nfsd: drop useless LIST_HEAD
[linux-2.6-block.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
bfc6b1ca 88static struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
8d69aaee 101static inline unsigned char swap_count(unsigned char ent)
355cfa73 102{
955c97f0 103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
355cfa73
KH
104}
105
bcd49e86
HY
106/* Reclaim the swap entry anyway if possible */
107#define TTRS_ANYWAY 0x1
108/*
109 * Reclaim the swap entry if there are no more mappings of the
110 * corresponding page
111 */
112#define TTRS_UNMAPPED 0x2
113/* Reclaim the swap entry if swap is getting full*/
114#define TTRS_FULL 0x4
115
efa90a98 116/* returns 1 if swap entry is freed */
bcd49e86
HY
117static int __try_to_reclaim_swap(struct swap_info_struct *si,
118 unsigned long offset, unsigned long flags)
c9e44410 119{
efa90a98 120 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
121 struct page *page;
122 int ret = 0;
123
bcd49e86 124 page = find_get_page(swap_address_space(entry), offset);
c9e44410
KH
125 if (!page)
126 return 0;
127 /*
bcd49e86
HY
128 * When this function is called from scan_swap_map_slots() and it's
129 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
130 * here. We have to use trylock for avoiding deadlock. This is a special
c9e44410
KH
131 * case and you should use try_to_free_swap() with explicit lock_page()
132 * in usual operations.
133 */
134 if (trylock_page(page)) {
bcd49e86
HY
135 if ((flags & TTRS_ANYWAY) ||
136 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
137 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
138 ret = try_to_free_swap(page);
c9e44410
KH
139 unlock_page(page);
140 }
09cbfeaf 141 put_page(page);
c9e44410
KH
142 return ret;
143}
355cfa73 144
6a6ba831
HD
145/*
146 * swapon tell device that all the old swap contents can be discarded,
147 * to allow the swap device to optimize its wear-levelling.
148 */
149static int discard_swap(struct swap_info_struct *si)
150{
151 struct swap_extent *se;
9625a5f2
HD
152 sector_t start_block;
153 sector_t nr_blocks;
6a6ba831
HD
154 int err = 0;
155
9625a5f2
HD
156 /* Do not discard the swap header page! */
157 se = &si->first_swap_extent;
158 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
159 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
160 if (nr_blocks) {
161 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 162 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
163 if (err)
164 return err;
165 cond_resched();
166 }
6a6ba831 167
9625a5f2
HD
168 list_for_each_entry(se, &si->first_swap_extent.list, list) {
169 start_block = se->start_block << (PAGE_SHIFT - 9);
170 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
171
172 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 173 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
174 if (err)
175 break;
176
177 cond_resched();
178 }
179 return err; /* That will often be -EOPNOTSUPP */
180}
181
7992fde7
HD
182/*
183 * swap allocation tell device that a cluster of swap can now be discarded,
184 * to allow the swap device to optimize its wear-levelling.
185 */
186static void discard_swap_cluster(struct swap_info_struct *si,
187 pgoff_t start_page, pgoff_t nr_pages)
188{
189 struct swap_extent *se = si->curr_swap_extent;
190 int found_extent = 0;
191
192 while (nr_pages) {
7992fde7
HD
193 if (se->start_page <= start_page &&
194 start_page < se->start_page + se->nr_pages) {
195 pgoff_t offset = start_page - se->start_page;
196 sector_t start_block = se->start_block + offset;
858a2990 197 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
198
199 if (nr_blocks > nr_pages)
200 nr_blocks = nr_pages;
201 start_page += nr_blocks;
202 nr_pages -= nr_blocks;
203
204 if (!found_extent++)
205 si->curr_swap_extent = se;
206
207 start_block <<= PAGE_SHIFT - 9;
208 nr_blocks <<= PAGE_SHIFT - 9;
209 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 210 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
211 break;
212 }
213
a8ae4991 214 se = list_next_entry(se, list);
7992fde7
HD
215 }
216}
217
38d8b4e6
HY
218#ifdef CONFIG_THP_SWAP
219#define SWAPFILE_CLUSTER HPAGE_PMD_NR
a448f2d0
HY
220
221#define swap_entry_size(size) (size)
38d8b4e6 222#else
048c27fd 223#define SWAPFILE_CLUSTER 256
a448f2d0
HY
224
225/*
226 * Define swap_entry_size() as constant to let compiler to optimize
227 * out some code if !CONFIG_THP_SWAP
228 */
229#define swap_entry_size(size) 1
38d8b4e6 230#endif
048c27fd
HD
231#define LATENCY_LIMIT 256
232
2a8f9449
SL
233static inline void cluster_set_flag(struct swap_cluster_info *info,
234 unsigned int flag)
235{
236 info->flags = flag;
237}
238
239static inline unsigned int cluster_count(struct swap_cluster_info *info)
240{
241 return info->data;
242}
243
244static inline void cluster_set_count(struct swap_cluster_info *info,
245 unsigned int c)
246{
247 info->data = c;
248}
249
250static inline void cluster_set_count_flag(struct swap_cluster_info *info,
251 unsigned int c, unsigned int f)
252{
253 info->flags = f;
254 info->data = c;
255}
256
257static inline unsigned int cluster_next(struct swap_cluster_info *info)
258{
259 return info->data;
260}
261
262static inline void cluster_set_next(struct swap_cluster_info *info,
263 unsigned int n)
264{
265 info->data = n;
266}
267
268static inline void cluster_set_next_flag(struct swap_cluster_info *info,
269 unsigned int n, unsigned int f)
270{
271 info->flags = f;
272 info->data = n;
273}
274
275static inline bool cluster_is_free(struct swap_cluster_info *info)
276{
277 return info->flags & CLUSTER_FLAG_FREE;
278}
279
280static inline bool cluster_is_null(struct swap_cluster_info *info)
281{
282 return info->flags & CLUSTER_FLAG_NEXT_NULL;
283}
284
285static inline void cluster_set_null(struct swap_cluster_info *info)
286{
287 info->flags = CLUSTER_FLAG_NEXT_NULL;
288 info->data = 0;
289}
290
e0709829
HY
291static inline bool cluster_is_huge(struct swap_cluster_info *info)
292{
33ee011e
HY
293 if (IS_ENABLED(CONFIG_THP_SWAP))
294 return info->flags & CLUSTER_FLAG_HUGE;
295 return false;
e0709829
HY
296}
297
298static inline void cluster_clear_huge(struct swap_cluster_info *info)
299{
300 info->flags &= ~CLUSTER_FLAG_HUGE;
301}
302
235b6217
HY
303static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
304 unsigned long offset)
305{
306 struct swap_cluster_info *ci;
307
308 ci = si->cluster_info;
309 if (ci) {
310 ci += offset / SWAPFILE_CLUSTER;
311 spin_lock(&ci->lock);
312 }
313 return ci;
314}
315
316static inline void unlock_cluster(struct swap_cluster_info *ci)
317{
318 if (ci)
319 spin_unlock(&ci->lock);
320}
321
59d98bf3
HY
322/*
323 * Determine the locking method in use for this device. Return
324 * swap_cluster_info if SSD-style cluster-based locking is in place.
325 */
235b6217 326static inline struct swap_cluster_info *lock_cluster_or_swap_info(
59d98bf3 327 struct swap_info_struct *si, unsigned long offset)
235b6217
HY
328{
329 struct swap_cluster_info *ci;
330
59d98bf3 331 /* Try to use fine-grained SSD-style locking if available: */
235b6217 332 ci = lock_cluster(si, offset);
59d98bf3 333 /* Otherwise, fall back to traditional, coarse locking: */
235b6217
HY
334 if (!ci)
335 spin_lock(&si->lock);
336
337 return ci;
338}
339
340static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
341 struct swap_cluster_info *ci)
342{
343 if (ci)
344 unlock_cluster(ci);
345 else
346 spin_unlock(&si->lock);
347}
348
6b534915
HY
349static inline bool cluster_list_empty(struct swap_cluster_list *list)
350{
351 return cluster_is_null(&list->head);
352}
353
354static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
355{
356 return cluster_next(&list->head);
357}
358
359static void cluster_list_init(struct swap_cluster_list *list)
360{
361 cluster_set_null(&list->head);
362 cluster_set_null(&list->tail);
363}
364
365static void cluster_list_add_tail(struct swap_cluster_list *list,
366 struct swap_cluster_info *ci,
367 unsigned int idx)
368{
369 if (cluster_list_empty(list)) {
370 cluster_set_next_flag(&list->head, idx, 0);
371 cluster_set_next_flag(&list->tail, idx, 0);
372 } else {
235b6217 373 struct swap_cluster_info *ci_tail;
6b534915
HY
374 unsigned int tail = cluster_next(&list->tail);
375
235b6217
HY
376 /*
377 * Nested cluster lock, but both cluster locks are
378 * only acquired when we held swap_info_struct->lock
379 */
380 ci_tail = ci + tail;
381 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
382 cluster_set_next(ci_tail, idx);
0ef017d1 383 spin_unlock(&ci_tail->lock);
6b534915
HY
384 cluster_set_next_flag(&list->tail, idx, 0);
385 }
386}
387
388static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
389 struct swap_cluster_info *ci)
390{
391 unsigned int idx;
392
393 idx = cluster_next(&list->head);
394 if (cluster_next(&list->tail) == idx) {
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397 } else
398 cluster_set_next_flag(&list->head,
399 cluster_next(&ci[idx]), 0);
400
401 return idx;
402}
403
815c2c54
SL
404/* Add a cluster to discard list and schedule it to do discard */
405static void swap_cluster_schedule_discard(struct swap_info_struct *si,
406 unsigned int idx)
407{
408 /*
409 * If scan_swap_map() can't find a free cluster, it will check
410 * si->swap_map directly. To make sure the discarding cluster isn't
411 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
412 * will be cleared after discard
413 */
414 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
415 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
416
6b534915 417 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
418
419 schedule_work(&si->discard_work);
420}
421
38d8b4e6
HY
422static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
423{
424 struct swap_cluster_info *ci = si->cluster_info;
425
426 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
427 cluster_list_add_tail(&si->free_clusters, ci, idx);
428}
429
815c2c54
SL
430/*
431 * Doing discard actually. After a cluster discard is finished, the cluster
432 * will be added to free cluster list. caller should hold si->lock.
433*/
434static void swap_do_scheduled_discard(struct swap_info_struct *si)
435{
235b6217 436 struct swap_cluster_info *info, *ci;
815c2c54
SL
437 unsigned int idx;
438
439 info = si->cluster_info;
440
6b534915
HY
441 while (!cluster_list_empty(&si->discard_clusters)) {
442 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
443 spin_unlock(&si->lock);
444
445 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
446 SWAPFILE_CLUSTER);
447
448 spin_lock(&si->lock);
235b6217 449 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 450 __free_cluster(si, idx);
815c2c54
SL
451 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
452 0, SWAPFILE_CLUSTER);
235b6217 453 unlock_cluster(ci);
815c2c54
SL
454 }
455}
456
457static void swap_discard_work(struct work_struct *work)
458{
459 struct swap_info_struct *si;
460
461 si = container_of(work, struct swap_info_struct, discard_work);
462
463 spin_lock(&si->lock);
464 swap_do_scheduled_discard(si);
465 spin_unlock(&si->lock);
466}
467
38d8b4e6
HY
468static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
469{
470 struct swap_cluster_info *ci = si->cluster_info;
471
472 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
473 cluster_list_del_first(&si->free_clusters, ci);
474 cluster_set_count_flag(ci + idx, 0, 0);
475}
476
477static void free_cluster(struct swap_info_struct *si, unsigned long idx)
478{
479 struct swap_cluster_info *ci = si->cluster_info + idx;
480
481 VM_BUG_ON(cluster_count(ci) != 0);
482 /*
483 * If the swap is discardable, prepare discard the cluster
484 * instead of free it immediately. The cluster will be freed
485 * after discard.
486 */
487 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
488 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
489 swap_cluster_schedule_discard(si, idx);
490 return;
491 }
492
493 __free_cluster(si, idx);
494}
495
2a8f9449
SL
496/*
497 * The cluster corresponding to page_nr will be used. The cluster will be
498 * removed from free cluster list and its usage counter will be increased.
499 */
500static void inc_cluster_info_page(struct swap_info_struct *p,
501 struct swap_cluster_info *cluster_info, unsigned long page_nr)
502{
503 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
504
505 if (!cluster_info)
506 return;
38d8b4e6
HY
507 if (cluster_is_free(&cluster_info[idx]))
508 alloc_cluster(p, idx);
2a8f9449
SL
509
510 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
511 cluster_set_count(&cluster_info[idx],
512 cluster_count(&cluster_info[idx]) + 1);
513}
514
515/*
516 * The cluster corresponding to page_nr decreases one usage. If the usage
517 * counter becomes 0, which means no page in the cluster is in using, we can
518 * optionally discard the cluster and add it to free cluster list.
519 */
520static void dec_cluster_info_page(struct swap_info_struct *p,
521 struct swap_cluster_info *cluster_info, unsigned long page_nr)
522{
523 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
524
525 if (!cluster_info)
526 return;
527
528 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
529 cluster_set_count(&cluster_info[idx],
530 cluster_count(&cluster_info[idx]) - 1);
531
38d8b4e6
HY
532 if (cluster_count(&cluster_info[idx]) == 0)
533 free_cluster(p, idx);
2a8f9449
SL
534}
535
536/*
537 * It's possible scan_swap_map() uses a free cluster in the middle of free
538 * cluster list. Avoiding such abuse to avoid list corruption.
539 */
ebc2a1a6
SL
540static bool
541scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
542 unsigned long offset)
543{
ebc2a1a6
SL
544 struct percpu_cluster *percpu_cluster;
545 bool conflict;
546
2a8f9449 547 offset /= SWAPFILE_CLUSTER;
6b534915
HY
548 conflict = !cluster_list_empty(&si->free_clusters) &&
549 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 550 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
551
552 if (!conflict)
553 return false;
554
555 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
556 cluster_set_null(&percpu_cluster->index);
557 return true;
558}
559
560/*
561 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
562 * might involve allocating a new cluster for current CPU too.
