arm64: dts: marvell: mcbin: enable uart headers
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4 70
ee814fe2 71 /* Allocation order */
5ad333eb 72 int order;
66e1707b 73
ee814fe2
JW
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
9e3b2f8c 79
f16015fb
JW
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
66e1707b 85
ee814fe2
JW
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
b2e18757
MG
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
1276ad68 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
d6622f63
YX
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
241994ed 108
ee814fe2
JW
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
1da177e4
LT
119};
120
1da177e4
LT
121#ifdef ARCH_HAS_PREFETCH
122#define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131#else
132#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133#endif
134
135#ifdef ARCH_HAS_PREFETCHW
136#define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145#else
146#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147#endif
148
149/*
150 * From 0 .. 100. Higher means more swappy.
151 */
152int vm_swappiness = 60;
d0480be4
WSH
153/*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157unsigned long vm_total_pages;
1da177e4
LT
158
159static LIST_HEAD(shrinker_list);
160static DECLARE_RWSEM(shrinker_rwsem);
161
c255a458 162#ifdef CONFIG_MEMCG
89b5fae5
JW
163static bool global_reclaim(struct scan_control *sc)
164{
f16015fb 165 return !sc->target_mem_cgroup;
89b5fae5 166}
97c9341f
TH
167
168/**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181static bool sane_reclaim(struct scan_control *sc)
182{
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
189 return true;
190#endif
191 return false;
192}
91a45470 193#else
89b5fae5
JW
194static bool global_reclaim(struct scan_control *sc)
195{
196 return true;
197}
97c9341f
TH
198
199static bool sane_reclaim(struct scan_control *sc)
200{
201 return true;
202}
91a45470
KH
203#endif
204
5a1c84b4
MG
205/*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210unsigned long zone_reclaimable_pages(struct zone *zone)
211{
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221}
222
fd538803
MH
223/**
224 * lruvec_lru_size - Returns the number of pages on the given LRU list.
225 * @lruvec: lru vector
226 * @lru: lru to use
227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
228 */
229unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 230{
fd538803
MH
231 unsigned long lru_size;
232 int zid;
233
c3c787e8 234 if (!mem_cgroup_disabled())
fd538803
MH
235 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
236 else
237 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 238
fd538803
MH
239 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
241 unsigned long size;
c9f299d9 242
fd538803
MH
243 if (!managed_zone(zone))
244 continue;
245
246 if (!mem_cgroup_disabled())
247 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
248 else
249 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 NR_ZONE_LRU_BASE + lru);
251 lru_size -= min(size, lru_size);
252 }
253
254 return lru_size;
b4536f0c 255
b4536f0c
MH
256}
257
1da177e4 258/*
1d3d4437 259 * Add a shrinker callback to be called from the vm.
1da177e4 260 */
1d3d4437 261int register_shrinker(struct shrinker *shrinker)
1da177e4 262{
1d3d4437
GC
263 size_t size = sizeof(*shrinker->nr_deferred);
264
1d3d4437
GC
265 if (shrinker->flags & SHRINKER_NUMA_AWARE)
266 size *= nr_node_ids;
267
268 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 if (!shrinker->nr_deferred)
270 return -ENOMEM;
271
8e1f936b
RR
272 down_write(&shrinker_rwsem);
273 list_add_tail(&shrinker->list, &shrinker_list);
274 up_write(&shrinker_rwsem);
1d3d4437 275 return 0;
1da177e4 276}
8e1f936b 277EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
278
279/*
280 * Remove one
281 */
8e1f936b 282void unregister_shrinker(struct shrinker *shrinker)
1da177e4 283{
bb422a73
TH
284 if (!shrinker->nr_deferred)
285 return;
1da177e4
LT
286 down_write(&shrinker_rwsem);
287 list_del(&shrinker->list);
288 up_write(&shrinker_rwsem);
ae393321 289 kfree(shrinker->nr_deferred);
bb422a73 290 shrinker->nr_deferred = NULL;
1da177e4 291}
8e1f936b 292EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
293
294#define SHRINK_BATCH 128
1d3d4437 295
cb731d6c 296static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 297 struct shrinker *shrinker, int priority)
1d3d4437
GC
298{
299 unsigned long freed = 0;
300 unsigned long long delta;
301 long total_scan;
d5bc5fd3 302 long freeable;
1d3d4437
GC
303 long nr;
304 long new_nr;
305 int nid = shrinkctl->nid;
306 long batch_size = shrinker->batch ? shrinker->batch
307 : SHRINK_BATCH;
5f33a080 308 long scanned = 0, next_deferred;
1d3d4437 309
d5bc5fd3
VD
310 freeable = shrinker->count_objects(shrinker, shrinkctl);
311 if (freeable == 0)
1d3d4437
GC
312 return 0;
313
314 /*
315 * copy the current shrinker scan count into a local variable
316 * and zero it so that other concurrent shrinker invocations
317 * don't also do this scanning work.
318 */
319 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
320
321 total_scan = nr;
9092c71b
JB
322 delta = freeable >> priority;
323 delta *= 4;
324 do_div(delta, shrinker->seeks);
1d3d4437
GC
325 total_scan += delta;
326 if (total_scan < 0) {
8612c663 327 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 328 shrinker->scan_objects, total_scan);
d5bc5fd3 329 total_scan = freeable;
5f33a080
SL
330 next_deferred = nr;
331 } else
332 next_deferred = total_scan;
1d3d4437
GC
333
334 /*
335 * We need to avoid excessive windup on filesystem shrinkers
336 * due to large numbers of GFP_NOFS allocations causing the
337 * shrinkers to return -1 all the time. This results in a large
338 * nr being built up so when a shrink that can do some work
339 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 340 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
341 * memory.
342 *
343 * Hence only allow the shrinker to scan the entire cache when
344 * a large delta change is calculated directly.
345 */
d5bc5fd3
VD
346 if (delta < freeable / 4)
347 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
348
349 /*
350 * Avoid risking looping forever due to too large nr value:
351 * never try to free more than twice the estimate number of
352 * freeable entries.
353 */
d5bc5fd3
VD
354 if (total_scan > freeable * 2)
355 total_scan = freeable * 2;
1d3d4437
GC
356
357 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 358 freeable, delta, total_scan, priority);
1d3d4437 359
0b1fb40a
VD
360 /*
361 * Normally, we should not scan less than batch_size objects in one
362 * pass to avoid too frequent shrinker calls, but if the slab has less
363 * than batch_size objects in total and we are really tight on memory,
364 * we will try to reclaim all available objects, otherwise we can end
365 * up failing allocations although there are plenty of reclaimable
366 * objects spread over several slabs with usage less than the
367 * batch_size.
368 *
369 * We detect the "tight on memory" situations by looking at the total
370 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 371 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
372 * scanning at high prio and therefore should try to reclaim as much as
373 * possible.
374 */
375 while (total_scan >= batch_size ||
d5bc5fd3 376 total_scan >= freeable) {
a0b02131 377 unsigned long ret;
0b1fb40a 378 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 379
0b1fb40a 380 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 381 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
382 ret = shrinker->scan_objects(shrinker, shrinkctl);
383 if (ret == SHRINK_STOP)
384 break;
385 freed += ret;
1d3d4437 386
d460acb5
CW
387 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
388 total_scan -= shrinkctl->nr_scanned;
389 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
390
391 cond_resched();
392 }
393
5f33a080
SL
394 if (next_deferred >= scanned)
395 next_deferred -= scanned;
396 else
397 next_deferred = 0;
1d3d4437
GC
398 /*
399 * move the unused scan count back into the shrinker in a
400 * manner that handles concurrent updates. If we exhausted the
401 * scan, there is no need to do an update.
402 */
5f33a080
SL
403 if (next_deferred > 0)
404 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
405 &shrinker->nr_deferred[nid]);
406 else
407 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
408
df9024a8 409 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 410 return freed;
1495f230
YH
411}
412
6b4f7799 413/**
cb731d6c 414 * shrink_slab - shrink slab caches
6b4f7799
JW
415 * @gfp_mask: allocation context
416 * @nid: node whose slab caches to target
cb731d6c 417 * @memcg: memory cgroup whose slab caches to target
9092c71b 418 * @priority: the reclaim priority
1da177e4 419 *
6b4f7799 420 * Call the shrink functions to age shrinkable caches.
1da177e4 421 *
6b4f7799
JW
422 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 424 *
cb731d6c
VD
425 * @memcg specifies the memory cgroup to target. If it is not NULL,
426 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
427 * objects from the memory cgroup specified. Otherwise, only unaware
428 * shrinkers are called.
cb731d6c 429 *
9092c71b
JB
430 * @priority is sc->priority, we take the number of objects and >> by priority
431 * in order to get the scan target.
b15e0905 432 *
6b4f7799 433 * Returns the number of reclaimed slab objects.
1da177e4 434 */
cb731d6c
VD
435static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
436 struct mem_cgroup *memcg,
9092c71b 437 int priority)
1da177e4
LT
438{
439 struct shrinker *shrinker;
24f7c6b9 440 unsigned long freed = 0;
1da177e4 441
0fc9f58a 442 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
443 return 0;
444
f06590bd 445 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
446 /*
447 * If we would return 0, our callers would understand that we
448 * have nothing else to shrink and give up trying. By returning
449 * 1 we keep it going and assume we'll be able to shrink next
450 * time.
451 */
452 freed = 1;
f06590bd
MK
453 goto out;
454 }
1da177e4
LT
455
456 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
457 struct shrink_control sc = {
458 .gfp_mask = gfp_mask,
459 .nid = nid,
cb731d6c 460 .memcg = memcg,
6b4f7799 461 };
ec97097b 462
0fc9f58a
VD
463 /*
464 * If kernel memory accounting is disabled, we ignore
465 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
466 * passing NULL for memcg.
467 */
468 if (memcg_kmem_enabled() &&
469 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
470 continue;
471
6b4f7799
JW
472 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
473 sc.nid = 0;
1da177e4 474
9092c71b 475 freed += do_shrink_slab(&sc, shrinker, priority);
e496612c
MK
476 /*
477 * Bail out if someone want to register a new shrinker to
478 * prevent the regsitration from being stalled for long periods
479 * by parallel ongoing shrinking.
480 */
481 if (rwsem_is_contended(&shrinker_rwsem)) {
482 freed = freed ? : 1;
483 break;
484 }
1da177e4 485 }
6b4f7799 486
1da177e4 487 up_read(&shrinker_rwsem);
f06590bd
MK
488out:
489 cond_resched();
24f7c6b9 490 return freed;
1da177e4
LT
491}
492
cb731d6c
VD
493void drop_slab_node(int nid)
494{
495 unsigned long freed;
496
497 do {
498 struct mem_cgroup *memcg = NULL;
499
500 freed = 0;
501 do {
9092c71b 502 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
503 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
504 } while (freed > 10);
505}
506
507void drop_slab(void)
508{
509 int nid;
510
511 for_each_online_node(nid)
512 drop_slab_node(nid);
513}
514
1da177e4
LT
515static inline int is_page_cache_freeable(struct page *page)
516{
ceddc3a5
JW
517 /*
518 * A freeable page cache page is referenced only by the caller
519 * that isolated the page, the page cache radix tree and
520 * optional buffer heads at page->private.
521 */
bd4c82c2
HY
522 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
523 HPAGE_PMD_NR : 1;
524 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
525}
526
703c2708 527static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 528{
930d9152 529 if (current->flags & PF_SWAPWRITE)
1da177e4 530 return 1;
703c2708 531 if (!inode_write_congested(inode))
1da177e4 532 return 1;
703c2708 533 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
534 return 1;
535 return 0;
536}
537
538/*
539 * We detected a synchronous write error writing a page out. Probably
540 * -ENOSPC. We need to propagate that into the address_space for a subsequent
541 * fsync(), msync() or close().
542 *
543 * The tricky part is that after writepage we cannot touch the mapping: nothing
544 * prevents it from being freed up. But we have a ref on the page and once
545 * that page is locked, the mapping is pinned.
546 *
547 * We're allowed to run sleeping lock_page() here because we know the caller has
548 * __GFP_FS.
549 */
550static void handle_write_error(struct address_space *mapping,
551 struct page *page, int error)
552{
7eaceacc 553 lock_page(page);
3e9f45bd
GC
554 if (page_mapping(page) == mapping)
555 mapping_set_error(mapping, error);
1da177e4
LT
556 unlock_page(page);
557}
558
04e62a29
CL
559/* possible outcome of pageout() */
560typedef enum {
561 /* failed to write page out, page is locked */
562 PAGE_KEEP,
563 /* move page to the active list, page is locked */
564 PAGE_ACTIVATE,
565 /* page has been sent to the disk successfully, page is unlocked */
566 PAGE_SUCCESS,
567 /* page is clean and locked */
568 PAGE_CLEAN,
569} pageout_t;
570
1da177e4 571/*
1742f19f
AM
572 * pageout is called by shrink_page_list() for each dirty page.
573 * Calls ->writepage().
1da177e4 574 */
c661b078 575static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 576 struct scan_control *sc)
1da177e4
LT
577{
578 /*
579 * If the page is dirty, only perform writeback if that write
580 * will be non-blocking. To prevent this allocation from being
581 * stalled by pagecache activity. But note that there may be
582 * stalls if we need to run get_block(). We could test
583 * PagePrivate for that.
584 *
8174202b 585 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
586 * this page's queue, we can perform writeback even if that
587 * will block.
588 *
589 * If the page is swapcache, write it back even if that would
590 * block, for some throttling. This happens by accident, because
591 * swap_backing_dev_info is bust: it doesn't reflect the
592 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
593 */
594 if (!is_page_cache_freeable(page))
595 return PAGE_KEEP;
596 if (!mapping) {
597 /*
598 * Some data journaling orphaned pages can have
599 * page->mapping == NULL while being dirty with clean buffers.
600 */
266cf658 601 if (page_has_private(page)) {
1da177e4
LT
602 if (try_to_free_buffers(page)) {
603 ClearPageDirty(page);
b1de0d13 604 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
605 return PAGE_CLEAN;
606 }
607 }
608 return PAGE_KEEP;
609 }
610 if (mapping->a_ops->writepage == NULL)
611 return PAGE_ACTIVATE;
703c2708 612 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
613 return PAGE_KEEP;
614
615 if (clear_page_dirty_for_io(page)) {
616 int res;
617 struct writeback_control wbc = {
618 .sync_mode = WB_SYNC_NONE,
619 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
620 .range_start = 0,
621 .range_end = LLONG_MAX,
1da177e4
LT
622 .for_reclaim = 1,
623 };
624
625 SetPageReclaim(page);
626 res = mapping->a_ops->writepage(page, &wbc);
627 if (res < 0)
628 handle_write_error(mapping, page, res);
994fc28c 629 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
630 ClearPageReclaim(page);
631 return PAGE_ACTIVATE;
632 }
c661b078 633
1da177e4
LT
634 if (!PageWriteback(page)) {
635 /* synchronous write or broken a_ops? */
636 ClearPageReclaim(page);
637 }
3aa23851 638 trace_mm_vmscan_writepage(page);
c4a25635 639 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
640 return PAGE_SUCCESS;
641 }
642
643 return PAGE_CLEAN;
644}
645
a649fd92 646/*
e286781d
NP
647 * Same as remove_mapping, but if the page is removed from the mapping, it
648 * gets returned with a refcount of 0.
a649fd92 649 */
a528910e
JW
650static int __remove_mapping(struct address_space *mapping, struct page *page,
651 bool reclaimed)
49d2e9cc 652{
c4843a75 653 unsigned long flags;
bd4c82c2 654 int refcount;
c4843a75 655
28e4d965
NP
656 BUG_ON(!PageLocked(page));
657 BUG_ON(mapping != page_mapping(page));
49d2e9cc 658
c4843a75 659 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 660 /*
0fd0e6b0
NP
661 * The non racy check for a busy page.
