unsigned long scan;
6e08a369 2110
6f04f48d
SS
2111 size = get_lru_size(lruvec, lru);
2112 scan = size >> sc->priority;
9a265114 2113
6f04f48d
SS
2114 if (!scan && pass && force_scan)
2115 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2116
6f04f48d
SS
2117 switch (scan_balance) {
2118 case SCAN_EQUAL:
2119 /* Scan lists relative to size */
2120 break;
2121 case SCAN_FRACT:
2122 /*
2123 * Scan types proportional to swappiness and
2124 * their relative recent reclaim efficiency.
2125 */
2126 scan = div64_u64(scan * fraction[file],
2127 denominator);
2128 break;
2129 case SCAN_FILE:
2130 case SCAN_ANON:
2131 /* Scan one type exclusively */
6b4f7799
JW
2132 if ((scan_balance == SCAN_FILE) != file) {
2133 size = 0;
6f04f48d 2134 scan = 0;
6b4f7799 2135 }
6f04f48d
SS
2136 break;
2137 default:
2138 /* Look ma, no brain */
2139 BUG();
2140 }
6b4f7799
JW
2141
2142 *lru_pages += size;
6f04f48d 2143 nr[lru] = scan;
6b4f7799 2144
9a265114 2145 /*
6f04f48d
SS
2146 * Skip the second pass and don't force_scan,
2147 * if we found something to scan.
9a265114 2148 */
6f04f48d 2149 some_scanned |= !!scan;
9a265114 2150 }
76a33fc3 2151 }
6e08a369 2152}
4f98a2fe 2153
9b4f98cd
JW
2154/*
2155 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2156 */
02695175 2157static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
6b4f7799 2158 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd
JW
2159{
2160 unsigned long nr[NR_LRU_LISTS];
e82e0561 2161 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2162 unsigned long nr_to_scan;
2163 enum lru_list lru;
2164 unsigned long nr_reclaimed = 0;
2165 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2166 struct blk_plug plug;
1a501907 2167 bool scan_adjusted;
9b4f98cd 2168
6b4f7799 2169 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
9b4f98cd 2170
e82e0561
MG
2171 /* Record the original scan target for proportional adjustments later */
2172 memcpy(targets, nr, sizeof(nr));
2173
1a501907
MG
2174 /*
2175 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2176 * event that can occur when there is little memory pressure e.g.
2177 * multiple streaming readers/writers. Hence, we do not abort scanning
2178 * when the requested number of pages are reclaimed when scanning at
2179 * DEF_PRIORITY on the assumption that the fact we are direct
2180 * reclaiming implies that kswapd is not keeping up and it is best to
2181 * do a batch of work at once. For memcg reclaim one check is made to
2182 * abort proportional reclaim if either the file or anon lru has already
2183 * dropped to zero at the first pass.
2184 */
2185 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2186 sc->priority == DEF_PRIORITY);
2187
9b4f98cd
JW
2188 blk_start_plug(&plug);
2189 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2190 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2191 unsigned long nr_anon, nr_file, percentage;
2192 unsigned long nr_scanned;
2193
9b4f98cd
JW
2194 for_each_evictable_lru(lru) {
2195 if (nr[lru]) {
2196 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2197 nr[lru] -= nr_to_scan;
2198
2199 nr_reclaimed += shrink_list(lru, nr_to_scan,
2200 lruvec, sc);
2201 }
2202 }
e82e0561
MG
2203
2204 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2205 continue;
2206
e82e0561
MG
2207 /*
2208 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2209 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2210 * proportionally what was requested by get_scan_count(). We
2211 * stop reclaiming one LRU and reduce the amount scanning
2212 * proportional to the original scan target.
2213 */
2214 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2215 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2216
1a501907
MG
2217 /*
2218 * It's just vindictive to attack the larger once the smaller
2219 * has gone to zero. And given the way we stop scanning the
2220 * smaller below, this makes sure that we only make one nudge
2221 * towards proportionality once we've got nr_to_reclaim.
2222 */
2223 if (!nr_file || !nr_anon)
2224 break;
2225
e82e0561
MG
2226 if (nr_file > nr_anon) {
2227 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2228 targets[LRU_ACTIVE_ANON] + 1;
2229 lru = LRU_BASE;
2230 percentage = nr_anon * 100 / scan_target;
2231 } else {
2232 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2233 targets[LRU_ACTIVE_FILE] + 1;
2234 lru = LRU_FILE;
2235 percentage = nr_file * 100 / scan_target;
2236 }
2237
2238 /* Stop scanning the smaller of the LRU */
2239 nr[lru] = 0;
2240 nr[lru + LRU_ACTIVE] = 0;
2241
2242 /*
2243 * Recalculate the other LRU scan count based on its original
2244 * scan target and the percentage scanning already complete
2245 */
2246 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2247 nr_scanned = targets[lru] - nr[lru];
2248 nr[lru] = targets[lru] * (100 - percentage) / 100;
2249 nr[lru] -= min(nr[lru], nr_scanned);
2250
2251 lru += LRU_ACTIVE;
2252 nr_scanned = targets[lru] - nr[lru];
2253 nr[lru] = targets[lru] * (100 - percentage) / 100;
2254 nr[lru] -= min(nr[lru], nr_scanned);
2255
2256 scan_adjusted = true;
9b4f98cd
JW
2257 }
2258 blk_finish_plug(&plug);
2259 sc->nr_reclaimed += nr_reclaimed;
2260
2261 /*
2262 * Even if we did not try to evict anon pages at all, we want to
2263 * rebalance the anon lru active/inactive ratio.