563 */
36005bae 564static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
565 unsigned long *offset, unsigned long *scan_base)
566{
567 struct percpu_cluster *cluster;
235b6217 568 struct swap_cluster_info *ci;
ebc2a1a6 569 bool found_free;
235b6217 570 unsigned long tmp, max;
ebc2a1a6
SL
571
572new_cluster:
573 cluster = this_cpu_ptr(si->percpu_cluster);
574 if (cluster_is_null(&cluster->index)) {
6b534915
HY
575 if (!cluster_list_empty(&si->free_clusters)) {
576 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
577 cluster->next = cluster_next(&cluster->index) *
578 SWAPFILE_CLUSTER;
6b534915 579 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
580 /*
581 * we don't have free cluster but have some clusters in
582 * discarding, do discard now and reclaim them
583 */
584 swap_do_scheduled_discard(si);
585 *scan_base = *offset = si->cluster_next;
586 goto new_cluster;
587 } else
36005bae 588 return false;
ebc2a1a6
SL
589 }
590
591 found_free = false;
592
593 /*
594 * Other CPUs can use our cluster if they can't find a free cluster,
595 * check if there is still free entry in the cluster
596 */
597 tmp = cluster->next;
235b6217
HY
598 max = min_t(unsigned long, si->max,
599 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
600 if (tmp >= max) {
601 cluster_set_null(&cluster->index);
602 goto new_cluster;
603 }
604 ci = lock_cluster(si, tmp);
605 while (tmp < max) {
ebc2a1a6
SL
606 if (!si->swap_map[tmp]) {
607 found_free = true;
608 break;
609 }
610 tmp++;
611 }
235b6217 612 unlock_cluster(ci);
ebc2a1a6
SL
613 if (!found_free) {
614 cluster_set_null(&cluster->index);
615 goto new_cluster;
616 }
617 cluster->next = tmp + 1;
618 *offset = tmp;
619 *scan_base = tmp;
36005bae 620 return found_free;
2a8f9449
SL
621}
622
a2468cc9
AL
623static void __del_from_avail_list(struct swap_info_struct *p)
624{
625 int nid;
626
627 for_each_node(nid)
628 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
629}
630
631static void del_from_avail_list(struct swap_info_struct *p)
632{
633 spin_lock(&swap_avail_lock);
634 __del_from_avail_list(p);
635 spin_unlock(&swap_avail_lock);
636}
637
38d8b4e6
HY
638static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
639 unsigned int nr_entries)
640{
641 unsigned int end = offset + nr_entries - 1;
642
643 if (offset == si->lowest_bit)
644 si->lowest_bit += nr_entries;
645 if (end == si->highest_bit)
646 si->highest_bit -= nr_entries;
647 si->inuse_pages += nr_entries;
648 if (si->inuse_pages == si->pages) {
649 si->lowest_bit = si->max;
650 si->highest_bit = 0;
a2468cc9 651 del_from_avail_list(si);
38d8b4e6
HY
652 }
653}
654
a2468cc9
AL
655static void add_to_avail_list(struct swap_info_struct *p)
656{
657 int nid;
658
659 spin_lock(&swap_avail_lock);
660 for_each_node(nid) {
661 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
662 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
663 }
664 spin_unlock(&swap_avail_lock);
665}
666
38d8b4e6
HY
667static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
669{
670 unsigned long end = offset + nr_entries - 1;
671 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
672
673 if (offset < si->lowest_bit)
674 si->lowest_bit = offset;
675 if (end > si->highest_bit) {
676 bool was_full = !si->highest_bit;
677
678 si->highest_bit = end;
a2468cc9
AL
679 if (was_full && (si->flags & SWP_WRITEOK))
680 add_to_avail_list(si);
38d8b4e6
HY
681 }
682 atomic_long_add(nr_entries, &nr_swap_pages);
683 si->inuse_pages -= nr_entries;
684 if (si->flags & SWP_BLKDEV)
685 swap_slot_free_notify =
686 si->bdev->bd_disk->fops->swap_slot_free_notify;
687 else
688 swap_slot_free_notify = NULL;
689 while (offset <= end) {
690 frontswap_invalidate_page(si->type, offset);
691 if (swap_slot_free_notify)
692 swap_slot_free_notify(si->bdev, offset);
693 offset++;
694 }
695}
696
36005bae
TC
697static int scan_swap_map_slots(struct swap_info_struct *si,
698 unsigned char usage, int nr,
699 swp_entry_t slots[])
1da177e4 700{
235b6217 701 struct swap_cluster_info *ci;
ebebbbe9 702 unsigned long offset;
c60aa176 703 unsigned long scan_base;
7992fde7 704 unsigned long last_in_cluster = 0;
048c27fd 705 int latency_ration = LATENCY_LIMIT;
36005bae
TC
706 int n_ret = 0;
707
708 if (nr > SWAP_BATCH)
709 nr = SWAP_BATCH;
7dfad418 710
886bb7e9 711 /*
7dfad418
HD
712 * We try to cluster swap pages by allocating them sequentially
713 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
714 * way, however, we resort to first-free allocation, starting
715 * a new cluster. This prevents us from scattering swap pages
716 * all over the entire swap partition, so that we reduce
717 * overall disk seek times between swap pages. -- sct
718 * But we do now try to find an empty cluster. -Andrea
c60aa176 719 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
720 */
721
52b7efdb 722 si->flags += SWP_SCANNING;
c60aa176 723 scan_base = offset = si->cluster_next;
ebebbbe9 724
ebc2a1a6
SL
725 /* SSD algorithm */
726 if (si->cluster_info) {
36005bae
TC
727 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
728 goto checks;
729 else
730 goto scan;
ebc2a1a6
SL
731 }
732
ebebbbe9
HD
733 if (unlikely(!si->cluster_nr--)) {
734 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
735 si->cluster_nr = SWAPFILE_CLUSTER - 1;
736 goto checks;
737 }
2a8f9449 738
ec8acf20 739 spin_unlock(&si->lock);
7dfad418 740
c60aa176
HD
741 /*
742 * If seek is expensive, start searching for new cluster from
743 * start of partition, to minimize the span of allocated swap.
50088c44
CY
744 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
745 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 746 */
50088c44 747 scan_base = offset = si->lowest_bit;
7dfad418
HD
748 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
749
750 /* Locate the first empty (unaligned) cluster */
751 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 752 if (si->swap_map[offset])
7dfad418
HD
753 last_in_cluster = offset + SWAPFILE_CLUSTER;
754 else if (offset == last_in_cluster) {
ec8acf20 755 spin_lock(&si->lock);
ebebbbe9
HD
756 offset -= SWAPFILE_CLUSTER - 1;
757 si->cluster_next = offset;
758 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
759 goto checks;
760 }
761 if (unlikely(--latency_ration < 0)) {
762 cond_resched();
763 latency_ration = LATENCY_LIMIT;
764 }
765 }
766
767 offset = scan_base;
ec8acf20 768 spin_lock(&si->lock);
ebebbbe9 769 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 770 }
7dfad418 771
ebebbbe9 772checks:
ebc2a1a6 773 if (si->cluster_info) {
36005bae
TC
774 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
775 /* take a break if we already got some slots */
776 if (n_ret)
777 goto done;
778 if (!scan_swap_map_try_ssd_cluster(si, &offset,
779 &scan_base))
780 goto scan;
781 }
ebc2a1a6 782 }
ebebbbe9 783 if (!(si->flags & SWP_WRITEOK))
52b7efdb 784 goto no_page;
7dfad418
HD
785 if (!si->highest_bit)
786 goto no_page;
ebebbbe9 787 if (offset > si->highest_bit)
c60aa176 788 scan_base = offset = si->lowest_bit;
c9e44410 789
235b6217 790 ci = lock_cluster(si, offset);
b73d7fce
HD
791 /* reuse swap entry of cache-only swap if not busy. */
792 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 793 int swap_was_freed;
235b6217 794 unlock_cluster(ci);
ec8acf20 795 spin_unlock(&si->lock);
bcd49e86 796 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
ec8acf20 797 spin_lock(&si->lock);
c9e44410
KH
798 /* entry was freed successfully, try to use this again */
799 if (swap_was_freed)
800 goto checks;
801 goto scan; /* check next one */
802 }
803
235b6217
HY
804 if (si->swap_map[offset]) {
805 unlock_cluster(ci);
36005bae
TC
806 if (!n_ret)
807 goto scan;
808 else
809 goto done;
235b6217 810 }
2872bb2d
HY
811 si->swap_map[offset] = usage;
812 inc_cluster_info_page(si, si->cluster_info, offset);
813 unlock_cluster(ci);
ebebbbe9 814
38d8b4e6 815 swap_range_alloc(si, offset, 1);
ebebbbe9 816 si->cluster_next = offset + 1;
36005bae
TC
817 slots[n_ret++] = swp_entry(si->type, offset);
818
819 /* got enough slots or reach max slots? */
820 if ((n_ret == nr) || (offset >= si->highest_bit))
821 goto done;
822
823 /* search for next available slot */
824
825 /* time to take a break? */
826 if (unlikely(--latency_ration < 0)) {
827 if (n_ret)
828 goto done;
829 spin_unlock(&si->lock);
830 cond_resched();
831 spin_lock(&si->lock);
832 latency_ration = LATENCY_LIMIT;
833 }
834
835 /* try to get more slots in cluster */
836 if (si->cluster_info) {
837 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 goto checks;
839 else
840 goto done;
841 }
842 /* non-ssd case */
843 ++offset;
844
845 /* non-ssd case, still more slots in cluster? */
846 if (si->cluster_nr && !si->swap_map[offset]) {
847 --si->cluster_nr;
848 goto checks;
849 }
7992fde7 850
36005bae
TC
851done:
852 si->flags -= SWP_SCANNING;
853 return n_ret;
7dfad418 854
ebebbbe9 855scan:
ec8acf20 856 spin_unlock(&si->lock);
7dfad418 857 while (++offset <= si->highest_bit) {
52b7efdb 858 if (!si->swap_map[offset]) {
ec8acf20 859 spin_lock(&si->lock);
52b7efdb
HD
860 goto checks;
861 }
c9e44410 862 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 863 spin_lock(&si->lock);
c9e44410
KH
864 goto checks;
865 }
048c27fd
HD
866 if (unlikely(--latency_ration < 0)) {
867 cond_resched();
868 latency_ration = LATENCY_LIMIT;
869 }
7dfad418 870 }
c60aa176 871 offset = si->lowest_bit;
a5998061 872 while (offset < scan_base) {
c60aa176 873 if (!si->swap_map[offset]) {
ec8acf20 874 spin_lock(&si->lock);
c60aa176
HD
875 goto checks;
876 }
c9e44410 877 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 878 spin_lock(&si->lock);
c9e44410
KH
879 goto checks;
880 }
c60aa176
HD
881 if (unlikely(--latency_ration < 0)) {
882 cond_resched();
883 latency_ration = LATENCY_LIMIT;
884 }
a5998061 885 offset++;
c60aa176 886 }
ec8acf20 887 spin_lock(&si->lock);
7dfad418
HD
888
889no_page:
52b7efdb 890 si->flags -= SWP_SCANNING;
36005bae 891 return n_ret;
1da177e4
LT
892}
893
38d8b4e6
HY
894static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
895{
896 unsigned long idx;
897 struct swap_cluster_info *ci;
898 unsigned long offset, i;
899 unsigned char *map;
900
fe5266d5
HY
901 /*
902 * Should not even be attempting cluster allocations when huge
903 * page swap is disabled. Warn and fail the allocation.
904 */
905 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
906 VM_WARN_ON_ONCE(1);
907 return 0;
908 }
909
38d8b4e6
HY
910 if (cluster_list_empty(&si->free_clusters))
911 return 0;
912
913 idx = cluster_list_first(&si->free_clusters);
914 offset = idx * SWAPFILE_CLUSTER;
915 ci = lock_cluster(si, offset);
916 alloc_cluster(si, idx);
e0709829 917 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
918
919 map = si->swap_map + offset;
920 for (i = 0; i < SWAPFILE_CLUSTER; i++)
921 map[i] = SWAP_HAS_CACHE;
922 unlock_cluster(ci);
923 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
924 *slot = swp_entry(si->type, offset);
925
926 return 1;
927}
928
929static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
930{
931 unsigned long offset = idx * SWAPFILE_CLUSTER;
932 struct swap_cluster_info *ci;
933
934 ci = lock_cluster(si, offset);
979aafa5 935 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
38d8b4e6
HY
936 cluster_set_count_flag(ci, 0, 0);
937 free_cluster(si, idx);
938 unlock_cluster(ci);
939 swap_range_free(si, offset, SWAPFILE_CLUSTER);
940}
38d8b4e6 941
36005bae
TC
942static unsigned long scan_swap_map(struct swap_info_struct *si,
943 unsigned char usage)
944{
945 swp_entry_t entry;
946 int n_ret;
947
948 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
949
950 if (n_ret)
951 return swp_offset(entry);
952 else
953 return 0;
954
955}
956
5d5e8f19 957int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1da177e4 958{
5d5e8f19 959 unsigned long size = swap_entry_size(entry_size);
adfab836 960 struct swap_info_struct *si, *next;
36005bae
TC
961 long avail_pgs;
962 int n_ret = 0;
a2468cc9 963 int node;
1da177e4 964
38d8b4e6 965 /* Only single cluster request supported */
5d5e8f19 966 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
38d8b4e6 967
5d5e8f19 968 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
36005bae 969 if (avail_pgs <= 0)
fb4f88dc 970 goto noswap;
36005bae
TC
971
972 if (n_goal > SWAP_BATCH)
973 n_goal = SWAP_BATCH;
974
975 if (n_goal > avail_pgs)
976 n_goal = avail_pgs;
977
5d5e8f19 978 atomic_long_sub(n_goal * size, &nr_swap_pages);
fb4f88dc 979
18ab4d4c
DS
980 spin_lock(&swap_avail_lock);
981
982start_over:
a2468cc9
AL
983 node = numa_node_id();
984 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 985 /* requeue si to after same-priority siblings */
a2468cc9 986 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 987 spin_unlock(&swap_avail_lock);
ec8acf20 988 spin_lock(&si->lock);
adfab836 989 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 990 spin_lock(&swap_avail_lock);
a2468cc9 991 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
992 spin_unlock(&si->lock);
993 goto nextsi;
994 }
995 WARN(!si->highest_bit,
996 "swap_info %d in list but !highest_bit\n",
997 si->type);
998 WARN(!(si->flags & SWP_WRITEOK),
999 "swap_info %d in list but !SWP_WRITEOK\n",
1000 si->type);
a2468cc9 1001 __del_from_avail_list(si);
ec8acf20 1002 spin_unlock(&si->lock);
18ab4d4c 1003 goto nextsi;
ec8acf20 1004 }
5d5e8f19 1005 if (size == SWAPFILE_CLUSTER) {
bc4ae27d 1006 if (!(si->flags & SWP_FS))
f0eea189
HY
1007 n_ret = swap_alloc_cluster(si, swp_entries);
1008 } else
38d8b4e6
HY
1009 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1010 n_goal, swp_entries);
ec8acf20 1011 spin_unlock(&si->lock);
5d5e8f19 1012 if (n_ret || size == SWAPFILE_CLUSTER)
36005bae 1013 goto check_out;
18ab4d4c 1014 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
1015 si->type);
1016
18ab4d4c
DS
1017 spin_lock(&swap_avail_lock);
1018nextsi:
adfab836
DS
1019 /*
1020 * if we got here, it's likely that si was almost full before,
1021 * and since scan_swap_map() can drop the si->lock, multiple
1022 * callers probably all tried to get a page from the same si
18ab4d4c
DS
1023 * and it filled up before we could get one; or, the si filled
1024 * up between us dropping swap_avail_lock and taking si->lock.