662 *
663 * Must be careful with the order of the tests. When someone has
664 * a ref to the page, it may be possible that they dirty it then
665 * drop the reference. So if PageDirty is tested before page_count
666 * here, then the following race may occur:
667 *
668 * get_user_pages(&page);
669 * [user mapping goes away]
670 * write_to(page);
671 * !PageDirty(page) [good]
672 * SetPageDirty(page);
673 * put_page(page);
674 * !page_count(page) [good, discard it]
675 *
676 * [oops, our write_to data is lost]
677 *
678 * Reversing the order of the tests ensures such a situation cannot
679 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 680 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
681 *
682 * Note that if SetPageDirty is always performed via set_page_dirty,
683 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 684 */
bd4c82c2
HY
685 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
686 refcount = 1 + HPAGE_PMD_NR;
687 else
688 refcount = 2;
689 if (!page_ref_freeze(page, refcount))
49d2e9cc 690 goto cannot_free;
e286781d
NP
691 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
692 if (unlikely(PageDirty(page))) {
bd4c82c2 693 page_ref_unfreeze(page, refcount);
49d2e9cc 694 goto cannot_free;
e286781d 695 }
49d2e9cc
CL
696
697 if (PageSwapCache(page)) {
698 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 699 mem_cgroup_swapout(page, swap);
49d2e9cc 700 __delete_from_swap_cache(page);
c4843a75 701 spin_unlock_irqrestore(&mapping->tree_lock, flags);
75f6d6d2 702 put_swap_page(page, swap);
e286781d 703 } else {
6072d13c 704 void (*freepage)(struct page *);
a528910e 705 void *shadow = NULL;
6072d13c
LT
706
707 freepage = mapping->a_ops->freepage;
a528910e
JW
708 /*
709 * Remember a shadow entry for reclaimed file cache in
710 * order to detect refaults, thus thrashing, later on.
711 *
712 * But don't store shadows in an address space that is
713 * already exiting. This is not just an optizimation,
714 * inode reclaim needs to empty out the radix tree or
715 * the nodes are lost. Don't plant shadows behind its
716 * back.
f9fe48be
RZ
717 *
718 * We also don't store shadows for DAX mappings because the
719 * only page cache pages found in these are zero pages
720 * covering holes, and because we don't want to mix DAX
721 * exceptional entries and shadow exceptional entries in the
722 * same page_tree.
a528910e
JW
723 */
724 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 725 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 726 shadow = workingset_eviction(mapping, page);
62cccb8c 727 __delete_from_page_cache(page, shadow);
c4843a75 728 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
729
730 if (freepage != NULL)
731 freepage(page);
49d2e9cc
CL
732 }
733
49d2e9cc
CL
734 return 1;
735
736cannot_free:
c4843a75 737 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
738 return 0;
739}
740
e286781d
NP
741/*
742 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
743 * someone else has a ref on the page, abort and return 0. If it was
744 * successfully detached, return 1. Assumes the caller has a single ref on
745 * this page.
746 */
747int remove_mapping(struct address_space *mapping, struct page *page)
748{
a528910e 749 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
750 /*
751 * Unfreezing the refcount with 1 rather than 2 effectively
752 * drops the pagecache ref for us without requiring another
753 * atomic operation.
754 */
fe896d18 755 page_ref_unfreeze(page, 1);
e286781d
NP
756 return 1;
757 }
758 return 0;
759}
760
894bc310
LS
761/**
762 * putback_lru_page - put previously isolated page onto appropriate LRU list
763 * @page: page to be put back to appropriate lru list
764 *
765 * Add previously isolated @page to appropriate LRU list.
766 * Page may still be unevictable for other reasons.
767 *
768 * lru_lock must not be held, interrupts must be enabled.
769 */
894bc310
LS
770void putback_lru_page(struct page *page)
771{
0ec3b74c 772 bool is_unevictable;
bbfd28ee 773 int was_unevictable = PageUnevictable(page);
894bc310 774
309381fe 775 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
776
777redo:
778 ClearPageUnevictable(page);
779
39b5f29a 780 if (page_evictable(page)) {
894bc310
LS
781 /*
782 * For evictable pages, we can use the cache.
783 * In event of a race, worst case is we end up with an
784 * unevictable page on [in]active list.
785 * We know how to handle that.
786 */
0ec3b74c 787 is_unevictable = false;
c53954a0 788 lru_cache_add(page);
894bc310
LS
789 } else {
790 /*
791 * Put unevictable pages directly on zone's unevictable
792 * list.
793 */
0ec3b74c 794 is_unevictable = true;
894bc310 795 add_page_to_unevictable_list(page);
6a7b9548 796 /*
21ee9f39
MK
797 * When racing with an mlock or AS_UNEVICTABLE clearing
798 * (page is unlocked) make sure that if the other thread
799 * does not observe our setting of PG_lru and fails
24513264 800 * isolation/check_move_unevictable_pages,
21ee9f39 801 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
802 * the page back to the evictable list.
803 *
21ee9f39 804 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
805 */
806 smp_mb();
894bc310 807 }
894bc310
LS
808
809 /*
810 * page's status can change while we move it among lru. If an evictable
811 * page is on unevictable list, it never be freed. To avoid that,
812 * check after we added it to the list, again.
813 */
0ec3b74c 814 if (is_unevictable && page_evictable(page)) {
894bc310
LS
815 if (!isolate_lru_page(page)) {
816 put_page(page);
817 goto redo;
818 }
819 /* This means someone else dropped this page from LRU
820 * So, it will be freed or putback to LRU again. There is
821 * nothing to do here.
822 */
823 }
824
0ec3b74c 825 if (was_unevictable && !is_unevictable)
bbfd28ee 826 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 827 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
828 count_vm_event(UNEVICTABLE_PGCULLED);
829
894bc310
LS
830 put_page(page); /* drop ref from isolate */
831}
832
dfc8d636
JW
833enum page_references {
834 PAGEREF_RECLAIM,
835 PAGEREF_RECLAIM_CLEAN,
64574746 836 PAGEREF_KEEP,
dfc8d636
JW
837 PAGEREF_ACTIVATE,
838};
839
840static enum page_references page_check_references(struct page *page,
841 struct scan_control *sc)
842{
64574746 843 int referenced_ptes, referenced_page;
dfc8d636 844 unsigned long vm_flags;
dfc8d636 845
c3ac9a8a
JW
846 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
847 &vm_flags);
64574746 848 referenced_page = TestClearPageReferenced(page);
dfc8d636 849
dfc8d636
JW
850 /*
851 * Mlock lost the isolation race with us. Let try_to_unmap()
852 * move the page to the unevictable list.
853 */
854 if (vm_flags & VM_LOCKED)
855 return PAGEREF_RECLAIM;
856
64574746 857 if (referenced_ptes) {
e4898273 858 if (PageSwapBacked(page))
64574746
JW
859 return PAGEREF_ACTIVATE;
860 /*
861 * All mapped pages start out with page table
862 * references from the instantiating fault, so we need
863 * to look twice if a mapped file page is used more
864 * than once.
865 *
866 * Mark it and spare it for another trip around the
867 * inactive list. Another page table reference will
868 * lead to its activation.
869 *
870 * Note: the mark is set for activated pages as well
871 * so that recently deactivated but used pages are
872 * quickly recovered.
873 */
874 SetPageReferenced(page);
875
34dbc67a 876 if (referenced_page || referenced_ptes > 1)
64574746
JW
877 return PAGEREF_ACTIVATE;
878
c909e993
KK
879 /*
880 * Activate file-backed executable pages after first usage.
881 */
882 if (vm_flags & VM_EXEC)
883 return PAGEREF_ACTIVATE;
884
64574746
JW
885 return PAGEREF_KEEP;
886 }
dfc8d636
JW
887
888 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 889 if (referenced_page && !PageSwapBacked(page))
64574746
JW
890 return PAGEREF_RECLAIM_CLEAN;
891
892 return PAGEREF_RECLAIM;
dfc8d636
JW
893}
894
e2be15f6
MG
895/* Check if a page is dirty or under writeback */
896static void page_check_dirty_writeback(struct page *page,
897 bool *dirty, bool *writeback)
898{
b4597226
MG
899 struct address_space *mapping;
900
e2be15f6
MG
901 /*
902 * Anonymous pages are not handled by flushers and must be written
903 * from reclaim context. Do not stall reclaim based on them
904 */
802a3a92
SL
905 if (!page_is_file_cache(page) ||
906 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
907 *dirty = false;
908 *writeback = false;
909 return;
910 }
911
912 /* By default assume that the page flags are accurate */
913 *dirty = PageDirty(page);
914 *writeback = PageWriteback(page);
b4597226
MG
915
916 /* Verify dirty/writeback state if the filesystem supports it */
917 if (!page_has_private(page))
918 return;
919
920 mapping = page_mapping(page);
921 if (mapping && mapping->a_ops->is_dirty_writeback)
922 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
923}
924
3c710c1a
MH
925struct reclaim_stat {
926 unsigned nr_dirty;
927 unsigned nr_unqueued_dirty;
928 unsigned nr_congested;
929 unsigned nr_writeback;
930 unsigned nr_immediate;
5bccd166
MH
931 unsigned nr_activate;
932 unsigned nr_ref_keep;
933 unsigned nr_unmap_fail;
3c710c1a
MH
934};
935
1da177e4 936/*
1742f19f 937 * shrink_page_list() returns the number of reclaimed pages
1da177e4 938 */
1742f19f 939static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 940 struct pglist_data *pgdat,
f84f6e2b 941 struct scan_control *sc,
02c6de8d 942 enum ttu_flags ttu_flags,
3c710c1a 943 struct reclaim_stat *stat,
02c6de8d 944 bool force_reclaim)
1da177e4
LT
945{
946 LIST_HEAD(ret_pages);
abe4c3b5 947 LIST_HEAD(free_pages);
1da177e4 948 int pgactivate = 0;
3c710c1a
MH
949 unsigned nr_unqueued_dirty = 0;
950 unsigned nr_dirty = 0;
951 unsigned nr_congested = 0;
952 unsigned nr_reclaimed = 0;
953 unsigned nr_writeback = 0;
954 unsigned nr_immediate = 0;
5bccd166
MH
955 unsigned nr_ref_keep = 0;
956 unsigned nr_unmap_fail = 0;
1da177e4
LT
957
958 cond_resched();
959
1da177e4
LT
960 while (!list_empty(page_list)) {
961 struct address_space *mapping;
962 struct page *page;
963 int may_enter_fs;
02c6de8d 964 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 965 bool dirty, writeback;
1da177e4
LT
966
967 cond_resched();
968
969 page = lru_to_page(page_list);
970 list_del(&page->lru);
971
529ae9aa 972 if (!trylock_page(page))
1da177e4
LT
973 goto keep;
974
309381fe 975 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
976
977 sc->nr_scanned++;
80e43426 978
39b5f29a 979 if (unlikely(!page_evictable(page)))
ad6b6704 980 goto activate_locked;
894bc310 981
a6dc60f8 982 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
983 goto keep_locked;
984
1da177e4 985 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
986 if ((page_mapped(page) || PageSwapCache(page)) &&
987 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
988 sc->nr_scanned++;
989
c661b078
AW
990 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
991 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
992
e2be15f6
MG
993 /*
994 * The number of dirty pages determines if a zone is marked
995 * reclaim_congested which affects wait_iff_congested. kswapd
996 * will stall and start writing pages if the tail of the LRU
997 * is all dirty unqueued pages.
998 */
999 page_check_dirty_writeback(page, &dirty, &writeback);
1000 if (dirty || writeback)
1001 nr_dirty++;
1002
1003 if (dirty && !writeback)
1004 nr_unqueued_dirty++;
1005
d04e8acd
MG
1006 /*
1007 * Treat this page as congested if the underlying BDI is or if
1008 * pages are cycling through the LRU so quickly that the
1009 * pages marked for immediate reclaim are making it to the
1010 * end of the LRU a second time.
1011 */
e2be15f6 1012 mapping = page_mapping(page);
1da58ee2 1013 if (((dirty || writeback) && mapping &&
703c2708 1014 inode_write_congested(mapping->host)) ||
d04e8acd 1015 (writeback && PageReclaim(page)))
e2be15f6
MG
1016 nr_congested++;
1017
283aba9f
MG
1018 /*
1019 * If a page at the tail of the LRU is under writeback, there
1020 * are three cases to consider.
1021 *
1022 * 1) If reclaim is encountering an excessive number of pages
1023 * under writeback and this page is both under writeback and
1024 * PageReclaim then it indicates that pages are being queued
1025 * for IO but are being recycled through the LRU before the
1026 * IO can complete. Waiting on the page itself risks an
1027 * indefinite stall if it is impossible to writeback the
1028 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1029 * note that the LRU is being scanned too quickly and the
1030 * caller can stall after page list has been processed.
283aba9f 1031 *
97c9341f 1032 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1033 * not marked for immediate reclaim, or the caller does not
1034 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1035 * not to fs). In this case mark the page for immediate
97c9341f 1036 * reclaim and continue scanning.
283aba9f 1037 *
ecf5fc6e
MH
1038 * Require may_enter_fs because we would wait on fs, which
1039 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1040 * enter reclaim, and deadlock if it waits on a page for
1041 * which it is needed to do the write (loop masks off
1042 * __GFP_IO|__GFP_FS for this reason); but more thought
1043 * would probably show more reasons.
1044 *
7fadc820 1045 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1046 * PageReclaim. memcg does not have any dirty pages
1047 * throttling so we could easily OOM just because too many
1048 * pages are in writeback and there is nothing else to
1049 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1050 *
1051 * In cases 1) and 2) we activate the pages to get them out of
1052 * the way while we continue scanning for clean pages on the
1053 * inactive list and refilling from the active list. The
1054 * observation here is that waiting for disk writes is more
1055 * expensive than potentially causing reloads down the line.
1056 * Since they're marked for immediate reclaim, they won't put
1057 * memory pressure on the cache working set any longer than it
1058 * takes to write them to disk.
283aba9f 1059 */
c661b078 1060 if (PageWriteback(page)) {
283aba9f
MG
1061 /* Case 1 above */
1062 if (current_is_kswapd() &&
1063 PageReclaim(page) &&
599d0c95 1064 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1065 nr_immediate++;
c55e8d03 1066 goto activate_locked;
283aba9f
MG
1067
1068 /* Case 2 above */
97c9341f 1069 } else if (sane_reclaim(sc) ||
ecf5fc6e 1070 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1071 /*
1072 * This is slightly racy - end_page_writeback()
1073 * might have just cleared PageReclaim, then
1074 * setting PageReclaim here end up interpreted
1075 * as PageReadahead - but that does not matter
1076 * enough to care. What we do want is for this
1077 * page to have PageReclaim set next time memcg
1078 * reclaim reaches the tests above, so it will
1079 * then wait_on_page_writeback() to avoid OOM;
1080 * and it's also appropriate in global reclaim.
1081 */
1082 SetPageReclaim(page);
e62e384e 1083 nr_writeback++;
c55e8d03 1084 goto activate_locked;
283aba9f
MG
1085
1086 /* Case 3 above */
1087 } else {
7fadc820 1088 unlock_page(page);
283aba9f 1089 wait_on_page_writeback(page);
7fadc820
HD
1090 /* then go back and try same page again */
1091 list_add_tail(&page->lru, page_list);
1092 continue;
e62e384e 1093 }
c661b078 1094 }
1da177e4 1095
02c6de8d
MK
1096 if (!force_reclaim)
1097 references = page_check_references(page, sc);
1098
dfc8d636
JW
1099 switch (references) {
1100 case PAGEREF_ACTIVATE:
1da177e4 1101 goto activate_locked;
64574746 1102 case PAGEREF_KEEP:
5bccd166 1103 nr_ref_keep++;
64574746 1104 goto keep_locked;
dfc8d636
JW
1105 case PAGEREF_RECLAIM:
1106 case PAGEREF_RECLAIM_CLEAN:
1107 ; /* try to reclaim the page below */
1108 }
1da177e4 1109
1da177e4
LT
1110 /*
1111 * Anonymous process memory has backing store?
1112 * Try to allocate it some swap space here.
802a3a92 1113 * Lazyfree page could be freed directly
1da177e4 1114 */
bd4c82c2
HY
1115 if (PageAnon(page) && PageSwapBacked(page)) {
1116 if (!PageSwapCache(page)) {
1117 if (!(sc->gfp_mask & __GFP_IO))
1118 goto keep_locked;
1119 if (PageTransHuge(page)) {
1120 /* cannot split THP, skip it */
1121 if (!can_split_huge_page(page, NULL))
1122 goto activate_locked;
1123 /*
1124 * Split pages without a PMD map right
1125 * away. Chances are some or all of the
1126 * tail pages can be freed without IO.