2264 */
2265 if (inactive_anon_is_low(lruvec))
2266 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2267 sc, LRU_ACTIVE_ANON);
2268
2269 throttle_vm_writeout(sc->gfp_mask);
2270}
2271
23b9da55 2272/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2273static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2274{
d84da3f9 2275 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2276 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2277 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2278 return true;
2279
2280 return false;
2281}
2282
3e7d3449 2283/*
23b9da55
MG
2284 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2285 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2286 * true if more pages should be reclaimed such that when the page allocator
2287 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2288 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2289 */
9b4f98cd 2290static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2291 unsigned long nr_reclaimed,
2292 unsigned long nr_scanned,
2293 struct scan_control *sc)
2294{
2295 unsigned long pages_for_compaction;
2296 unsigned long inactive_lru_pages;
2297
2298 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2299 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2300 return false;
2301
2876592f
MG
2302 /* Consider stopping depending on scan and reclaim activity */
2303 if (sc->gfp_mask & __GFP_REPEAT) {
2304 /*
2305 * For __GFP_REPEAT allocations, stop reclaiming if the
2306 * full LRU list has been scanned and we are still failing
2307 * to reclaim pages. This full LRU scan is potentially
2308 * expensive but a __GFP_REPEAT caller really wants to succeed
2309 */
2310 if (!nr_reclaimed && !nr_scanned)
2311 return false;
2312 } else {
2313 /*
2314 * For non-__GFP_REPEAT allocations which can presumably
2315 * fail without consequence, stop if we failed to reclaim
2316 * any pages from the last SWAP_CLUSTER_MAX number of
2317 * pages that were scanned. This will return to the
2318 * caller faster at the risk reclaim/compaction and
2319 * the resulting allocation attempt fails
2320 */
2321 if (!nr_reclaimed)
2322 return false;
2323 }
3e7d3449
MG
2324
2325 /*
2326 * If we have not reclaimed enough pages for compaction and the
2327 * inactive lists are large enough, continue reclaiming
2328 */
2329 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2330 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2331 if (get_nr_swap_pages() > 0)
9b4f98cd 2332 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2333 if (sc->nr_reclaimed < pages_for_compaction &&
2334 inactive_lru_pages > pages_for_compaction)
2335 return true;
2336
2337 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2338 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2339 case COMPACT_PARTIAL:
2340 case COMPACT_CONTINUE:
2341 return false;
2342 default:
2343 return true;
2344 }
2345}
2346
6b4f7799
JW
2347static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2348 bool is_classzone)
1da177e4 2349{
cb731d6c 2350 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2351 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2352 bool reclaimable = false;
1da177e4 2353
9b4f98cd
JW
2354 do {
2355 struct mem_cgroup *root = sc->target_mem_cgroup;
2356 struct mem_cgroup_reclaim_cookie reclaim = {
2357 .zone = zone,
2358 .priority = sc->priority,
2359 };
6b4f7799 2360 unsigned long zone_lru_pages = 0;
694fbc0f 2361 struct mem_cgroup *memcg;
3e7d3449 2362
9b4f98cd
JW
2363 nr_reclaimed = sc->nr_reclaimed;
2364 nr_scanned = sc->nr_scanned;
1da177e4 2365
694fbc0f
AM
2366 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2367 do {
6b4f7799 2368 unsigned long lru_pages;
cb731d6c 2369 unsigned long scanned;
9b4f98cd 2370 struct lruvec *lruvec;
02695175 2371 int swappiness;
5660048c 2372
241994ed
JW
2373 if (mem_cgroup_low(root, memcg)) {
2374 if (!sc->may_thrash)
2375 continue;
2376 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2377 }
2378
9b4f98cd 2379 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2380 swappiness = mem_cgroup_swappiness(memcg);
cb731d6c 2381 scanned = sc->nr_scanned;
f9be23d6 2382
6b4f7799
JW
2383 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2384 zone_lru_pages += lru_pages;
f16015fb 2385
cb731d6c
VD
2386 if (memcg && is_classzone)
2387 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2388 memcg, sc->nr_scanned - scanned,
2389 lru_pages);
2390
9b4f98cd 2391 /*
a394cb8e
MH
2392 * Direct reclaim and kswapd have to scan all memory
2393 * cgroups to fulfill the overall scan target for the
9b4f98cd 2394 * zone.
a394cb8e
MH
2395 *
2396 * Limit reclaim, on the other hand, only cares about
2397 * nr_to_reclaim pages to be reclaimed and it will
2398 * retry with decreasing priority if one round over the
2399 * whole hierarchy is not sufficient.
9b4f98cd 2400 */
a394cb8e
MH
2401 if (!global_reclaim(sc) &&
2402 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2403 mem_cgroup_iter_break(root, memcg);
2404 break;
2405 }
241994ed 2406 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2407
6b4f7799
JW
2408 /*
2409 * Shrink the slab caches in the same proportion that
2410 * the eligible LRU pages were scanned.
2411 */
cb731d6c
VD
2412 if (global_reclaim(sc) && is_classzone)
2413 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2414 sc->nr_scanned - nr_scanned,
2415 zone_lru_pages);
2416
2417 if (reclaim_state) {
2418 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2419 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2420 }
2421
70ddf637
AV
2422 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2423 sc->nr_scanned - nr_scanned,
2424 sc->nr_reclaimed - nr_reclaimed);
2425
2344d7e4
JW
2426 if (sc->nr_reclaimed - nr_reclaimed)
2427 reclaimable = true;
2428
9b4f98cd
JW
2429 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2430 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2431
2432 return reclaimable;
f16015fb
JW
2433}
2434
53853e2d
VB
2435/*
2436 * Returns true if compaction should go ahead for a high-order request, or
2437 * the high-order allocation would succeed without compaction.
2438 */
0b06496a 2439static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2440{
2441 unsigned long balance_gap, watermark;
2442 bool watermark_ok;
2443
fe4b1b24
MG
2444 /*
2445 * Compaction takes time to run and there are potentially other
2446 * callers using the pages just freed. Continue reclaiming until
2447 * there is a buffer of free pages available to give compaction
2448 * a reasonable chance of completing and allocating the page
2449 */
4be89a34
JZ
2450 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2451 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2452 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2453 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2454
2455 /*
2456 * If compaction is deferred, reclaim up to a point where
2457 * compaction will have a chance of success when re-enabled
2458 */
0b06496a 2459 if (compaction_deferred(zone, order))
fe4b1b24
MG
2460 return watermark_ok;
2461
53853e2d
VB
2462 /*
2463 * If compaction is not ready to start and allocation is not likely
2464 * to succeed without it, then keep reclaiming.
2465 */
ebff3980 2466 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2467 return false;
2468
2469 return watermark_ok;
2470}
2471
1da177e4
LT
2472/*
2473 * This is the direct reclaim path, for page-allocating processes. We only
2474 * try to reclaim pages from zones which will satisfy the caller's allocation
2475 * request.
2476 *
41858966
MG
2477 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2478 * Because:
1da177e4
LT
2479 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2480 * allocation or
41858966
MG
2481 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2482 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2483 * zone defense algorithm.
1da177e4 2484 *
1da177e4
LT
2485 * If a zone is deemed to be full of pinned pages then just give it a light
2486 * scan then give up on it.
2344d7e4
JW
2487 *
2488 * Returns true if a zone was reclaimable.
1da177e4 2489 */
2344d7e4 2490static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2491{
dd1a239f 2492 struct zoneref *z;
54a6eb5c 2493 struct zone *zone;
0608f43d
AM
2494 unsigned long nr_soft_reclaimed;
2495 unsigned long nr_soft_scanned;
619d0d76 2496 gfp_t orig_mask;
9bbc04ee 2497 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2498 bool reclaimable = false;
1cfb419b 2499
cc715d99
MG
2500 /*
2501 * If the number of buffer_heads in the machine exceeds the maximum
2502 * allowed level, force direct reclaim to scan the highmem zone as
2503 * highmem pages could be pinning lowmem pages storing buffer_heads
2504 */
619d0d76 2505 orig_mask = sc->gfp_mask;
cc715d99
MG
2506 if (buffer_heads_over_limit)
2507 sc->gfp_mask |= __GFP_HIGHMEM;
2508
d4debc66 2509 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2510 requested_highidx, sc->nodemask) {
2511 enum zone_type classzone_idx;
2512
f3fe6512 2513 if (!populated_zone(zone))
1da177e4 2514 continue;
6b4f7799
JW
2515
2516 classzone_idx = requested_highidx;
2517 while (!populated_zone(zone->zone_pgdat->node_zones +
2518 classzone_idx))
2519 classzone_idx--;
2520
1cfb419b
KH
2521 /*
2522 * Take care memory controller reclaiming has small influence
2523 * to global LRU.
2524 */
89b5fae5 2525 if (global_reclaim(sc)) {
344736f2
VD
2526 if (!cpuset_zone_allowed(zone,
2527 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2528 continue;
65ec02cb 2529
6e543d57
LD
2530 if (sc->priority != DEF_PRIORITY &&
2531 !zone_reclaimable(zone))
1cfb419b 2532 continue; /* Let kswapd poll it */
0b06496a
JW
2533
2534 /*
2535 * If we already have plenty of memory free for
2536 * compaction in this zone, don't free any more.
2537 * Even though compaction is invoked for any
2538 * non-zero order, only frequent costly order
2539 * reclamation is disruptive enough to become a
2540 * noticeable problem, like transparent huge
2541 * page allocations.
