Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
a0320865
DH
349static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350{
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
a0320865 385 set_page_slub_counters(page, counters_new);
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
a0320865 424 set_page_slub_counters(page, counters_new);
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
41ecc55b
CL
459/*
460 * Debug settings:
461 */
f0630fff
CL
462#ifdef CONFIG_SLUB_DEBUG_ON
463static int slub_debug = DEBUG_DEFAULT_FLAGS;
464#else
41ecc55b 465static int slub_debug;
f0630fff 466#endif
41ecc55b
CL
467
468static char *slub_debug_slabs;
fa5ec8a1 469static int disable_higher_order_debug;
41ecc55b 470
a79316c6
AR
471/*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477static inline void metadata_access_enable(void)
478{
479 kasan_disable_current();
480}
481
482static inline void metadata_access_disable(void)
483{
484 kasan_enable_current();
485}
486
81819f0f
CL
487/*
488 * Object debugging
489 */
490static void print_section(char *text, u8 *addr, unsigned int length)
491{
a79316c6 492 metadata_access_enable();
ffc79d28
SAS
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
a79316c6 495 metadata_access_disable();
81819f0f
CL
496}
497
81819f0f
CL
498static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500{
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509}
510
511static void set_track(struct kmem_cache *s, void *object,
ce71e27c 512 enum track_item alloc, unsigned long addr)
81819f0f 513{
1a00df4a 514 struct track *p = get_track(s, object, alloc);
81819f0f 515
81819f0f 516 if (addr) {
d6543e39
BG
517#ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
a79316c6 525 metadata_access_enable();
d6543e39 526 save_stack_trace(&trace);
a79316c6 527 metadata_access_disable();
d6543e39
BG
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
81819f0f
CL
537 p->addr = addr;
538 p->cpu = smp_processor_id();
88e4ccf2 539 p->pid = current->pid;
81819f0f
CL
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
81819f0f
CL
545static void init_tracking(struct kmem_cache *s, void *object)
546{
24922684
CL
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
ce71e27c
EGM
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
f9f58285
FF
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
f9f58285 566 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
567 else
568 break;
569 }
570#endif
24922684
CL
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
f9f58285 584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 585 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
ecc42fbe 591 struct va_format vaf;
24922684 592 va_list args;
24922684
CL
593
594 va_start(args, fmt);
ecc42fbe
FF
595 vaf.fmt = fmt;
596 vaf.va = &args;
f9f58285 597 pr_err("=============================================================================\n");
ecc42fbe 598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 599 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 600
373d4d09 601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 602 va_end(args);
81819f0f
CL
603}
604
24922684
CL
605static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606{
ecc42fbe 607 struct va_format vaf;
24922684 608 va_list args;
24922684
CL
609
610 va_start(args, fmt);
ecc42fbe
FF
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 614 va_end(args);
24922684
CL
615}
616
617static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
618{
619 unsigned int off; /* Offset of last byte */
a973e9dd 620 u8 *addr = page_address(page);
24922684
CL
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
f9f58285
FF
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
24922684
CL
628
629 if (p > addr + 16)
ffc79d28 630 print_section("Bytes b4 ", p - 16, 16);
81819f0f 631
3b0efdfa 632 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 633 PAGE_SIZE));
81819f0f 634 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
81819f0f 637
81819f0f
CL
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
24922684 643 if (s->flags & SLAB_STORE_USER)
81819f0f 644 off += 2 * sizeof(struct track);
81819f0f
CL
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
ffc79d28 648 print_section("Padding ", p + off, s->size - off);
24922684
CL
649
650 dump_stack();
81819f0f
CL
651}
652
75c66def 653void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
654 u8 *object, char *reason)
655{
3dc50637 656 slab_bug(s, "%s", reason);
24922684 657 print_trailer(s, page, object);
81819f0f
CL
658}
659
d0e0ac97
CG
660static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
81819f0f
CL
662{
663 va_list args;
664 char buf[100];
665
24922684
CL
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 668 va_end(args);
3dc50637 669 slab_bug(s, "%s", buf);
24922684 670 print_page_info(page);
81819f0f
CL
671 dump_stack();
672}
673
f7cb1933 674static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
675{
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
81819f0f
CL
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 684 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
685}
686
24922684
CL
687static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689{
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692}
693
694static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
06428780 696 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
697{
698 u8 *fault;
699 u8 *end;
700
a79316c6 701 metadata_access_enable();
79824820 702 fault = memchr_inv(start, value, bytes);
a79316c6 703 metadata_access_disable();
24922684
CL
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
f9f58285 712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
81819f0f
CL
718}
719
81819f0f
CL
720/*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
672bba3a 727 *
81819f0f
CL
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
3b0efdfa 731 * object + s->object_size
81819f0f 732 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 733 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 734 * object_size == inuse.