1127 */
1128 if (!compound_mapcount(page) &&
1129 split_huge_page_to_list(page,
1130 page_list))
1131 goto activate_locked;
1132 }
1133 if (!add_to_swap(page)) {
1134 if (!PageTransHuge(page))
1135 goto activate_locked;
1136 /* Fallback to swap normal pages */
1137 if (split_huge_page_to_list(page,
1138 page_list))
1139 goto activate_locked;
fe490cc0
HY
1140#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1141 count_vm_event(THP_SWPOUT_FALLBACK);
1142#endif
bd4c82c2
HY
1143 if (!add_to_swap(page))
1144 goto activate_locked;
1145 }
0f074658 1146
bd4c82c2 1147 may_enter_fs = 1;
1da177e4 1148
bd4c82c2
HY
1149 /* Adding to swap updated mapping */
1150 mapping = page_mapping(page);
1151 }
7751b2da
KS
1152 } else if (unlikely(PageTransHuge(page))) {
1153 /* Split file THP */
1154 if (split_huge_page_to_list(page, page_list))
1155 goto keep_locked;
e2be15f6 1156 }
1da177e4
LT
1157
1158 /*
1159 * The page is mapped into the page tables of one or more
1160 * processes. Try to unmap it here.
1161 */
802a3a92 1162 if (page_mapped(page)) {
bd4c82c2
HY
1163 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1164
1165 if (unlikely(PageTransHuge(page)))
1166 flags |= TTU_SPLIT_HUGE_PMD;
1167 if (!try_to_unmap(page, flags)) {
5bccd166 1168 nr_unmap_fail++;
1da177e4 1169 goto activate_locked;
1da177e4
LT
1170 }
1171 }
1172
1173 if (PageDirty(page)) {
ee72886d 1174 /*
4eda4823
JW
1175 * Only kswapd can writeback filesystem pages
1176 * to avoid risk of stack overflow. But avoid
1177 * injecting inefficient single-page IO into
1178 * flusher writeback as much as possible: only
1179 * write pages when we've encountered many
1180 * dirty pages, and when we've already scanned
1181 * the rest of the LRU for clean pages and see
1182 * the same dirty pages again (PageReclaim).
ee72886d 1183 */
f84f6e2b 1184 if (page_is_file_cache(page) &&
4eda4823
JW
1185 (!current_is_kswapd() || !PageReclaim(page) ||
1186 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1187 /*
1188 * Immediately reclaim when written back.
1189 * Similar in principal to deactivate_page()
1190 * except we already have the page isolated
1191 * and know it's dirty
1192 */
c4a25635 1193 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1194 SetPageReclaim(page);
1195
c55e8d03 1196 goto activate_locked;
ee72886d
MG
1197 }
1198
dfc8d636 1199 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1200 goto keep_locked;
4dd4b920 1201 if (!may_enter_fs)
1da177e4 1202 goto keep_locked;
52a8363e 1203 if (!sc->may_writepage)
1da177e4
LT
1204 goto keep_locked;
1205
d950c947
MG
1206 /*
1207 * Page is dirty. Flush the TLB if a writable entry
1208 * potentially exists to avoid CPU writes after IO
1209 * starts and then write it out here.
1210 */
1211 try_to_unmap_flush_dirty();
7d3579e8 1212 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1213 case PAGE_KEEP:
1214 goto keep_locked;
1215 case PAGE_ACTIVATE:
1216 goto activate_locked;
1217 case PAGE_SUCCESS:
7d3579e8 1218 if (PageWriteback(page))
41ac1999 1219 goto keep;
7d3579e8 1220 if (PageDirty(page))
1da177e4 1221 goto keep;
7d3579e8 1222
1da177e4
LT
1223 /*
1224 * A synchronous write - probably a ramdisk. Go
1225 * ahead and try to reclaim the page.
1226 */
529ae9aa 1227 if (!trylock_page(page))
1da177e4
LT
1228 goto keep;
1229 if (PageDirty(page) || PageWriteback(page))
1230 goto keep_locked;
1231 mapping = page_mapping(page);
1232 case PAGE_CLEAN:
1233 ; /* try to free the page below */
1234 }
1235 }
1236
1237 /*
1238 * If the page has buffers, try to free the buffer mappings
1239 * associated with this page. If we succeed we try to free
1240 * the page as well.
1241 *
1242 * We do this even if the page is PageDirty().
1243 * try_to_release_page() does not perform I/O, but it is
1244 * possible for a page to have PageDirty set, but it is actually
1245 * clean (all its buffers are clean). This happens if the
1246 * buffers were written out directly, with submit_bh(). ext3
894bc310 1247 * will do this, as well as the blockdev mapping.
1da177e4
LT
1248 * try_to_release_page() will discover that cleanness and will
1249 * drop the buffers and mark the page clean - it can be freed.
1250 *
1251 * Rarely, pages can have buffers and no ->mapping. These are
1252 * the pages which were not successfully invalidated in
1253 * truncate_complete_page(). We try to drop those buffers here
1254 * and if that worked, and the page is no longer mapped into
1255 * process address space (page_count == 1) it can be freed.
1256 * Otherwise, leave the page on the LRU so it is swappable.
1257 */
266cf658 1258 if (page_has_private(page)) {
1da177e4
LT
1259 if (!try_to_release_page(page, sc->gfp_mask))
1260 goto activate_locked;
e286781d
NP
1261 if (!mapping && page_count(page) == 1) {
1262 unlock_page(page);
1263 if (put_page_testzero(page))
1264 goto free_it;
1265 else {
1266 /*
1267 * rare race with speculative reference.
1268 * the speculative reference will free
1269 * this page shortly, so we may
1270 * increment nr_reclaimed here (and
1271 * leave it off the LRU).
1272 */
1273 nr_reclaimed++;
1274 continue;
1275 }
1276 }
1da177e4
LT
1277 }
1278
802a3a92
SL
1279 if (PageAnon(page) && !PageSwapBacked(page)) {
1280 /* follow __remove_mapping for reference */
1281 if (!page_ref_freeze(page, 1))
1282 goto keep_locked;
1283 if (PageDirty(page)) {
1284 page_ref_unfreeze(page, 1);
1285 goto keep_locked;
1286 }
1da177e4 1287
802a3a92 1288 count_vm_event(PGLAZYFREED);
2262185c 1289 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1290 } else if (!mapping || !__remove_mapping(mapping, page, true))
1291 goto keep_locked;
a978d6f5
NP
1292 /*
1293 * At this point, we have no other references and there is
1294 * no way to pick any more up (removed from LRU, removed
1295 * from pagecache). Can use non-atomic bitops now (and
1296 * we obviously don't have to worry about waking up a process
1297 * waiting on the page lock, because there are no references.
1298 */
48c935ad 1299 __ClearPageLocked(page);
e286781d 1300free_it:
05ff5137 1301 nr_reclaimed++;
abe4c3b5
MG
1302
1303 /*
1304 * Is there need to periodically free_page_list? It would
1305 * appear not as the counts should be low
1306 */
bd4c82c2
HY
1307 if (unlikely(PageTransHuge(page))) {
1308 mem_cgroup_uncharge(page);
1309 (*get_compound_page_dtor(page))(page);
1310 } else
1311 list_add(&page->lru, &free_pages);
1da177e4
LT
1312 continue;
1313
1314activate_locked:
68a22394 1315 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1316 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1317 PageMlocked(page)))
a2c43eed 1318 try_to_free_swap(page);
309381fe 1319 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1320 if (!PageMlocked(page)) {
1321 SetPageActive(page);
1322 pgactivate++;
2262185c 1323 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1324 }
1da177e4
LT
1325keep_locked:
1326 unlock_page(page);
1327keep:
1328 list_add(&page->lru, &ret_pages);
309381fe 1329 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1330 }
abe4c3b5 1331
747db954 1332 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1333 try_to_unmap_flush();
2d4894b5 1334 free_unref_page_list(&free_pages);
abe4c3b5 1335
1da177e4 1336 list_splice(&ret_pages, page_list);
f8891e5e 1337 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1338
3c710c1a
MH
1339 if (stat) {
1340 stat->nr_dirty = nr_dirty;
1341 stat->nr_congested = nr_congested;
1342 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1343 stat->nr_writeback = nr_writeback;
1344 stat->nr_immediate = nr_immediate;
5bccd166
MH
1345 stat->nr_activate = pgactivate;
1346 stat->nr_ref_keep = nr_ref_keep;
1347 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1348 }
05ff5137 1349 return nr_reclaimed;
1da177e4
LT
1350}
1351
02c6de8d
MK
1352unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1353 struct list_head *page_list)
1354{
1355 struct scan_control sc = {
1356 .gfp_mask = GFP_KERNEL,
1357 .priority = DEF_PRIORITY,
1358 .may_unmap = 1,
1359 };
3c710c1a 1360 unsigned long ret;
02c6de8d
MK
1361 struct page *page, *next;
1362 LIST_HEAD(clean_pages);
1363
1364 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1365 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1366 !__PageMovable(page)) {
02c6de8d
MK
1367 ClearPageActive(page);
1368 list_move(&page->lru, &clean_pages);
1369 }
1370 }
1371
599d0c95 1372 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1373 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1374 list_splice(&clean_pages, page_list);
599d0c95 1375 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1376 return ret;
1377}
1378
5ad333eb
AW
1379/*
1380 * Attempt to remove the specified page from its LRU. Only take this page
1381 * if it is of the appropriate PageActive status. Pages which are being
1382 * freed elsewhere are also ignored.
1383 *
1384 * page: page to consider
1385 * mode: one of the LRU isolation modes defined above
1386 *
1387 * returns 0 on success, -ve errno on failure.
1388 */
f3fd4a61 1389int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1390{
1391 int ret = -EINVAL;
1392
1393 /* Only take pages on the LRU. */
1394 if (!PageLRU(page))
1395 return ret;
1396
e46a2879
MK
1397 /* Compaction should not handle unevictable pages but CMA can do so */
1398 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1399 return ret;
1400
5ad333eb 1401 ret = -EBUSY;
08e552c6 1402
c8244935
MG
1403 /*
1404 * To minimise LRU disruption, the caller can indicate that it only
1405 * wants to isolate pages it will be able to operate on without
1406 * blocking - clean pages for the most part.
1407 *
c8244935
MG
1408 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1409 * that it is possible to migrate without blocking
1410 */
1276ad68 1411 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1412 /* All the caller can do on PageWriteback is block */
1413 if (PageWriteback(page))
1414 return ret;
1415
1416 if (PageDirty(page)) {
1417 struct address_space *mapping;
69d763fc 1418 bool migrate_dirty;
c8244935 1419
c8244935
MG
1420 /*
1421 * Only pages without mappings or that have a
1422 * ->migratepage callback are possible to migrate
69d763fc
MG
1423 * without blocking. However, we can be racing with
1424 * truncation so it's necessary to lock the page
1425 * to stabilise the mapping as truncation holds
1426 * the page lock until after the page is removed
1427 * from the page cache.
c8244935 1428 */
69d763fc
MG
1429 if (!trylock_page(page))
1430 return ret;
1431
c8244935 1432 mapping = page_mapping(page);
69d763fc
MG
1433 migrate_dirty = mapping && mapping->a_ops->migratepage;
1434 unlock_page(page);
1435 if (!migrate_dirty)
c8244935
MG
1436 return ret;
1437 }
1438 }
39deaf85 1439
f80c0673
MK
1440 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1441 return ret;
1442
5ad333eb
AW
1443 if (likely(get_page_unless_zero(page))) {
1444 /*
1445 * Be careful not to clear PageLRU until after we're
1446 * sure the page is not being freed elsewhere -- the
1447 * page release code relies on it.
1448 */
1449 ClearPageLRU(page);
1450 ret = 0;
1451 }
1452
1453 return ret;
1454}
1455
7ee36a14
MG
1456
1457/*
1458 * Update LRU sizes after isolating pages. The LRU size updates must
1459 * be complete before mem_cgroup_update_lru_size due to a santity check.
1460 */
1461static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1462 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1463{
7ee36a14
MG
1464 int zid;
1465
7ee36a14
MG
1466 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1467 if (!nr_zone_taken[zid])
1468 continue;
1469
1470 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1471#ifdef CONFIG_MEMCG
b4536f0c 1472 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1473#endif
b4536f0c
MH
1474 }
1475
7ee36a14
MG
1476}
1477
1da177e4 1478/*
a52633d8 1479 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1480 * shrink the lists perform better by taking out a batch of pages
1481 * and working on them outside the LRU lock.
1482 *
1483 * For pagecache intensive workloads, this function is the hottest
1484 * spot in the kernel (apart from copy_*_user functions).
1485 *
1486 * Appropriate locks must be held before calling this function.
1487 *
791b48b6 1488 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1489 * @lruvec: The LRU vector to pull pages from.
1da177e4 1490 * @dst: The temp list to put pages on to.
f626012d 1491 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1492 * @sc: The scan_control struct for this reclaim session
5ad333eb 1493 * @mode: One of the LRU isolation modes
3cb99451 1494 * @lru: LRU list id for isolating
1da177e4
LT
1495 *
1496 * returns how many pages were moved onto *@dst.
1497 */
69e05944 1498static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1499 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1500 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1501 isolate_mode_t mode, enum lru_list lru)
1da177e4 1502{
75b00af7 1503 struct list_head *src = &lruvec->lists[lru];
69e05944 1504 unsigned long nr_taken = 0;
599d0c95 1505 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1506 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1507 unsigned long skipped = 0;
791b48b6 1508 unsigned long scan, total_scan, nr_pages;
b2e18757 1509 LIST_HEAD(pages_skipped);
1da177e4 1510
791b48b6
MK
1511 scan = 0;
1512 for (total_scan = 0;
1513 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1514 total_scan++) {
5ad333eb 1515 struct page *page;
5ad333eb 1516
1da177e4
LT
1517 page = lru_to_page(src);
1518 prefetchw_prev_lru_page(page, src, flags);
1519
309381fe 1520 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1521
b2e18757
MG
1522 if (page_zonenum(page) > sc->reclaim_idx) {
1523 list_move(&page->lru, &pages_skipped);
7cc30fcf 1524 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1525 continue;
1526 }
1527
791b48b6
MK
1528 /*
1529 * Do not count skipped pages because that makes the function
1530 * return with no isolated pages if the LRU mostly contains
1531 * ineligible pages. This causes the VM to not reclaim any
1532 * pages, triggering a premature OOM.
1533 */
1534 scan++;
f3fd4a61 1535 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1536 case 0:
599d0c95
MG
1537 nr_pages = hpage_nr_pages(page);
1538 nr_taken += nr_pages;
1539 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1540 list_move(&page->lru, dst);
5ad333eb
AW
1541 break;
1542
1543 case -EBUSY:
1544 /* else it is being freed elsewhere */
1545 list_move(&page->lru, src);
1546 continue;
46453a6e 1547
5ad333eb
AW
1548 default:
1549 BUG();
1550 }
1da177e4
LT
1551 }
1552
b2e18757
MG
1553 /*
1554 * Splice any skipped pages to the start of the LRU list. Note that
1555 * this disrupts the LRU order when reclaiming for lower zones but
1556 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1557 * scanning would soon rescan the same pages to skip and put the
1558 * system at risk of premature OOM.
1559 */
7cc30fcf
MG
1560 if (!list_empty(&pages_skipped)) {
1561 int zid;
1562
3db65812 1563 list_splice(&pages_skipped, src);
7cc30fcf
MG
1564 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1565 if (!nr_skipped[zid])
1566 continue;
1567
1568 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1569 skipped += nr_skipped[zid];
7cc30fcf
MG
1570 }
1571 }
791b48b6 1572 *nr_scanned = total_scan;
1265e3a6 1573 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1574 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1575 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1576 return nr_taken;
1577}
1578
62695a84
NP
1579/**
1580 * isolate_lru_page - tries to isolate a page from its LRU list
1581 * @page: page to isolate from its LRU list
1582 *
1583 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1584 * vmstat statistic corresponding to whatever LRU list the page was on.