1025 * Since we dropped the swap_avail_lock, the swap_avail_head
1026 * list may have been modified; so if next is still in the
36005bae
TC
1027 * swap_avail_head list then try it, otherwise start over
1028 * if we have not gotten any slots.
adfab836 1029 */
a2468cc9 1030 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1031 goto start_over;
1da177e4 1032 }
fb4f88dc 1033
18ab4d4c
DS
1034 spin_unlock(&swap_avail_lock);
1035
36005bae
TC
1036check_out:
1037 if (n_ret < n_goal)
5d5e8f19 1038 atomic_long_add((long)(n_goal - n_ret) * size,
38d8b4e6 1039 &nr_swap_pages);
fb4f88dc 1040noswap:
36005bae
TC
1041 return n_ret;
1042}
1043
2de1a7e4 1044/* The only caller of this function is now suspend routine */
910321ea
HD
1045swp_entry_t get_swap_page_of_type(int type)
1046{
1047 struct swap_info_struct *si;
1048 pgoff_t offset;
1049
910321ea 1050 si = swap_info[type];
ec8acf20 1051 spin_lock(&si->lock);
910321ea 1052 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 1053 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1054 /* This is called for allocating swap entry, not cache */
1055 offset = scan_swap_map(si, 1);
1056 if (offset) {
ec8acf20 1057 spin_unlock(&si->lock);
910321ea
HD
1058 return swp_entry(type, offset);
1059 }
ec8acf20 1060 atomic_long_inc(&nr_swap_pages);
910321ea 1061 }
ec8acf20 1062 spin_unlock(&si->lock);
910321ea
HD
1063 return (swp_entry_t) {0};
1064}
1065
e8c26ab6 1066static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1067{
73c34b6a 1068 struct swap_info_struct *p;
1da177e4
LT
1069 unsigned long offset, type;
1070
1071 if (!entry.val)
1072 goto out;
1073 type = swp_type(entry);
1074 if (type >= nr_swapfiles)
1075 goto bad_nofile;
efa90a98 1076 p = swap_info[type];
1da177e4
LT
1077 if (!(p->flags & SWP_USED))
1078 goto bad_device;
1079 offset = swp_offset(entry);
1080 if (offset >= p->max)
1081 goto bad_offset;
1da177e4
LT
1082 return p;
1083
1da177e4 1084bad_offset:
6a991fc7 1085 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1086 goto out;
1087bad_device:
6a991fc7 1088 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1089 goto out;
1090bad_nofile:
6a991fc7 1091 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1092out:
1093 return NULL;
886bb7e9 1094}
1da177e4 1095
e8c26ab6
TC
1096static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1097{
1098 struct swap_info_struct *p;
1099
1100 p = __swap_info_get(entry);
1101 if (!p)
1102 goto out;
1103 if (!p->swap_map[swp_offset(entry)])
1104 goto bad_free;
1105 return p;
1106
1107bad_free:
1108 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1109 goto out;
1110out:
1111 return NULL;
1112}
1113
235b6217
HY
1114static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1115{
1116 struct swap_info_struct *p;
1117
1118 p = _swap_info_get(entry);
1119 if (p)
1120 spin_lock(&p->lock);
1121 return p;
1122}
1123
7c00bafe
TC
1124static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1125 struct swap_info_struct *q)
1126{
1127 struct swap_info_struct *p;
1128
1129 p = _swap_info_get(entry);
1130
1131 if (p != q) {
1132 if (q != NULL)
1133 spin_unlock(&q->lock);
1134 if (p != NULL)
1135 spin_lock(&p->lock);
1136 }
1137 return p;
1138}
1139
b32d5f32
HY
1140static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1141 unsigned long offset,
1142 unsigned char usage)
1da177e4 1143{
8d69aaee
HD
1144 unsigned char count;
1145 unsigned char has_cache;
235b6217 1146
253d553b 1147 count = p->swap_map[offset];
235b6217 1148
253d553b
HD
1149 has_cache = count & SWAP_HAS_CACHE;
1150 count &= ~SWAP_HAS_CACHE;
355cfa73 1151
253d553b 1152 if (usage == SWAP_HAS_CACHE) {
355cfa73 1153 VM_BUG_ON(!has_cache);
253d553b 1154 has_cache = 0;
aaa46865
HD
1155 } else if (count == SWAP_MAP_SHMEM) {
1156 /*
1157 * Or we could insist on shmem.c using a special
1158 * swap_shmem_free() and free_shmem_swap_and_cache()...
1159 */
1160 count = 0;
570a335b
HD
1161 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1162 if (count == COUNT_CONTINUED) {
1163 if (swap_count_continued(p, offset, count))
1164 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1165 else
1166 count = SWAP_MAP_MAX;
1167 } else
1168 count--;
1169 }
253d553b 1170
253d553b 1171 usage = count | has_cache;
7c00bafe
TC
1172 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1173
b32d5f32
HY
1174 return usage;
1175}
1176
1177static unsigned char __swap_entry_free(struct swap_info_struct *p,
1178 swp_entry_t entry, unsigned char usage)
1179{
1180 struct swap_cluster_info *ci;
1181 unsigned long offset = swp_offset(entry);
1182
1183 ci = lock_cluster_or_swap_info(p, offset);
1184 usage = __swap_entry_free_locked(p, offset, usage);
7c00bafe 1185 unlock_cluster_or_swap_info(p, ci);
10e364da
HY
1186 if (!usage)
1187 free_swap_slot(entry);
7c00bafe
TC
1188
1189 return usage;
1190}
355cfa73 1191
7c00bafe
TC
1192static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1193{
1194 struct swap_cluster_info *ci;
1195 unsigned long offset = swp_offset(entry);
1196 unsigned char count;
1197
1198 ci = lock_cluster(p, offset);
1199 count = p->swap_map[offset];
1200 VM_BUG_ON(count != SWAP_HAS_CACHE);
1201 p->swap_map[offset] = 0;
1202 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1203 unlock_cluster(ci);
1204
38d8b4e6
HY
1205 mem_cgroup_uncharge_swap(entry, 1);
1206 swap_range_free(p, offset, 1);
1da177e4
LT
1207}
1208
1209/*
2de1a7e4 1210 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1211 * is still around or has not been recycled.
1212 */
1213void swap_free(swp_entry_t entry)
1214{
73c34b6a 1215 struct swap_info_struct *p;
1da177e4 1216
235b6217 1217 p = _swap_info_get(entry);
10e364da
HY
1218 if (p)
1219 __swap_entry_free(p, entry, 1);
1da177e4
LT
1220}
1221
cb4b86ba
KH
1222/*
1223 * Called after dropping swapcache to decrease refcnt to swap entries.
1224 */
a448f2d0 1225void put_swap_page(struct page *page, swp_entry_t entry)
38d8b4e6
HY
1226{
1227 unsigned long offset = swp_offset(entry);
1228 unsigned long idx = offset / SWAPFILE_CLUSTER;
1229 struct swap_cluster_info *ci;
1230 struct swap_info_struct *si;
1231 unsigned char *map;
a3aea839
HY
1232 unsigned int i, free_entries = 0;
1233 unsigned char val;
a448f2d0 1234 int size = swap_entry_size(hpage_nr_pages(page));
fe5266d5 1235
a3aea839 1236 si = _swap_info_get(entry);
38d8b4e6
HY
1237 if (!si)
1238 return;
1239
c2343d27 1240 ci = lock_cluster_or_swap_info(si, offset);
a448f2d0 1241 if (size == SWAPFILE_CLUSTER) {
a448f2d0
HY
1242 VM_BUG_ON(!cluster_is_huge(ci));
1243 map = si->swap_map + offset;
1244 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1245 val = map[i];
1246 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1247 if (val == SWAP_HAS_CACHE)
1248 free_entries++;
1249 }
a448f2d0 1250 cluster_clear_huge(ci);
a448f2d0 1251 if (free_entries == SWAPFILE_CLUSTER) {
c2343d27 1252 unlock_cluster_or_swap_info(si, ci);
a448f2d0 1253 spin_lock(&si->lock);
a448f2d0
HY
1254 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1255 swap_free_cluster(si, idx);
1256 spin_unlock(&si->lock);
1257 return;
1258 }
1259 }
c2343d27
HY
1260 for (i = 0; i < size; i++, entry.val++) {
1261 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1262 unlock_cluster_or_swap_info(si, ci);
1263 free_swap_slot(entry);
1264 if (i == size - 1)
1265 return;
1266 lock_cluster_or_swap_info(si, offset);
a3aea839
HY
1267 }
1268 }
c2343d27 1269 unlock_cluster_or_swap_info(si, ci);
38d8b4e6 1270}
59807685 1271
fe5266d5 1272#ifdef CONFIG_THP_SWAP
59807685
HY
1273int split_swap_cluster(swp_entry_t entry)
1274{
1275 struct swap_info_struct *si;
1276 struct swap_cluster_info *ci;
1277 unsigned long offset = swp_offset(entry);
1278
1279 si = _swap_info_get(entry);
1280 if (!si)
1281 return -EBUSY;
1282 ci = lock_cluster(si, offset);
1283 cluster_clear_huge(ci);
1284 unlock_cluster(ci);
1285 return 0;
1286}
fe5266d5 1287#endif
38d8b4e6 1288
155b5f88
HY
1289static int swp_entry_cmp(const void *ent1, const void *ent2)
1290{
1291 const swp_entry_t *e1 = ent1, *e2 = ent2;
1292
1293 return (int)swp_type(*e1) - (int)swp_type(*e2);
1294}
1295
7c00bafe
TC
1296void swapcache_free_entries(swp_entry_t *entries, int n)
1297{
1298 struct swap_info_struct *p, *prev;
1299 int i;
1300
1301 if (n <= 0)
1302 return;
1303
1304 prev = NULL;
1305 p = NULL;
155b5f88
HY
1306
1307 /*
1308 * Sort swap entries by swap device, so each lock is only taken once.
1309 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1310 * so low that it isn't necessary to optimize further.
1311 */
1312 if (nr_swapfiles > 1)
1313 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1314 for (i = 0; i < n; ++i) {
1315 p = swap_info_get_cont(entries[i], prev);
1316 if (p)
1317 swap_entry_free(p, entries[i]);
7c00bafe
TC
1318 prev = p;
1319 }
235b6217 1320 if (p)
7c00bafe 1321 spin_unlock(&p->lock);
cb4b86ba
KH
1322}
1323
1da177e4 1324/*
c475a8ab 1325 * How many references to page are currently swapped out?
570a335b
HD
1326 * This does not give an exact answer when swap count is continued,
1327 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1328 */
bde05d1c 1329int page_swapcount(struct page *page)
1da177e4 1330{
c475a8ab
HD
1331 int count = 0;
1332 struct swap_info_struct *p;
235b6217 1333 struct swap_cluster_info *ci;
1da177e4 1334 swp_entry_t entry;
235b6217 1335 unsigned long offset;
1da177e4 1336
4c21e2f2 1337 entry.val = page_private(page);
235b6217 1338 p = _swap_info_get(entry);
1da177e4 1339 if (p) {
235b6217
HY
1340 offset = swp_offset(entry);
1341 ci = lock_cluster_or_swap_info(p, offset);
1342 count = swap_count(p->swap_map[offset]);
1343 unlock_cluster_or_swap_info(p, ci);
1da177e4 1344 }
c475a8ab 1345 return count;
1da177e4
LT
1346}
1347
aa8d22a1
MK
1348int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1349{
1350 pgoff_t offset = swp_offset(entry);
1351
1352 return swap_count(si->swap_map[offset]);
1353}
1354
322b8afe
HY
1355static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1356{
1357 int count = 0;
1358 pgoff_t offset = swp_offset(entry);
1359 struct swap_cluster_info *ci;
1360
1361 ci = lock_cluster_or_swap_info(si, offset);
1362 count = swap_count(si->swap_map[offset]);
1363 unlock_cluster_or_swap_info(si, ci);
1364 return count;
1365}
1366
e8c26ab6
TC
1367/*
1368 * How many references to @entry are currently swapped out?
1369 * This does not give an exact answer when swap count is continued,
1370 * but does include the high COUNT_CONTINUED flag to allow for that.
1371 */
1372int __swp_swapcount(swp_entry_t entry)
1373{
1374 int count = 0;
e8c26ab6 1375 struct swap_info_struct *si;
e8c26ab6
TC
1376
1377 si = __swap_info_get(entry);
322b8afe
HY
1378 if (si)
1379 count = swap_swapcount(si, entry);
e8c26ab6
TC
1380 return count;
1381}
1382
8334b962
MK
1383/*
1384 * How many references to @entry are currently swapped out?
1385 * This considers COUNT_CONTINUED so it returns exact answer.
1386 */
1387int swp_swapcount(swp_entry_t entry)
1388{
1389 int count, tmp_count, n;
1390 struct swap_info_struct *p;
235b6217 1391 struct swap_cluster_info *ci;
8334b962
MK
1392 struct page *page;
1393 pgoff_t offset;
1394 unsigned char *map;
1395
235b6217 1396 p = _swap_info_get(entry);
8334b962
MK
1397 if (!p)
1398 return 0;
1399
235b6217
HY
1400 offset = swp_offset(entry);
1401
1402 ci = lock_cluster_or_swap_info(p, offset);
1403
1404 count = swap_count(p->swap_map[offset]);
8334b962
MK
1405 if (!(count & COUNT_CONTINUED))
1406 goto out;
1407
1408 count &= ~COUNT_CONTINUED;
1409 n = SWAP_MAP_MAX + 1;
1410
8334b962
MK
1411 page = vmalloc_to_page(p->swap_map + offset);
1412 offset &= ~PAGE_MASK;
1413 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1414
1415 do {
a8ae4991 1416 page = list_next_entry(page, lru);
8334b962
MK
1417 map = kmap_atomic(page);
1418 tmp_count = map[offset];
1419 kunmap_atomic(map);
1420
1421 count += (tmp_count & ~COUNT_CONTINUED) * n;
1422 n *= (SWAP_CONT_MAX + 1);
1423 } while (tmp_count & COUNT_CONTINUED);
1424out:
235b6217 1425 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1426 return count;
1427}
1428
e0709829
HY
1429static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1430 swp_entry_t entry)
1431{
1432 struct swap_cluster_info *ci;
1433 unsigned char *map = si->swap_map;
1434 unsigned long roffset = swp_offset(entry);
1435 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1436 int i;
1437 bool ret = false;
1438
1439 ci = lock_cluster_or_swap_info(si, offset);
1440 if (!ci || !cluster_is_huge(ci)) {
afa4711e 1441 if (swap_count(map[roffset]))
e0709829
HY
1442 ret = true;
1443 goto unlock_out;
1444 }
1445 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
afa4711e 1446 if (swap_count(map[offset + i])) {
e0709829
HY
1447 ret = true;
1448 break;
1449 }
1450 }
1451unlock_out:
1452 unlock_cluster_or_swap_info(si, ci);
1453 return ret;
1454}
1455
1456static bool page_swapped(struct page *page)
1457{
1458 swp_entry_t entry;
1459 struct swap_info_struct *si;
1460
fe5266d5 1461 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
e0709829
HY
1462 return page_swapcount(page) != 0;
1463
1464 page = compound_head(page);
1465 entry.val = page_private(page);
1466 si = _swap_info_get(entry);
1467 if (si)
1468 return swap_page_trans_huge_swapped(si, entry);
1469 return false;
1470}
ba3c4ce6
HY
1471
1472static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1473 int *total_swapcount)
1474{
1475 int i, map_swapcount, _total_mapcount, _total_swapcount;
1476 unsigned long offset = 0;
1477 struct swap_info_struct *si;
1478 struct swap_cluster_info *ci = NULL;
1479 unsigned char *map = NULL;
1480 int mapcount, swapcount = 0;
1481
1482 /* hugetlbfs shouldn't call it */
1483 VM_BUG_ON_PAGE(PageHuge(page), page);
1484
fe5266d5
HY
1485 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1486 mapcount = page_trans_huge_mapcount(page, total_mapcount);
ba3c4ce6
HY
1487 if (PageSwapCache(page))
1488 swapcount = page_swapcount(page);
1489 if (total_swapcount)
1490 *total_swapcount = swapcount;
1491 return mapcount + swapcount;
1492 }
1493
1494 page = compound_head(page);
1495
1496 _total_mapcount = _total_swapcount = map_swapcount = 0;
1497 if (PageSwapCache(page)) {
1498 swp_entry_t entry;
1499
1500 entry.val = page_private(page);
1501 si = _swap_info_get(entry);
1502 if (si) {
1503 map = si->swap_map;
1504 offset = swp_offset(entry);
1505 }
1506 }
1507 if (map)
1508 ci = lock_cluster(si, offset);
1509 for (i = 0; i < HPAGE_PMD_NR; i++) {
1510 mapcount = atomic_read(&page[i]._mapcount) + 1;
1511 _total_mapcount += mapcount;
1512 if (map) {
1513 swapcount = swap_count(map[offset + i]);
1514 _total_swapcount += swapcount;
1515 }
1516 map_swapcount = max(map_swapcount, mapcount + swapcount);
1517 }
1518 unlock_cluster(ci);
1519 if (PageDoubleMap(page)) {
1520 map_swapcount -= 1;
1521 _total_mapcount -= HPAGE_PMD_NR;
1522 }
1523 mapcount = compound_mapcount(page);
1524 map_swapcount += mapcount;
1525 _total_mapcount += mapcount;
1526 if (total_mapcount)
1527 *total_mapcount = _total_mapcount;
1528 if (total_swapcount)
1529 *total_swapcount = _total_swapcount;
1530
1531 return map_swapcount;
1532}
e0709829 1533
1da177e4 1534/*
7b1fe597
HD
1535 * We can write to an anon page without COW if there are no other references
1536 * to it. And as a side-effect, free up its swap: because the old content
1537 * on disk will never be read, and seeking back there to write new content
1538 * later would only waste time away from clustering.