672bba3a 735 *
81819f0f
CL
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
672bba3a
CL
740 * Meta data starts here.
741 *
81819f0f
CL
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
672bba3a 744 * C. Padding to reach required alignment boundary or at mininum
6446faa2 745 * one word if debugging is on to be able to detect writes
672bba3a
CL
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
749 *
750 * object + s->size
672bba3a 751 * Nothing is used beyond s->size.
81819f0f 752 *
3b0efdfa 753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 754 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
755 * may be used with merged slabcaches.
756 */
757
81819f0f
CL
758static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759{
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
24922684
CL
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
775}
776
39b26464 777/* Check the pad bytes at the end of a slab page */
81819f0f
CL
778static int slab_pad_check(struct kmem_cache *s, struct page *page)
779{
24922684
CL
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
81819f0f
CL
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
a973e9dd 789 start = page_address(page);
ab9a0f19 790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
791 end = start + length;
792 remainder = length % s->size;
81819f0f
CL
793 if (!remainder)
794 return 1;
795
a79316c6 796 metadata_access_enable();
79824820 797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 798 metadata_access_disable();
24922684
CL
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 805 print_section("Padding ", end - remainder, remainder);
24922684 806
8a3d271d 807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 808 return 0;
81819f0f
CL
809}
810
811static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 812 void *object, u8 val)
81819f0f
CL
813{
814 u8 *p = object;
3b0efdfa 815 u8 *endobject = object + s->object_size;
81819f0f
CL
816
817 if (s->flags & SLAB_RED_ZONE) {
24922684 818 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 819 endobject, val, s->inuse - s->object_size))
81819f0f 820 return 0;
81819f0f 821 } else {
3b0efdfa 822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 823 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
3adbefee 826 }
81819f0f
CL
827 }
828
829 if (s->flags & SLAB_POISON) {
f7cb1933 830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 831 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 832 POISON_FREE, s->object_size - 1) ||
24922684 833 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 834 p + s->object_size - 1, POISON_END, 1)))
81819f0f 835 return 0;
81819f0f
CL
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
f7cb1933 842 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
9f6c708e 853 * No choice but to zap it and thus lose the remainder
81819f0f 854 * of the free objects in this slab. May cause
672bba3a 855 * another error because the object count is now wrong.
81819f0f 856 */
a973e9dd 857 set_freepointer(s, p, NULL);
81819f0f
CL
858 return 0;
859 }
860 return 1;
861}
862
863static int check_slab(struct kmem_cache *s, struct page *page)
864{
39b26464
CL
865 int maxobj;
866
81819f0f
CL
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
24922684 870 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
871 return 0;
872 }
39b26464 873
ab9a0f19 874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
f6edde9c 877 page->objects, maxobj);
39b26464
CL
878 return 0;
879 }
880 if (page->inuse > page->objects) {
24922684 881 slab_err(s, page, "inuse %u > max %u",
f6edde9c 882 page->inuse, page->objects);
81819f0f
CL
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888}
889
890/*
672bba3a
CL
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
893 */
894static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895{
896 int nr = 0;
881db7fb 897 void *fp;
81819f0f 898 void *object = NULL;
f6edde9c 899 int max_objects;
81819f0f 900
881db7fb 901 fp = page->freelist;
39b26464 902 while (fp && nr <= page->objects) {
81819f0f
CL
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
a973e9dd 909 set_freepointer(s, object, NULL);
81819f0f 910 } else {
24922684 911 slab_err(s, page, "Freepointer corrupt");
a973e9dd 912 page->freelist = NULL;
39b26464 913 page->inuse = page->objects;
24922684 914 slab_fix(s, "Freelist cleared");
81819f0f
CL
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
ab9a0f19 924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
39b26464 934 if (page->inuse != page->objects - nr) {
70d71228 935 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
24922684 938 slab_fix(s, "Object count adjusted.");
81819f0f
CL
939 }
940 return search == NULL;
941}
942
0121c619
CL
943static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
3ec09742
CL
945{
946 if (s->flags & SLAB_TRACE) {
f9f58285 947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
d0e0ac97
CG
954 print_section("Object ", (void *)object,
955 s->object_size);
3ec09742
CL
956
957 dump_stack();
958 }
959}
960
643b1138 961/*
672bba3a 962 * Tracking of fully allocated slabs for debugging purposes.