1585 *
1586 * Returns 0 if the page was removed from an LRU list.
1587 * Returns -EBUSY if the page was not on an LRU list.
1588 *
1589 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1590 * the active list, it will have PageActive set. If it was found on
1591 * the unevictable list, it will have the PageUnevictable bit set. That flag
1592 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1593 *
1594 * The vmstat statistic corresponding to the list on which the page was
1595 * found will be decremented.
1596 *
1597 * Restrictions:
a5d09bed 1598 *
62695a84
NP
1599 * (1) Must be called with an elevated refcount on the page. This is a
1600 * fundamentnal difference from isolate_lru_pages (which is called
1601 * without a stable reference).
1602 * (2) the lru_lock must not be held.
1603 * (3) interrupts must be enabled.
1604 */
1605int isolate_lru_page(struct page *page)
1606{
1607 int ret = -EBUSY;
1608
309381fe 1609 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1610 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1611
62695a84
NP
1612 if (PageLRU(page)) {
1613 struct zone *zone = page_zone(page);
fa9add64 1614 struct lruvec *lruvec;
62695a84 1615
a52633d8 1616 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1617 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1618 if (PageLRU(page)) {
894bc310 1619 int lru = page_lru(page);
0c917313 1620 get_page(page);
62695a84 1621 ClearPageLRU(page);
fa9add64
HD
1622 del_page_from_lru_list(page, lruvec, lru);
1623 ret = 0;
62695a84 1624 }
a52633d8 1625 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1626 }
1627 return ret;
1628}
1629
35cd7815 1630/*
d37dd5dc
FW
1631 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1632 * then get resheduled. When there are massive number of tasks doing page
1633 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1634 * the LRU list will go small and be scanned faster than necessary, leading to
1635 * unnecessary swapping, thrashing and OOM.
35cd7815 1636 */
599d0c95 1637static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1638 struct scan_control *sc)
1639{
1640 unsigned long inactive, isolated;
1641
1642 if (current_is_kswapd())
1643 return 0;
1644
97c9341f 1645 if (!sane_reclaim(sc))
35cd7815
RR
1646 return 0;
1647
1648 if (file) {
599d0c95
MG
1649 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1650 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1651 } else {
599d0c95
MG
1652 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1653 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1654 }
1655
3cf23841
FW
1656 /*
1657 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1658 * won't get blocked by normal direct-reclaimers, forming a circular
1659 * deadlock.
1660 */
d0164adc 1661 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1662 inactive >>= 3;
1663
35cd7815
RR
1664 return isolated > inactive;
1665}
1666
66635629 1667static noinline_for_stack void
75b00af7 1668putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1669{
27ac81d8 1670 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1671 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1672 LIST_HEAD(pages_to_free);
66635629 1673
66635629
MG
1674 /*
1675 * Put back any unfreeable pages.
1676 */
66635629 1677 while (!list_empty(page_list)) {
3f79768f 1678 struct page *page = lru_to_page(page_list);
66635629 1679 int lru;
3f79768f 1680
309381fe 1681 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1682 list_del(&page->lru);
39b5f29a 1683 if (unlikely(!page_evictable(page))) {
599d0c95 1684 spin_unlock_irq(&pgdat->lru_lock);
66635629 1685 putback_lru_page(page);
599d0c95 1686 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1687 continue;
1688 }
fa9add64 1689
599d0c95 1690 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1691
7a608572 1692 SetPageLRU(page);
66635629 1693 lru = page_lru(page);
fa9add64
HD
1694 add_page_to_lru_list(page, lruvec, lru);
1695
66635629
MG
1696 if (is_active_lru(lru)) {
1697 int file = is_file_lru(lru);
9992af10
RR
1698 int numpages = hpage_nr_pages(page);
1699 reclaim_stat->recent_rotated[file] += numpages;
66635629 1700 }
2bcf8879
HD
1701 if (put_page_testzero(page)) {
1702 __ClearPageLRU(page);
1703 __ClearPageActive(page);
fa9add64 1704 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1705
1706 if (unlikely(PageCompound(page))) {
599d0c95 1707 spin_unlock_irq(&pgdat->lru_lock);
747db954 1708 mem_cgroup_uncharge(page);
2bcf8879 1709 (*get_compound_page_dtor(page))(page);
599d0c95 1710 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1711 } else
1712 list_add(&page->lru, &pages_to_free);
66635629
MG
1713 }
1714 }
66635629 1715
3f79768f
HD
1716 /*
1717 * To save our caller's stack, now use input list for pages to free.
1718 */
1719 list_splice(&pages_to_free, page_list);
66635629
MG
1720}
1721
399ba0b9
N
1722/*
1723 * If a kernel thread (such as nfsd for loop-back mounts) services
1724 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1725 * In that case we should only throttle if the backing device it is
1726 * writing to is congested. In other cases it is safe to throttle.
1727 */
1728static int current_may_throttle(void)
1729{
1730 return !(current->flags & PF_LESS_THROTTLE) ||
1731 current->backing_dev_info == NULL ||
1732 bdi_write_congested(current->backing_dev_info);
1733}
1734
1da177e4 1735/*
b2e18757 1736 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1737 * of reclaimed pages
1da177e4 1738 */
66635629 1739static noinline_for_stack unsigned long
1a93be0e 1740shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1741 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1742{
1743 LIST_HEAD(page_list);
e247dbce 1744 unsigned long nr_scanned;
05ff5137 1745 unsigned long nr_reclaimed = 0;
e247dbce 1746 unsigned long nr_taken;
3c710c1a 1747 struct reclaim_stat stat = {};
f3fd4a61 1748 isolate_mode_t isolate_mode = 0;
3cb99451 1749 int file = is_file_lru(lru);
599d0c95 1750 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1751 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1752 bool stalled = false;
78dc583d 1753
599d0c95 1754 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1755 if (stalled)
1756 return 0;
1757
1758 /* wait a bit for the reclaimer. */
1759 msleep(100);
1760 stalled = true;
35cd7815
RR
1761
1762 /* We are about to die and free our memory. Return now. */
1763 if (fatal_signal_pending(current))
1764 return SWAP_CLUSTER_MAX;
1765 }
1766
1da177e4 1767 lru_add_drain();
f80c0673
MK
1768
1769 if (!sc->may_unmap)
61317289 1770 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1771
599d0c95 1772 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1773
5dc35979
KK
1774 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1775 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1776
599d0c95 1777 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1778 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1779
2262185c
RG
1780 if (current_is_kswapd()) {
1781 if (global_reclaim(sc))
599d0c95 1782 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1783 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1784 nr_scanned);
1785 } else {
1786 if (global_reclaim(sc))
599d0c95 1787 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1788 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1789 nr_scanned);
e247dbce 1790 }
599d0c95 1791 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1792
d563c050 1793 if (nr_taken == 0)
66635629 1794 return 0;
5ad333eb 1795
a128ca71 1796 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1797 &stat, false);
c661b078 1798
599d0c95 1799 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1800
2262185c
RG
1801 if (current_is_kswapd()) {
1802 if (global_reclaim(sc))
599d0c95 1803 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1804 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1805 nr_reclaimed);
1806 } else {
1807 if (global_reclaim(sc))
599d0c95 1808 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1809 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1810 nr_reclaimed);
904249aa 1811 }
a74609fa 1812
27ac81d8 1813 putback_inactive_pages(lruvec, &page_list);
3f79768f 1814
599d0c95 1815 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1816
599d0c95 1817 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1818
747db954 1819 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1820 free_unref_page_list(&page_list);
e11da5b4 1821
92df3a72
MG
1822 /*
1823 * If reclaim is isolating dirty pages under writeback, it implies
1824 * that the long-lived page allocation rate is exceeding the page
1825 * laundering rate. Either the global limits are not being effective
1826 * at throttling processes due to the page distribution throughout
1827 * zones or there is heavy usage of a slow backing device. The
1828 * only option is to throttle from reclaim context which is not ideal
1829 * as there is no guarantee the dirtying process is throttled in the
1830 * same way balance_dirty_pages() manages.
1831 *
8e950282
MG
1832 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1833 * of pages under pages flagged for immediate reclaim and stall if any
1834 * are encountered in the nr_immediate check below.
92df3a72 1835 */
3c710c1a 1836 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1837 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1838
d43006d5 1839 /*
97c9341f
TH
1840 * Legacy memcg will stall in page writeback so avoid forcibly
1841 * stalling here.
d43006d5 1842 */
97c9341f 1843 if (sane_reclaim(sc)) {
8e950282
MG
1844 /*
1845 * Tag a zone as congested if all the dirty pages scanned were
1846 * backed by a congested BDI and wait_iff_congested will stall.
1847 */
3c710c1a 1848 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1849 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1850
b1a6f21e
MG
1851 /*
1852 * If dirty pages are scanned that are not queued for IO, it
726d061f
JW
1853 * implies that flushers are not doing their job. This can
1854 * happen when memory pressure pushes dirty pages to the end of
1855 * the LRU before the dirty limits are breached and the dirty
1856 * data has expired. It can also happen when the proportion of
1857 * dirty pages grows not through writes but through memory
1858 * pressure reclaiming all the clean cache. And in some cases,
1859 * the flushers simply cannot keep up with the allocation
1860 * rate. Nudge the flusher threads in case they are asleep, but
1861 * also allow kswapd to start writing pages during reclaim.
b1a6f21e 1862 */
726d061f 1863 if (stat.nr_unqueued_dirty == nr_taken) {
9ba4b2df 1864 wakeup_flusher_threads(WB_REASON_VMSCAN);
599d0c95 1865 set_bit(PGDAT_DIRTY, &pgdat->flags);
726d061f 1866 }
b1a6f21e
MG
1867
1868 /*
b738d764
LT
1869 * If kswapd scans pages marked marked for immediate
1870 * reclaim and under writeback (nr_immediate), it implies
1871 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1872 * they are written so also forcibly stall.
1873 */
3c710c1a 1874 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1875 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1876 }
d43006d5 1877
8e950282
MG
1878 /*
1879 * Stall direct reclaim for IO completions if underlying BDIs or zone
1880 * is congested. Allow kswapd to continue until it starts encountering
1881 * unqueued dirty pages or cycling through the LRU too quickly.
1882 */
399ba0b9
N
1883 if (!sc->hibernation_mode && !current_is_kswapd() &&
1884 current_may_throttle())
599d0c95 1885 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1886
599d0c95
MG
1887 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1888 nr_scanned, nr_reclaimed,
5bccd166
MH
1889 stat.nr_dirty, stat.nr_writeback,
1890 stat.nr_congested, stat.nr_immediate,
1891 stat.nr_activate, stat.nr_ref_keep,
1892 stat.nr_unmap_fail,
ba5e9579 1893 sc->priority, file);
05ff5137 1894 return nr_reclaimed;
1da177e4
LT
1895}
1896
1897/*
1898 * This moves pages from the active list to the inactive list.
1899 *
1900 * We move them the other way if the page is referenced by one or more
1901 * processes, from rmap.
1902 *
1903 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1904 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1905 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1906 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1907 * this, so instead we remove the pages from the LRU while processing them.
1908 * It is safe to rely on PG_active against the non-LRU pages in here because
1909 * nobody will play with that bit on a non-LRU page.
1910 *
0139aa7b 1911 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1912 * But we had to alter page->flags anyway.
9d998b4f
MH
1913 *
1914 * Returns the number of pages moved to the given lru.
1da177e4 1915 */
1cfb419b 1916
9d998b4f 1917static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1918 struct list_head *list,
2bcf8879 1919 struct list_head *pages_to_free,
3eb4140f
WF
1920 enum lru_list lru)
1921{
599d0c95 1922 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1923 struct page *page;
fa9add64 1924 int nr_pages;
9d998b4f 1925 int nr_moved = 0;
3eb4140f 1926
3eb4140f
WF
1927 while (!list_empty(list)) {
1928 page = lru_to_page(list);
599d0c95 1929 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1930
309381fe 1931 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1932 SetPageLRU(page);
1933
fa9add64 1934 nr_pages = hpage_nr_pages(page);
599d0c95 1935 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1936 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1937
2bcf8879
HD
1938 if (put_page_testzero(page)) {
1939 __ClearPageLRU(page);
1940 __ClearPageActive(page);
fa9add64 1941 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1942
1943 if (unlikely(PageCompound(page))) {
599d0c95 1944 spin_unlock_irq(&pgdat->lru_lock);
747db954 1945 mem_cgroup_uncharge(page);
2bcf8879 1946 (*get_compound_page_dtor(page))(page);
599d0c95 1947 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1948 } else
1949 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1950 } else {
1951 nr_moved += nr_pages;
3eb4140f
WF
1952 }
1953 }
9d5e6a9f 1954
2262185c 1955 if (!is_active_lru(lru)) {
f0958906 1956 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
1957 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1958 nr_moved);
1959 }
9d998b4f
MH
1960
1961 return nr_moved;
3eb4140f 1962}
1cfb419b 1963
f626012d 1964static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1965 struct lruvec *lruvec,
f16015fb 1966 struct scan_control *sc,
9e3b2f8c 1967 enum lru_list lru)
1da177e4 1968{
44c241f1 1969 unsigned long nr_taken;
f626012d 1970 unsigned long nr_scanned;
6fe6b7e3 1971 unsigned long vm_flags;
1da177e4 1972 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1973 LIST_HEAD(l_active);
b69408e8 1974 LIST_HEAD(l_inactive);
1da177e4 1975 struct page *page;
1a93be0e 1976 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1977 unsigned nr_deactivate, nr_activate;
1978 unsigned nr_rotated = 0;
f3fd4a61 1979 isolate_mode_t isolate_mode = 0;
3cb99451 1980 int file = is_file_lru(lru);
599d0c95 1981 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1982
1983 lru_add_drain();
f80c0673
MK
1984
1985 if (!sc->may_unmap)
61317289 1986 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1987
599d0c95 1988 spin_lock_irq(&pgdat->lru_lock);
925b7673 1989
5dc35979
KK
1990 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1991 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1992
599d0c95 1993 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1994 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1995
599d0c95 1996 __count_vm_events(PGREFILL, nr_scanned);
2262185c 1997 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 1998
599d0c95 1999 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2000
1da177e4
LT
2001 while (!list_empty(&l_hold)) {
2002 cond_resched();
2003 page = lru_to_page(&l_hold);
2004 list_del(&page->lru);
7e9cd484 2005
39b5f29a 2006 if (unlikely(!page_evictable(page))) {
894bc310
LS
2007 putback_lru_page(page);
2008 continue;
2009 }
2010
cc715d99
MG
2011 if (unlikely(buffer_heads_over_limit)) {
2012 if (page_has_private(page) && trylock_page(page)) {
2013 if (page_has_private(page))
2014 try_to_release_page(page, 0);
2015 unlock_page(page);
2016 }
2017 }
2018
c3ac9a8a
JW
2019 if (page_referenced(page, 0, sc->target_mem_cgroup,
2020 &vm_flags)) {
9992af10 2021 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2022 /*
2023 * Identify referenced, file-backed active pages and
2024 * give them one more trip around the active list. So
2025 * that executable code get better chances to stay in
2026 * memory under moderate memory pressure. Anon pages
2027 * are not likely to be evicted by use-once streaming
2028 * IO, plus JVM can create lots of anon VM_EXEC pages,
2029 * so we ignore them here.
2030 */
41e20983 2031 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2032 list_add(&page->lru, &l_active);
2033 continue;
2034 }
2035 }
7e9cd484 2036
5205e56e 2037 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
2038 list_add(&page->lru, &l_inactive);
2039 }
2040
b555749a 2041 /*
8cab4754 2042 * Move pages back to the lru list.
b555749a 2043 */
599d0c95 2044 spin_lock_irq(&pgdat->lru_lock);
556adecb 2045 /*
8cab4754
WF
2046 * Count referenced pages from currently used mappings as rotated,
2047 * even though only some of them are actually re-activated. This
2048 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2049 * get_scan_count.
7e9cd484 2050 */
b7c46d15 2051 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2052
9d998b4f
MH
2053 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2054 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2055 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2056 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2057
747db954 2058 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 2059 free_unref_page_list(&l_hold);
9d998b4f
MH
2060 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2061 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2062}
2063
59dc76b0
RR
2064/*
2065 * The inactive anon list should be small enough that the VM never has
2066 * to do too much work.