6d0a07ed 1539 *
ba3c4ce6 1540 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1541 * reuse_swap_page() returns false, but it may be always overwritten
1542 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1543 */
ba3c4ce6 1544bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1545{
ba3c4ce6 1546 int count, total_mapcount, total_swapcount;
c475a8ab 1547
309381fe 1548 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1549 if (unlikely(PageKsm(page)))
6d0a07ed 1550 return false;
ba3c4ce6
HY
1551 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1552 &total_swapcount);
1553 if (total_map_swapcount)
1554 *total_map_swapcount = total_mapcount + total_swapcount;
1555 if (count == 1 && PageSwapCache(page) &&
1556 (likely(!PageTransCompound(page)) ||
1557 /* The remaining swap count will be freed soon */
1558 total_swapcount == page_swapcount(page))) {
f0571429 1559 if (!PageWriteback(page)) {
ba3c4ce6 1560 page = compound_head(page);
7b1fe597
HD
1561 delete_from_swap_cache(page);
1562 SetPageDirty(page);
f0571429
MK
1563 } else {
1564 swp_entry_t entry;
1565 struct swap_info_struct *p;
1566
1567 entry.val = page_private(page);
1568 p = swap_info_get(entry);
1569 if (p->flags & SWP_STABLE_WRITES) {
1570 spin_unlock(&p->lock);
1571 return false;
1572 }
1573 spin_unlock(&p->lock);
7b1fe597
HD
1574 }
1575 }
ba3c4ce6 1576
5ad64688 1577 return count <= 1;
1da177e4
LT
1578}
1579
1580/*
a2c43eed
HD
1581 * If swap is getting full, or if there are no more mappings of this page,
1582 * then try_to_free_swap is called to free its swap space.
1da177e4 1583 */
a2c43eed 1584int try_to_free_swap(struct page *page)
1da177e4 1585{
309381fe 1586 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1587
1588 if (!PageSwapCache(page))
1589 return 0;
1590 if (PageWriteback(page))
1591 return 0;
e0709829 1592 if (page_swapped(page))
1da177e4
LT
1593 return 0;
1594
b73d7fce
HD
1595 /*
1596 * Once hibernation has begun to create its image of memory,
1597 * there's a danger that one of the calls to try_to_free_swap()
1598 * - most probably a call from __try_to_reclaim_swap() while
1599 * hibernation is allocating its own swap pages for the image,
1600 * but conceivably even a call from memory reclaim - will free
1601 * the swap from a page which has already been recorded in the
1602 * image as a clean swapcache page, and then reuse its swap for
1603 * another page of the image. On waking from hibernation, the
1604 * original page might be freed under memory pressure, then
1605 * later read back in from swap, now with the wrong data.
1606 *
2de1a7e4 1607 * Hibernation suspends storage while it is writing the image
f90ac398 1608 * to disk so check that here.
b73d7fce 1609 */
f90ac398 1610 if (pm_suspended_storage())
b73d7fce
HD
1611 return 0;
1612
e0709829 1613 page = compound_head(page);
a2c43eed
HD
1614 delete_from_swap_cache(page);
1615 SetPageDirty(page);
1616 return 1;
68a22394
RR
1617}
1618
1da177e4
LT
1619/*
1620 * Free the swap entry like above, but also try to
1621 * free the page cache entry if it is the last user.
1622 */
2509ef26 1623int free_swap_and_cache(swp_entry_t entry)
1da177e4 1624{
2509ef26 1625 struct swap_info_struct *p;
7c00bafe 1626 unsigned char count;
1da177e4 1627
a7420aa5 1628 if (non_swap_entry(entry))
2509ef26 1629 return 1;
0697212a 1630
7c00bafe 1631 p = _swap_info_get(entry);
1da177e4 1632 if (p) {
7c00bafe 1633 count = __swap_entry_free(p, entry, 1);
e0709829 1634 if (count == SWAP_HAS_CACHE &&
bcd49e86
HY
1635 !swap_page_trans_huge_swapped(p, entry))
1636 __try_to_reclaim_swap(p, swp_offset(entry),
1637 TTRS_UNMAPPED | TTRS_FULL);
1da177e4 1638 }
2509ef26 1639 return p != NULL;
1da177e4
LT
1640}
1641
b0cb1a19 1642#ifdef CONFIG_HIBERNATION
f577eb30 1643/*
915bae9e 1644 * Find the swap type that corresponds to given device (if any).
f577eb30 1645 *
915bae9e
RW
1646 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1647 * from 0, in which the swap header is expected to be located.
1648 *
1649 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1650 */
7bf23687 1651int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1652{
915bae9e 1653 struct block_device *bdev = NULL;
efa90a98 1654 int type;
f577eb30 1655
915bae9e
RW
1656 if (device)
1657 bdev = bdget(device);
1658
f577eb30 1659 spin_lock(&swap_lock);
efa90a98
HD
1660 for (type = 0; type < nr_swapfiles; type++) {
1661 struct swap_info_struct *sis = swap_info[type];
f577eb30 1662
915bae9e 1663 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1664 continue;
b6b5bce3 1665
915bae9e 1666 if (!bdev) {
7bf23687 1667 if (bdev_p)
dddac6a7 1668 *bdev_p = bdgrab(sis->bdev);
7bf23687 1669
6e1819d6 1670 spin_unlock(&swap_lock);
efa90a98 1671 return type;
6e1819d6 1672 }
915bae9e 1673 if (bdev == sis->bdev) {
9625a5f2 1674 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1675
915bae9e 1676 if (se->start_block == offset) {
7bf23687 1677 if (bdev_p)
dddac6a7 1678 *bdev_p = bdgrab(sis->bdev);
7bf23687 1679
915bae9e
RW
1680 spin_unlock(&swap_lock);
1681 bdput(bdev);
efa90a98 1682 return type;
915bae9e 1683 }
f577eb30
RW
1684 }
1685 }
1686 spin_unlock(&swap_lock);
915bae9e
RW
1687 if (bdev)
1688 bdput(bdev);
1689
f577eb30
RW
1690 return -ENODEV;
1691}
1692
73c34b6a
HD
1693/*
1694 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1695 * corresponding to given index in swap_info (swap type).
1696 */
1697sector_t swapdev_block(int type, pgoff_t offset)
1698{
1699 struct block_device *bdev;
1700
1701 if ((unsigned int)type >= nr_swapfiles)
1702 return 0;
1703 if (!(swap_info[type]->flags & SWP_WRITEOK))
1704 return 0;
d4906e1a 1705 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1706}
1707
f577eb30
RW
1708/*
1709 * Return either the total number of swap pages of given type, or the number
1710 * of free pages of that type (depending on @free)
1711 *
1712 * This is needed for software suspend
1713 */
1714unsigned int count_swap_pages(int type, int free)
1715{
1716 unsigned int n = 0;
1717
efa90a98
HD
1718 spin_lock(&swap_lock);
1719 if ((unsigned int)type < nr_swapfiles) {
1720 struct swap_info_struct *sis = swap_info[type];
1721
ec8acf20 1722 spin_lock(&sis->lock);
efa90a98
HD
1723 if (sis->flags & SWP_WRITEOK) {
1724 n = sis->pages;
f577eb30 1725 if (free)
efa90a98 1726 n -= sis->inuse_pages;
f577eb30 1727 }
ec8acf20 1728 spin_unlock(&sis->lock);
f577eb30 1729 }
efa90a98 1730 spin_unlock(&swap_lock);
f577eb30
RW
1731 return n;
1732}
73c34b6a 1733#endif /* CONFIG_HIBERNATION */
f577eb30 1734
9f8bdb3f 1735static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1736{
9f8bdb3f 1737 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1738}
1739
1da177e4 1740/*
72866f6f
HD
1741 * No need to decide whether this PTE shares the swap entry with others,
1742 * just let do_wp_page work it out if a write is requested later - to
1743 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1744 */
044d66c1 1745static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1746 unsigned long addr, swp_entry_t entry, struct page *page)
1747{
9e16b7fb 1748 struct page *swapcache;
72835c86 1749 struct mem_cgroup *memcg;
044d66c1
HD
1750 spinlock_t *ptl;
1751 pte_t *pte;
1752 int ret = 1;
1753
9e16b7fb
HD
1754 swapcache = page;
1755 page = ksm_might_need_to_copy(page, vma, addr);
1756 if (unlikely(!page))
1757 return -ENOMEM;
1758
f627c2f5
KS
1759 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1760 &memcg, false)) {
044d66c1 1761 ret = -ENOMEM;
85d9fc89
KH
1762 goto out_nolock;
1763 }
044d66c1
HD
1764
1765 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1766 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1767 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1768 ret = 0;
1769 goto out;
1770 }
8a9f3ccd 1771
b084d435 1772 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1773 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1774 get_page(page);
1775 set_pte_at(vma->vm_mm, addr, pte,
1776 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1777 if (page == swapcache) {
d281ee61 1778 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1779 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1780 } else { /* ksm created a completely new copy */
d281ee61 1781 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1782 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1783 lru_cache_add_active_or_unevictable(page, vma);
1784 }
1da177e4
LT
1785 swap_free(entry);
1786 /*
1787 * Move the page to the active list so it is not
1788 * immediately swapped out again after swapon.
1789 */
1790 activate_page(page);
044d66c1
HD
1791out:
1792 pte_unmap_unlock(pte, ptl);
85d9fc89 1793out_nolock:
9e16b7fb
HD
1794 if (page != swapcache) {
1795 unlock_page(page);
1796 put_page(page);
1797 }
044d66c1 1798 return ret;
1da177e4
LT
1799}
1800
1801static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1802 unsigned long addr, unsigned long end,
1803 swp_entry_t entry, struct page *page)
1804{
1da177e4 1805 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1806 pte_t *pte;
8a9f3ccd 1807 int ret = 0;
1da177e4 1808
044d66c1
HD
1809 /*
1810 * We don't actually need pte lock while scanning for swp_pte: since
1811 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1812 * page table while we're scanning; though it could get zapped, and on
1813 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1814 * of unmatched parts which look like swp_pte, so unuse_pte must
1815 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1816 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1817 */
1818 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1819 do {
1820 /*
1821 * swapoff spends a _lot_ of time in this loop!
1822 * Test inline before going to call unuse_pte.
1823 */
9f8bdb3f 1824 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1825 pte_unmap(pte);
1826 ret = unuse_pte(vma, pmd, addr, entry, page);
1827 if (ret)
1828 goto out;
1829 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1830 }
1831 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1832 pte_unmap(pte - 1);
1833out:
8a9f3ccd 1834 return ret;
1da177e4
LT
1835}
1836
1837static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1838 unsigned long addr, unsigned long end,
1839 swp_entry_t entry, struct page *page)
1840{
1841 pmd_t *pmd;
1842 unsigned long next;
8a9f3ccd 1843 int ret;
1da177e4
LT
1844
1845 pmd = pmd_offset(pud, addr);
1846 do {
dc644a07 1847 cond_resched();
1da177e4 1848 next = pmd_addr_end(addr, end);
1a5a9906 1849 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1850 continue;
8a9f3ccd
BS
1851 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1852 if (ret)
1853 return ret;
1da177e4
LT
1854 } while (pmd++, addr = next, addr != end);
1855 return 0;
1856}
1857
c2febafc 1858static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1859 unsigned long addr, unsigned long end,
1860 swp_entry_t entry, struct page *page)
1861{
1862 pud_t *pud;
1863 unsigned long next;
8a9f3ccd 1864 int ret;
1da177e4 1865
c2febafc 1866 pud = pud_offset(p4d, addr);
1da177e4
LT
1867 do {
1868 next = pud_addr_end(addr, end);
1869 if (pud_none_or_clear_bad(pud))
1870 continue;
8a9f3ccd
BS
1871 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1872 if (ret)
1873 return ret;
1da177e4
LT
1874 } while (pud++, addr = next, addr != end);
1875 return 0;
1876}
1877
c2febafc
KS
1878static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1879 unsigned long addr, unsigned long end,
1880 swp_entry_t entry, struct page *page)
1881{
1882 p4d_t *p4d;
1883 unsigned long next;
1884 int ret;
1885
1886 p4d = p4d_offset(pgd, addr);
1887 do {
1888 next = p4d_addr_end(addr, end);
1889 if (p4d_none_or_clear_bad(p4d))
1890 continue;
1891 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1892 if (ret)
1893 return ret;
1894 } while (p4d++, addr = next, addr != end);
1895 return 0;
1896}
1897
1da177e4
LT
1898static int unuse_vma(struct vm_area_struct *vma,
1899 swp_entry_t entry, struct page *page)
1900{
1901 pgd_t *pgd;
1902 unsigned long addr, end, next;
8a9f3ccd 1903 int ret;
1da177e4 1904
3ca7b3c5 1905 if (page_anon_vma(page)) {
1da177e4
LT
1906 addr = page_address_in_vma(page, vma);
1907 if (addr == -EFAULT)
1908 return 0;
1909 else
1910 end = addr + PAGE_SIZE;
1911 } else {
1912 addr = vma->vm_start;
1913 end = vma->vm_end;
1914 }
1915
1916 pgd = pgd_offset(vma->vm_mm, addr);
1917 do {
1918 next = pgd_addr_end(addr, end);
1919 if (pgd_none_or_clear_bad(pgd))
1920 continue;
c2febafc 1921 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1922 if (ret)
1923 return ret;
1da177e4
LT
1924 } while (pgd++, addr = next, addr != end);
1925 return 0;
1926}
1927
1928static int unuse_mm(struct mm_struct *mm,
1929 swp_entry_t entry, struct page *page)
1930{
1931 struct vm_area_struct *vma;
8a9f3ccd 1932 int ret = 0;
1da177e4
LT
1933
1934 if (!down_read_trylock(&mm->mmap_sem)) {
1935 /*
7d03431c
FLVC
1936 * Activate page so shrink_inactive_list is unlikely to unmap
1937 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1938 */
c475a8ab 1939 activate_page(page);
1da177e4
LT
1940 unlock_page(page);
1941 down_read(&mm->mmap_sem);
1942 lock_page(page);
1943 }
1da177e4 1944 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1945 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1946 break;
dc644a07 1947 cond_resched();
1da177e4 1948 }
1da177e4 1949 up_read(&mm->mmap_sem);
8a9f3ccd 1950 return (ret < 0)? ret: 0;
1da177e4
LT
1951}
1952
1953/*
38b5faf4
DM
1954 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1955 * from current position to next entry still in use.
1da177e4
LT
1956 * Recycle to start on reaching the end, returning 0 when empty.
1957 */
6eb396dc 1958static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1959 unsigned int prev, bool frontswap)
1da177e4 1960{
6eb396dc
HD
1961 unsigned int max = si->max;
1962 unsigned int i = prev;
8d69aaee 1963 unsigned char count;
1da177e4
LT
1964
1965 /*
5d337b91 1966 * No need for swap_lock here: we're just looking
1da177e4
LT
1967 * for whether an entry is in use, not modifying it; false
1968 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1969 * allocations from this area (while holding swap_lock).
1da177e4
LT
1970 */
1971 for (;;) {
1972 if (++i >= max) {
1973 if (!prev) {
1974 i = 0;
1975 break;
1976 }
1977 /*
1978 * No entries in use at top of swap_map,
1979 * loop back to start and recheck there.