643b1138 963 */
5cc6eee8
CL
964static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
643b1138 966{
5cc6eee8
CL
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
255d0884 970 lockdep_assert_held(&n->list_lock);
643b1138 971 list_add(&page->lru, &n->full);
643b1138
CL
972}
973
c65c1877 974static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 975{
643b1138
CL
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
255d0884 979 lockdep_assert_held(&n->list_lock);
643b1138 980 list_del(&page->lru);
643b1138
CL
981}
982
0f389ec6
CL
983/* Tracking of the number of slabs for debugging purposes */
984static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985{
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989}
990
26c02cf0
AB
991static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992{
993 return atomic_long_read(&n->nr_slabs);
994}
995
205ab99d 996static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
997{
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
338b2642 1006 if (likely(n)) {
0f389ec6 1007 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1008 atomic_long_add(objects, &n->total_objects);
1009 }
0f389ec6 1010}
205ab99d 1011static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1012{
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
205ab99d 1016 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1017}
1018
1019/* Object debug checks for alloc/free paths */
3ec09742
CL
1020static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022{
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
f7cb1933 1026 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1027 init_tracking(s, object);
1028}
1029
d0e0ac97
CG
1030static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
ce71e27c 1032 void *object, unsigned long addr)
81819f0f
CL
1033{
1034 if (!check_slab(s, page))
1035 goto bad;
1036
81819f0f
CL
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1039 goto bad;
81819f0f
CL
1040 }
1041
f7cb1933 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1043 goto bad;
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
19c7ff9e
CL
1066static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
81819f0f 1069{
19c7ff9e 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1071
19c7ff9e 1072 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1073 slab_lock(page);
1074
81819f0f
CL
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
70d71228 1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
24922684 1084 object_err(s, page, object, "Object already free");
81819f0f
CL
1085 goto fail;
1086 }
1087
f7cb1933 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1089 goto out;
81819f0f 1090
1b4f59e3 1091 if (unlikely(s != page->slab_cache)) {
3adbefee 1092 if (!PageSlab(page)) {
70d71228
CL
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1b4f59e3 1095 } else if (!page->slab_cache) {
f9f58285
FF
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
70d71228 1098 dump_stack();
06428780 1099 } else
24922684
CL
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
81819f0f
CL
1102 goto fail;
1103 }
3ec09742 1104
3ec09742
CL
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
f7cb1933 1108 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1109out:
881db7fb 1110 slab_unlock(page);
19c7ff9e
CL
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
3ec09742 1116
81819f0f 1117fail:
19c7ff9e
CL
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1120 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1121 return NULL;
81819f0f
CL
1122}
1123
41ecc55b
CL
1124static int __init setup_slub_debug(char *str)
1125{
f0630fff
CL
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
1140 slub_debug = 0;
1141 if (*str == '-')
1142 /*
1143 * Switch off all debugging measures.
1144 */
1145 goto out;
1146
1147 /*
1148 * Determine which debug features should be switched on
1149 */
06428780 1150 for (; *str && *str != ','; str++) {
f0630fff
CL
1151 switch (tolower(*str)) {
1152 case 'f':
1153 slub_debug |= SLAB_DEBUG_FREE;
1154 break;
1155 case 'z':
1156 slub_debug |= SLAB_RED_ZONE;
1157 break;
1158 case 'p':
1159 slub_debug |= SLAB_POISON;
1160 break;
1161 case 'u':
1162 slub_debug |= SLAB_STORE_USER;
1163 break;
1164 case 't':
1165 slub_debug |= SLAB_TRACE;
1166 break;
4c13dd3b
DM
1167 case 'a':
1168 slub_debug |= SLAB_FAILSLAB;
1169 break;
08303a73
CA
1170 case 'o':
1171 /*
1172 * Avoid enabling debugging on caches if its minimum
1173 * order would increase as a result.
1174 */
1175 disable_higher_order_debug = 1;
1176 break;
f0630fff 1177 default:
f9f58285
FF
1178 pr_err("slub_debug option '%c' unknown. skipped\n",
1179 *str);
f0630fff 1180 }
41ecc55b
CL
1181 }
1182
f0630fff 1183check_slabs:
41ecc55b
CL
1184 if (*str == ',')
1185 slub_debug_slabs = str + 1;
f0630fff 1186out:
41ecc55b
CL
1187 return 1;
1188}
1189
1190__setup("slub_debug", setup_slub_debug);
1191
423c929c 1192unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1193 unsigned long flags, const char *name,
51cc5068 1194 void (*ctor)(void *))
41ecc55b
CL
1195{
1196 /*
e153362a 1197 * Enable debugging if selected on the kernel commandline.
