libceph: move r_reply_op_{len,result} into struct ceph_osd_req_op
[linux-2.6-block.git] / mm / swap_state.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
1da177e4 9#include <linux/mm.h>
5a0e3ad6 10#include <linux/gfp.h>
1da177e4
LT
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
46017e95 13#include <linux/swapops.h>
1da177e4
LT
14#include <linux/init.h>
15#include <linux/pagemap.h>
1da177e4 16#include <linux/backing-dev.h>
3fb5c298 17#include <linux/blkdev.h>
c484d410 18#include <linux/pagevec.h>
b20a3503 19#include <linux/migrate.h>
1da177e4
LT
20
21#include <asm/pgtable.h>
22
23/*
24 * swapper_space is a fiction, retained to simplify the path through
7eaceacc 25 * vmscan's shrink_page_list.
1da177e4 26 */
f5e54d6e 27static const struct address_space_operations swap_aops = {
1da177e4 28 .writepage = swap_writepage,
62c230bc 29 .set_page_dirty = swap_set_page_dirty,
1c93923c 30#ifdef CONFIG_MIGRATION
e965f963 31 .migratepage = migrate_page,
1c93923c 32#endif
1da177e4
LT
33};
34
33806f06
SL
35struct address_space swapper_spaces[MAX_SWAPFILES] = {
36 [0 ... MAX_SWAPFILES - 1] = {
37 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
4bb5f5d9 38 .i_mmap_writable = ATOMIC_INIT(0),
33806f06 39 .a_ops = &swap_aops,
33806f06 40 }
1da177e4 41};
1da177e4
LT
42
43#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
44
45static struct {
46 unsigned long add_total;
47 unsigned long del_total;
48 unsigned long find_success;
49 unsigned long find_total;
1da177e4
LT
50} swap_cache_info;
51
33806f06
SL
52unsigned long total_swapcache_pages(void)
53{
54 int i;
55 unsigned long ret = 0;
56
57 for (i = 0; i < MAX_SWAPFILES; i++)
58 ret += swapper_spaces[i].nrpages;
59 return ret;
60}
61
579f8290
SL
62static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63
1da177e4
LT
64void show_swap_cache_info(void)
65{
33806f06 66 printk("%lu pages in swap cache\n", total_swapcache_pages());
2c97b7fc 67 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
1da177e4 68 swap_cache_info.add_total, swap_cache_info.del_total,
bb63be0a 69 swap_cache_info.find_success, swap_cache_info.find_total);
ec8acf20
SL
70 printk("Free swap = %ldkB\n",
71 get_nr_swap_pages() << (PAGE_SHIFT - 10));
1da177e4
LT
72 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
73}
74
75/*
31a56396 76 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
1da177e4
LT
77 * but sets SwapCache flag and private instead of mapping and index.
78 */
2f772e6c 79int __add_to_swap_cache(struct page *page, swp_entry_t entry)
1da177e4
LT
80{
81 int error;
33806f06 82 struct address_space *address_space;
1da177e4 83
309381fe
SL
84 VM_BUG_ON_PAGE(!PageLocked(page), page);
85 VM_BUG_ON_PAGE(PageSwapCache(page), page);
86 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
51726b12 87
31a56396
DN
88 page_cache_get(page);
89 SetPageSwapCache(page);
90 set_page_private(page, entry.val);
91
33806f06
SL
92 address_space = swap_address_space(entry);
93 spin_lock_irq(&address_space->tree_lock);
94 error = radix_tree_insert(&address_space->page_tree,
95 entry.val, page);
31a56396 96 if (likely(!error)) {
33806f06 97 address_space->nrpages++;
31a56396
DN
98 __inc_zone_page_state(page, NR_FILE_PAGES);
99 INC_CACHE_INFO(add_total);
100 }
33806f06 101 spin_unlock_irq(&address_space->tree_lock);
31a56396
DN
102
103 if (unlikely(error)) {
2ca4532a
DN
104 /*
105 * Only the context which have set SWAP_HAS_CACHE flag
106 * would call add_to_swap_cache().
107 * So add_to_swap_cache() doesn't returns -EEXIST.
108 */
109 VM_BUG_ON(error == -EEXIST);
31a56396
DN
110 set_page_private(page, 0UL);
111 ClearPageSwapCache(page);
112 page_cache_release(page);
113 }
114
115 return error;
116}
117
118
119int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
120{
121 int error;
122
5e4c0d97 123 error = radix_tree_maybe_preload(gfp_mask);
35c754d7 124 if (!error) {
31a56396 125 error = __add_to_swap_cache(page, entry);
1da177e4 126 radix_tree_preload_end();
fa1de900 127 }
1da177e4
LT
128 return error;
129}
130
1da177e4
LT
131/*
132 * This must be called only on pages that have
133 * been verified to be in the swap cache.