1980 */
1981 max = prev + 1;
1982 prev = 0;
1983 i = 1;
1984 }
4db0c3c2 1985 count = READ_ONCE(si->swap_map[i]);
355cfa73 1986 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1987 if (!frontswap || frontswap_test(si, i))
1988 break;
1989 if ((i % LATENCY_LIMIT) == 0)
1990 cond_resched();
1da177e4
LT
1991 }
1992 return i;
1993}
1994
1995/*
1996 * We completely avoid races by reading each swap page in advance,
1997 * and then search for the process using it. All the necessary
1998 * page table adjustments can then be made atomically.
38b5faf4
DM
1999 *
2000 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2001 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2002 */
38b5faf4
DM
2003int try_to_unuse(unsigned int type, bool frontswap,
2004 unsigned long pages_to_unuse)
1da177e4 2005{
efa90a98 2006 struct swap_info_struct *si = swap_info[type];
1da177e4 2007 struct mm_struct *start_mm;
edfe23da
SL
2008 volatile unsigned char *swap_map; /* swap_map is accessed without
2009 * locking. Mark it as volatile
2010 * to prevent compiler doing
2011 * something odd.
2012 */
8d69aaee 2013 unsigned char swcount;
1da177e4
LT
2014 struct page *page;
2015 swp_entry_t entry;
6eb396dc 2016 unsigned int i = 0;
1da177e4 2017 int retval = 0;
1da177e4
LT
2018
2019 /*
2020 * When searching mms for an entry, a good strategy is to
2021 * start at the first mm we freed the previous entry from
2022 * (though actually we don't notice whether we or coincidence
2023 * freed the entry). Initialize this start_mm with a hold.
2024 *
2025 * A simpler strategy would be to start at the last mm we
2026 * freed the previous entry from; but that would take less
2027 * advantage of mmlist ordering, which clusters forked mms
2028 * together, child after parent. If we race with dup_mmap(), we
2029 * prefer to resolve parent before child, lest we miss entries
2030 * duplicated after we scanned child: using last mm would invert
570a335b 2031 * that.
1da177e4
LT
2032 */
2033 start_mm = &init_mm;
3fce371b 2034 mmget(&init_mm);
1da177e4
LT
2035
2036 /*
2037 * Keep on scanning until all entries have gone. Usually,
2038 * one pass through swap_map is enough, but not necessarily:
2039 * there are races when an instance of an entry might be missed.
2040 */
38b5faf4 2041 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2042 if (signal_pending(current)) {
2043 retval = -EINTR;
2044 break;
2045 }
2046
886bb7e9 2047 /*
1da177e4
LT
2048 * Get a page for the entry, using the existing swap
2049 * cache page if there is one. Otherwise, get a clean
886bb7e9 2050 * page and read the swap into it.
1da177e4
LT
2051 */
2052 swap_map = &si->swap_map[i];
2053 entry = swp_entry(type, i);
02098fea 2054 page = read_swap_cache_async(entry,
23955622 2055 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2056 if (!page) {
2057 /*
2058 * Either swap_duplicate() failed because entry
2059 * has been freed independently, and will not be
2060 * reused since sys_swapoff() already disabled
2061 * allocation from here, or alloc_page() failed.
2062 */
edfe23da
SL
2063 swcount = *swap_map;
2064 /*
2065 * We don't hold lock here, so the swap entry could be
2066 * SWAP_MAP_BAD (when the cluster is discarding).
2067 * Instead of fail out, We can just skip the swap
2068 * entry because swapoff will wait for discarding
2069 * finish anyway.
2070 */
2071 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2072 continue;
2073 retval = -ENOMEM;
2074 break;
2075 }
2076
2077 /*
2078 * Don't hold on to start_mm if it looks like exiting.
2079 */
2080 if (atomic_read(&start_mm->mm_users) == 1) {
2081 mmput(start_mm);
2082 start_mm = &init_mm;
3fce371b 2083 mmget(&init_mm);
1da177e4
LT
2084 }
2085
2086 /*
2087 * Wait for and lock page. When do_swap_page races with
2088 * try_to_unuse, do_swap_page can handle the fault much
2089 * faster than try_to_unuse can locate the entry. This
2090 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2091 * defer to do_swap_page in such a case - in some tests,
2092 * do_swap_page and try_to_unuse repeatedly compete.
2093 */
2094 wait_on_page_locked(page);
2095 wait_on_page_writeback(page);
2096 lock_page(page);
2097 wait_on_page_writeback(page);
2098
2099 /*
2100 * Remove all references to entry.
1da177e4 2101 */
1da177e4 2102 swcount = *swap_map;
aaa46865
HD
2103 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2104 retval = shmem_unuse(entry, page);
2105 /* page has already been unlocked and released */
2106 if (retval < 0)
2107 break;
2108 continue;
1da177e4 2109 }
aaa46865
HD
2110 if (swap_count(swcount) && start_mm != &init_mm)
2111 retval = unuse_mm(start_mm, entry, page);
2112
355cfa73 2113 if (swap_count(*swap_map)) {
1da177e4
LT
2114 int set_start_mm = (*swap_map >= swcount);
2115 struct list_head *p = &start_mm->mmlist;
2116 struct mm_struct *new_start_mm = start_mm;
2117 struct mm_struct *prev_mm = start_mm;
2118 struct mm_struct *mm;
2119
3fce371b
VN
2120 mmget(new_start_mm);
2121 mmget(prev_mm);
1da177e4 2122 spin_lock(&mmlist_lock);
aaa46865 2123 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2124 (p = p->next) != &start_mm->mmlist) {
2125 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2126 if (!mmget_not_zero(mm))
1da177e4 2127 continue;
1da177e4
LT
2128 spin_unlock(&mmlist_lock);
2129 mmput(prev_mm);
2130 prev_mm = mm;
2131
2132 cond_resched();
2133
2134 swcount = *swap_map;
355cfa73 2135 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2136 ;
aaa46865 2137 else if (mm == &init_mm)
1da177e4 2138 set_start_mm = 1;
aaa46865 2139 else
1da177e4 2140 retval = unuse_mm(mm, entry, page);
355cfa73 2141
32c5fc10 2142 if (set_start_mm && *swap_map < swcount) {
1da177e4 2143 mmput(new_start_mm);
3fce371b 2144 mmget(mm);
1da177e4
LT
2145 new_start_mm = mm;
2146 set_start_mm = 0;
2147 }
2148 spin_lock(&mmlist_lock);
2149 }
2150 spin_unlock(&mmlist_lock);
2151 mmput(prev_mm);
2152 mmput(start_mm);
2153 start_mm = new_start_mm;
2154 }
2155 if (retval) {
2156 unlock_page(page);
09cbfeaf 2157 put_page(page);
1da177e4
LT
2158 break;
2159 }
2160
1da177e4
LT
2161 /*
2162 * If a reference remains (rare), we would like to leave
2163 * the page in the swap cache; but try_to_unmap could
2164 * then re-duplicate the entry once we drop page lock,
2165 * so we might loop indefinitely; also, that page could
2166 * not be swapped out to other storage meanwhile. So:
2167 * delete from cache even if there's another reference,
2168 * after ensuring that the data has been saved to disk -
2169 * since if the reference remains (rarer), it will be
2170 * read from disk into another page. Splitting into two
2171 * pages would be incorrect if swap supported "shared
2172 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2173 *
2174 * Given how unuse_vma() targets one particular offset
2175 * in an anon_vma, once the anon_vma has been determined,
2176 * this splitting happens to be just what is needed to
2177 * handle where KSM pages have been swapped out: re-reading
2178 * is unnecessarily slow, but we can fix that later on.
1da177e4 2179 */
355cfa73
KH
2180 if (swap_count(*swap_map) &&
2181 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2182 struct writeback_control wbc = {
2183 .sync_mode = WB_SYNC_NONE,
2184 };
2185
e0709829 2186 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2187 lock_page(page);
2188 wait_on_page_writeback(page);
2189 }
68bdc8d6
HD
2190
2191 /*
2192 * It is conceivable that a racing task removed this page from
2193 * swap cache just before we acquired the page lock at the top,
2194 * or while we dropped it in unuse_mm(). The page might even
2195 * be back in swap cache on another swap area: that we must not
2196 * delete, since it may not have been written out to swap yet.
2197 */
2198 if (PageSwapCache(page) &&
e0709829
HY
2199 likely(page_private(page) == entry.val) &&
2200 !page_swapped(page))
2201 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2202
2203 /*
2204 * So we could skip searching mms once swap count went
2205 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2206 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2207 */
2208 SetPageDirty(page);
2209 unlock_page(page);
09cbfeaf 2210 put_page(page);
1da177e4
LT
2211
2212 /*
2213 * Make sure that we aren't completely killing
2214 * interactive performance.
2215 */
2216 cond_resched();
38b5faf4
DM
2217 if (frontswap && pages_to_unuse > 0) {
2218 if (!--pages_to_unuse)
2219 break;
2220 }
1da177e4
LT
2221 }
2222
2223 mmput(start_mm);
1da177e4
LT
2224 return retval;
2225}
2226
2227/*
5d337b91
HD
2228 * After a successful try_to_unuse, if no swap is now in use, we know
2229 * we can empty the mmlist. swap_lock must be held on entry and exit.
2230 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2231 * added to the mmlist just after page_duplicate - before would be racy.
2232 */
2233static void drain_mmlist(void)
2234{
2235 struct list_head *p, *next;
efa90a98 2236 unsigned int type;
1da177e4 2237
efa90a98
HD
2238 for (type = 0; type < nr_swapfiles; type++)
2239 if (swap_info[type]->inuse_pages)
1da177e4
LT
2240 return;
2241 spin_lock(&mmlist_lock);
2242 list_for_each_safe(p, next, &init_mm.mmlist)
2243 list_del_init(p);
2244 spin_unlock(&mmlist_lock);
2245}
2246
2247/*
2248 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2249 * corresponds to page offset for the specified swap entry.
2250 * Note that the type of this function is sector_t, but it returns page offset
2251 * into the bdev, not sector offset.
1da177e4 2252 */
d4906e1a 2253static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2254{
f29ad6a9
HD
2255 struct swap_info_struct *sis;
2256 struct swap_extent *start_se;
2257 struct swap_extent *se;
2258 pgoff_t offset;
2259
efa90a98 2260 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2261 *bdev = sis->bdev;
2262
2263 offset = swp_offset(entry);
2264 start_se = sis->curr_swap_extent;
2265 se = start_se;
1da177e4
LT
2266
2267 for ( ; ; ) {
1da177e4
LT
2268 if (se->start_page <= offset &&
2269 offset < (se->start_page + se->nr_pages)) {
2270 return se->start_block + (offset - se->start_page);
2271 }
a8ae4991 2272 se = list_next_entry(se, list);
1da177e4
LT
2273 sis->curr_swap_extent = se;
2274 BUG_ON(se == start_se); /* It *must* be present */
2275 }
2276}
2277
d4906e1a
LS
2278/*
2279 * Returns the page offset into bdev for the specified page's swap entry.
2280 */
2281sector_t map_swap_page(struct page *page, struct block_device **bdev)
2282{
2283 swp_entry_t entry;
2284 entry.val = page_private(page);
2285 return map_swap_entry(entry, bdev);
2286}
2287
1da177e4
LT
2288/*
2289 * Free all of a swapdev's extent information
2290 */
2291static void destroy_swap_extents(struct swap_info_struct *sis)
2292{
9625a5f2 2293 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2294 struct swap_extent *se;
2295
a8ae4991 2296 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2297 struct swap_extent, list);
2298 list_del(&se->list);
2299 kfree(se);
2300 }
62c230bc 2301
bc4ae27d 2302 if (sis->flags & SWP_ACTIVATED) {
62c230bc
MG
2303 struct file *swap_file = sis->swap_file;
2304 struct address_space *mapping = swap_file->f_mapping;
2305
bc4ae27d
OS
2306 sis->flags &= ~SWP_ACTIVATED;
2307 if (mapping->a_ops->swap_deactivate)
2308 mapping->a_ops->swap_deactivate(swap_file);
62c230bc 2309 }
1da177e4
LT
2310}
2311
2312/*
2313 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2314 * extent list. The extent list is kept sorted in page order.
1da177e4 2315 *
11d31886 2316 * This function rather assumes that it is called in ascending page order.
1da177e4 2317 */
a509bc1a 2318int
1da177e4
LT
2319add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2320 unsigned long nr_pages, sector_t start_block)
2321{
2322 struct swap_extent *se;
2323 struct swap_extent *new_se;
2324 struct list_head *lh;
2325
9625a5f2
HD
2326 if (start_page == 0) {
2327 se = &sis->first_swap_extent;
2328 sis->curr_swap_extent = se;
2329 se->start_page = 0;
2330 se->nr_pages = nr_pages;
2331 se->start_block = start_block;
2332 return 1;
2333 } else {
2334 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2335 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2336 BUG_ON(se->start_page + se->nr_pages != start_page);
2337 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2338 /* Merge it */
2339 se->nr_pages += nr_pages;
2340 return 0;
2341 }
1da177e4
LT
2342 }
2343
2344 /*
2345 * No merge. Insert a new extent, preserving ordering.
2346 */
2347 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2348 if (new_se == NULL)
2349 return -ENOMEM;
2350 new_se->start_page = start_page;
2351 new_se->nr_pages = nr_pages;
2352 new_se->start_block = start_block;
2353
9625a5f2 2354 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2355 return 1;
1da177e4 2356}
aa8aa8a3 2357EXPORT_SYMBOL_GPL(add_swap_extent);
1da177e4
LT
2358
2359/*
2360 * A `swap extent' is a simple thing which maps a contiguous range of pages
2361 * onto a contiguous range of disk blocks. An ordered list of swap extents
2362 * is built at swapon time and is then used at swap_writepage/swap_readpage
2363 * time for locating where on disk a page belongs.
2364 *
2365 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2366 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2367 * swap files identically.
2368 *
2369 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2370 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2371 * swapfiles are handled *identically* after swapon time.
2372 *
2373 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2374 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2375 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2376 * requirements, they are simply tossed out - we will never use those blocks
2377 * for swapping.
2378 *
b0d9bcd4 2379 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2380 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2381 * which will scribble on the fs.
2382 *
2383 * The amount of disk space which a single swap extent represents varies.
2384 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2385 * extents in the list. To avoid much list walking, we cache the previous
2386 * search location in `curr_swap_extent', and start new searches from there.