2542 */
2543 if (IS_ENABLED(CONFIG_COMPACTION) &&
2544 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2545 zonelist_zone_idx(z) <= requested_highidx &&
2546 compaction_ready(zone, sc->order)) {
2547 sc->compaction_ready = true;
2548 continue;
e0887c19 2549 }
0b06496a 2550
0608f43d
AM
2551 /*
2552 * This steals pages from memory cgroups over softlimit
2553 * and returns the number of reclaimed pages and
2554 * scanned pages. This works for global memory pressure
2555 * and balancing, not for a memcg's limit.
2556 */
2557 nr_soft_scanned = 0;
2558 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2559 sc->order, sc->gfp_mask,
2560 &nr_soft_scanned);
2561 sc->nr_reclaimed += nr_soft_reclaimed;
2562 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2563 if (nr_soft_reclaimed)
2564 reclaimable = true;
ac34a1a3 2565 /* need some check for avoid more shrink_zone() */
1cfb419b 2566 }
408d8544 2567
6b4f7799 2568 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2569 reclaimable = true;
2570
2571 if (global_reclaim(sc) &&
2572 !reclaimable && zone_reclaimable(zone))
2573 reclaimable = true;
1da177e4 2574 }
e0c23279 2575
619d0d76
WY
2576 /*
2577 * Restore to original mask to avoid the impact on the caller if we
2578 * promoted it to __GFP_HIGHMEM.
2579 */
2580 sc->gfp_mask = orig_mask;
d1908362 2581
2344d7e4 2582 return reclaimable;
1da177e4 2583}
4f98a2fe 2584
1da177e4
LT
2585/*
2586 * This is the main entry point to direct page reclaim.
2587 *
2588 * If a full scan of the inactive list fails to free enough memory then we
2589 * are "out of memory" and something needs to be killed.
2590 *
2591 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2592 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2593 * caller can't do much about. We kick the writeback threads and take explicit
2594 * naps in the hope that some of these pages can be written. But if the
2595 * allocating task holds filesystem locks which prevent writeout this might not
2596 * work, and the allocation attempt will fail.
a41f24ea
NA
2597 *
2598 * returns: 0, if no pages reclaimed
2599 * else, the number of pages reclaimed
1da177e4 2600 */
dac1d27b 2601static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2602 struct scan_control *sc)
1da177e4 2603{
241994ed 2604 int initial_priority = sc->priority;
69e05944 2605 unsigned long total_scanned = 0;
22fba335 2606 unsigned long writeback_threshold;
2344d7e4 2607 bool zones_reclaimable;
241994ed 2608retry:
873b4771
KK
2609 delayacct_freepages_start();
2610
89b5fae5 2611 if (global_reclaim(sc))
1cfb419b 2612 count_vm_event(ALLOCSTALL);
1da177e4 2613
9e3b2f8c 2614 do {
70ddf637
AV
2615 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2616 sc->priority);
66e1707b 2617 sc->nr_scanned = 0;
2344d7e4 2618 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2619
66e1707b 2620 total_scanned += sc->nr_scanned;
bb21c7ce 2621 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2622 break;
2623
2624 if (sc->compaction_ready)
2625 break;
1da177e4 2626
0e50ce3b
MK
2627 /*
2628 * If we're getting trouble reclaiming, start doing
2629 * writepage even in laptop mode.
2630 */
2631 if (sc->priority < DEF_PRIORITY - 2)
2632 sc->may_writepage = 1;
2633
1da177e4
LT
2634 /*
2635 * Try to write back as many pages as we just scanned. This
2636 * tends to cause slow streaming writers to write data to the
2637 * disk smoothly, at the dirtying rate, which is nice. But
2638 * that's undesirable in laptop mode, where we *want* lumpy
2639 * writeout. So in laptop mode, write out the whole world.
2640 */
22fba335
KM
2641 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2642 if (total_scanned > writeback_threshold) {
0e175a18
CW
2643 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2644 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2645 sc->may_writepage = 1;
1da177e4 2646 }
0b06496a 2647 } while (--sc->priority >= 0);
bb21c7ce 2648
873b4771
KK
2649 delayacct_freepages_end();
2650
bb21c7ce
KM
2651 if (sc->nr_reclaimed)
2652 return sc->nr_reclaimed;
2653
0cee34fd 2654 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2655 if (sc->compaction_ready)
7335084d
MG
2656 return 1;
2657
241994ed
JW
2658 /* Untapped cgroup reserves? Don't OOM, retry. */
2659 if (!sc->may_thrash) {
2660 sc->priority = initial_priority;
2661 sc->may_thrash = 1;
2662 goto retry;
2663 }
2664
2344d7e4
JW
2665 /* Any of the zones still reclaimable? Don't OOM. */
2666 if (zones_reclaimable)
bb21c7ce
KM
2667 return 1;
2668
2669 return 0;
1da177e4
LT
2670}
2671
5515061d
MG
2672static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2673{
2674 struct zone *zone;
2675 unsigned long pfmemalloc_reserve = 0;
2676 unsigned long free_pages = 0;
2677 int i;
2678 bool wmark_ok;
2679
2680 for (i = 0; i <= ZONE_NORMAL; i++) {
2681 zone = &pgdat->node_zones[i];
f012a84a
NA
2682 if (!populated_zone(zone) ||
2683 zone_reclaimable_pages(zone) == 0)
675becce
MG
2684 continue;
2685
5515061d
MG
2686 pfmemalloc_reserve += min_wmark_pages(zone);
2687 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2688 }
2689
675becce
MG
2690 /* If there are no reserves (unexpected config) then do not throttle */
2691 if (!pfmemalloc_reserve)
2692 return true;
2693
5515061d
MG
2694 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2695
2696 /* kswapd must be awake if processes are being throttled */
2697 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2698 pgdat->classzone_idx = min(pgdat->classzone_idx,
2699 (enum zone_type)ZONE_NORMAL);
2700 wake_up_interruptible(&pgdat->kswapd_wait);
2701 }
2702
2703 return wmark_ok;
2704}
2705
2706/*
2707 * Throttle direct reclaimers if backing storage is backed by the network
2708 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2709 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2710 * when the low watermark is reached.
2711 *
2712 * Returns true if a fatal signal was delivered during throttling. If this
2713 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2714 */
50694c28 2715static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2716 nodemask_t *nodemask)
2717{
675becce 2718 struct zoneref *z;
5515061d 2719 struct zone *zone;
675becce 2720 pg_data_t *pgdat = NULL;
5515061d
MG
2721
2722 /*
2723 * Kernel threads should not be throttled as they may be indirectly
2724 * responsible for cleaning pages necessary for reclaim to make forward
2725 * progress. kjournald for example may enter direct reclaim while
2726 * committing a transaction where throttling it could forcing other
2727 * processes to block on log_wait_commit().
2728 */
2729 if (current->flags & PF_KTHREAD)
50694c28
MG
2730 goto out;
2731
2732 /*
2733 * If a fatal signal is pending, this process should not throttle.
2734 * It should return quickly so it can exit and free its memory
2735 */
2736 if (fatal_signal_pending(current))
2737 goto out;
5515061d 2738
675becce
MG
2739 /*
2740 * Check if the pfmemalloc reserves are ok by finding the first node
2741 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2742 * GFP_KERNEL will be required for allocating network buffers when
2743 * swapping over the network so ZONE_HIGHMEM is unusable.
2744 *
2745 * Throttling is based on the first usable node and throttled processes
2746 * wait on a queue until kswapd makes progress and wakes them. There
2747 * is an affinity then between processes waking up and where reclaim
2748 * progress has been made assuming the process wakes on the same node.
2749 * More importantly, processes running on remote nodes will not compete
2750 * for remote pfmemalloc reserves and processes on different nodes
2751 * should make reasonable progress.