134 */
135void __delete_from_swap_cache(struct page *page)
136{
33806f06
SL
137 swp_entry_t entry;
138 struct address_space *address_space;
139
309381fe
SL
140 VM_BUG_ON_PAGE(!PageLocked(page), page);
141 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
142 VM_BUG_ON_PAGE(PageWriteback(page), page);
1da177e4 143
33806f06
SL
144 entry.val = page_private(page);
145 address_space = swap_address_space(entry);
146 radix_tree_delete(&address_space->page_tree, page_private(page));
4c21e2f2 147 set_page_private(page, 0);
1da177e4 148 ClearPageSwapCache(page);
33806f06 149 address_space->nrpages--;
347ce434 150 __dec_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
151 INC_CACHE_INFO(del_total);
152}
153
154/**
155 * add_to_swap - allocate swap space for a page
156 * @page: page we want to move to swap
157 *
158 * Allocate swap space for the page and add the page to the
159 * swap cache. Caller needs to hold the page lock.
160 */
5bc7b8ac 161int add_to_swap(struct page *page, struct list_head *list)
1da177e4
LT
162{
163 swp_entry_t entry;
1da177e4
LT
164 int err;
165
309381fe
SL
166 VM_BUG_ON_PAGE(!PageLocked(page), page);
167 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1da177e4 168
2ca4532a
DN
169 entry = get_swap_page();
170 if (!entry.val)
171 return 0;
172
37e84351
VD
173 if (mem_cgroup_try_charge_swap(page, entry)) {
174 swapcache_free(entry);
175 return 0;
176 }
177
3f04f62f 178 if (unlikely(PageTransHuge(page)))
5bc7b8ac 179 if (unlikely(split_huge_page_to_list(page, list))) {
0a31bc97 180 swapcache_free(entry);
3f04f62f
AA
181 return 0;
182 }
183
2ca4532a
DN
184 /*
185 * Radix-tree node allocations from PF_MEMALLOC contexts could
186 * completely exhaust the page allocator. __GFP_NOMEMALLOC
187 * stops emergency reserves from being allocated.
188 *
189 * TODO: this could cause a theoretical memory reclaim
190 * deadlock in the swap out path.
191 */
192 /*
854e9ed0 193 * Add it to the swap cache.
2ca4532a
DN
194 */
195 err = add_to_swap_cache(page, entry,
196 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
197
854e9ed0 198 if (!err) {
2ca4532a
DN
199 return 1;
200 } else { /* -ENOMEM radix-tree allocation failure */
bd53b714 201 /*
2ca4532a
DN
202 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
203 * clear SWAP_HAS_CACHE flag.
1da177e4 204 */
0a31bc97 205 swapcache_free(entry);
2ca4532a 206 return 0;
1da177e4
LT
207 }
208}
209
210/*
211 * This must be called only on pages that have
212 * been verified to be in the swap cache and locked.
213 * It will never put the page into the free list,
214 * the caller has a reference on the page.
215 */
216void delete_from_swap_cache(struct page *page)
217{
218 swp_entry_t entry;
33806f06 219 struct address_space *address_space;
1da177e4 220
4c21e2f2 221 entry.val = page_private(page);
1da177e4 222
33806f06
SL
223 address_space = swap_address_space(entry);
224 spin_lock_irq(&address_space->tree_lock);
1da177e4 225 __delete_from_swap_cache(page);
33806f06 226 spin_unlock_irq(&address_space->tree_lock);
1da177e4 227
0a31bc97 228 swapcache_free(entry);
1da177e4
LT
229 page_cache_release(page);
230}
231
1da177e4
LT
232/*
233 * If we are the only user, then try to free up the swap cache.
234 *
235 * Its ok to check for PageSwapCache without the page lock
a2c43eed
HD
236 * here because we are going to recheck again inside
237 * try_to_free_swap() _with_ the lock.
1da177e4
LT
238 * - Marcelo
239 */
240static inline void free_swap_cache(struct page *page)
241{
a2c43eed
HD
242 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
243 try_to_free_swap(page);
1da177e4
LT
244 unlock_page(page);
245 }
246}
247
248/*
249 * Perform a free_page(), also freeing any swap cache associated with
b8072f09 250 * this page if it is the last user of the page.