2387 * This is extremely effective. The average number of iterations in
2388 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2389 */
53092a74 2390static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2391{
62c230bc
MG
2392 struct file *swap_file = sis->swap_file;
2393 struct address_space *mapping = swap_file->f_mapping;
2394 struct inode *inode = mapping->host;
1da177e4
LT
2395 int ret;
2396
1da177e4
LT
2397 if (S_ISBLK(inode->i_mode)) {
2398 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2399 *span = sis->pages;
a509bc1a 2400 return ret;
1da177e4
LT
2401 }
2402
62c230bc 2403 if (mapping->a_ops->swap_activate) {
a509bc1a 2404 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
bc4ae27d
OS
2405 if (ret >= 0)
2406 sis->flags |= SWP_ACTIVATED;
62c230bc 2407 if (!ret) {
bc4ae27d 2408 sis->flags |= SWP_FS;
62c230bc
MG
2409 ret = add_swap_extent(sis, 0, sis->max, 0);
2410 *span = sis->pages;
2411 }
a509bc1a 2412 return ret;
62c230bc
MG
2413 }
2414
a509bc1a 2415 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2416}
2417
a2468cc9
AL
2418static int swap_node(struct swap_info_struct *p)
2419{
2420 struct block_device *bdev;
2421
2422 if (p->bdev)
2423 bdev = p->bdev;
2424 else
2425 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2426
2427 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2428}
2429
cf0cac0a 2430static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2431 unsigned char *swap_map,
2432 struct swap_cluster_info *cluster_info)
40531542 2433{
a2468cc9
AL
2434 int i;
2435
40531542
CEB
2436 if (prio >= 0)
2437 p->prio = prio;
2438 else
2439 p->prio = --least_priority;
18ab4d4c
DS
2440 /*
2441 * the plist prio is negated because plist ordering is
2442 * low-to-high, while swap ordering is high-to-low
2443 */
2444 p->list.prio = -p->prio;
a2468cc9
AL
2445 for_each_node(i) {
2446 if (p->prio >= 0)
2447 p->avail_lists[i].prio = -p->prio;
2448 else {
2449 if (swap_node(p) == i)
2450 p->avail_lists[i].prio = 1;
2451 else
2452 p->avail_lists[i].prio = -p->prio;
2453 }
2454 }
40531542 2455 p->swap_map = swap_map;
2a8f9449 2456 p->cluster_info = cluster_info;
40531542 2457 p->flags |= SWP_WRITEOK;
ec8acf20 2458 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2459 total_swap_pages += p->pages;
2460
adfab836 2461 assert_spin_locked(&swap_lock);
adfab836 2462 /*
18ab4d4c
DS
2463 * both lists are plists, and thus priority ordered.
2464 * swap_active_head needs to be priority ordered for swapoff(),
2465 * which on removal of any swap_info_struct with an auto-assigned
2466 * (i.e. negative) priority increments the auto-assigned priority
2467 * of any lower-priority swap_info_structs.
2468 * swap_avail_head needs to be priority ordered for get_swap_page(),
2469 * which allocates swap pages from the highest available priority
2470 * swap_info_struct.
adfab836 2471 */
18ab4d4c 2472 plist_add(&p->list, &swap_active_head);
a2468cc9 2473 add_to_avail_list(p);
cf0cac0a
CEB
2474}
2475
2476static void enable_swap_info(struct swap_info_struct *p, int prio,
2477 unsigned char *swap_map,
2a8f9449 2478 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2479 unsigned long *frontswap_map)
2480{
4f89849d 2481 frontswap_init(p->type, frontswap_map);
cf0cac0a 2482 spin_lock(&swap_lock);
ec8acf20 2483 spin_lock(&p->lock);
2a8f9449 2484 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2485 spin_unlock(&p->lock);
cf0cac0a
CEB
2486 spin_unlock(&swap_lock);
2487}
2488
2489static void reinsert_swap_info(struct swap_info_struct *p)
2490{
2491 spin_lock(&swap_lock);
ec8acf20 2492 spin_lock(&p->lock);
2a8f9449 2493 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2494 spin_unlock(&p->lock);
40531542
CEB
2495 spin_unlock(&swap_lock);
2496}
2497
67afa38e
TC
2498bool has_usable_swap(void)
2499{
2500 bool ret = true;
2501
2502 spin_lock(&swap_lock);
2503 if (plist_head_empty(&swap_active_head))
2504 ret = false;
2505 spin_unlock(&swap_lock);
2506 return ret;
2507}
2508
c4ea37c2 2509SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2510{
73c34b6a 2511 struct swap_info_struct *p = NULL;
8d69aaee 2512 unsigned char *swap_map;
2a8f9449 2513 struct swap_cluster_info *cluster_info;
4f89849d 2514 unsigned long *frontswap_map;
1da177e4
LT
2515 struct file *swap_file, *victim;
2516 struct address_space *mapping;
2517 struct inode *inode;
91a27b2a 2518 struct filename *pathname;
adfab836 2519 int err, found = 0;
5b808a23 2520 unsigned int old_block_size;
886bb7e9 2521
1da177e4
LT
2522 if (!capable(CAP_SYS_ADMIN))
2523 return -EPERM;
2524
191c5424
AV
2525 BUG_ON(!current->mm);
2526
1da177e4 2527 pathname = getname(specialfile);
1da177e4 2528 if (IS_ERR(pathname))
f58b59c1 2529 return PTR_ERR(pathname);
1da177e4 2530
669abf4e 2531 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2532 err = PTR_ERR(victim);
2533 if (IS_ERR(victim))
2534 goto out;
2535
2536 mapping = victim->f_mapping;
5d337b91 2537 spin_lock(&swap_lock);
18ab4d4c 2538 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2539 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2540 if (p->swap_file->f_mapping == mapping) {
2541 found = 1;
1da177e4 2542 break;
adfab836 2543 }
1da177e4 2544 }
1da177e4 2545 }
adfab836 2546 if (!found) {
1da177e4 2547 err = -EINVAL;
5d337b91 2548 spin_unlock(&swap_lock);
1da177e4
LT
2549 goto out_dput;
2550 }
191c5424 2551 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2552 vm_unacct_memory(p->pages);
2553 else {
2554 err = -ENOMEM;
5d337b91 2555 spin_unlock(&swap_lock);
1da177e4
LT
2556 goto out_dput;
2557 }
a2468cc9 2558 del_from_avail_list(p);
ec8acf20 2559 spin_lock(&p->lock);
78ecba08 2560 if (p->prio < 0) {
adfab836 2561 struct swap_info_struct *si = p;
a2468cc9 2562 int nid;
adfab836 2563
18ab4d4c 2564 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2565 si->prio++;
18ab4d4c 2566 si->list.prio--;
a2468cc9
AL
2567 for_each_node(nid) {
2568 if (si->avail_lists[nid].prio != 1)
2569 si->avail_lists[nid].prio--;
2570 }
adfab836 2571 }
78ecba08
HD
2572 least_priority++;
2573 }
18ab4d4c 2574 plist_del(&p->list, &swap_active_head);
ec8acf20 2575 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2576 total_swap_pages -= p->pages;
2577 p->flags &= ~SWP_WRITEOK;
ec8acf20 2578 spin_unlock(&p->lock);
5d337b91 2579 spin_unlock(&swap_lock);
fb4f88dc 2580
039939a6
TC
2581 disable_swap_slots_cache_lock();
2582
e1e12d2f 2583 set_current_oom_origin();
adfab836 2584 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2585 clear_current_oom_origin();
1da177e4 2586
1da177e4
LT
2587 if (err) {
2588 /* re-insert swap space back into swap_list */
cf0cac0a 2589 reinsert_swap_info(p);
039939a6 2590 reenable_swap_slots_cache_unlock();
1da177e4
LT
2591 goto out_dput;
2592 }
52b7efdb 2593
039939a6
TC
2594 reenable_swap_slots_cache_unlock();
2595
815c2c54
SL
2596 flush_work(&p->discard_work);
2597
5d337b91 2598 destroy_swap_extents(p);
570a335b
HD
2599 if (p->flags & SWP_CONTINUED)
2600 free_swap_count_continuations(p);
2601
81a0298b
HY
2602 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2603 atomic_dec(&nr_rotate_swap);
2604
fc0abb14 2605 mutex_lock(&swapon_mutex);
5d337b91 2606 spin_lock(&swap_lock);
ec8acf20 2607 spin_lock(&p->lock);
5d337b91
HD
2608 drain_mmlist();
2609
52b7efdb 2610 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2611 p->highest_bit = 0; /* cuts scans short */
2612 while (p->flags >= SWP_SCANNING) {
ec8acf20 2613 spin_unlock(&p->lock);
5d337b91 2614 spin_unlock(&swap_lock);
13e4b57f 2615 schedule_timeout_uninterruptible(1);
5d337b91 2616 spin_lock(&swap_lock);
ec8acf20 2617 spin_lock(&p->lock);
52b7efdb 2618 }
52b7efdb 2619
1da177e4 2620 swap_file = p->swap_file;
5b808a23 2621 old_block_size = p->old_block_size;
1da177e4
LT
2622 p->swap_file = NULL;
2623 p->max = 0;
2624 swap_map = p->swap_map;
2625 p->swap_map = NULL;
2a8f9449
SL
2626 cluster_info = p->cluster_info;
2627 p->cluster_info = NULL;
4f89849d 2628 frontswap_map = frontswap_map_get(p);
ec8acf20 2629 spin_unlock(&p->lock);
5d337b91 2630 spin_unlock(&swap_lock);
adfab836 2631 frontswap_invalidate_area(p->type);
58e97ba6 2632 frontswap_map_set(p, NULL);
fc0abb14 2633 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2634 free_percpu(p->percpu_cluster);
2635 p->percpu_cluster = NULL;
1da177e4 2636 vfree(swap_map);
54f180d3
HY
2637 kvfree(cluster_info);
2638 kvfree(frontswap_map);
2de1a7e4 2639 /* Destroy swap account information */
adfab836 2640 swap_cgroup_swapoff(p->type);
4b3ef9da 2641 exit_swap_address_space(p->type);
27a7faa0 2642
1da177e4
LT
2643 inode = mapping->host;
2644 if (S_ISBLK(inode->i_mode)) {
2645 struct block_device *bdev = I_BDEV(inode);
5b808a23 2646 set_blocksize(bdev, old_block_size);
e525fd89 2647 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2648 } else {
5955102c 2649 inode_lock(inode);
1da177e4 2650 inode->i_flags &= ~S_SWAPFILE;
5955102c 2651 inode_unlock(inode);
1da177e4
LT
2652 }
2653 filp_close(swap_file, NULL);
f893ab41
WY
2654
2655 /*
2656 * Clear the SWP_USED flag after all resources are freed so that swapon
2657 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2658 * not hold p->lock after we cleared its SWP_WRITEOK.
2659 */
2660 spin_lock(&swap_lock);
2661 p->flags = 0;
2662 spin_unlock(&swap_lock);
2663
1da177e4 2664 err = 0;
66d7dd51
KS
2665 atomic_inc(&proc_poll_event);
2666 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2667
2668out_dput:
2669 filp_close(victim, NULL);
2670out:
f58b59c1 2671 putname(pathname);
1da177e4
LT
2672 return err;
2673}
2674
2675#ifdef CONFIG_PROC_FS
9dd95748 2676static __poll_t swaps_poll(struct file *file, poll_table *wait)
66d7dd51 2677{
f1514638 2678 struct seq_file *seq = file->private_data;
66d7dd51
KS
2679
2680 poll_wait(file, &proc_poll_wait, wait);
2681
f1514638
KS
2682 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2683 seq->poll_event = atomic_read(&proc_poll_event);
a9a08845 2684 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
66d7dd51
KS
2685 }
2686
a9a08845 2687 return EPOLLIN | EPOLLRDNORM;
66d7dd51
KS
2688}
2689
1da177e4
LT
2690/* iterator */
2691static void *swap_start(struct seq_file *swap, loff_t *pos)
2692{
efa90a98
HD
2693 struct swap_info_struct *si;
2694 int type;
1da177e4
LT
2695 loff_t l = *pos;
2696
fc0abb14 2697 mutex_lock(&swapon_mutex);
1da177e4 2698
881e4aab
SS
2699 if (!l)
2700 return SEQ_START_TOKEN;
2701
efa90a98
HD
2702 for (type = 0; type < nr_swapfiles; type++) {
2703 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2704 si = swap_info[type];
2705 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2706 continue;
881e4aab 2707 if (!--l)
efa90a98 2708 return si;
1da177e4
LT
2709 }
2710
2711 return NULL;
2712}
2713
2714static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2715{
efa90a98
HD
2716 struct swap_info_struct *si = v;
2717 int type;
1da177e4 2718
881e4aab 2719 if (v == SEQ_START_TOKEN)
efa90a98
HD
2720 type = 0;
2721 else
2722 type = si->type + 1;
881e4aab 2723
efa90a98
HD
2724 for (; type < nr_swapfiles; type++) {
2725 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2726 si = swap_info[type];
2727 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2728 continue;
2729 ++*pos;
efa90a98 2730 return si;
1da177e4
LT
2731 }
2732
2733 return NULL;
2734}
2735
2736static void swap_stop(struct seq_file *swap, void *v)
2737{
fc0abb14 2738 mutex_unlock(&swapon_mutex);
1da177e4
LT
2739}
2740
2741static int swap_show(struct seq_file *swap, void *v)
2742{
efa90a98 2743 struct swap_info_struct *si = v;
1da177e4
LT
2744 struct file *file;
2745 int len;
2746
efa90a98 2747 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2748 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2749 return 0;
2750 }
1da177e4 2751
efa90a98 2752 file = si->swap_file;
2726d566 2753 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2754 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2755 len < 40 ? 40 - len : 1, " ",
496ad9aa 2756 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2757 "partition" : "file\t",
efa90a98
HD
2758 si->pages << (PAGE_SHIFT - 10),
2759 si->inuse_pages << (PAGE_SHIFT - 10),
2760 si->prio);
1da177e4
LT
2761 return 0;
2762}
2763
15ad7cdc 2764static const struct seq_operations swaps_op = {
1da177e4
LT
2765 .start = swap_start,
2766 .next = swap_next,
2767 .stop = swap_stop,
2768 .show = swap_show
2769};
2770
2771static int swaps_open(struct inode *inode, struct file *file)
2772{
f1514638 2773 struct seq_file *seq;
66d7dd51
KS
2774 int ret;
2775
66d7dd51 2776 ret = seq_open(file, &swaps_op);
f1514638 2777 if (ret)
66d7dd51 2778 return ret;
66d7dd51 2779
f1514638
KS
2780 seq = file->private_data;
2781 seq->poll_event = atomic_read(&proc_poll_event);
2782 return 0;
1da177e4
LT
2783}
2784
15ad7cdc 2785static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2786 .open = swaps_open,
2787 .read = seq_read,
2788 .llseek = seq_lseek,
2789 .release = seq_release,
66d7dd51 2790 .poll = swaps_poll,
1da177e4
LT
2791};
2792
2793static int __init procswaps_init(void)
2794{
3d71f86f 2795 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2796 return 0;
2797}
2798__initcall(procswaps_init);
2799#endif /* CONFIG_PROC_FS */
2800
1796316a
JB
2801#ifdef MAX_SWAPFILES_CHECK
2802static int __init max_swapfiles_check(void)
2803{
2804 MAX_SWAPFILES_CHECK();
2805 return 0;
2806}
2807late_initcall(max_swapfiles_check);
2808#endif
2809
53cbb243 2810static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2811{
73c34b6a 2812 struct swap_info_struct *p;
1da177e4 2813 unsigned int type;
a2468cc9 2814 int i;
efa90a98 2815
873d7bcf 2816 p = kvzalloc(sizeof(*p), GFP_KERNEL);
efa90a98 2817 if (!p)
53cbb243 2818 return ERR_PTR(-ENOMEM);
efa90a98 2819
5d337b91 2820 spin_lock(&swap_lock);
efa90a98
HD
2821 for (type = 0; type < nr_swapfiles; type++) {
2822 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2823 break;
efa90a98 2824 }
0697212a 2825 if (type >= MAX_SWAPFILES) {
5d337b91 2826 spin_unlock(&swap_lock);
873d7bcf 2827 kvfree(p);
730c0581 2828 return ERR_PTR(-EPERM);
1da177e4 2829 }
efa90a98
HD
2830 if (type >= nr_swapfiles) {
2831 p->type = type;
2832 swap_info[type] = p;
2833 /*
2834 * Write swap_info[type] before nr_swapfiles, in case a
2835 * racing procfs swap_start() or swap_next() is reading them.
2836 * (We never shrink nr_swapfiles, we never free this entry.)
2837 */
2838 smp_wmb();
2839 nr_swapfiles++;
2840 } else {
873d7bcf 2841 kvfree(p);
efa90a98
HD
2842 p = swap_info[type];
2843 /*
2844 * Do not memset this entry: a racing procfs swap_next()
2845 * would be relying on p->type to remain valid.