14797e23 2067 *
59dc76b0
RR
2068 * The inactive file list should be small enough to leave most memory
2069 * to the established workingset on the scan-resistant active list,
2070 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2071 *
59dc76b0
RR
2072 * Both inactive lists should also be large enough that each inactive
2073 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2074 *
2a2e4885
JW
2075 * If that fails and refaulting is observed, the inactive list grows.
2076 *
59dc76b0 2077 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2078 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2079 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2080 *
59dc76b0
RR
2081 * total target max
2082 * memory ratio inactive
2083 * -------------------------------------
2084 * 10MB 1 5MB
2085 * 100MB 1 50MB
2086 * 1GB 3 250MB
2087 * 10GB 10 0.9GB
2088 * 100GB 31 3GB
2089 * 1TB 101 10GB
2090 * 10TB 320 32GB
56e49d21 2091 */
f8d1a311 2092static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2093 struct mem_cgroup *memcg,
2094 struct scan_control *sc, bool actual_reclaim)
56e49d21 2095{
fd538803 2096 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2097 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2098 enum lru_list inactive_lru = file * LRU_FILE;
2099 unsigned long inactive, active;
2100 unsigned long inactive_ratio;
2101 unsigned long refaults;
59dc76b0 2102 unsigned long gb;
e3790144 2103
59dc76b0
RR
2104 /*
2105 * If we don't have swap space, anonymous page deactivation
2106 * is pointless.
2107 */
2108 if (!file && !total_swap_pages)
2109 return false;
56e49d21 2110
fd538803
MH
2111 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2112 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2113
2a2e4885 2114 if (memcg)
ccda7f43 2115 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2116 else
2a2e4885
JW
2117 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2118
2119 /*
2120 * When refaults are being observed, it means a new workingset
2121 * is being established. Disable active list protection to get
2122 * rid of the stale workingset quickly.
2123 */
2124 if (file && actual_reclaim && lruvec->refaults != refaults) {
2125 inactive_ratio = 0;
2126 } else {
2127 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2128 if (gb)
2129 inactive_ratio = int_sqrt(10 * gb);
2130 else
2131 inactive_ratio = 1;
2132 }
59dc76b0 2133
2a2e4885
JW
2134 if (actual_reclaim)
2135 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2136 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2137 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2138 inactive_ratio, file);
fd538803 2139
59dc76b0 2140 return inactive * inactive_ratio < active;
b39415b2
RR
2141}
2142
4f98a2fe 2143static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2144 struct lruvec *lruvec, struct mem_cgroup *memcg,
2145 struct scan_control *sc)
b69408e8 2146{
b39415b2 2147 if (is_active_lru(lru)) {
2a2e4885
JW
2148 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2149 memcg, sc, true))
1a93be0e 2150 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2151 return 0;
2152 }
2153
1a93be0e 2154 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2155}
2156
9a265114
JW
2157enum scan_balance {
2158 SCAN_EQUAL,
2159 SCAN_FRACT,
2160 SCAN_ANON,
2161 SCAN_FILE,
2162};
2163
4f98a2fe
RR
2164/*
2165 * Determine how aggressively the anon and file LRU lists should be
2166 * scanned. The relative value of each set of LRU lists is determined
2167 * by looking at the fraction of the pages scanned we did rotate back
2168 * onto the active list instead of evict.
2169 *
be7bd59d
WL
2170 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2171 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2172 */
33377678 2173static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2174 struct scan_control *sc, unsigned long *nr,
2175 unsigned long *lru_pages)
4f98a2fe 2176{
33377678 2177 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2178 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2179 u64 fraction[2];
2180 u64 denominator = 0; /* gcc */
599d0c95 2181 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2182 unsigned long anon_prio, file_prio;
9a265114 2183 enum scan_balance scan_balance;
0bf1457f 2184 unsigned long anon, file;
4f98a2fe 2185 unsigned long ap, fp;
4111304d 2186 enum lru_list lru;
76a33fc3
SL
2187
2188 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2189 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2190 scan_balance = SCAN_FILE;
76a33fc3
SL
2191 goto out;
2192 }
4f98a2fe 2193
10316b31
JW
2194 /*
2195 * Global reclaim will swap to prevent OOM even with no
2196 * swappiness, but memcg users want to use this knob to
2197 * disable swapping for individual groups completely when
2198 * using the memory controller's swap limit feature would be
2199 * too expensive.
2200 */
02695175 2201 if (!global_reclaim(sc) && !swappiness) {
9a265114 2202 scan_balance = SCAN_FILE;
10316b31
JW
2203 goto out;
2204 }
2205
2206 /*
2207 * Do not apply any pressure balancing cleverness when the
2208 * system is close to OOM, scan both anon and file equally
2209 * (unless the swappiness setting disagrees with swapping).
2210 */
02695175 2211 if (!sc->priority && swappiness) {
9a265114 2212 scan_balance = SCAN_EQUAL;
10316b31
JW
2213 goto out;
2214 }
2215
62376251
JW
2216 /*
2217 * Prevent the reclaimer from falling into the cache trap: as
2218 * cache pages start out inactive, every cache fault will tip
2219 * the scan balance towards the file LRU. And as the file LRU
2220 * shrinks, so does the window for rotation from references.
2221 * This means we have a runaway feedback loop where a tiny
2222 * thrashing file LRU becomes infinitely more attractive than
2223 * anon pages. Try to detect this based on file LRU size.
2224 */
2225 if (global_reclaim(sc)) {
599d0c95
MG
2226 unsigned long pgdatfile;
2227 unsigned long pgdatfree;
2228 int z;
2229 unsigned long total_high_wmark = 0;
2ab051e1 2230
599d0c95
MG
2231 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2232 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2233 node_page_state(pgdat, NR_INACTIVE_FILE);
2234
2235 for (z = 0; z < MAX_NR_ZONES; z++) {
2236 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2237 if (!managed_zone(zone))
599d0c95
MG
2238 continue;
2239
2240 total_high_wmark += high_wmark_pages(zone);
2241 }
62376251 2242
599d0c95 2243 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2244 /*
2245 * Force SCAN_ANON if there are enough inactive
2246 * anonymous pages on the LRU in eligible zones.
2247 * Otherwise, the small LRU gets thrashed.
2248 */
2249 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2250 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2251 >> sc->priority) {
2252 scan_balance = SCAN_ANON;
2253 goto out;
2254 }
62376251
JW
2255 }
2256 }
2257
7c5bd705 2258 /*
316bda0e
VD
2259 * If there is enough inactive page cache, i.e. if the size of the
2260 * inactive list is greater than that of the active list *and* the
2261 * inactive list actually has some pages to scan on this priority, we
2262 * do not reclaim anything from the anonymous working set right now.
2263 * Without the second condition we could end up never scanning an
2264 * lruvec even if it has plenty of old anonymous pages unless the
2265 * system is under heavy pressure.
7c5bd705 2266 */
2a2e4885 2267 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2268 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2269 scan_balance = SCAN_FILE;
7c5bd705
JW
2270 goto out;
2271 }
2272
9a265114
JW
2273 scan_balance = SCAN_FRACT;
2274
58c37f6e
KM
2275 /*
2276 * With swappiness at 100, anonymous and file have the same priority.
2277 * This scanning priority is essentially the inverse of IO cost.
2278 */
02695175 2279 anon_prio = swappiness;
75b00af7 2280 file_prio = 200 - anon_prio;
58c37f6e 2281
4f98a2fe
RR
2282 /*
2283 * OK, so we have swap space and a fair amount of page cache
2284 * pages. We use the recently rotated / recently scanned
2285 * ratios to determine how valuable each cache is.
2286 *
2287 * Because workloads change over time (and to avoid overflow)
2288 * we keep these statistics as a floating average, which ends
2289 * up weighing recent references more than old ones.
2290 *
2291 * anon in [0], file in [1]
2292 */
2ab051e1 2293
fd538803
MH
2294 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2295 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2296 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2297 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2298
599d0c95 2299 spin_lock_irq(&pgdat->lru_lock);
6e901571 2300 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2301 reclaim_stat->recent_scanned[0] /= 2;
2302 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2303 }
2304
6e901571 2305 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2306 reclaim_stat->recent_scanned[1] /= 2;
2307 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2308 }
2309
4f98a2fe 2310 /*
00d8089c
RR
2311 * The amount of pressure on anon vs file pages is inversely
2312 * proportional to the fraction of recently scanned pages on
2313 * each list that were recently referenced and in active use.
4f98a2fe 2314 */
fe35004f 2315 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2316 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2317
fe35004f 2318 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2319 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2320 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2321
76a33fc3
SL
2322 fraction[0] = ap;
2323 fraction[1] = fp;
2324 denominator = ap + fp + 1;
2325out:
688035f7
JW
2326 *lru_pages = 0;
2327 for_each_evictable_lru(lru) {
2328 int file = is_file_lru(lru);
2329 unsigned long size;
2330 unsigned long scan;
6b4f7799 2331
688035f7
JW
2332 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2333 scan = size >> sc->priority;
2334 /*
2335 * If the cgroup's already been deleted, make sure to
2336 * scrape out the remaining cache.
2337 */
2338 if (!scan && !mem_cgroup_online(memcg))
2339 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2340
688035f7
JW
2341 switch (scan_balance) {
2342 case SCAN_EQUAL:
2343 /* Scan lists relative to size */
2344 break;
2345 case SCAN_FRACT:
9a265114 2346 /*
688035f7
JW
2347 * Scan types proportional to swappiness and
2348 * their relative recent reclaim efficiency.
9a265114 2349 */
688035f7
JW
2350 scan = div64_u64(scan * fraction[file],
2351 denominator);
2352 break;
2353 case SCAN_FILE:
2354 case SCAN_ANON:
2355 /* Scan one type exclusively */
2356 if ((scan_balance == SCAN_FILE) != file) {
2357 size = 0;
2358 scan = 0;
2359 }
2360 break;
2361 default:
2362 /* Look ma, no brain */
2363 BUG();
9a265114 2364 }
688035f7
JW
2365
2366 *lru_pages += size;
2367 nr[lru] = scan;
76a33fc3 2368 }
6e08a369 2369}
4f98a2fe 2370
9b4f98cd 2371/*
a9dd0a83 2372 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2373 */
a9dd0a83 2374static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2375 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2376{
ef8f2327 2377 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2378 unsigned long nr[NR_LRU_LISTS];
e82e0561 2379 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2380 unsigned long nr_to_scan;
2381 enum lru_list lru;
2382 unsigned long nr_reclaimed = 0;
2383 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2384 struct blk_plug plug;
1a501907 2385 bool scan_adjusted;
9b4f98cd 2386
33377678 2387 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2388
e82e0561
MG
2389 /* Record the original scan target for proportional adjustments later */
2390 memcpy(targets, nr, sizeof(nr));
2391
1a501907
MG
2392 /*
2393 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2394 * event that can occur when there is little memory pressure e.g.
2395 * multiple streaming readers/writers. Hence, we do not abort scanning
2396 * when the requested number of pages are reclaimed when scanning at
2397 * DEF_PRIORITY on the assumption that the fact we are direct
2398 * reclaiming implies that kswapd is not keeping up and it is best to
2399 * do a batch of work at once. For memcg reclaim one check is made to
2400 * abort proportional reclaim if either the file or anon lru has already
2401 * dropped to zero at the first pass.
2402 */
2403 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2404 sc->priority == DEF_PRIORITY);
2405
9b4f98cd
JW
2406 blk_start_plug(&plug);
2407 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2408 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2409 unsigned long nr_anon, nr_file, percentage;
2410 unsigned long nr_scanned;
2411
9b4f98cd
JW
2412 for_each_evictable_lru(lru) {
2413 if (nr[lru]) {
2414 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2415 nr[lru] -= nr_to_scan;
2416
2417 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2418 lruvec, memcg, sc);
9b4f98cd
JW
2419 }
2420 }
e82e0561 2421
bd041733
MH
2422 cond_resched();
2423
e82e0561
MG
2424 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2425 continue;
2426
e82e0561
MG
2427 /*
2428 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2429 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2430 * proportionally what was requested by get_scan_count(). We
2431 * stop reclaiming one LRU and reduce the amount scanning
2432 * proportional to the original scan target.
2433 */
2434 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2435 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2436
1a501907
MG
2437 /*
2438 * It's just vindictive to attack the larger once the smaller
2439 * has gone to zero. And given the way we stop scanning the
2440 * smaller below, this makes sure that we only make one nudge
2441 * towards proportionality once we've got nr_to_reclaim.
2442 */
2443 if (!nr_file || !nr_anon)
2444 break;
2445
e82e0561
MG
2446 if (nr_file > nr_anon) {
2447 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2448 targets[LRU_ACTIVE_ANON] + 1;
2449 lru = LRU_BASE;
2450 percentage = nr_anon * 100 / scan_target;
2451 } else {
2452 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2453 targets[LRU_ACTIVE_FILE] + 1;
2454 lru = LRU_FILE;
2455 percentage = nr_file * 100 / scan_target;
2456 }
2457
2458 /* Stop scanning the smaller of the LRU */
2459 nr[lru] = 0;
2460 nr[lru + LRU_ACTIVE] = 0;
2461
2462 /*
2463 * Recalculate the other LRU scan count based on its original
2464 * scan target and the percentage scanning already complete
2465 */
2466 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2467 nr_scanned = targets[lru] - nr[lru];
2468 nr[lru] = targets[lru] * (100 - percentage) / 100;
2469 nr[lru] -= min(nr[lru], nr_scanned);
2470
2471 lru += LRU_ACTIVE;
2472 nr_scanned = targets[lru] - nr[lru];
2473 nr[lru] = targets[lru] * (100 - percentage) / 100;
2474 nr[lru] -= min(nr[lru], nr_scanned);
2475
2476 scan_adjusted = true;
9b4f98cd
JW
2477 }
2478 blk_finish_plug(&plug);
2479 sc->nr_reclaimed += nr_reclaimed;
2480
2481 /*
2482 * Even if we did not try to evict anon pages at all, we want to
2483 * rebalance the anon lru active/inactive ratio.