1da177e4
LT
251 */
252void free_page_and_swap_cache(struct page *page)
253{
254 free_swap_cache(page);
255 page_cache_release(page);
256}
257
258/*
259 * Passed an array of pages, drop them all from swapcache and then release
260 * them. They are removed from the LRU and freed if this is their last use.
261 */
262void free_pages_and_swap_cache(struct page **pages, int nr)
263{
1da177e4 264 struct page **pagep = pages;
aabfb572 265 int i;
1da177e4
LT
266
267 lru_add_drain();
aabfb572
MH
268 for (i = 0; i < nr; i++)
269 free_swap_cache(pagep[i]);
270 release_pages(pagep, nr, false);
1da177e4
LT
271}
272
273/*
274 * Lookup a swap entry in the swap cache. A found page will be returned
275 * unlocked and with its refcount incremented - we rely on the kernel
276 * lock getting page table operations atomic even if we drop the page
277 * lock before returning.
278 */
279struct page * lookup_swap_cache(swp_entry_t entry)
280{
281 struct page *page;
282
33806f06 283 page = find_get_page(swap_address_space(entry), entry.val);
1da177e4 284
579f8290 285 if (page) {
1da177e4 286 INC_CACHE_INFO(find_success);
579f8290
SL
287 if (TestClearPageReadahead(page))
288 atomic_inc(&swapin_readahead_hits);
289 }
1da177e4
LT
290
291 INC_CACHE_INFO(find_total);
292 return page;
293}
294
5b999aad
DS
295struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
296 struct vm_area_struct *vma, unsigned long addr,
297 bool *new_page_allocated)
1da177e4
LT
298{
299 struct page *found_page, *new_page = NULL;
5b999aad 300 struct address_space *swapper_space = swap_address_space(entry);
1da177e4 301 int err;
5b999aad 302 *new_page_allocated = false;
1da177e4
LT
303
304 do {
305 /*
306 * First check the swap cache. Since this is normally
307 * called after lookup_swap_cache() failed, re-calling
308 * that would confuse statistics.
309 */
5b999aad 310 found_page = find_get_page(swapper_space, entry.val);
1da177e4
LT
311 if (found_page)
312 break;
313
314 /*
315 * Get a new page to read into from swap.
316 */
317 if (!new_page) {
02098fea 318 new_page = alloc_page_vma(gfp_mask, vma, addr);
1da177e4
LT
319 if (!new_page)
320 break; /* Out of memory */
321 }
322
31a56396
DN
323 /*
324 * call radix_tree_preload() while we can wait.
325 */
5e4c0d97 326 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
31a56396
DN
327 if (err)
328 break;
329
f000944d
HD
330 /*
331 * Swap entry may have been freed since our caller observed it.
332 */
355cfa73 333 err = swapcache_prepare(entry);
cbab0e4e 334 if (err == -EEXIST) {
31a56396 335 radix_tree_preload_end();
cbab0e4e
RA
336 /*
337 * We might race against get_swap_page() and stumble
338 * across a SWAP_HAS_CACHE swap_map entry whose page
339 * has not been brought into the swapcache yet, while
340 * the other end is scheduled away waiting on discard
341 * I/O completion at scan_swap_map().
342 *
343 * In order to avoid turning this transitory state
344 * into a permanent loop around this -EEXIST case
345 * if !CONFIG_PREEMPT and the I/O completion happens
346 * to be waiting on the CPU waitqueue where we are now
347 * busy looping, we just conditionally invoke the
348 * scheduler here, if there are some more important
349 * tasks to run.
350 */
351 cond_resched();
355cfa73 352 continue;
31a56396
DN
353 }
354 if (err) { /* swp entry is obsolete ? */
355 radix_tree_preload_end();
f000944d 356 break;
31a56396 357 }
f000944d 358
2ca4532a 359 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
48c935ad 360 __SetPageLocked(new_page);
b2e18538 361 SetPageSwapBacked(new_page);
31a56396 362 err = __add_to_swap_cache(new_page, entry);
529ae9aa 363 if (likely(!err)) {
31a56396 364 radix_tree_preload_end();
1da177e4
LT
365 /*
366 * Initiate read into locked page and return.
367 */
c5fdae46 368 lru_cache_add_anon(new_page);
5b999aad 369 *new_page_allocated = true;
1da177e4
LT
370 return new_page;
371 }
31a56396 372 radix_tree_preload_end();
b2e18538 373 ClearPageSwapBacked(new_page);
48c935ad 374 __ClearPageLocked(new_page);
2ca4532a
DN
375 /*
376 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
377 * clear SWAP_HAS_CACHE flag.