2846 */
2847 }
9625a5f2 2848 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c 2849 plist_node_init(&p->list, 0);
a2468cc9
AL
2850 for_each_node(i)
2851 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2852 p->flags = SWP_USED;
5d337b91 2853 spin_unlock(&swap_lock);
ec8acf20 2854 spin_lock_init(&p->lock);
2628bd6f 2855 spin_lock_init(&p->cont_lock);
efa90a98 2856
53cbb243 2857 return p;
53cbb243
CEB
2858}
2859
4d0e1e10
CEB
2860static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2861{
2862 int error;
2863
2864 if (S_ISBLK(inode->i_mode)) {
2865 p->bdev = bdgrab(I_BDEV(inode));
2866 error = blkdev_get(p->bdev,
6f179af8 2867 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2868 if (error < 0) {
2869 p->bdev = NULL;
6f179af8 2870 return error;
4d0e1e10
CEB
2871 }
2872 p->old_block_size = block_size(p->bdev);
2873 error = set_blocksize(p->bdev, PAGE_SIZE);
2874 if (error < 0)
87ade72a 2875 return error;
4d0e1e10
CEB
2876 p->flags |= SWP_BLKDEV;
2877 } else if (S_ISREG(inode->i_mode)) {
2878 p->bdev = inode->i_sb->s_bdev;
5955102c 2879 inode_lock(inode);
87ade72a
CEB
2880 if (IS_SWAPFILE(inode))
2881 return -EBUSY;
2882 } else
2883 return -EINVAL;
4d0e1e10
CEB
2884
2885 return 0;
4d0e1e10
CEB
2886}
2887
377eeaa8
AK
2888
2889/*
2890 * Find out how many pages are allowed for a single swap device. There
2891 * are two limiting factors:
2892 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2893 * 2) the number of bits in the swap pte, as defined by the different
2894 * architectures.
2895 *
2896 * In order to find the largest possible bit mask, a swap entry with
2897 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2898 * decoded to a swp_entry_t again, and finally the swap offset is
2899 * extracted.
2900 *
2901 * This will mask all the bits from the initial ~0UL mask that can't
2902 * be encoded in either the swp_entry_t or the architecture definition
2903 * of a swap pte.
2904 */
2905unsigned long generic_max_swapfile_size(void)
2906{
2907 return swp_offset(pte_to_swp_entry(
2908 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2909}
2910
2911/* Can be overridden by an architecture for additional checks. */
2912__weak unsigned long max_swapfile_size(void)
2913{
2914 return generic_max_swapfile_size();
2915}
2916
ca8bd38b
CEB
2917static unsigned long read_swap_header(struct swap_info_struct *p,
2918 union swap_header *swap_header,
2919 struct inode *inode)
2920{
2921 int i;
2922 unsigned long maxpages;
2923 unsigned long swapfilepages;
d6bbbd29 2924 unsigned long last_page;
ca8bd38b
CEB
2925
2926 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2927 pr_err("Unable to find swap-space signature\n");
38719025 2928 return 0;
ca8bd38b
CEB
2929 }
2930
2931 /* swap partition endianess hack... */
2932 if (swab32(swap_header->info.version) == 1) {
2933 swab32s(&swap_header->info.version);
2934 swab32s(&swap_header->info.last_page);
2935 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2936 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2937 return 0;
ca8bd38b
CEB
2938 for (i = 0; i < swap_header->info.nr_badpages; i++)
2939 swab32s(&swap_header->info.badpages[i]);
2940 }
2941 /* Check the swap header's sub-version */
2942 if (swap_header->info.version != 1) {
465c47fd
AM
2943 pr_warn("Unable to handle swap header version %d\n",
2944 swap_header->info.version);
38719025 2945 return 0;
ca8bd38b
CEB
2946 }
2947
2948 p->lowest_bit = 1;
2949 p->cluster_next = 1;
2950 p->cluster_nr = 0;
2951
377eeaa8 2952 maxpages = max_swapfile_size();
d6bbbd29 2953 last_page = swap_header->info.last_page;
a06ad633
TA
2954 if (!last_page) {
2955 pr_warn("Empty swap-file\n");
2956 return 0;
2957 }
d6bbbd29 2958 if (last_page > maxpages) {
465c47fd 2959 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2960 maxpages << (PAGE_SHIFT - 10),
2961 last_page << (PAGE_SHIFT - 10));
2962 }
2963 if (maxpages > last_page) {
2964 maxpages = last_page + 1;
ca8bd38b
CEB
2965 /* p->max is an unsigned int: don't overflow it */
2966 if ((unsigned int)maxpages == 0)
2967 maxpages = UINT_MAX;
2968 }
2969 p->highest_bit = maxpages - 1;
2970
2971 if (!maxpages)
38719025 2972 return 0;
ca8bd38b
CEB
2973 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2974 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2975 pr_warn("Swap area shorter than signature indicates\n");
38719025 2976 return 0;
ca8bd38b
CEB
2977 }
2978 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2979 return 0;
ca8bd38b 2980 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2981 return 0;
ca8bd38b
CEB
2982
2983 return maxpages;
ca8bd38b
CEB
2984}
2985
4b3ef9da 2986#define SWAP_CLUSTER_INFO_COLS \
235b6217 2987 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2988#define SWAP_CLUSTER_SPACE_COLS \
2989 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2990#define SWAP_CLUSTER_COLS \
2991 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2992
915d4d7b
CEB
2993static int setup_swap_map_and_extents(struct swap_info_struct *p,
2994 union swap_header *swap_header,
2995 unsigned char *swap_map,
2a8f9449 2996 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2997 unsigned long maxpages,
2998 sector_t *span)
2999{
235b6217 3000 unsigned int j, k;
915d4d7b
CEB
3001 unsigned int nr_good_pages;
3002 int nr_extents;
2a8f9449 3003 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3004 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3005 unsigned long i, idx;
915d4d7b
CEB
3006
3007 nr_good_pages = maxpages - 1; /* omit header page */
3008
6b534915
HY
3009 cluster_list_init(&p->free_clusters);
3010 cluster_list_init(&p->discard_clusters);
2a8f9449 3011
915d4d7b
CEB
3012 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3013 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3014 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3015 return -EINVAL;
915d4d7b
CEB
3016 if (page_nr < maxpages) {
3017 swap_map[page_nr] = SWAP_MAP_BAD;
3018 nr_good_pages--;
2a8f9449
SL
3019 /*
3020 * Haven't marked the cluster free yet, no list
3021 * operation involved
3022 */
3023 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3024 }
3025 }
3026
2a8f9449
SL
3027 /* Haven't marked the cluster free yet, no list operation involved */
3028 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3029 inc_cluster_info_page(p, cluster_info, i);
3030
915d4d7b
CEB
3031 if (nr_good_pages) {
3032 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3033 /*
3034 * Not mark the cluster free yet, no list
3035 * operation involved
3036 */
3037 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3038 p->max = maxpages;
3039 p->pages = nr_good_pages;
3040 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3041 if (nr_extents < 0)
3042 return nr_extents;
915d4d7b
CEB
3043 nr_good_pages = p->pages;
3044 }
3045 if (!nr_good_pages) {
465c47fd 3046 pr_warn("Empty swap-file\n");
bdb8e3f6 3047 return -EINVAL;
915d4d7b
CEB
3048 }
3049
2a8f9449
SL
3050 if (!cluster_info)
3051 return nr_extents;
3052
235b6217 3053
4b3ef9da
HY
3054 /*
3055 * Reduce false cache line sharing between cluster_info and
3056 * sharing same address space.
3057 */
235b6217
HY
3058 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3059 j = (k + col) % SWAP_CLUSTER_COLS;
3060 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3061 idx = i * SWAP_CLUSTER_COLS + j;
3062 if (idx >= nr_clusters)
3063 continue;
3064 if (cluster_count(&cluster_info[idx]))
3065 continue;
2a8f9449 3066 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3067 cluster_list_add_tail(&p->free_clusters, cluster_info,
3068 idx);
2a8f9449 3069 }
2a8f9449 3070 }
915d4d7b 3071 return nr_extents;
915d4d7b
CEB
3072}
3073
dcf6b7dd
RA
3074/*
3075 * Helper to sys_swapon determining if a given swap
3076 * backing device queue supports DISCARD operations.
3077 */
3078static bool swap_discardable(struct swap_info_struct *si)
3079{
3080 struct request_queue *q = bdev_get_queue(si->bdev);
3081
3082 if (!q || !blk_queue_discard(q))
3083 return false;
3084
3085 return true;
3086}
3087
53cbb243
CEB
3088SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3089{
3090 struct swap_info_struct *p;
91a27b2a 3091 struct filename *name;
53cbb243
CEB
3092 struct file *swap_file = NULL;
3093 struct address_space *mapping;
40531542 3094 int prio;
53cbb243
CEB
3095 int error;
3096 union swap_header *swap_header;
915d4d7b 3097 int nr_extents;
53cbb243
CEB
3098 sector_t span;
3099 unsigned long maxpages;
53cbb243 3100 unsigned char *swap_map = NULL;
2a8f9449 3101 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3102 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3103 struct page *page = NULL;
3104 struct inode *inode = NULL;
7cbf3192 3105 bool inced_nr_rotate_swap = false;
53cbb243 3106
d15cab97
HD
3107 if (swap_flags & ~SWAP_FLAGS_VALID)
3108 return -EINVAL;
3109
53cbb243
CEB
3110 if (!capable(CAP_SYS_ADMIN))
3111 return -EPERM;
3112
a2468cc9
AL
3113 if (!swap_avail_heads)
3114 return -ENOMEM;
3115
53cbb243 3116 p = alloc_swap_info();
2542e513
CEB
3117 if (IS_ERR(p))
3118 return PTR_ERR(p);
53cbb243 3119
815c2c54
SL
3120 INIT_WORK(&p->discard_work, swap_discard_work);
3121
1da177e4 3122 name = getname(specialfile);
1da177e4 3123 if (IS_ERR(name)) {
7de7fb6b 3124 error = PTR_ERR(name);
1da177e4 3125 name = NULL;
bd69010b 3126 goto bad_swap;
1da177e4 3127 }
669abf4e 3128 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3129 if (IS_ERR(swap_file)) {
7de7fb6b 3130 error = PTR_ERR(swap_file);
1da177e4 3131 swap_file = NULL;
bd69010b 3132 goto bad_swap;
1da177e4
LT
3133 }
3134
3135 p->swap_file = swap_file;
3136 mapping = swap_file->f_mapping;
2130781e 3137 inode = mapping->host;
6f179af8 3138
5955102c 3139 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3140 error = claim_swapfile(p, inode);
3141 if (unlikely(error))
1da177e4 3142 goto bad_swap;
1da177e4 3143
1da177e4
LT
3144 /*
3145 * Read the swap header.
3146 */
3147 if (!mapping->a_ops->readpage) {
3148 error = -EINVAL;
3149 goto bad_swap;
3150 }
090d2b18 3151 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3152 if (IS_ERR(page)) {
3153 error = PTR_ERR(page);
3154 goto bad_swap;
3155 }
81e33971 3156 swap_header = kmap(page);
1da177e4 3157
ca8bd38b
CEB
3158 maxpages = read_swap_header(p, swap_header, inode);
3159 if (unlikely(!maxpages)) {
1da177e4
LT
3160 error = -EINVAL;
3161 goto bad_swap;
3162 }
886bb7e9 3163
81e33971 3164 /* OK, set up the swap map and apply the bad block list */
803d0c83 3165 swap_map = vzalloc(maxpages);
81e33971
HD
3166 if (!swap_map) {
3167 error = -ENOMEM;
3168 goto bad_swap;
3169 }
f0571429
MK
3170
3171 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3172 p->flags |= SWP_STABLE_WRITES;
3173
539a6fea
MK
3174 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3175 p->flags |= SWP_SYNCHRONOUS_IO;
3176
2a8f9449 3177 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3178 int cpu;
235b6217 3179 unsigned long ci, nr_cluster;
6f179af8 3180
2a8f9449
SL
3181 p->flags |= SWP_SOLIDSTATE;
3182 /*
3183 * select a random position to start with to help wear leveling
3184 * SSD
3185 */
3186 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3187 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3188
778e1cdd 3189 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
54f180d3 3190 GFP_KERNEL);
2a8f9449
SL
3191 if (!cluster_info) {
3192 error = -ENOMEM;
3193 goto bad_swap;
3194 }
235b6217
HY
3195
3196 for (ci = 0; ci < nr_cluster; ci++)
3197 spin_lock_init(&((cluster_info + ci)->lock));
3198
ebc2a1a6
SL
3199 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3200 if (!p->percpu_cluster) {
3201 error = -ENOMEM;
3202 goto bad_swap;
3203 }
6f179af8 3204 for_each_possible_cpu(cpu) {
ebc2a1a6 3205 struct percpu_cluster *cluster;
6f179af8 3206 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3207 cluster_set_null(&cluster->index);
3208 }
7cbf3192 3209 } else {
81a0298b 3210 atomic_inc(&nr_rotate_swap);
7cbf3192
OS
3211 inced_nr_rotate_swap = true;
3212 }
1da177e4 3213
1421ef3c
CEB
3214 error = swap_cgroup_swapon(p->type, maxpages);
3215 if (error)
3216 goto bad_swap;
3217
915d4d7b 3218 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3219 cluster_info, maxpages, &span);
915d4d7b
CEB
3220 if (unlikely(nr_extents < 0)) {
3221 error = nr_extents;
1da177e4
LT
3222 goto bad_swap;
3223 }
38b5faf4 3224 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3225 if (IS_ENABLED(CONFIG_FRONTSWAP))
778e1cdd
KC
3226 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3227 sizeof(long),
54f180d3 3228 GFP_KERNEL);
1da177e4 3229
2a8f9449
SL
3230 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3231 /*
3232 * When discard is enabled for swap with no particular
3233 * policy flagged, we set all swap discard flags here in
3234 * order to sustain backward compatibility with older
3235 * swapon(8) releases.
3236 */
3237 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3238 SWP_PAGE_DISCARD);
dcf6b7dd 3239
2a8f9449
SL
3240 /*
3241 * By flagging sys_swapon, a sysadmin can tell us to
3242 * either do single-time area discards only, or to just
3243 * perform discards for released swap page-clusters.
3244 * Now it's time to adjust the p->flags accordingly.