2484 */
2a2e4885 2485 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2486 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2487 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2488}
2489
23b9da55 2490/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2491static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2492{
d84da3f9 2493 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2494 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2495 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2496 return true;
2497
2498 return false;
2499}
2500
3e7d3449 2501/*
23b9da55
MG
2502 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2503 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2504 * true if more pages should be reclaimed such that when the page allocator
2505 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2506 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2507 */
a9dd0a83 2508static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2509 unsigned long nr_reclaimed,
2510 unsigned long nr_scanned,
2511 struct scan_control *sc)
2512{
2513 unsigned long pages_for_compaction;
2514 unsigned long inactive_lru_pages;
a9dd0a83 2515 int z;
3e7d3449
MG
2516
2517 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2518 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2519 return false;
2520
2876592f 2521 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2522 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2523 /*
dcda9b04 2524 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2525 * full LRU list has been scanned and we are still failing
2526 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2527 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2528 */
2529 if (!nr_reclaimed && !nr_scanned)
2530 return false;
2531 } else {
2532 /*
dcda9b04 2533 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2534 * fail without consequence, stop if we failed to reclaim
2535 * any pages from the last SWAP_CLUSTER_MAX number of
2536 * pages that were scanned. This will return to the
2537 * caller faster at the risk reclaim/compaction and
2538 * the resulting allocation attempt fails
2539 */
2540 if (!nr_reclaimed)
2541 return false;
2542 }
3e7d3449
MG
2543
2544 /*
2545 * If we have not reclaimed enough pages for compaction and the
2546 * inactive lists are large enough, continue reclaiming
2547 */
9861a62c 2548 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2549 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2550 if (get_nr_swap_pages() > 0)
a9dd0a83 2551 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2552 if (sc->nr_reclaimed < pages_for_compaction &&
2553 inactive_lru_pages > pages_for_compaction)
2554 return true;
2555
2556 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2557 for (z = 0; z <= sc->reclaim_idx; z++) {
2558 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2559 if (!managed_zone(zone))
a9dd0a83
MG
2560 continue;
2561
2562 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2563 case COMPACT_SUCCESS:
a9dd0a83
MG
2564 case COMPACT_CONTINUE:
2565 return false;
2566 default:
2567 /* check next zone */
2568 ;
2569 }
3e7d3449 2570 }
a9dd0a83 2571 return true;
3e7d3449
MG
2572}
2573
970a39a3 2574static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2575{
cb731d6c 2576 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2577 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2578 bool reclaimable = false;
1da177e4 2579
9b4f98cd
JW
2580 do {
2581 struct mem_cgroup *root = sc->target_mem_cgroup;
2582 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2583 .pgdat = pgdat,
9b4f98cd
JW
2584 .priority = sc->priority,
2585 };
a9dd0a83 2586 unsigned long node_lru_pages = 0;
694fbc0f 2587 struct mem_cgroup *memcg;
3e7d3449 2588
9b4f98cd
JW
2589 nr_reclaimed = sc->nr_reclaimed;
2590 nr_scanned = sc->nr_scanned;
1da177e4 2591
694fbc0f
AM
2592 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2593 do {
6b4f7799 2594 unsigned long lru_pages;
8e8ae645 2595 unsigned long reclaimed;
cb731d6c 2596 unsigned long scanned;
5660048c 2597
241994ed 2598 if (mem_cgroup_low(root, memcg)) {
d6622f63
YX
2599 if (!sc->memcg_low_reclaim) {
2600 sc->memcg_low_skipped = 1;
241994ed 2601 continue;
d6622f63 2602 }
31176c78 2603 mem_cgroup_event(memcg, MEMCG_LOW);
241994ed
JW
2604 }
2605
8e8ae645 2606 reclaimed = sc->nr_reclaimed;
cb731d6c 2607 scanned = sc->nr_scanned;
a9dd0a83
MG
2608 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2609 node_lru_pages += lru_pages;
f16015fb 2610
b5afba29 2611 if (memcg)
a9dd0a83 2612 shrink_slab(sc->gfp_mask, pgdat->node_id,
9092c71b 2613 memcg, sc->priority);
cb731d6c 2614
8e8ae645
JW
2615 /* Record the group's reclaim efficiency */
2616 vmpressure(sc->gfp_mask, memcg, false,
2617 sc->nr_scanned - scanned,
2618 sc->nr_reclaimed - reclaimed);
2619
9b4f98cd 2620 /*
a394cb8e
MH
2621 * Direct reclaim and kswapd have to scan all memory
2622 * cgroups to fulfill the overall scan target for the
a9dd0a83 2623 * node.
a394cb8e
MH
2624 *
2625 * Limit reclaim, on the other hand, only cares about
2626 * nr_to_reclaim pages to be reclaimed and it will
2627 * retry with decreasing priority if one round over the
2628 * whole hierarchy is not sufficient.
9b4f98cd 2629 */
a394cb8e
MH
2630 if (!global_reclaim(sc) &&
2631 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2632 mem_cgroup_iter_break(root, memcg);
2633 break;
2634 }
241994ed 2635 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2636
b2e18757 2637 if (global_reclaim(sc))
a9dd0a83 2638 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
9092c71b 2639 sc->priority);
cb731d6c
VD
2640
2641 if (reclaim_state) {
2642 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2643 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2644 }
2645
8e8ae645
JW
2646 /* Record the subtree's reclaim efficiency */
2647 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2648 sc->nr_scanned - nr_scanned,
2649 sc->nr_reclaimed - nr_reclaimed);
2650
2344d7e4
JW
2651 if (sc->nr_reclaimed - nr_reclaimed)
2652 reclaimable = true;
2653
a9dd0a83 2654 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2655 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2656
c73322d0
JW
2657 /*
2658 * Kswapd gives up on balancing particular nodes after too
2659 * many failures to reclaim anything from them and goes to
2660 * sleep. On reclaim progress, reset the failure counter. A
2661 * successful direct reclaim run will revive a dormant kswapd.
2662 */
2663 if (reclaimable)
2664 pgdat->kswapd_failures = 0;
2665
2344d7e4 2666 return reclaimable;
f16015fb
JW
2667}
2668
53853e2d 2669/*
fdd4c614
VB
2670 * Returns true if compaction should go ahead for a costly-order request, or
2671 * the allocation would already succeed without compaction. Return false if we
2672 * should reclaim first.
53853e2d 2673 */
4f588331 2674static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2675{
31483b6a 2676 unsigned long watermark;
fdd4c614 2677 enum compact_result suitable;
fe4b1b24 2678
fdd4c614
VB
2679 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2680 if (suitable == COMPACT_SUCCESS)
2681 /* Allocation should succeed already. Don't reclaim. */
2682 return true;
2683 if (suitable == COMPACT_SKIPPED)
2684 /* Compaction cannot yet proceed. Do reclaim. */
2685 return false;
fe4b1b24 2686
53853e2d 2687 /*
fdd4c614
VB
2688 * Compaction is already possible, but it takes time to run and there
2689 * are potentially other callers using the pages just freed. So proceed
2690 * with reclaim to make a buffer of free pages available to give
2691 * compaction a reasonable chance of completing and allocating the page.
2692 * Note that we won't actually reclaim the whole buffer in one attempt
2693 * as the target watermark in should_continue_reclaim() is lower. But if
2694 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2695 */
fdd4c614 2696 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2697
fdd4c614 2698 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2699}
2700
1da177e4
LT
2701/*
2702 * This is the direct reclaim path, for page-allocating processes. We only
2703 * try to reclaim pages from zones which will satisfy the caller's allocation
2704 * request.
2705 *
1da177e4
LT
2706 * If a zone is deemed to be full of pinned pages then just give it a light
2707 * scan then give up on it.
2708 */
0a0337e0 2709static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2710{
dd1a239f 2711 struct zoneref *z;
54a6eb5c 2712 struct zone *zone;
0608f43d
AM
2713 unsigned long nr_soft_reclaimed;
2714 unsigned long nr_soft_scanned;
619d0d76 2715 gfp_t orig_mask;
79dafcdc 2716 pg_data_t *last_pgdat = NULL;
1cfb419b 2717
cc715d99
MG
2718 /*
2719 * If the number of buffer_heads in the machine exceeds the maximum
2720 * allowed level, force direct reclaim to scan the highmem zone as
2721 * highmem pages could be pinning lowmem pages storing buffer_heads
2722 */
619d0d76 2723 orig_mask = sc->gfp_mask;
b2e18757 2724 if (buffer_heads_over_limit) {
cc715d99 2725 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2726 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2727 }
cc715d99 2728
d4debc66 2729 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2730 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2731 /*
2732 * Take care memory controller reclaiming has small influence
2733 * to global LRU.
2734 */
89b5fae5 2735 if (global_reclaim(sc)) {
344736f2
VD
2736 if (!cpuset_zone_allowed(zone,
2737 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2738 continue;
65ec02cb 2739
0b06496a
JW
2740 /*
2741 * If we already have plenty of memory free for
2742 * compaction in this zone, don't free any more.
2743 * Even though compaction is invoked for any
2744 * non-zero order, only frequent costly order
2745 * reclamation is disruptive enough to become a
2746 * noticeable problem, like transparent huge
2747 * page allocations.
2748 */
2749 if (IS_ENABLED(CONFIG_COMPACTION) &&
2750 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2751 compaction_ready(zone, sc)) {
0b06496a
JW
2752 sc->compaction_ready = true;
2753 continue;
e0887c19 2754 }
0b06496a 2755
79dafcdc
MG
2756 /*
2757 * Shrink each node in the zonelist once. If the
2758 * zonelist is ordered by zone (not the default) then a
2759 * node may be shrunk multiple times but in that case
2760 * the user prefers lower zones being preserved.
2761 */
2762 if (zone->zone_pgdat == last_pgdat)
2763 continue;
2764
0608f43d
AM
2765 /*
2766 * This steals pages from memory cgroups over softlimit
2767 * and returns the number of reclaimed pages and
2768 * scanned pages. This works for global memory pressure
2769 * and balancing, not for a memcg's limit.
2770 */
2771 nr_soft_scanned = 0;
ef8f2327 2772 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2773 sc->order, sc->gfp_mask,
2774 &nr_soft_scanned);
2775 sc->nr_reclaimed += nr_soft_reclaimed;
2776 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2777 /* need some check for avoid more shrink_zone() */
1cfb419b 2778 }
408d8544 2779
79dafcdc
MG
2780 /* See comment about same check for global reclaim above */
2781 if (zone->zone_pgdat == last_pgdat)
2782 continue;
2783 last_pgdat = zone->zone_pgdat;
970a39a3 2784 shrink_node(zone->zone_pgdat, sc);
1da177e4 2785 }
e0c23279 2786
619d0d76
WY
2787 /*
2788 * Restore to original mask to avoid the impact on the caller if we
2789 * promoted it to __GFP_HIGHMEM.
2790 */
2791 sc->gfp_mask = orig_mask;
1da177e4 2792}
4f98a2fe 2793
2a2e4885
JW
2794static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2795{
2796 struct mem_cgroup *memcg;
2797
2798 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2799 do {
2800 unsigned long refaults;
2801 struct lruvec *lruvec;
2802
2803 if (memcg)
ccda7f43 2804 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2805 else
2806 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2807
2808 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2809 lruvec->refaults = refaults;
2810 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2811}
2812
1da177e4
LT
2813/*
2814 * This is the main entry point to direct page reclaim.
2815 *
2816 * If a full scan of the inactive list fails to free enough memory then we
2817 * are "out of memory" and something needs to be killed.
2818 *
2819 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2820 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2821 * caller can't do much about. We kick the writeback threads and take explicit
2822 * naps in the hope that some of these pages can be written. But if the
2823 * allocating task holds filesystem locks which prevent writeout this might not
2824 * work, and the allocation attempt will fail.
a41f24ea
NA
2825 *
2826 * returns: 0, if no pages reclaimed
2827 * else, the number of pages reclaimed
1da177e4 2828 */
dac1d27b 2829static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2830 struct scan_control *sc)
1da177e4 2831{
241994ed 2832 int initial_priority = sc->priority;
2a2e4885
JW
2833 pg_data_t *last_pgdat;
2834 struct zoneref *z;
2835 struct zone *zone;
241994ed 2836retry:
873b4771
KK
2837 delayacct_freepages_start();
2838
89b5fae5 2839 if (global_reclaim(sc))
7cc30fcf 2840 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2841
9e3b2f8c 2842 do {
70ddf637
AV
2843 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2844 sc->priority);
66e1707b 2845 sc->nr_scanned = 0;
0a0337e0 2846 shrink_zones(zonelist, sc);
c6a8a8c5 2847
bb21c7ce 2848 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2849 break;
2850
2851 if (sc->compaction_ready)
2852 break;
1da177e4 2853
0e50ce3b
MK
2854 /*
2855 * If we're getting trouble reclaiming, start doing
2856 * writepage even in laptop mode.
2857 */
2858 if (sc->priority < DEF_PRIORITY - 2)
2859 sc->may_writepage = 1;
0b06496a 2860 } while (--sc->priority >= 0);
bb21c7ce 2861
2a2e4885
JW
2862 last_pgdat = NULL;
2863 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2864 sc->nodemask) {
2865 if (zone->zone_pgdat == last_pgdat)
2866 continue;
2867 last_pgdat = zone->zone_pgdat;
2868 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2869 }
2870
873b4771
KK
2871 delayacct_freepages_end();
2872
bb21c7ce
KM
2873 if (sc->nr_reclaimed)
2874 return sc->nr_reclaimed;
2875
0cee34fd 2876 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2877 if (sc->compaction_ready)
7335084d
MG
2878 return 1;
2879
241994ed 2880 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2881 if (sc->memcg_low_skipped) {
241994ed 2882 sc->priority = initial_priority;
d6622f63
YX
2883 sc->memcg_low_reclaim = 1;
2884 sc->memcg_low_skipped = 0;
241994ed
JW
2885 goto retry;
2886 }
2887
bb21c7ce 2888 return 0;
1da177e4
LT
2889}
2890
c73322d0 2891static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2892{
2893 struct zone *zone;
2894 unsigned long pfmemalloc_reserve = 0;
2895 unsigned long free_pages = 0;
2896 int i;
2897 bool wmark_ok;
2898
c73322d0
JW
2899 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2900 return true;
2901
5515061d
MG
2902 for (i = 0; i <= ZONE_NORMAL; i++) {
2903 zone = &pgdat->node_zones[i];
d450abd8
JW
2904 if (!managed_zone(zone))
2905 continue;
2906
2907 if (!zone_reclaimable_pages(zone))
675becce
MG
2908 continue;
2909
5515061d
MG
2910 pfmemalloc_reserve += min_wmark_pages(zone);
2911 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2912 }
2913
675becce
MG
2914 /* If there are no reserves (unexpected config) then do not throttle */
2915 if (!pfmemalloc_reserve)
2916 return true;
2917
5515061d
MG
2918 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2919
2920 /* kswapd must be awake if processes are being throttled */
2921 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2922 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2923 (enum zone_type)ZONE_NORMAL);
2924 wake_up_interruptible(&pgdat->kswapd_wait);
2925 }
2926
2927 return wmark_ok;
2928}
2929
2930/*
2931 * Throttle direct reclaimers if backing storage is backed by the network
2932 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2933 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2934 * when the low watermark is reached.
2935 *
2936 * Returns true if a fatal signal was delivered during throttling. If this
2937 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2938 */
50694c28 2939static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2940 nodemask_t *nodemask)
2941{
675becce 2942 struct zoneref *z;
5515061d 2943 struct zone *zone;
675becce 2944 pg_data_t *pgdat = NULL;
5515061d
MG
2945
2946 /*
2947 * Kernel threads should not be throttled as they may be indirectly
2948 * responsible for cleaning pages necessary for reclaim to make forward
2949 * progress. kjournald for example may enter direct reclaim while
2950 * committing a transaction where throttling it could forcing other
2951 * processes to block on log_wait_commit().
2952 */
2953 if (current->flags & PF_KTHREAD)
50694c28
MG
2954 goto out;
2955
2956 /*
2957 * If a fatal signal is pending, this process should not throttle.
2958 * It should return quickly so it can exit and free its memory
2959 */
2960 if (fatal_signal_pending(current))
2961 goto out;
5515061d 2962
675becce
MG
2963 /*
2964 * Check if the pfmemalloc reserves are ok by finding the first node
2965 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2966 * GFP_KERNEL will be required for allocating network buffers when
2967 * swapping over the network so ZONE_HIGHMEM is unusable.
2968 *
2969 * Throttling is based on the first usable node and throttled processes
2970 * wait on a queue until kswapd makes progress and wakes them. There
2971 * is an affinity then between processes waking up and where reclaim
2972 * progress has been made assuming the process wakes on the same node.
2973 * More importantly, processes running on remote nodes will not compete
2974 * for remote pfmemalloc reserves and processes on different nodes
2975 * should make reasonable progress.
2976 */
2977 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2978 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2979 if (zone_idx(zone) > ZONE_NORMAL)
2980 continue;
2981
2982 /* Throttle based on the first usable node */
2983 pgdat = zone->zone_pgdat;
c73322d0 2984 if (allow_direct_reclaim(pgdat))
675becce
MG
2985 goto out;
2986 break;
2987 }
2988
2989 /* If no zone was usable by the allocation flags then do not throttle */
2990 if (!pgdat)
50694c28 2991 goto out;
5515061d 2992
68243e76
MG
2993 /* Account for the throttling */
2994 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2995
5515061d
MG
2996 /*
2997 * If the caller cannot enter the filesystem, it's possible that it
2998 * is due to the caller holding an FS lock or performing a journal
2999 * transaction in the case of a filesystem like ext[3|4]. In this case,
3000 * it is not safe to block on pfmemalloc_wait as kswapd could be
3001 * blocked waiting on the same lock. Instead, throttle for up to a
3002 * second before continuing.