2752 */
2753 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2754 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2755 if (zone_idx(zone) > ZONE_NORMAL)
2756 continue;
2757
2758 /* Throttle based on the first usable node */
2759 pgdat = zone->zone_pgdat;
2760 if (pfmemalloc_watermark_ok(pgdat))
2761 goto out;
2762 break;
2763 }
2764
2765 /* If no zone was usable by the allocation flags then do not throttle */
2766 if (!pgdat)
50694c28 2767 goto out;
5515061d 2768
68243e76
MG
2769 /* Account for the throttling */
2770 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2771
5515061d
MG
2772 /*
2773 * If the caller cannot enter the filesystem, it's possible that it
2774 * is due to the caller holding an FS lock or performing a journal
2775 * transaction in the case of a filesystem like ext[3|4]. In this case,
2776 * it is not safe to block on pfmemalloc_wait as kswapd could be
2777 * blocked waiting on the same lock. Instead, throttle for up to a
2778 * second before continuing.
2779 */
2780 if (!(gfp_mask & __GFP_FS)) {
2781 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2782 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2783
2784 goto check_pending;
5515061d
MG
2785 }
2786
2787 /* Throttle until kswapd wakes the process */
2788 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2789 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2790
2791check_pending:
2792 if (fatal_signal_pending(current))
2793 return true;
2794
2795out:
2796 return false;
5515061d
MG
2797}
2798
dac1d27b 2799unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2800 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2801{
33906bc5 2802 unsigned long nr_reclaimed;
66e1707b 2803 struct scan_control sc = {
ee814fe2 2804 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2805 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2806 .order = order,
2807 .nodemask = nodemask,
2808 .priority = DEF_PRIORITY,
66e1707b 2809 .may_writepage = !laptop_mode,
a6dc60f8 2810 .may_unmap = 1,
2e2e4259 2811 .may_swap = 1,
66e1707b
BS
2812 };
2813
5515061d 2814 /*
50694c28
MG
2815 * Do not enter reclaim if fatal signal was delivered while throttled.
2816 * 1 is returned so that the page allocator does not OOM kill at this
2817 * point.
5515061d 2818 */
50694c28 2819 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2820 return 1;
2821
33906bc5
MG
2822 trace_mm_vmscan_direct_reclaim_begin(order,
2823 sc.may_writepage,
2824 gfp_mask);
2825
3115cd91 2826 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2827
2828 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2829
2830 return nr_reclaimed;
66e1707b
BS
2831}
2832
c255a458 2833#ifdef CONFIG_MEMCG
66e1707b 2834
72835c86 2835unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2836 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2837 struct zone *zone,
2838 unsigned long *nr_scanned)
4e416953
BS
2839{
2840 struct scan_control sc = {
b8f5c566 2841 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2842 .target_mem_cgroup = memcg,
4e416953
BS
2843 .may_writepage = !laptop_mode,
2844 .may_unmap = 1,
2845 .may_swap = !noswap,
4e416953 2846 };
f9be23d6 2847 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2848 int swappiness = mem_cgroup_swappiness(memcg);
6b4f7799 2849 unsigned long lru_pages;
0ae5e89c 2850
4e416953
BS
2851 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2852 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2853
9e3b2f8c 2854 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2855 sc.may_writepage,
2856 sc.gfp_mask);
2857
4e416953
BS
2858 /*
2859 * NOTE: Although we can get the priority field, using it
2860 * here is not a good idea, since it limits the pages we can scan.
2861 * if we don't reclaim here, the shrink_zone from balance_pgdat
2862 * will pick up pages from other mem cgroup's as well. We hack
2863 * the priority and make it zero.
2864 */
6b4f7799 2865 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
bdce6d9e
KM
2866
2867 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2868
0ae5e89c 2869 *nr_scanned = sc.nr_scanned;
4e416953
BS
2870 return sc.nr_reclaimed;
2871}
2872
72835c86 2873unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2874 unsigned long nr_pages,
a7885eb8 2875 gfp_t gfp_mask,
b70a2a21 2876 bool may_swap)
66e1707b 2877{
4e416953 2878 struct zonelist *zonelist;
bdce6d9e 2879 unsigned long nr_reclaimed;
889976db 2880 int nid;
66e1707b 2881 struct scan_control sc = {
b70a2a21 2882 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2883 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2884 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2885 .target_mem_cgroup = memcg,
2886 .priority = DEF_PRIORITY,
2887 .may_writepage = !laptop_mode,
2888 .may_unmap = 1,
b70a2a21 2889 .may_swap = may_swap,
a09ed5e0 2890 };
66e1707b 2891
889976db
YH
2892 /*
2893 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2894 * take care of from where we get pages. So the node where we start the
2895 * scan does not need to be the current node.
2896 */
72835c86 2897 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2898
2899 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2900
2901 trace_mm_vmscan_memcg_reclaim_begin(0,
2902 sc.may_writepage,
2903 sc.gfp_mask);
2904
3115cd91 2905 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2906
2907 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2908
2909 return nr_reclaimed;
66e1707b
BS
2910}
2911#endif
2912
9e3b2f8c 2913static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2914{
b95a2f2d 2915 struct mem_cgroup *memcg;
f16015fb 2916
b95a2f2d
JW
2917 if (!total_swap_pages)
2918 return;
2919
2920 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2921 do {
c56d5c7d 2922 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2923
c56d5c7d 2924 if (inactive_anon_is_low(lruvec))
1a93be0e 2925 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2926 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2927
2928 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2929 } while (memcg);
f16015fb
JW
2930}
2931
60cefed4
JW
2932static bool zone_balanced(struct zone *zone, int order,
2933 unsigned long balance_gap, int classzone_idx)
2934{
2935 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2936 balance_gap, classzone_idx, 0))
2937 return false;
2938
ebff3980
VB
2939 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2940 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2941 return false;
2942
2943 return true;
2944}
2945
1741c877 2946/*
4ae0a48b
ZC
2947 * pgdat_balanced() is used when checking if a node is balanced.
2948 *
2949 * For order-0, all zones must be balanced!
2950 *
2951 * For high-order allocations only zones that meet watermarks and are in a
2952 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2953 * total of balanced pages must be at least 25% of the zones allowed by
2954 * classzone_idx for the node to be considered balanced. Forcing all zones to
2955 * be balanced for high orders can cause excessive reclaim when there are
2956 * imbalanced zones.
1741c877
MG
2957 * The choice of 25% is due to
2958 * o a 16M DMA zone that is balanced will not balance a zone on any
2959 * reasonable sized machine
2960 * o On all other machines, the top zone must be at least a reasonable
25985edc 2961 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2962 * would need to be at least 256M for it to be balance a whole node.
2963 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2964 * to balance a node on its own. These seemed like reasonable ratios.
2965 */
4ae0a48b 2966static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2967{
b40da049 2968 unsigned long managed_pages = 0;
4ae0a48b 2969 unsigned long balanced_pages = 0;
1741c877
MG
2970 int i;
2971
4ae0a48b
ZC
2972 /* Check the watermark levels */
2973 for (i = 0; i <= classzone_idx; i++) {
2974 struct zone *zone = pgdat->node_zones + i;
1741c877 2975
4ae0a48b
ZC
2976 if (!populated_zone(zone))
2977 continue;
2978
b40da049 2979 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2980
2981 /*
2982 * A special case here:
2983 *
2984 * balance_pgdat() skips over all_unreclaimable after
2985 * DEF_PRIORITY. Effectively, it considers them balanced so
2986 * they must be considered balanced here as well!