3245 */
3246 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3247 p->flags &= ~SWP_PAGE_DISCARD;
3248 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3249 p->flags &= ~SWP_AREA_DISCARD;
3250
3251 /* issue a swapon-time discard if it's still required */
3252 if (p->flags & SWP_AREA_DISCARD) {
3253 int err = discard_swap(p);
3254 if (unlikely(err))
3255 pr_err("swapon: discard_swap(%p): %d\n",
3256 p, err);
dcf6b7dd 3257 }
20137a49 3258 }
6a6ba831 3259
4b3ef9da
HY
3260 error = init_swap_address_space(p->type, maxpages);
3261 if (error)
3262 goto bad_swap;
3263
fc0abb14 3264 mutex_lock(&swapon_mutex);
40531542 3265 prio = -1;
78ecba08 3266 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3267 prio =
78ecba08 3268 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3269 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3270
756a025f 3271 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3272 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3273 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3274 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3275 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3276 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3277 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3278 (frontswap_map) ? "FS" : "");
c69dbfb8 3279
fc0abb14 3280 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3281 atomic_inc(&proc_poll_event);
3282 wake_up_interruptible(&proc_poll_wait);
3283
9b01c350
CEB
3284 if (S_ISREG(inode->i_mode))
3285 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3286 error = 0;
3287 goto out;
3288bad_swap:
ebc2a1a6
SL
3289 free_percpu(p->percpu_cluster);
3290 p->percpu_cluster = NULL;
bd69010b 3291 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3292 set_blocksize(p->bdev, p->old_block_size);
3293 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3294 }
4cd3bb10 3295 destroy_swap_extents(p);
e8e6c2ec 3296 swap_cgroup_swapoff(p->type);
5d337b91 3297 spin_lock(&swap_lock);
1da177e4 3298 p->swap_file = NULL;
1da177e4 3299 p->flags = 0;
5d337b91 3300 spin_unlock(&swap_lock);
1da177e4 3301 vfree(swap_map);
8606a1a9 3302 kvfree(cluster_info);
b6b1fd2a 3303 kvfree(frontswap_map);
7cbf3192
OS
3304 if (inced_nr_rotate_swap)
3305 atomic_dec(&nr_rotate_swap);
52c50567 3306 if (swap_file) {
2130781e 3307 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3308 inode_unlock(inode);
2130781e
CEB
3309 inode = NULL;
3310 }
1da177e4 3311 filp_close(swap_file, NULL);
52c50567 3312 }
1da177e4
LT
3313out:
3314 if (page && !IS_ERR(page)) {
3315 kunmap(page);
09cbfeaf 3316 put_page(page);
1da177e4
LT
3317 }
3318 if (name)
3319 putname(name);
9b01c350 3320 if (inode && S_ISREG(inode->i_mode))
5955102c 3321 inode_unlock(inode);
039939a6
TC
3322 if (!error)
3323 enable_swap_slots_cache();
1da177e4
LT
3324 return error;
3325}
3326
3327void si_swapinfo(struct sysinfo *val)
3328{
efa90a98 3329 unsigned int type;
1da177e4
LT
3330 unsigned long nr_to_be_unused = 0;
3331
5d337b91 3332 spin_lock(&swap_lock);
efa90a98
HD
3333 for (type = 0; type < nr_swapfiles; type++) {
3334 struct swap_info_struct *si = swap_info[type];
3335
3336 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3337 nr_to_be_unused += si->inuse_pages;
1da177e4 3338 }
ec8acf20 3339 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3340 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3341 spin_unlock(&swap_lock);
1da177e4
LT
3342}
3343
3344/*
3345 * Verify that a swap entry is valid and increment its swap map count.
3346 *
355cfa73
KH
3347 * Returns error code in following case.
3348 * - success -> 0
3349 * - swp_entry is invalid -> EINVAL
3350 * - swp_entry is migration entry -> EINVAL
3351 * - swap-cache reference is requested but there is already one. -> EEXIST
3352 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3353 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3354 */
8d69aaee 3355static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3356{
73c34b6a 3357 struct swap_info_struct *p;
235b6217 3358 struct swap_cluster_info *ci;
1da177e4 3359 unsigned long offset, type;
8d69aaee
HD
3360 unsigned char count;
3361 unsigned char has_cache;
253d553b 3362 int err = -EINVAL;
1da177e4 3363
a7420aa5 3364 if (non_swap_entry(entry))
253d553b 3365 goto out;
0697212a 3366
1da177e4
LT
3367 type = swp_type(entry);
3368 if (type >= nr_swapfiles)
3369 goto bad_file;
efa90a98 3370 p = swap_info[type];
1da177e4 3371 offset = swp_offset(entry);
355cfa73 3372 if (unlikely(offset >= p->max))
235b6217
HY
3373 goto out;
3374
3375 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3376
253d553b 3377 count = p->swap_map[offset];
edfe23da
SL
3378
3379 /*
3380 * swapin_readahead() doesn't check if a swap entry is valid, so the
3381 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3382 */
3383 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3384 err = -ENOENT;
3385 goto unlock_out;
3386 }
3387
253d553b
HD
3388 has_cache = count & SWAP_HAS_CACHE;
3389 count &= ~SWAP_HAS_CACHE;
3390 err = 0;
355cfa73 3391
253d553b 3392 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3393
3394 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3395 if (!has_cache && count)
3396 has_cache = SWAP_HAS_CACHE;
3397 else if (has_cache) /* someone else added cache */
3398 err = -EEXIST;
3399 else /* no users remaining */
3400 err = -ENOENT;
355cfa73
KH
3401
3402 } else if (count || has_cache) {
253d553b 3403
570a335b
HD
3404 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3405 count += usage;
3406 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3407 err = -EINVAL;
570a335b
HD
3408 else if (swap_count_continued(p, offset, count))
3409 count = COUNT_CONTINUED;
3410 else
3411 err = -ENOMEM;
355cfa73 3412 } else
253d553b
HD
3413 err = -ENOENT; /* unused swap entry */
3414
3415 p->swap_map[offset] = count | has_cache;
3416
355cfa73 3417unlock_out:
235b6217 3418 unlock_cluster_or_swap_info(p, ci);
1da177e4 3419out:
253d553b 3420 return err;
1da177e4
LT
3421
3422bad_file:
465c47fd 3423 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3424 goto out;
3425}
253d553b 3426
aaa46865
HD
3427/*
3428 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3429 * (in which case its reference count is never incremented).
3430 */
3431void swap_shmem_alloc(swp_entry_t entry)
3432{
3433 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3434}
3435
355cfa73 3436/*
08259d58
HD
3437 * Increase reference count of swap entry by 1.
3438 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3439 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3440 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3441 * might occur if a page table entry has got corrupted.
355cfa73 3442 */
570a335b 3443int swap_duplicate(swp_entry_t entry)
355cfa73 3444{
570a335b
HD
3445 int err = 0;
3446
3447 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3448 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3449 return err;
355cfa73 3450}
1da177e4 3451
cb4b86ba 3452/*
355cfa73
KH
3453 * @entry: swap entry for which we allocate swap cache.
3454 *
73c34b6a 3455 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3456 * This can return error codes. Returns 0 at success.
3457 * -EBUSY means there is a swap cache.
3458 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3459 */
3460int swapcache_prepare(swp_entry_t entry)
3461{
253d553b 3462 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3463}
3464
0bcac06f
MK
3465struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3466{
3467 return swap_info[swp_type(entry)];
3468}
3469
f981c595
MG
3470struct swap_info_struct *page_swap_info(struct page *page)
3471{
0bcac06f
MK
3472 swp_entry_t entry = { .val = page_private(page) };
3473 return swp_swap_info(entry);
f981c595
MG
3474}
3475
3476/*
3477 * out-of-line __page_file_ methods to avoid include hell.
3478 */
3479struct address_space *__page_file_mapping(struct page *page)
3480{
f981c595
MG
3481 return page_swap_info(page)->swap_file->f_mapping;
3482}
3483EXPORT_SYMBOL_GPL(__page_file_mapping);
3484
3485pgoff_t __page_file_index(struct page *page)
3486{
3487 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3488 return swp_offset(swap);
3489}
3490EXPORT_SYMBOL_GPL(__page_file_index);
3491
570a335b
HD
3492/*
3493 * add_swap_count_continuation - called when a swap count is duplicated
3494 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3495 * page of the original vmalloc'ed swap_map, to hold the continuation count
3496 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3497 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3498 *
3499 * These continuation pages are seldom referenced: the common paths all work
3500 * on the original swap_map, only referring to a continuation page when the
3501 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3502 *
3503 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3504 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3505 * can be called after dropping locks.
3506 */
3507int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3508{
3509 struct swap_info_struct *si;
235b6217 3510 struct swap_cluster_info *ci;
570a335b
HD
3511 struct page *head;
3512 struct page *page;
3513 struct page *list_page;
3514 pgoff_t offset;
3515 unsigned char count;
3516
3517 /*
3518 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3519 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3520 */
3521 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3522
3523 si = swap_info_get(entry);
3524 if (!si) {
3525 /*
3526 * An acceptable race has occurred since the failing
3527 * __swap_duplicate(): the swap entry has been freed,
3528 * perhaps even the whole swap_map cleared for swapoff.
3529 */
3530 goto outer;
3531 }
3532
3533 offset = swp_offset(entry);
235b6217
HY
3534
3535 ci = lock_cluster(si, offset);
3536
570a335b
HD
3537 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3538
3539 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3540 /*
3541 * The higher the swap count, the more likely it is that tasks
3542 * will race to add swap count continuation: we need to avoid
3543 * over-provisioning.
3544 */
3545 goto out;
3546 }
3547
3548 if (!page) {
235b6217 3549 unlock_cluster(ci);
ec8acf20 3550 spin_unlock(&si->lock);
570a335b
HD
3551 return -ENOMEM;
3552 }
3553
3554 /*
3555 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3556 * no architecture is using highmem pages for kernel page tables: so it
3557 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3558 */
3559 head = vmalloc_to_page(si->swap_map + offset);
3560 offset &= ~PAGE_MASK;
3561
2628bd6f 3562 spin_lock(&si->cont_lock);
570a335b
HD
3563 /*
3564 * Page allocation does not initialize the page's lru field,
3565 * but it does always reset its private field.
3566 */
3567 if (!page_private(head)) {
3568 BUG_ON(count & COUNT_CONTINUED);
3569 INIT_LIST_HEAD(&head->lru);
3570 set_page_private(head, SWP_CONTINUED);
3571 si->flags |= SWP_CONTINUED;
3572 }
3573
3574 list_for_each_entry(list_page, &head->lru, lru) {
3575 unsigned char *map;
3576
3577 /*
3578 * If the previous map said no continuation, but we've found
3579 * a continuation page, free our allocation and use this one.
3580 */
3581 if (!(count & COUNT_CONTINUED))
2628bd6f 3582 goto out_unlock_cont;
570a335b 3583
9b04c5fe 3584 map = kmap_atomic(list_page) + offset;
570a335b 3585 count = *map;
9b04c5fe 3586 kunmap_atomic(map);
570a335b
HD
3587
3588 /*
3589 * If this continuation count now has some space in it,
3590 * free our allocation and use this one.
3591 */
3592 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3593 goto out_unlock_cont;
570a335b
HD
3594 }
3595
3596 list_add_tail(&page->lru, &head->lru);
3597 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3598out_unlock_cont:
3599 spin_unlock(&si->cont_lock);
570a335b 3600out:
235b6217 3601 unlock_cluster(ci);
ec8acf20 3602 spin_unlock(&si->lock);
570a335b
HD
3603outer:
3604 if (page)
3605 __free_page(page);
3606 return 0;
3607}
3608
3609/*
3610 * swap_count_continued - when the original swap_map count is incremented
3611 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3612 * into, carry if so, or else fail until a new continuation page is allocated;
3613 * when the original swap_map count is decremented from 0 with continuation,
3614 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3615 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3616 * lock.
570a335b
HD
3617 */
3618static bool swap_count_continued(struct swap_info_struct *si,
3619 pgoff_t offset, unsigned char count)
3620{
3621 struct page *head;
3622 struct page *page;
3623 unsigned char *map;
2628bd6f 3624 bool ret;
570a335b
HD
3625
3626 head = vmalloc_to_page(si->swap_map + offset);
3627 if (page_private(head) != SWP_CONTINUED) {
3628 BUG_ON(count & COUNT_CONTINUED);
3629 return false; /* need to add count continuation */
3630 }
3631
2628bd6f 3632 spin_lock(&si->cont_lock);
570a335b
HD
3633 offset &= ~PAGE_MASK;
3634 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3635 map = kmap_atomic(page) + offset;
570a335b
HD
3636
3637 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3638 goto init_map; /* jump over SWAP_CONT_MAX checks */
3639
3640 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3641 /*
3642 * Think of how you add 1 to 999
3643 */
3644 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3645 kunmap_atomic(map);
570a335b
HD
3646 page = list_entry(page->lru.next, struct page, lru);
3647 BUG_ON(page == head);
9b04c5fe 3648 map = kmap_atomic(page) + offset;
570a335b
HD
3649 }
3650 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3651 kunmap_atomic(map);
570a335b 3652 page = list_entry(page->lru.next, struct page, lru);
2628bd6f
HY
3653 if (page == head) {
3654 ret = false; /* add count continuation */
3655 goto out;
3656 }
9b04c5fe 3657 map = kmap_atomic(page) + offset;
570a335b
HD
3658init_map: *map = 0; /* we didn't zero the page */
3659 }
3660 *map += 1;
9b04c5fe 3661 kunmap_atomic(map);
570a335b
HD
3662 page = list_entry(page->lru.prev, struct page, lru);
3663 while (page != head) {
9b04c5fe 3664 map = kmap_atomic(page) + offset;
570a335b 3665 *map = COUNT_CONTINUED;
9b04c5fe 3666 kunmap_atomic(map);
570a335b
HD
3667 page = list_entry(page->lru.prev, struct page, lru);
3668 }
2628bd6f 3669 ret = true; /* incremented */
570a335b
HD
3670
3671 } else { /* decrementing */
3672 /*
3673 * Think of how you subtract 1 from 1000
3674 */
3675 BUG_ON(count != COUNT_CONTINUED);
3676 while (*map == COUNT_CONTINUED) {
9b04c5fe 3677 kunmap_atomic(map);
570a335b
HD
3678 page = list_entry(page->lru.next, struct page, lru);
3679 BUG_ON(page == head);
9b04c5fe 3680 map = kmap_atomic(page) + offset;
570a335b
HD
3681 }
3682 BUG_ON(*map == 0);
3683 *map -= 1;
3684 if (*map == 0)
3685 count = 0;
9b04c5fe 3686 kunmap_atomic(map);
570a335b
HD
3687 page = list_entry(page->lru.prev, struct page, lru);
3688 while (page != head) {
9b04c5fe 3689 map = kmap_atomic(page) + offset;
570a335b
HD
3690 *map = SWAP_CONT_MAX | count;
3691 count = COUNT_CONTINUED;
9b04c5fe 3692 kunmap_atomic(map);
570a335b
HD
3693 page = list_entry(page->lru.prev, struct page, lru);
3694 }
2628bd6f 3695 ret = count == COUNT_CONTINUED;
570a335b 3696 }
2628bd6f
HY
3697out:
3698 spin_unlock(&si->cont_lock);
3699 return ret;
570a335b
HD
3700}
3701
3702/*
3703 * free_swap_count_continuations - swapoff free all the continuation pages
3704 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3705 */
3706static void free_swap_count_continuations(struct swap_info_struct *si)
3707{
3708 pgoff_t offset;
3709
3710 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3711 struct page *head;
3712 head = vmalloc_to_page(si->swap_map + offset);
3713 if (page_private(head)) {
0d576d20
GT
3714 struct page *page, *next;
3715
3716 list_for_each_entry_safe(page, next, &head->lru, lru) {
3717 list_del(&page->lru);
570a335b
HD
3718 __free_page(page);
3719 }
3720 }
3721 }
3722}
a2468cc9 3723
2cf85583
TH
3724#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3725void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3726 gfp_t gfp_mask)
3727{
3728 struct swap_info_struct *si, *next;
3729 if (!(gfp_mask & __GFP_IO) || !memcg)
3730 return;
3731
3732 if (!blk_cgroup_congested())
3733 return;
3734
3735 /*
3736 * We've already scheduled a throttle, avoid taking the global swap
3737 * lock.
3738 */
3739 if (current->throttle_queue)
3740 return;
3741
3742 spin_lock(&swap_avail_lock);
3743 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3744 avail_lists[node]) {
3745 if (si->bdev) {
3746 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3747 true);
3748 break;
3749 }
3750 }
3751 spin_unlock(&swap_avail_lock);
3752}
3753#endif
3754
a2468cc9
AL
3755static int __init swapfile_init(void)
3756{
3757 int nid;
3758
3759 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3760 GFP_KERNEL);
3761 if (!swap_avail_heads) {
3762 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3763 return -ENOMEM;
3764 }
3765
3766 for_each_node(nid)
3767 plist_head_init(&swap_avail_heads[nid]);
3768
3769 return 0;
3770}
3771subsys_initcall(swapfile_init);