3003 */
3004 if (!(gfp_mask & __GFP_FS)) {
3005 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3006 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3007
3008 goto check_pending;
5515061d
MG
3009 }
3010
3011 /* Throttle until kswapd wakes the process */
3012 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3013 allow_direct_reclaim(pgdat));
50694c28
MG
3014
3015check_pending:
3016 if (fatal_signal_pending(current))
3017 return true;
3018
3019out:
3020 return false;
5515061d
MG
3021}
3022
dac1d27b 3023unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3024 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3025{
33906bc5 3026 unsigned long nr_reclaimed;
66e1707b 3027 struct scan_control sc = {
ee814fe2 3028 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3029 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3030 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3031 .order = order,
3032 .nodemask = nodemask,
3033 .priority = DEF_PRIORITY,
66e1707b 3034 .may_writepage = !laptop_mode,
a6dc60f8 3035 .may_unmap = 1,
2e2e4259 3036 .may_swap = 1,
66e1707b
BS
3037 };
3038
5515061d 3039 /*
50694c28
MG
3040 * Do not enter reclaim if fatal signal was delivered while throttled.
3041 * 1 is returned so that the page allocator does not OOM kill at this
3042 * point.
5515061d 3043 */
f2f43e56 3044 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3045 return 1;
3046
33906bc5
MG
3047 trace_mm_vmscan_direct_reclaim_begin(order,
3048 sc.may_writepage,
f2f43e56 3049 sc.gfp_mask,
e5146b12 3050 sc.reclaim_idx);
33906bc5 3051
3115cd91 3052 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3053
3054 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3055
3056 return nr_reclaimed;
66e1707b
BS
3057}
3058
c255a458 3059#ifdef CONFIG_MEMCG
66e1707b 3060
a9dd0a83 3061unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3062 gfp_t gfp_mask, bool noswap,
ef8f2327 3063 pg_data_t *pgdat,
0ae5e89c 3064 unsigned long *nr_scanned)
4e416953
BS
3065{
3066 struct scan_control sc = {
b8f5c566 3067 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3068 .target_mem_cgroup = memcg,
4e416953
BS
3069 .may_writepage = !laptop_mode,
3070 .may_unmap = 1,
b2e18757 3071 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3072 .may_swap = !noswap,
4e416953 3073 };
6b4f7799 3074 unsigned long lru_pages;
0ae5e89c 3075
4e416953
BS
3076 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3077 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3078
9e3b2f8c 3079 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3080 sc.may_writepage,
e5146b12
MG
3081 sc.gfp_mask,
3082 sc.reclaim_idx);
bdce6d9e 3083
4e416953
BS
3084 /*
3085 * NOTE: Although we can get the priority field, using it
3086 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3087 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3088 * will pick up pages from other mem cgroup's as well. We hack
3089 * the priority and make it zero.
3090 */
ef8f2327 3091 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3092
3093 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3094
0ae5e89c 3095 *nr_scanned = sc.nr_scanned;
4e416953
BS
3096 return sc.nr_reclaimed;
3097}
3098
72835c86 3099unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3100 unsigned long nr_pages,
a7885eb8 3101 gfp_t gfp_mask,
b70a2a21 3102 bool may_swap)
66e1707b 3103{
4e416953 3104 struct zonelist *zonelist;
bdce6d9e 3105 unsigned long nr_reclaimed;
889976db 3106 int nid;
499118e9 3107 unsigned int noreclaim_flag;
66e1707b 3108 struct scan_control sc = {
b70a2a21 3109 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3110 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3111 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3112 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3113 .target_mem_cgroup = memcg,
3114 .priority = DEF_PRIORITY,
3115 .may_writepage = !laptop_mode,
3116 .may_unmap = 1,
b70a2a21 3117 .may_swap = may_swap,
a09ed5e0 3118 };
66e1707b 3119
889976db
YH
3120 /*
3121 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3122 * take care of from where we get pages. So the node where we start the
3123 * scan does not need to be the current node.
3124 */
72835c86 3125 nid = mem_cgroup_select_victim_node(memcg);
889976db 3126
c9634cf0 3127 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3128
3129 trace_mm_vmscan_memcg_reclaim_begin(0,
3130 sc.may_writepage,
e5146b12
MG
3131 sc.gfp_mask,
3132 sc.reclaim_idx);
bdce6d9e 3133
499118e9 3134 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3135 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3136 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3137
3138 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3139
3140 return nr_reclaimed;
66e1707b
BS
3141}
3142#endif
3143
1d82de61 3144static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3145 struct scan_control *sc)
f16015fb 3146{
b95a2f2d 3147 struct mem_cgroup *memcg;
f16015fb 3148
b95a2f2d
JW
3149 if (!total_swap_pages)
3150 return;
3151
3152 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3153 do {
ef8f2327 3154 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3155
2a2e4885 3156 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3157 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3158 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3159
3160 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3161 } while (memcg);
f16015fb
JW
3162}
3163
e716f2eb
MG
3164/*
3165 * Returns true if there is an eligible zone balanced for the request order
3166 * and classzone_idx
3167 */
3168static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3169{
e716f2eb
MG
3170 int i;
3171 unsigned long mark = -1;
3172 struct zone *zone;
60cefed4 3173
e716f2eb
MG
3174 for (i = 0; i <= classzone_idx; i++) {
3175 zone = pgdat->node_zones + i;
6256c6b4 3176
e716f2eb
MG
3177 if (!managed_zone(zone))
3178 continue;
3179
3180 mark = high_wmark_pages(zone);
3181 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3182 return true;
3183 }
3184
3185 /*
3186 * If a node has no populated zone within classzone_idx, it does not
3187 * need balancing by definition. This can happen if a zone-restricted
3188 * allocation tries to wake a remote kswapd.
3189 */
3190 if (mark == -1)
3191 return true;
3192
3193 return false;
60cefed4
JW
3194}
3195
631b6e08
MG
3196/* Clear pgdat state for congested, dirty or under writeback. */
3197static void clear_pgdat_congested(pg_data_t *pgdat)
3198{
3199 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3200 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3201 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3202}
3203
5515061d
MG
3204/*
3205 * Prepare kswapd for sleeping. This verifies that there are no processes
3206 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3207 *
3208 * Returns true if kswapd is ready to sleep
3209 */
d9f21d42 3210static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3211{
5515061d 3212 /*
9e5e3661 3213 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3214 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3215 * race between when kswapd checks the watermarks and a process gets
3216 * throttled. There is also a potential race if processes get
3217 * throttled, kswapd wakes, a large process exits thereby balancing the
3218 * zones, which causes kswapd to exit balance_pgdat() before reaching
3219 * the wake up checks. If kswapd is going to sleep, no process should
3220 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3221 * the wake up is premature, processes will wake kswapd and get
3222 * throttled again. The difference from wake ups in balance_pgdat() is
3223 * that here we are under prepare_to_wait().
5515061d 3224 */
9e5e3661
VB
3225 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3226 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3227
c73322d0
JW
3228 /* Hopeless node, leave it to direct reclaim */
3229 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3230 return true;
3231
e716f2eb
MG
3232 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3233 clear_pgdat_congested(pgdat);
3234 return true;
1d82de61
MG
3235 }
3236
333b0a45 3237 return false;
f50de2d3
MG
3238}
3239
75485363 3240/*
1d82de61
MG
3241 * kswapd shrinks a node of pages that are at or below the highest usable
3242 * zone that is currently unbalanced.
b8e83b94
MG
3243 *
3244 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3245 * reclaim or if the lack of progress was due to pages under writeback.
3246 * This is used to determine if the scanning priority needs to be raised.
75485363 3247 */
1d82de61 3248static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3249 struct scan_control *sc)
75485363 3250{
1d82de61
MG
3251 struct zone *zone;
3252 int z;
75485363 3253
1d82de61
MG
3254 /* Reclaim a number of pages proportional to the number of zones */
3255 sc->nr_to_reclaim = 0;
970a39a3 3256 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3257 zone = pgdat->node_zones + z;
6aa303de 3258 if (!managed_zone(zone))
1d82de61 3259 continue;
7c954f6d 3260
1d82de61
MG
3261 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3262 }
7c954f6d
MG
3263
3264 /*
1d82de61
MG
3265 * Historically care was taken to put equal pressure on all zones but
3266 * now pressure is applied based on node LRU order.
7c954f6d 3267 */
970a39a3 3268 shrink_node(pgdat, sc);
283aba9f 3269
7c954f6d 3270 /*
1d82de61
MG
3271 * Fragmentation may mean that the system cannot be rebalanced for
3272 * high-order allocations. If twice the allocation size has been
3273 * reclaimed then recheck watermarks only at order-0 to prevent
3274 * excessive reclaim. Assume that a process requested a high-order
3275 * can direct reclaim/compact.
7c954f6d 3276 */
9861a62c 3277 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3278 sc->order = 0;
7c954f6d 3279
b8e83b94 3280 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3281}
3282
1da177e4 3283/*
1d82de61
MG
3284 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3285 * that are eligible for use by the caller until at least one zone is
3286 * balanced.
1da177e4 3287 *
1d82de61 3288 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3289 *
3290 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3291 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3292 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3293 * or lower is eligible for reclaim until at least one usable zone is
3294 * balanced.
1da177e4 3295 */
accf6242 3296static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3297{
1da177e4 3298 int i;
0608f43d
AM
3299 unsigned long nr_soft_reclaimed;
3300 unsigned long nr_soft_scanned;
1d82de61 3301 struct zone *zone;
179e9639
AM
3302 struct scan_control sc = {
3303 .gfp_mask = GFP_KERNEL,
ee814fe2 3304 .order = order,
b8e83b94 3305 .priority = DEF_PRIORITY,
ee814fe2 3306 .may_writepage = !laptop_mode,
a6dc60f8 3307 .may_unmap = 1,
2e2e4259 3308 .may_swap = 1,
179e9639 3309 };
f8891e5e 3310 count_vm_event(PAGEOUTRUN);
1da177e4 3311
9e3b2f8c 3312 do {
c73322d0 3313 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3314 bool raise_priority = true;
3315
84c7a777 3316 sc.reclaim_idx = classzone_idx;
1da177e4 3317
86c79f6b 3318 /*
84c7a777
MG
3319 * If the number of buffer_heads exceeds the maximum allowed
3320 * then consider reclaiming from all zones. This has a dual
3321 * purpose -- on 64-bit systems it is expected that
3322 * buffer_heads are stripped during active rotation. On 32-bit
3323 * systems, highmem pages can pin lowmem memory and shrinking
3324 * buffers can relieve lowmem pressure. Reclaim may still not
3325 * go ahead if all eligible zones for the original allocation
3326 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3327 */
3328 if (buffer_heads_over_limit) {
3329 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3330 zone = pgdat->node_zones + i;
6aa303de 3331 if (!managed_zone(zone))
86c79f6b 3332 continue;
cc715d99 3333
970a39a3 3334 sc.reclaim_idx = i;
e1dbeda6 3335 break;
1da177e4 3336 }
1da177e4 3337 }
dafcb73e 3338
86c79f6b 3339 /*
e716f2eb
MG
3340 * Only reclaim if there are no eligible zones. Note that
3341 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3342 * have adjusted it.
86c79f6b 3343 */
e716f2eb
MG
3344 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3345 goto out;
e1dbeda6 3346
1d82de61
MG
3347 /*
3348 * Do some background aging of the anon list, to give
3349 * pages a chance to be referenced before reclaiming. All
3350 * pages are rotated regardless of classzone as this is
3351 * about consistent aging.
3352 */
ef8f2327 3353 age_active_anon(pgdat, &sc);
1d82de61 3354
b7ea3c41
MG
3355 /*
3356 * If we're getting trouble reclaiming, start doing writepage
3357 * even in laptop mode.
3358 */
047d72c3 3359 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3360 sc.may_writepage = 1;
3361
1d82de61
MG
3362 /* Call soft limit reclaim before calling shrink_node. */
3363 sc.nr_scanned = 0;
3364 nr_soft_scanned = 0;
ef8f2327 3365 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3366 sc.gfp_mask, &nr_soft_scanned);
3367 sc.nr_reclaimed += nr_soft_reclaimed;
3368
1da177e4 3369 /*
1d82de61
MG
3370 * There should be no need to raise the scanning priority if
3371 * enough pages are already being scanned that that high
3372 * watermark would be met at 100% efficiency.
1da177e4 3373 */
970a39a3 3374 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3375 raise_priority = false;
5515061d
MG
3376
3377 /*
3378 * If the low watermark is met there is no need for processes
3379 * to be throttled on pfmemalloc_wait as they should not be
3380 * able to safely make forward progress. Wake them
3381 */
3382 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3383 allow_direct_reclaim(pgdat))
cfc51155 3384 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3385
b8e83b94
MG
3386 /* Check if kswapd should be suspending */
3387 if (try_to_freeze() || kthread_should_stop())
3388 break;
8357376d 3389
73ce02e9 3390 /*
b8e83b94
MG
3391 * Raise priority if scanning rate is too low or there was no
3392 * progress in reclaiming pages
73ce02e9 3393 */
c73322d0
JW
3394 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3395 if (raise_priority || !nr_reclaimed)
b8e83b94 3396 sc.priority--;
1d82de61 3397 } while (sc.priority >= 1);
1da177e4 3398
c73322d0
JW
3399 if (!sc.nr_reclaimed)
3400 pgdat->kswapd_failures++;
3401
b8e83b94 3402out:
2a2e4885 3403 snapshot_refaults(NULL, pgdat);
0abdee2b 3404 /*
1d82de61
MG
3405 * Return the order kswapd stopped reclaiming at as
3406 * prepare_kswapd_sleep() takes it into account. If another caller
3407 * entered the allocator slow path while kswapd was awake, order will
3408 * remain at the higher level.
0abdee2b 3409 */
1d82de61 3410 return sc.order;
1da177e4
LT
3411}
3412
e716f2eb
MG
3413/*
3414 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3415 * allocation request woke kswapd for. When kswapd has not woken recently,
3416 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3417 * given classzone and returns it or the highest classzone index kswapd
3418 * was recently woke for.
3419 */
3420static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3421 enum zone_type classzone_idx)
3422{
3423 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3424 return classzone_idx;
3425
3426 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3427}
3428
38087d9b
MG
3429static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3430 unsigned int classzone_idx)
f0bc0a60
KM
3431{
3432 long remaining = 0;
3433 DEFINE_WAIT(wait);
3434
3435 if (freezing(current) || kthread_should_stop())
3436 return;
3437
3438 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3439
333b0a45
SG
3440 /*
3441 * Try to sleep for a short interval. Note that kcompactd will only be
3442 * woken if it is possible to sleep for a short interval. This is
3443 * deliberate on the assumption that if reclaim cannot keep an
3444 * eligible zone balanced that it's also unlikely that compaction will
3445 * succeed.
3446 */
d9f21d42 3447 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3448 /*
3449 * Compaction records what page blocks it recently failed to
3450 * isolate pages from and skips them in the future scanning.
3451 * When kswapd is going to sleep, it is reasonable to assume
3452 * that pages and compaction may succeed so reset the cache.
3453 */
3454 reset_isolation_suitable(pgdat);
3455
3456 /*
3457 * We have freed the memory, now we should compact it to make
3458 * allocation of the requested order possible.
3459 */
38087d9b 3460 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3461
f0bc0a60 3462 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3463
3464 /*
3465 * If woken prematurely then reset kswapd_classzone_idx and
3466 * order. The values will either be from a wakeup request or
3467 * the previous request that slept prematurely.
3468 */
3469 if (remaining) {
e716f2eb 3470 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3471 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3472 }
3473
f0bc0a60
KM
3474 finish_wait(&pgdat->kswapd_wait, &wait);
3475 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3476 }
3477
3478 /*
3479 * After a short sleep, check if it was a premature sleep. If not, then
3480 * go fully to sleep until explicitly woken up.
3481 */
d9f21d42
MG
3482 if (!remaining &&
3483 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3484 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3485
3486 /*
3487 * vmstat counters are not perfectly accurate and the estimated
3488 * value for counters such as NR_FREE_PAGES can deviate from the
3489 * true value by nr_online_cpus * threshold. To avoid the zone
3490 * watermarks being breached while under pressure, we reduce the
3491 * per-cpu vmstat threshold while kswapd is awake and restore
3492 * them before going back to sleep.
3493 */
3494 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3495
3496 if (!kthread_should_stop())
3497 schedule();
3498
f0bc0a60
KM
3499 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3500 } else {
3501 if (remaining)
3502 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3503 else
3504 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3505 }
3506 finish_wait(&pgdat->kswapd_wait, &wait);
3507}
3508
1da177e4
LT
3509/*
3510 * The background pageout daemon, started as a kernel thread
4f98a2fe 3511 * from the init process.