2987 */
6e543d57 2988 if (!zone_reclaimable(zone)) {
b40da049 2989 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2990 continue;
2991 }
2992
2993 if (zone_balanced(zone, order, 0, i))
b40da049 2994 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2995 else if (!order)
2996 return false;
2997 }
2998
2999 if (order)
b40da049 3000 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3001 else
3002 return true;
1741c877
MG
3003}
3004
5515061d
MG
3005/*
3006 * Prepare kswapd for sleeping. This verifies that there are no processes
3007 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3008 *
3009 * Returns true if kswapd is ready to sleep
3010 */
3011static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3012 int classzone_idx)
f50de2d3 3013{
f50de2d3
MG
3014 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3015 if (remaining)
5515061d
MG
3016 return false;
3017
3018 /*
9e5e3661
VB
3019 * The throttled processes are normally woken up in balance_pgdat() as
3020 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3021 * race between when kswapd checks the watermarks and a process gets
3022 * throttled. There is also a potential race if processes get
3023 * throttled, kswapd wakes, a large process exits thereby balancing the
3024 * zones, which causes kswapd to exit balance_pgdat() before reaching
3025 * the wake up checks. If kswapd is going to sleep, no process should
3026 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3027 * the wake up is premature, processes will wake kswapd and get
3028 * throttled again. The difference from wake ups in balance_pgdat() is
3029 * that here we are under prepare_to_wait().
5515061d 3030 */
9e5e3661
VB
3031 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3032 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3033
4ae0a48b 3034 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3035}
3036
75485363
MG
3037/*
3038 * kswapd shrinks the zone by the number of pages required to reach
3039 * the high watermark.
b8e83b94
MG
3040 *
3041 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3042 * reclaim or if the lack of progress was due to pages under writeback.
3043 * This is used to determine if the scanning priority needs to be raised.
75485363 3044 */
b8e83b94 3045static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3046 int classzone_idx,
75485363 3047 struct scan_control *sc,
2ab44f43 3048 unsigned long *nr_attempted)
75485363 3049{
7c954f6d
MG
3050 int testorder = sc->order;
3051 unsigned long balance_gap;
7c954f6d 3052 bool lowmem_pressure;
75485363
MG
3053
3054 /* Reclaim above the high watermark. */
3055 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
3056
3057 /*
3058 * Kswapd reclaims only single pages with compaction enabled. Trying
3059 * too hard to reclaim until contiguous free pages have become
3060 * available can hurt performance by evicting too much useful data
3061 * from memory. Do not reclaim more than needed for compaction.
3062 */
3063 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
3064 compaction_suitable(zone, sc->order, 0, classzone_idx)
3065 != COMPACT_SKIPPED)
7c954f6d
MG
3066 testorder = 0;
3067
3068 /*
3069 * We put equal pressure on every zone, unless one zone has way too
3070 * many pages free already. The "too many pages" is defined as the
3071 * high wmark plus a "gap" where the gap is either the low
3072 * watermark or 1% of the zone, whichever is smaller.
3073 */
4be89a34
JZ
3074 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3075 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3076
3077 /*
3078 * If there is no low memory pressure or the zone is balanced then no
3079 * reclaim is necessary
3080 */
3081 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3082 if (!lowmem_pressure && zone_balanced(zone, testorder,
3083 balance_gap, classzone_idx))
3084 return true;
3085
6b4f7799 3086 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3087
2ab44f43
MG
3088 /* Account for the number of pages attempted to reclaim */
3089 *nr_attempted += sc->nr_to_reclaim;
3090
57054651 3091 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3092
7c954f6d
MG
3093 /*
3094 * If a zone reaches its high watermark, consider it to be no longer
3095 * congested. It's possible there are dirty pages backed by congested
3096 * BDIs but as pressure is relieved, speculatively avoid congestion
3097 * waits.
3098 */
6e543d57 3099 if (zone_reclaimable(zone) &&
7c954f6d 3100 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3101 clear_bit(ZONE_CONGESTED, &zone->flags);
3102 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3103 }
3104
b8e83b94 3105 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3106}
3107
1da177e4
LT
3108/*
3109 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3110 * they are all at high_wmark_pages(zone).
1da177e4 3111 *
0abdee2b 3112 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3113 *
3114 * There is special handling here for zones which are full of pinned pages.
3115 * This can happen if the pages are all mlocked, or if they are all used by
3116 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3117 * What we do is to detect the case where all pages in the zone have been
3118 * scanned twice and there has been zero successful reclaim. Mark the zone as
3119 * dead and from now on, only perform a short scan. Basically we're polling
3120 * the zone for when the problem goes away.
3121 *
3122 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3123 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3124 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3125 * lower zones regardless of the number of free pages in the lower zones. This
3126 * interoperates with the page allocator fallback scheme to ensure that aging
3127 * of pages is balanced across the zones.
1da177e4 3128 */
99504748 3129static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3130 int *classzone_idx)
1da177e4 3131{
1da177e4 3132 int i;
99504748 3133 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3134 unsigned long nr_soft_reclaimed;
3135 unsigned long nr_soft_scanned;
179e9639
AM
3136 struct scan_control sc = {
3137 .gfp_mask = GFP_KERNEL,
ee814fe2 3138 .order = order,
b8e83b94 3139 .priority = DEF_PRIORITY,
ee814fe2 3140 .may_writepage = !laptop_mode,
a6dc60f8 3141 .may_unmap = 1,
2e2e4259 3142 .may_swap = 1,
179e9639 3143 };
f8891e5e 3144 count_vm_event(PAGEOUTRUN);
1da177e4 3145
9e3b2f8c 3146 do {
2ab44f43 3147 unsigned long nr_attempted = 0;
b8e83b94 3148 bool raise_priority = true;
2ab44f43 3149 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3150
3151 sc.nr_reclaimed = 0;
1da177e4 3152
d6277db4
RW
3153 /*
3154 * Scan in the highmem->dma direction for the highest
3155 * zone which needs scanning
3156 */
3157 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3158 struct zone *zone = pgdat->node_zones + i;
1da177e4 3159
d6277db4
RW
3160 if (!populated_zone(zone))
3161 continue;
1da177e4 3162
6e543d57
LD
3163 if (sc.priority != DEF_PRIORITY &&
3164 !zone_reclaimable(zone))
d6277db4 3165 continue;
1da177e4 3166
556adecb
RR
3167 /*
3168 * Do some background aging of the anon list, to give
3169 * pages a chance to be referenced before reclaiming.
3170 */
9e3b2f8c 3171 age_active_anon(zone, &sc);
556adecb 3172
cc715d99
MG
3173 /*
3174 * If the number of buffer_heads in the machine
3175 * exceeds the maximum allowed level and this node
3176 * has a highmem zone, force kswapd to reclaim from
3177 * it to relieve lowmem pressure.
3178 */
3179 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3180 end_zone = i;
3181 break;
3182 }
3183
60cefed4 3184 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3185 end_zone = i;
e1dbeda6 3186 break;
439423f6 3187 } else {
d43006d5
MG
3188 /*
3189 * If balanced, clear the dirty and congested
3190 * flags
3191 */
57054651
JW
3192 clear_bit(ZONE_CONGESTED, &zone->flags);
3193 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3194 }
1da177e4 3195 }
dafcb73e 3196
b8e83b94 3197 if (i < 0)
e1dbeda6
AM
3198 goto out;
3199
1da177e4
LT
3200 for (i = 0; i <= end_zone; i++) {
3201 struct zone *zone = pgdat->node_zones + i;
3202
2ab44f43
MG
3203 if (!populated_zone(zone))
3204 continue;
3205
2ab44f43
MG
3206 /*
3207 * If any zone is currently balanced then kswapd will
3208 * not call compaction as it is expected that the
3209 * necessary pages are already available.