378 */
0a31bc97 379 swapcache_free(entry);
f000944d 380 } while (err != -ENOMEM);
1da177e4
LT
381
382 if (new_page)
383 page_cache_release(new_page);
384 return found_page;
385}
46017e95 386
5b999aad
DS
387/*
388 * Locate a page of swap in physical memory, reserving swap cache space
389 * and reading the disk if it is not already cached.
390 * A failure return means that either the page allocation failed or that
391 * the swap entry is no longer in use.
392 */
393struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
394 struct vm_area_struct *vma, unsigned long addr)
395{
396 bool page_was_allocated;
397 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
398 vma, addr, &page_was_allocated);
399
400 if (page_was_allocated)
401 swap_readpage(retpage);
402
403 return retpage;
404}
405
579f8290
SL
406static unsigned long swapin_nr_pages(unsigned long offset)
407{
408 static unsigned long prev_offset;
409 unsigned int pages, max_pages, last_ra;
410 static atomic_t last_readahead_pages;
411
4db0c3c2 412 max_pages = 1 << READ_ONCE(page_cluster);
579f8290
SL
413 if (max_pages <= 1)
414 return 1;
415
416 /*
417 * This heuristic has been found to work well on both sequential and
418 * random loads, swapping to hard disk or to SSD: please don't ask
419 * what the "+ 2" means, it just happens to work well, that's all.
420 */
421 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
422 if (pages == 2) {
423 /*
424 * We can have no readahead hits to judge by: but must not get
425 * stuck here forever, so check for an adjacent offset instead
426 * (and don't even bother to check whether swap type is same).
427 */
428 if (offset != prev_offset + 1 && offset != prev_offset - 1)
429 pages = 1;
430 prev_offset = offset;
431 } else {
432 unsigned int roundup = 4;
433 while (roundup < pages)
434 roundup <<= 1;
435 pages = roundup;
436 }
437
438 if (pages > max_pages)
439 pages = max_pages;
440
441 /* Don't shrink readahead too fast */
442 last_ra = atomic_read(&last_readahead_pages) / 2;
443 if (pages < last_ra)
444 pages = last_ra;
445 atomic_set(&last_readahead_pages, pages);
446
447 return pages;
448}
449
46017e95
HD
450/**
451 * swapin_readahead - swap in pages in hope we need them soon
452 * @entry: swap entry of this memory
7682486b 453 * @gfp_mask: memory allocation flags
46017e95
HD
454 * @vma: user vma this address belongs to
455 * @addr: target address for mempolicy
456 *
457 * Returns the struct page for entry and addr, after queueing swapin.
458 *
459 * Primitive swap readahead code. We simply read an aligned block of
460 * (1 << page_cluster) entries in the swap area. This method is chosen
461 * because it doesn't cost us any seek time. We also make sure to queue
462 * the 'original' request together with the readahead ones...
463 *
464 * This has been extended to use the NUMA policies from the mm triggering
465 * the readahead.
466 *
467 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
468 */
02098fea 469struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
46017e95
HD
470 struct vm_area_struct *vma, unsigned long addr)
471{
46017e95 472 struct page *page;
579f8290
SL
473 unsigned long entry_offset = swp_offset(entry);
474 unsigned long offset = entry_offset;
67f96aa2 475 unsigned long start_offset, end_offset;
579f8290 476 unsigned long mask;
3fb5c298 477 struct blk_plug plug;
46017e95 478
579f8290
SL
479 mask = swapin_nr_pages(offset) - 1;
480 if (!mask)
481 goto skip;
482
67f96aa2
RR
483 /* Read a page_cluster sized and aligned cluster around offset. */
484 start_offset = offset & ~mask;
485 end_offset = offset | mask;
486 if (!start_offset) /* First page is swap header. */
487 start_offset++;
488
3fb5c298 489 blk_start_plug(&plug);
67f96aa2 490 for (offset = start_offset; offset <= end_offset ; offset++) {
46017e95
HD
491 /* Ok, do the async read-ahead now */
492 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
02098fea 493 gfp_mask, vma, addr);
46017e95 494 if (!page)
67f96aa2 495 continue;
579f8290
SL
496 if (offset != entry_offset)
497 SetPageReadahead(page);
46017e95
HD
498 page_cache_release(page);
499 }
3fb5c298
CE
500 blk_finish_plug(&plug);
501
46017e95 502 lru_add_drain(); /* Push any new pages onto the LRU now */
579f8290 503skip:
02098fea 504 return read_swap_cache_async(entry, gfp_mask, vma, addr);
46017e95 505}