41ecc55b 1198 */
c6f58d9b
CL
1199 if (slub_debug && (!slub_debug_slabs || (name &&
1200 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1201 flags |= slub_debug;
ba0268a8
CL
1202
1203 return flags;
41ecc55b
CL
1204}
1205#else
3ec09742
CL
1206static inline void setup_object_debug(struct kmem_cache *s,
1207 struct page *page, void *object) {}
41ecc55b 1208
3ec09742 1209static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1210 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1211
19c7ff9e
CL
1212static inline struct kmem_cache_node *free_debug_processing(
1213 struct kmem_cache *s, struct page *page, void *object,
1214 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1215
41ecc55b
CL
1216static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 { return 1; }
1218static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1219 void *object, u8 val) { return 1; }
5cc6eee8
CL
1220static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 struct page *page) {}
c65c1877
PZ
1222static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
423c929c 1224unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1225 unsigned long flags, const char *name,
51cc5068 1226 void (*ctor)(void *))
ba0268a8
CL
1227{
1228 return flags;
1229}
41ecc55b 1230#define slub_debug 0
0f389ec6 1231
fdaa45e9
IM
1232#define disable_higher_order_debug 0
1233
0f389ec6
CL
1234static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 { return 0; }
26c02cf0
AB
1236static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 { return 0; }
205ab99d
CL
1238static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 int objects) {}
1240static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
7d550c56 1242
02e72cc6
AR
1243#endif /* CONFIG_SLUB_DEBUG */
1244
1245/*
1246 * Hooks for other subsystems that check memory allocations. In a typical
1247 * production configuration these hooks all should produce no code at all.
1248 */
d56791b3
RB
1249static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250{
1251 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1252 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1253}
1254
1255static inline void kfree_hook(const void *x)
1256{
1257 kmemleak_free(x);
0316bec2 1258 kasan_kfree_large(x);
d56791b3
RB
1259}
1260
8135be5a
VD
1261static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 gfp_t flags)
02e72cc6
AR
1263{
1264 flags &= gfp_allowed_mask;
1265 lockdep_trace_alloc(flags);
1266 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1267
8135be5a
VD
1268 if (should_failslab(s->object_size, flags, s->flags))
1269 return NULL;
1270
1271 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1272}
1273
1274static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 gfp_t flags, void *object)
d56791b3 1276{
02e72cc6
AR
1277 flags &= gfp_allowed_mask;
1278 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1280 memcg_kmem_put_cache(s);
0316bec2 1281 kasan_slab_alloc(s, object);
d56791b3 1282}
7d550c56 1283
d56791b3
RB
1284static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285{
1286 kmemleak_free_recursive(x, s->flags);
7d550c56 1287
02e72cc6
AR
1288 /*
1289 * Trouble is that we may no longer disable interrupts in the fast path
1290 * So in order to make the debug calls that expect irqs to be
1291 * disabled we need to disable interrupts temporarily.
1292 */
1293#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 {
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 kmemcheck_slab_free(s, x, s->object_size);
1299 debug_check_no_locks_freed(x, s->object_size);
1300 local_irq_restore(flags);
1301 }
1302#endif
1303 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1305
1306 kasan_slab_free(s, x);
02e72cc6 1307}
205ab99d 1308
81819f0f
CL
1309/*
1310 * Slab allocation and freeing
1311 */
5dfb4175
VD
1312static inline struct page *alloc_slab_page(struct kmem_cache *s,
1313 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1314{
5dfb4175 1315 struct page *page;
65c3376a
CL
1316 int order = oo_order(oo);
1317
b1eeab67
VN
1318 flags |= __GFP_NOTRACK;
1319
5dfb4175
VD
1320 if (memcg_charge_slab(s, flags, order))
1321 return NULL;
1322
2154a336 1323 if (node == NUMA_NO_NODE)
5dfb4175 1324 page = alloc_pages(flags, order);
65c3376a 1325 else
5dfb4175
VD
1326 page = alloc_pages_exact_node(node, flags, order);
1327
1328 if (!page)
1329 memcg_uncharge_slab(s, order);
1330
1331 return page;
65c3376a
CL
1332}
1333
81819f0f
CL
1334static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1335{
06428780 1336 struct page *page;
834f3d11 1337 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1338 gfp_t alloc_gfp;
81819f0f 1339
7e0528da
CL
1340 flags &= gfp_allowed_mask;
1341
1342 if (flags & __GFP_WAIT)
1343 local_irq_enable();
1344
b7a49f0d 1345 flags |= s->allocflags;
e12ba74d 1346
ba52270d
PE
1347 /*
1348 * Let the initial higher-order allocation fail under memory pressure
1349 * so we fall-back to the minimum order allocation.