3210 */
3211 if (pgdat_needs_compaction &&
3212 zone_watermark_ok(zone, order,
3213 low_wmark_pages(zone),
3214 *classzone_idx, 0))
3215 pgdat_needs_compaction = false;
1da177e4
LT
3216 }
3217
b7ea3c41
MG
3218 /*
3219 * If we're getting trouble reclaiming, start doing writepage
3220 * even in laptop mode.
3221 */
3222 if (sc.priority < DEF_PRIORITY - 2)
3223 sc.may_writepage = 1;
3224
1da177e4
LT
3225 /*
3226 * Now scan the zone in the dma->highmem direction, stopping
3227 * at the last zone which needs scanning.
3228 *
3229 * We do this because the page allocator works in the opposite
3230 * direction. This prevents the page allocator from allocating
3231 * pages behind kswapd's direction of progress, which would
3232 * cause too much scanning of the lower zones.
3233 */
3234 for (i = 0; i <= end_zone; i++) {
3235 struct zone *zone = pgdat->node_zones + i;
3236
f3fe6512 3237 if (!populated_zone(zone))
1da177e4
LT
3238 continue;
3239
6e543d57
LD
3240 if (sc.priority != DEF_PRIORITY &&
3241 !zone_reclaimable(zone))
1da177e4
LT
3242 continue;
3243
1da177e4 3244 sc.nr_scanned = 0;
4e416953 3245
0608f43d
AM
3246 nr_soft_scanned = 0;
3247 /*
3248 * Call soft limit reclaim before calling shrink_zone.
3249 */
3250 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3251 order, sc.gfp_mask,
3252 &nr_soft_scanned);
3253 sc.nr_reclaimed += nr_soft_reclaimed;
3254
32a4330d 3255 /*
7c954f6d
MG
3256 * There should be no need to raise the scanning
3257 * priority if enough pages are already being scanned
3258 * that that high watermark would be met at 100%
3259 * efficiency.
fe2c2a10 3260 */
6b4f7799
JW
3261 if (kswapd_shrink_zone(zone, end_zone,
3262 &sc, &nr_attempted))
7c954f6d 3263 raise_priority = false;
1da177e4 3264 }
5515061d
MG
3265
3266 /*
3267 * If the low watermark is met there is no need for processes
3268 * to be throttled on pfmemalloc_wait as they should not be
3269 * able to safely make forward progress. Wake them
3270 */
3271 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3272 pfmemalloc_watermark_ok(pgdat))
cfc51155 3273 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3274
1da177e4 3275 /*
b8e83b94
MG
3276 * Fragmentation may mean that the system cannot be rebalanced
3277 * for high-order allocations in all zones. If twice the
3278 * allocation size has been reclaimed and the zones are still
3279 * not balanced then recheck the watermarks at order-0 to
3280 * prevent kswapd reclaiming excessively. Assume that a
3281 * process requested a high-order can direct reclaim/compact.
1da177e4 3282 */
b8e83b94
MG
3283 if (order && sc.nr_reclaimed >= 2UL << order)
3284 order = sc.order = 0;
8357376d 3285
b8e83b94
MG
3286 /* Check if kswapd should be suspending */
3287 if (try_to_freeze() || kthread_should_stop())
3288 break;
8357376d 3289
2ab44f43
MG
3290 /*
3291 * Compact if necessary and kswapd is reclaiming at least the
3292 * high watermark number of pages as requsted
3293 */
3294 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3295 compact_pgdat(pgdat, order);
3296
73ce02e9 3297 /*
b8e83b94
MG
3298 * Raise priority if scanning rate is too low or there was no
3299 * progress in reclaiming pages
73ce02e9 3300 */
b8e83b94
MG
3301 if (raise_priority || !sc.nr_reclaimed)
3302 sc.priority--;
9aa41348 3303 } while (sc.priority >= 1 &&
b8e83b94 3304 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3305
b8e83b94 3306out:
0abdee2b 3307 /*
5515061d 3308 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3309 * makes a decision on the order we were last reclaiming at. However,
3310 * if another caller entered the allocator slow path while kswapd
3311 * was awake, order will remain at the higher level
3312 */
dc83edd9 3313 *classzone_idx = end_zone;
0abdee2b 3314 return order;
1da177e4
LT
3315}
3316
dc83edd9 3317static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3318{
3319 long remaining = 0;
3320 DEFINE_WAIT(wait);
3321
3322 if (freezing(current) || kthread_should_stop())
3323 return;
3324
3325 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3326
3327 /* Try to sleep for a short interval */
5515061d 3328 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3329 remaining = schedule_timeout(HZ/10);
3330 finish_wait(&pgdat->kswapd_wait, &wait);
3331 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3332 }
3333
3334 /*
3335 * After a short sleep, check if it was a premature sleep. If not, then
3336 * go fully to sleep until explicitly woken up.
3337 */
5515061d 3338 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3339 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3340
3341 /*
3342 * vmstat counters are not perfectly accurate and the estimated
3343 * value for counters such as NR_FREE_PAGES can deviate from the
3344 * true value by nr_online_cpus * threshold. To avoid the zone
3345 * watermarks being breached while under pressure, we reduce the
3346 * per-cpu vmstat threshold while kswapd is awake and restore
3347 * them before going back to sleep.
3348 */
3349 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3350
62997027
MG
3351 /*
3352 * Compaction records what page blocks it recently failed to
3353 * isolate pages from and skips them in the future scanning.
3354 * When kswapd is going to sleep, it is reasonable to assume
3355 * that pages and compaction may succeed so reset the cache.
3356 */
3357 reset_isolation_suitable(pgdat);
3358
1c7e7f6c
AK
3359 if (!kthread_should_stop())
3360 schedule();
3361
f0bc0a60
KM
3362 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3363 } else {
3364 if (remaining)
3365 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3366 else
3367 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3368 }
3369 finish_wait(&pgdat->kswapd_wait, &wait);
3370}
3371
1da177e4
LT
3372/*
3373 * The background pageout daemon, started as a kernel thread
4f98a2fe 3374 * from the init process.
1da177e4
LT
3375 *
3376 * This basically trickles out pages so that we have _some_
3377 * free memory available even if there is no other activity
3378 * that frees anything up. This is needed for things like routing
3379 * etc, where we otherwise might have all activity going on in
3380 * asynchronous contexts that cannot page things out.
3381 *
3382 * If there are applications that are active memory-allocators
3383 * (most normal use), this basically shouldn't matter.
3384 */
3385static int kswapd(void *p)
3386{
215ddd66 3387 unsigned long order, new_order;
d2ebd0f6 3388 unsigned balanced_order;
215ddd66 3389 int classzone_idx, new_classzone_idx;
d2ebd0f6 3390 int balanced_classzone_idx;
1da177e4
LT
3391 pg_data_t *pgdat = (pg_data_t*)p;
3392 struct task_struct *tsk = current;
f0bc0a60 3393
1da177e4
LT
3394 struct reclaim_state reclaim_state = {
3395 .reclaimed_slab = 0,
3396 };
a70f7302 3397 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3398
cf40bd16
NP
3399 lockdep_set_current_reclaim_state(GFP_KERNEL);
3400
174596a0 3401 if (!cpumask_empty(cpumask))
c5f59f08 3402 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3403 current->reclaim_state = &reclaim_state;
3404
3405 /*
3406 * Tell the memory management that we're a "memory allocator",
3407 * and that if we need more memory we should get access to it
3408 * regardless (see "__alloc_pages()"). "kswapd" should
3409 * never get caught in the normal page freeing logic.