1da177e4
LT
3512 *
3513 * This basically trickles out pages so that we have _some_
3514 * free memory available even if there is no other activity
3515 * that frees anything up. This is needed for things like routing
3516 * etc, where we otherwise might have all activity going on in
3517 * asynchronous contexts that cannot page things out.
3518 *
3519 * If there are applications that are active memory-allocators
3520 * (most normal use), this basically shouldn't matter.
3521 */
3522static int kswapd(void *p)
3523{
e716f2eb
MG
3524 unsigned int alloc_order, reclaim_order;
3525 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3526 pg_data_t *pgdat = (pg_data_t*)p;
3527 struct task_struct *tsk = current;
f0bc0a60 3528
1da177e4
LT
3529 struct reclaim_state reclaim_state = {
3530 .reclaimed_slab = 0,
3531 };
a70f7302 3532 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3533
174596a0 3534 if (!cpumask_empty(cpumask))
c5f59f08 3535 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3536 current->reclaim_state = &reclaim_state;
3537
3538 /*
3539 * Tell the memory management that we're a "memory allocator",
3540 * and that if we need more memory we should get access to it
3541 * regardless (see "__alloc_pages()"). "kswapd" should
3542 * never get caught in the normal page freeing logic.
3543 *
3544 * (Kswapd normally doesn't need memory anyway, but sometimes
3545 * you need a small amount of memory in order to be able to
3546 * page out something else, and this flag essentially protects
3547 * us from recursively trying to free more memory as we're
3548 * trying to free the first piece of memory in the first place).
3549 */
930d9152 3550 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3551 set_freezable();
1da177e4 3552
e716f2eb
MG
3553 pgdat->kswapd_order = 0;
3554 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3555 for ( ; ; ) {
6f6313d4 3556 bool ret;
3e1d1d28 3557
e716f2eb
MG
3558 alloc_order = reclaim_order = pgdat->kswapd_order;
3559 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3560
38087d9b
MG
3561kswapd_try_sleep:
3562 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3563 classzone_idx);
215ddd66 3564
38087d9b
MG
3565 /* Read the new order and classzone_idx */
3566 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3567 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3568 pgdat->kswapd_order = 0;
e716f2eb 3569 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3570
8fe23e05
DR
3571 ret = try_to_freeze();
3572 if (kthread_should_stop())
3573 break;
3574
3575 /*
3576 * We can speed up thawing tasks if we don't call balance_pgdat
3577 * after returning from the refrigerator
3578 */
38087d9b
MG
3579 if (ret)
3580 continue;
3581
3582 /*
3583 * Reclaim begins at the requested order but if a high-order
3584 * reclaim fails then kswapd falls back to reclaiming for
3585 * order-0. If that happens, kswapd will consider sleeping
3586 * for the order it finished reclaiming at (reclaim_order)
3587 * but kcompactd is woken to compact for the original
3588 * request (alloc_order).
3589 */
e5146b12
MG
3590 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3591 alloc_order);
d92a8cfc 3592 fs_reclaim_acquire(GFP_KERNEL);
38087d9b 3593 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
d92a8cfc 3594 fs_reclaim_release(GFP_KERNEL);
38087d9b
MG
3595 if (reclaim_order < alloc_order)
3596 goto kswapd_try_sleep;
1da177e4 3597 }
b0a8cc58 3598
71abdc15 3599 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3600 current->reclaim_state = NULL;
71abdc15 3601
1da177e4
LT
3602 return 0;
3603}
3604
3605/*
3606 * A zone is low on free memory, so wake its kswapd task to service it.
3607 */
99504748 3608void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3609{
3610 pg_data_t *pgdat;
3611
6aa303de 3612 if (!managed_zone(zone))
1da177e4
LT
3613 return;
3614
344736f2 3615 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3616 return;
88f5acf8 3617 pgdat = zone->zone_pgdat;
e716f2eb
MG
3618 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3619 classzone_idx);
38087d9b 3620 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3621 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3622 return;
e1a55637 3623
c73322d0
JW
3624 /* Hopeless node, leave it to direct reclaim */
3625 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3626 return;
3627
e716f2eb
MG
3628 if (pgdat_balanced(pgdat, order, classzone_idx))
3629 return;
88f5acf8 3630
e716f2eb 3631 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
8d0986e2 3632 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3633}
3634
c6f37f12 3635#ifdef CONFIG_HIBERNATION
1da177e4 3636/*
7b51755c 3637 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3638 * freed pages.
3639 *
3640 * Rather than trying to age LRUs the aim is to preserve the overall
3641 * LRU order by reclaiming preferentially
3642 * inactive > active > active referenced > active mapped
1da177e4 3643 */
7b51755c 3644unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3645{
d6277db4 3646 struct reclaim_state reclaim_state;
d6277db4 3647 struct scan_control sc = {
ee814fe2 3648 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3649 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3650 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3651 .priority = DEF_PRIORITY,
d6277db4 3652 .may_writepage = 1,
ee814fe2
JW
3653 .may_unmap = 1,
3654 .may_swap = 1,
7b51755c 3655 .hibernation_mode = 1,
1da177e4 3656 };
a09ed5e0 3657 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3658 struct task_struct *p = current;
3659 unsigned long nr_reclaimed;
499118e9 3660 unsigned int noreclaim_flag;
1da177e4 3661
499118e9 3662 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3663 fs_reclaim_acquire(sc.gfp_mask);
7b51755c
KM
3664 reclaim_state.reclaimed_slab = 0;
3665 p->reclaim_state = &reclaim_state;
d6277db4 3666
3115cd91 3667 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3668
7b51755c 3669 p->reclaim_state = NULL;
d92a8cfc 3670 fs_reclaim_release(sc.gfp_mask);
499118e9 3671 memalloc_noreclaim_restore(noreclaim_flag);
d6277db4 3672
7b51755c 3673 return nr_reclaimed;
1da177e4 3674}
c6f37f12 3675#endif /* CONFIG_HIBERNATION */
1da177e4 3676
1da177e4
LT
3677/* It's optimal to keep kswapds on the same CPUs as their memory, but
3678 not required for correctness. So if the last cpu in a node goes
3679 away, we get changed to run anywhere: as the first one comes back,
3680 restore their cpu bindings. */
517bbed9 3681static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3682{
58c0a4a7 3683 int nid;
1da177e4 3684
517bbed9
SAS
3685 for_each_node_state(nid, N_MEMORY) {
3686 pg_data_t *pgdat = NODE_DATA(nid);
3687 const struct cpumask *mask;
a70f7302 3688
517bbed9 3689 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3690
517bbed9
SAS
3691 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3692 /* One of our CPUs online: restore mask */
3693 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3694 }
517bbed9 3695 return 0;
1da177e4 3696}
1da177e4 3697
3218ae14
YG
3698/*
3699 * This kswapd start function will be called by init and node-hot-add.
3700 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3701 */
3702int kswapd_run(int nid)
3703{
3704 pg_data_t *pgdat = NODE_DATA(nid);
3705 int ret = 0;
3706
3707 if (pgdat->kswapd)
3708 return 0;
3709
3710 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3711 if (IS_ERR(pgdat->kswapd)) {
3712 /* failure at boot is fatal */
c6202adf 3713 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3714 pr_err("Failed to start kswapd on node %d\n", nid);
3715 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3716 pgdat->kswapd = NULL;
3218ae14
YG
3717 }
3718 return ret;
3719}
3720
8fe23e05 3721/*
d8adde17 3722 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3723 * hold mem_hotplug_begin/end().
8fe23e05
DR
3724 */
3725void kswapd_stop(int nid)
3726{
3727 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3728
d8adde17 3729 if (kswapd) {
8fe23e05 3730 kthread_stop(kswapd);
d8adde17
JL
3731 NODE_DATA(nid)->kswapd = NULL;
3732 }
8fe23e05
DR
3733}
3734
1da177e4
LT
3735static int __init kswapd_init(void)
3736{
517bbed9 3737 int nid, ret;
69e05944 3738
1da177e4 3739 swap_setup();
48fb2e24 3740 for_each_node_state(nid, N_MEMORY)
3218ae14 3741 kswapd_run(nid);
517bbed9
SAS
3742 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3743 "mm/vmscan:online", kswapd_cpu_online,
3744 NULL);
3745 WARN_ON(ret < 0);
1da177e4
LT
3746 return 0;
3747}
3748
3749module_init(kswapd_init)
9eeff239
CL
3750
3751#ifdef CONFIG_NUMA
3752/*
a5f5f91d 3753 * Node reclaim mode
9eeff239 3754 *
a5f5f91d 3755 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3756 * the watermarks.
9eeff239 3757 */
a5f5f91d 3758int node_reclaim_mode __read_mostly;
9eeff239 3759
1b2ffb78 3760#define RECLAIM_OFF 0
7d03431c 3761#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3762#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3763#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3764
a92f7126 3765/*
a5f5f91d 3766 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3767 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3768 * a zone.
3769 */
a5f5f91d 3770#define NODE_RECLAIM_PRIORITY 4
a92f7126 3771
9614634f 3772/*
a5f5f91d 3773 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3774 * occur.
3775 */
3776int sysctl_min_unmapped_ratio = 1;
3777
0ff38490
CL
3778/*
3779 * If the number of slab pages in a zone grows beyond this percentage then
3780 * slab reclaim needs to occur.
3781 */
3782int sysctl_min_slab_ratio = 5;
3783
11fb9989 3784static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3785{
11fb9989
MG
3786 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3787 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3788 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3789
3790 /*
3791 * It's possible for there to be more file mapped pages than
3792 * accounted for by the pages on the file LRU lists because
3793 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3794 */
3795 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3796}
3797
3798/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3799static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3800{
d031a157
AM
3801 unsigned long nr_pagecache_reclaimable;
3802 unsigned long delta = 0;
90afa5de
MG
3803
3804 /*
95bbc0c7 3805 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3806 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3807 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3808 * a better estimate
3809 */
a5f5f91d
MG
3810 if (node_reclaim_mode & RECLAIM_UNMAP)
3811 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3812 else
a5f5f91d 3813 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3814
3815 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3816 if (!(node_reclaim_mode & RECLAIM_WRITE))
3817 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3818
3819 /* Watch for any possible underflows due to delta */
3820 if (unlikely(delta > nr_pagecache_reclaimable))
3821 delta = nr_pagecache_reclaimable;
3822
3823 return nr_pagecache_reclaimable - delta;
3824}
3825
9eeff239 3826/*
a5f5f91d 3827 * Try to free up some pages from this node through reclaim.
9eeff239 3828 */
a5f5f91d 3829static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3830{
7fb2d46d 3831 /* Minimum pages needed in order to stay on node */
69e05944 3832 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3833 struct task_struct *p = current;
3834 struct reclaim_state reclaim_state;
499118e9 3835 unsigned int noreclaim_flag;
179e9639 3836 struct scan_control sc = {
62b726c1 3837 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 3838 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 3839 .order = order,
a5f5f91d
MG
3840 .priority = NODE_RECLAIM_PRIORITY,
3841 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3842 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3843 .may_swap = 1,
f2f43e56 3844 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 3845 };
9eeff239 3846
9eeff239 3847 cond_resched();
d4f7796e 3848 /*
95bbc0c7 3849 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3850 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3851 * and RECLAIM_UNMAP.
d4f7796e 3852 */
499118e9
VB
3853 noreclaim_flag = memalloc_noreclaim_save();
3854 p->flags |= PF_SWAPWRITE;
d92a8cfc 3855 fs_reclaim_acquire(sc.gfp_mask);
9eeff239
CL
3856 reclaim_state.reclaimed_slab = 0;
3857 p->reclaim_state = &reclaim_state;
c84db23c 3858
a5f5f91d 3859 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3860 /*
3861 * Free memory by calling shrink zone with increasing
3862 * priorities until we have enough memory freed.
3863 */
0ff38490 3864 do {
970a39a3 3865 shrink_node(pgdat, &sc);
9e3b2f8c 3866 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3867 }
c84db23c 3868
9eeff239 3869 p->reclaim_state = NULL;
d92a8cfc 3870 fs_reclaim_release(gfp_mask);
499118e9
VB
3871 current->flags &= ~PF_SWAPWRITE;
3872 memalloc_noreclaim_restore(noreclaim_flag);
a79311c1 3873 return sc.nr_reclaimed >= nr_pages;
9eeff239 3874}
179e9639 3875
a5f5f91d 3876int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3877{
d773ed6b 3878 int ret;
179e9639
AM
3879
3880 /*
a5f5f91d 3881 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3882 * slab pages if we are over the defined limits.
34aa1330 3883 *
9614634f
CL
3884 * A small portion of unmapped file backed pages is needed for
3885 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3886 * thrown out if the node is overallocated. So we do not reclaim
3887 * if less than a specified percentage of the node is used by
9614634f 3888 * unmapped file backed pages.
179e9639 3889 */
a5f5f91d 3890 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 3891 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 3892 return NODE_RECLAIM_FULL;
179e9639
AM
3893
3894 /*
d773ed6b 3895 * Do not scan if the allocation should not be delayed.
179e9639 3896 */
d0164adc 3897 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3898 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3899
3900 /*
a5f5f91d 3901 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3902 * have associated processors. This will favor the local processor
3903 * over remote processors and spread off node memory allocations
3904 * as wide as possible.
3905 */
a5f5f91d
MG
3906 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3907 return NODE_RECLAIM_NOSCAN;
d773ed6b 3908
a5f5f91d
MG
3909 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3910 return NODE_RECLAIM_NOSCAN;
fa5e084e 3911
a5f5f91d
MG
3912 ret = __node_reclaim(pgdat, gfp_mask, order);
3913 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3914
24cf7251
MG
3915 if (!ret)
3916 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3917
d773ed6b 3918 return ret;
179e9639 3919}
9eeff239 3920#endif
894bc310 3921
894bc310
LS
3922/*
3923 * page_evictable - test whether a page is evictable
3924 * @page: the page to test
894bc310
LS
3925 *
3926 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3927 * lists vs unevictable list.
894bc310
LS
3928 *
3929 * Reasons page might not be evictable:
ba9ddf49 3930 * (1) page's mapping marked unevictable
b291f000 3931 * (2) page is part of an mlocked VMA
ba9ddf49 3932 *
894bc310 3933 */
39b5f29a 3934int page_evictable(struct page *page)
894bc310 3935{
39b5f29a 3936 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3937}
89e004ea 3938
85046579 3939#ifdef CONFIG_SHMEM
89e004ea 3940/**
24513264
HD
3941 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3942 * @pages: array of pages to check
3943 * @nr_pages: number of pages to check
89e004ea 3944 *
24513264 3945 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3946 *
3947 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3948 */
24513264 3949void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3950{
925b7673 3951 struct lruvec *lruvec;
785b99fe 3952 struct pglist_data *pgdat = NULL;
24513264
HD
3953 int pgscanned = 0;
3954 int pgrescued = 0;
3955 int i;
89e004ea 3956
24513264
HD
3957 for (i = 0; i < nr_pages; i++) {
3958 struct page *page = pages[i];
785b99fe 3959 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3960
24513264 3961 pgscanned++;
785b99fe
MG
3962 if (pagepgdat != pgdat) {
3963 if (pgdat)
3964 spin_unlock_irq(&pgdat->lru_lock);
3965 pgdat = pagepgdat;
3966 spin_lock_irq(&pgdat->lru_lock);
24513264 3967 }
785b99fe 3968 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3969
24513264
HD
3970 if (!PageLRU(page) || !PageUnevictable(page))
3971 continue;
89e004ea 3972
39b5f29a 3973 if (page_evictable(page)) {
24513264
HD
3974 enum lru_list lru = page_lru_base_type(page);
3975
309381fe 3976 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3977 ClearPageUnevictable(page);
fa9add64
HD
3978 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3979 add_page_to_lru_list(page, lruvec, lru);
24513264 3980 pgrescued++;
89e004ea 3981 }
24513264 3982 }
89e004ea 3983
785b99fe 3984 if (pgdat) {
24513264
HD
3985 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3986 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3987 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3988 }
89e004ea 3989}
85046579 3990#endif /* CONFIG_SHMEM */