3410 *
3411 * (Kswapd normally doesn't need memory anyway, but sometimes
3412 * you need a small amount of memory in order to be able to
3413 * page out something else, and this flag essentially protects
3414 * us from recursively trying to free more memory as we're
3415 * trying to free the first piece of memory in the first place).
3416 */
930d9152 3417 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3418 set_freezable();
1da177e4 3419
215ddd66 3420 order = new_order = 0;
d2ebd0f6 3421 balanced_order = 0;
215ddd66 3422 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3423 balanced_classzone_idx = classzone_idx;
1da177e4 3424 for ( ; ; ) {
6f6313d4 3425 bool ret;
3e1d1d28 3426
215ddd66
MG
3427 /*
3428 * If the last balance_pgdat was unsuccessful it's unlikely a
3429 * new request of a similar or harder type will succeed soon
3430 * so consider going to sleep on the basis we reclaimed at
3431 */
d2ebd0f6
AS
3432 if (balanced_classzone_idx >= new_classzone_idx &&
3433 balanced_order == new_order) {
215ddd66
MG
3434 new_order = pgdat->kswapd_max_order;
3435 new_classzone_idx = pgdat->classzone_idx;
3436 pgdat->kswapd_max_order = 0;
3437 pgdat->classzone_idx = pgdat->nr_zones - 1;
3438 }
3439
99504748 3440 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3441 /*
3442 * Don't sleep if someone wants a larger 'order'
99504748 3443 * allocation or has tigher zone constraints
1da177e4
LT
3444 */
3445 order = new_order;
99504748 3446 classzone_idx = new_classzone_idx;
1da177e4 3447 } else {
d2ebd0f6
AS
3448 kswapd_try_to_sleep(pgdat, balanced_order,
3449 balanced_classzone_idx);
1da177e4 3450 order = pgdat->kswapd_max_order;
99504748 3451 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3452 new_order = order;
3453 new_classzone_idx = classzone_idx;
4d40502e 3454 pgdat->kswapd_max_order = 0;
215ddd66 3455 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3456 }
1da177e4 3457
8fe23e05
DR
3458 ret = try_to_freeze();
3459 if (kthread_should_stop())
3460 break;
3461
3462 /*
3463 * We can speed up thawing tasks if we don't call balance_pgdat
3464 * after returning from the refrigerator
3465 */
33906bc5
MG
3466 if (!ret) {
3467 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3468 balanced_classzone_idx = classzone_idx;
3469 balanced_order = balance_pgdat(pgdat, order,
3470 &balanced_classzone_idx);
33906bc5 3471 }
1da177e4 3472 }
b0a8cc58 3473
71abdc15 3474 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3475 current->reclaim_state = NULL;
71abdc15
JW
3476 lockdep_clear_current_reclaim_state();
3477
1da177e4
LT
3478 return 0;
3479}
3480
3481/*
3482 * A zone is low on free memory, so wake its kswapd task to service it.
3483 */
99504748 3484void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3485{
3486 pg_data_t *pgdat;
3487
f3fe6512 3488 if (!populated_zone(zone))
1da177e4
LT
3489 return;
3490
344736f2 3491 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3492 return;
88f5acf8 3493 pgdat = zone->zone_pgdat;
99504748 3494 if (pgdat->kswapd_max_order < order) {
1da177e4 3495 pgdat->kswapd_max_order = order;
99504748
MG
3496 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3497 }
8d0986e2 3498 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3499 return;
892f795d 3500 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3501 return;
3502
3503 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3504 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3505}
3506
c6f37f12 3507#ifdef CONFIG_HIBERNATION
1da177e4 3508/*
7b51755c 3509 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3510 * freed pages.
3511 *
3512 * Rather than trying to age LRUs the aim is to preserve the overall
3513 * LRU order by reclaiming preferentially
3514 * inactive > active > active referenced > active mapped
1da177e4 3515 */
7b51755c 3516unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3517{
d6277db4 3518 struct reclaim_state reclaim_state;
d6277db4 3519 struct scan_control sc = {
ee814fe2 3520 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3521 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3522 .priority = DEF_PRIORITY,
d6277db4 3523 .may_writepage = 1,
ee814fe2
JW
3524 .may_unmap = 1,
3525 .may_swap = 1,
7b51755c 3526 .hibernation_mode = 1,
1da177e4 3527 };
a09ed5e0 3528 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3529 struct task_struct *p = current;
3530 unsigned long nr_reclaimed;
1da177e4 3531
7b51755c
KM
3532 p->flags |= PF_MEMALLOC;
3533 lockdep_set_current_reclaim_state(sc.gfp_mask);
3534 reclaim_state.reclaimed_slab = 0;
3535 p->reclaim_state = &reclaim_state;
d6277db4 3536
3115cd91 3537 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3538
7b51755c
KM
3539 p->reclaim_state = NULL;
3540 lockdep_clear_current_reclaim_state();
3541 p->flags &= ~PF_MEMALLOC;
d6277db4 3542
7b51755c 3543 return nr_reclaimed;
1da177e4 3544}
c6f37f12 3545#endif /* CONFIG_HIBERNATION */
1da177e4 3546
1da177e4
LT
3547/* It's optimal to keep kswapds on the same CPUs as their memory, but
3548 not required for correctness. So if the last cpu in a node goes
3549 away, we get changed to run anywhere: as the first one comes back,
3550 restore their cpu bindings. */
fcb35a9b
GKH
3551static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3552 void *hcpu)
1da177e4 3553{
58c0a4a7 3554 int nid;
1da177e4 3555
8bb78442 3556 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3557 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3558 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3559 const struct cpumask *mask;
3560
3561 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3562
3e597945 3563 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3564 /* One of our CPUs online: restore mask */
c5f59f08 3565 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3566 }
3567 }
3568 return NOTIFY_OK;
3569}
1da177e4 3570
3218ae14
YG
3571/*
3572 * This kswapd start function will be called by init and node-hot-add.
3573 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3574 */
3575int kswapd_run(int nid)
3576{
3577 pg_data_t *pgdat = NODE_DATA(nid);
3578 int ret = 0;
3579
3580 if (pgdat->kswapd)
3581 return 0;
3582
3583 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3584 if (IS_ERR(pgdat->kswapd)) {
3585 /* failure at boot is fatal */
3586 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3587 pr_err("Failed to start kswapd on node %d\n", nid);
3588 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3589 pgdat->kswapd = NULL;
3218ae14
YG
3590 }
3591 return ret;
3592}
3593
8fe23e05 3594/*
d8adde17 3595 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3596 * hold mem_hotplug_begin/end().
8fe23e05
DR
3597 */
3598void kswapd_stop(int nid)
3599{
3600 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3601
d8adde17 3602 if (kswapd) {
8fe23e05 3603 kthread_stop(kswapd);
d8adde17
JL
3604 NODE_DATA(nid)->kswapd = NULL;
3605 }
8fe23e05
DR
3606}
3607
1da177e4
LT
3608static int __init kswapd_init(void)
3609{
3218ae14 3610 int nid;
69e05944 3611
1da177e4 3612 swap_setup();
48fb2e24 3613 for_each_node_state(nid, N_MEMORY)
3218ae14 3614 kswapd_run(nid);
1da177e4
LT
3615 hotcpu_notifier(cpu_callback, 0);
3616 return 0;
3617}
3618
3619module_init(kswapd_init)
9eeff239
CL
3620
3621#ifdef CONFIG_NUMA
3622/*
3623 * Zone reclaim mode
3624 *
3625 * If non-zero call zone_reclaim when the number of free pages falls below
3626 * the watermarks.
9eeff239
CL
3627 */
3628int zone_reclaim_mode __read_mostly;
3629
1b2ffb78 3630#define RECLAIM_OFF 0
7d03431c 3631#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3632#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3633#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3634
a92f7126
CL
3635/*
3636 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3637 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3638 * a zone.
3639 */
3640#define ZONE_RECLAIM_PRIORITY 4
3641
9614634f
CL
3642/*
3643 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3644 * occur.
3645 */
3646int sysctl_min_unmapped_ratio = 1;
3647
0ff38490
CL
3648/*
3649 * If the number of slab pages in a zone grows beyond this percentage then
3650 * slab reclaim needs to occur.
3651 */
3652int sysctl_min_slab_ratio = 5;
3653
90afa5de
MG
3654static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3655{
3656 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3657 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3658 zone_page_state(zone, NR_ACTIVE_FILE);
3659
3660 /*
3661 * It's possible for there to be more file mapped pages than
3662 * accounted for by the pages on the file LRU lists because
3663 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3664 */
3665 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3666}
3667
3668/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3669static long zone_pagecache_reclaimable(struct zone *zone)
3670{
3671 long nr_pagecache_reclaimable;
3672 long delta = 0;
3673
3674 /*
95bbc0c7 3675 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3676 * potentially reclaimable. Otherwise, we have to worry about
3677 * pages like swapcache and zone_unmapped_file_pages() provides
3678 * a better estimate
3679 */
95bbc0c7 3680 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3681 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3682 else
3683 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3684
3685 /* If we can't clean pages, remove dirty pages from consideration */
3686 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3687 delta += zone_page_state(zone, NR_FILE_DIRTY);
3688
3689 /* Watch for any possible underflows due to delta */
3690 if (unlikely(delta > nr_pagecache_reclaimable))
3691 delta = nr_pagecache_reclaimable;
3692
3693 return nr_pagecache_reclaimable - delta;
3694}
3695
9eeff239
CL
3696/*
3697 * Try to free up some pages from this zone through reclaim.
3698 */
179e9639 3699static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3700{
7fb2d46d 3701 /* Minimum pages needed in order to stay on node */
69e05944 3702 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3703 struct task_struct *p = current;
3704 struct reclaim_state reclaim_state;
179e9639 3705 struct scan_control sc = {
62b726c1 3706 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3707 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3708 .order = order,
9e3b2f8c 3709 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3710 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3711 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3712 .may_swap = 1,
179e9639 3713 };
9eeff239 3714
9eeff239 3715 cond_resched();
d4f7796e 3716 /*
95bbc0c7 3717 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3718 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3719 * and RECLAIM_UNMAP.
d4f7796e
CL
3720 */
3721 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3722 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3723 reclaim_state.reclaimed_slab = 0;
3724 p->reclaim_state = &reclaim_state;
c84db23c 3725
90afa5de 3726 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3727 /*
3728 * Free memory by calling shrink zone with increasing
3729 * priorities until we have enough memory freed.
3730 */
0ff38490 3731 do {
6b4f7799 3732 shrink_zone(zone, &sc, true);
9e3b2f8c 3733 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3734 }
c84db23c 3735
9eeff239 3736 p->reclaim_state = NULL;
d4f7796e 3737 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3738 lockdep_clear_current_reclaim_state();
a79311c1 3739 return sc.nr_reclaimed >= nr_pages;
9eeff239 3740}
179e9639
AM
3741
3742int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3743{
179e9639 3744 int node_id;
d773ed6b 3745 int ret;
179e9639
AM
3746
3747 /*
0ff38490
CL
3748 * Zone reclaim reclaims unmapped file backed pages and
3749 * slab pages if we are over the defined limits.
34aa1330 3750 *
9614634f
CL
3751 * A small portion of unmapped file backed pages is needed for
3752 * file I/O otherwise pages read by file I/O will be immediately
3753 * thrown out if the zone is overallocated. So we do not reclaim
3754 * if less than a specified percentage of the zone is used by
3755 * unmapped file backed pages.
179e9639 3756 */
90afa5de
MG
3757 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3758 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3759 return ZONE_RECLAIM_FULL;
179e9639 3760
6e543d57 3761 if (!zone_reclaimable(zone))
fa5e084e 3762 return ZONE_RECLAIM_FULL;
d773ed6b 3763
179e9639 3764 /*
d773ed6b 3765 * Do not scan if the allocation should not be delayed.
179e9639 3766 */
d773ed6b 3767 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3768 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3769
3770 /*
3771 * Only run zone reclaim on the local zone or on zones that do not
3772 * have associated processors. This will favor the local processor
3773 * over remote processors and spread off node memory allocations
3774 * as wide as possible.
3775 */
89fa3024 3776 node_id = zone_to_nid(zone);
37c0708d 3777 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3778 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3779
57054651 3780 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3781 return ZONE_RECLAIM_NOSCAN;
3782
d773ed6b 3783 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3784 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3785
24cf7251
MG
3786 if (!ret)
3787 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3788
d773ed6b 3789 return ret;
179e9639 3790}
9eeff239 3791#endif
894bc310 3792
894bc310
LS
3793/*
3794 * page_evictable - test whether a page is evictable
3795 * @page: the page to test
894bc310
LS
3796 *
3797 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3798 * lists vs unevictable list.
894bc310
LS
3799 *
3800 * Reasons page might not be evictable:
ba9ddf49 3801 * (1) page's mapping marked unevictable
b291f000 3802 * (2) page is part of an mlocked VMA
ba9ddf49 3803 *
894bc310 3804 */
39b5f29a 3805int page_evictable(struct page *page)
894bc310 3806{
39b5f29a 3807 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3808}
89e004ea 3809
85046579 3810#ifdef CONFIG_SHMEM
89e004ea 3811/**
24513264
HD
3812 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3813 * @pages: array of pages to check
3814 * @nr_pages: number of pages to check
89e004ea 3815 *
24513264 3816 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3817 *
3818 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3819 */
24513264 3820void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3821{
925b7673 3822 struct lruvec *lruvec;
24513264
HD
3823 struct zone *zone = NULL;
3824 int pgscanned = 0;
3825 int pgrescued = 0;
3826 int i;
89e004ea 3827
24513264
HD
3828 for (i = 0; i < nr_pages; i++) {
3829 struct page *page = pages[i];
3830 struct zone *pagezone;
89e004ea 3831
24513264
HD
3832 pgscanned++;
3833 pagezone = page_zone(page);
3834 if (pagezone != zone) {
3835 if (zone)
3836 spin_unlock_irq(&zone->lru_lock);
3837 zone = pagezone;
3838 spin_lock_irq(&zone->lru_lock);
3839 }
fa9add64 3840 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3841
24513264
HD
3842 if (!PageLRU(page) || !PageUnevictable(page))
3843 continue;
89e004ea 3844
39b5f29a 3845 if (page_evictable(page)) {
24513264
HD
3846 enum lru_list lru = page_lru_base_type(page);
3847
309381fe 3848 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3849 ClearPageUnevictable(page);
fa9add64
HD
3850 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3851 add_page_to_lru_list(page, lruvec, lru);
24513264 3852 pgrescued++;
89e004ea 3853 }
24513264 3854 }
89e004ea 3855
24513264
HD
3856 if (zone) {
3857 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3858 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3859 spin_unlock_irq(&zone->lru_lock);
89e004ea 3860 }
89e004ea 3861}
85046579 3862#endif /* CONFIG_SHMEM */