1350 */
1351 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1352
5dfb4175 1353 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1354 if (unlikely(!page)) {
1355 oo = s->min;
80c3a998 1356 alloc_gfp = flags;
65c3376a
CL
1357 /*
1358 * Allocation may have failed due to fragmentation.
1359 * Try a lower order alloc if possible
1360 */
5dfb4175 1361 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1362
7e0528da
CL
1363 if (page)
1364 stat(s, ORDER_FALLBACK);
65c3376a 1365 }
5a896d9e 1366
737b719e 1367 if (kmemcheck_enabled && page
5086c389 1368 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1369 int pages = 1 << oo_order(oo);
1370
80c3a998 1371 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1372
1373 /*
1374 * Objects from caches that have a constructor don't get
1375 * cleared when they're allocated, so we need to do it here.
1376 */
1377 if (s->ctor)
1378 kmemcheck_mark_uninitialized_pages(page, pages);
1379 else
1380 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1381 }
1382
737b719e
DR
1383 if (flags & __GFP_WAIT)
1384 local_irq_disable();
1385 if (!page)
1386 return NULL;
1387
834f3d11 1388 page->objects = oo_objects(oo);
81819f0f
CL
1389 mod_zone_page_state(page_zone(page),
1390 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1391 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1392 1 << oo_order(oo));
81819f0f
CL
1393
1394 return page;
1395}
1396
1397static void setup_object(struct kmem_cache *s, struct page *page,
1398 void *object)
1399{
3ec09742 1400 setup_object_debug(s, page, object);
0316bec2
AR
1401 if (unlikely(s->ctor)) {
1402 kasan_unpoison_object_data(s, object);
51cc5068 1403 s->ctor(object);
0316bec2
AR
1404 kasan_poison_object_data(s, object);
1405 }
81819f0f
CL
1406}
1407
1408static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409{
1410 struct page *page;
81819f0f 1411 void *start;
81819f0f 1412 void *p;
1f458cbf 1413 int order;
54266640 1414 int idx;
81819f0f 1415
c871ac4e
AM
1416 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1417 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1418 BUG();
1419 }
81819f0f 1420
6cb06229
CL
1421 page = allocate_slab(s,
1422 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1423 if (!page)
1424 goto out;
1425
1f458cbf 1426 order = compound_order(page);
205ab99d 1427 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1428 page->slab_cache = s;
c03f94cc 1429 __SetPageSlab(page);
072bb0aa
MG
1430 if (page->pfmemalloc)
1431 SetPageSlabPfmemalloc(page);
81819f0f
CL
1432
1433 start = page_address(page);
81819f0f
CL
1434
1435 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1436 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1437
0316bec2
AR
1438 kasan_poison_slab(page);
1439
54266640
WY
1440 for_each_object_idx(p, idx, s, start, page->objects) {
1441 setup_object(s, page, p);
1442 if (likely(idx < page->objects))
1443 set_freepointer(s, p, p + s->size);
1444 else
1445 set_freepointer(s, p, NULL);
81819f0f 1446 }
81819f0f
CL
1447
1448 page->freelist = start;
e6e82ea1 1449 page->inuse = page->objects;
8cb0a506 1450 page->frozen = 1;
81819f0f 1451out:
81819f0f
CL
1452 return page;
1453}
1454
1455static void __free_slab(struct kmem_cache *s, struct page *page)
1456{
834f3d11
CL
1457 int order = compound_order(page);
1458 int pages = 1 << order;
81819f0f 1459
af537b0a 1460 if (kmem_cache_debug(s)) {
81819f0f
CL
1461 void *p;
1462
1463 slab_pad_check(s, page);
224a88be
CL
1464 for_each_object(p, s, page_address(page),
1465 page->objects)
f7cb1933 1466 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1467 }
1468
b1eeab67 1469 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1470
81819f0f
CL
1471 mod_zone_page_state(page_zone(page),
1472 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1473 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1474 -pages);
81819f0f 1475
072bb0aa 1476 __ClearPageSlabPfmemalloc(page);
49bd5221 1477 __ClearPageSlab(page);
1f458cbf 1478
22b751c3 1479 page_mapcount_reset(page);
1eb5ac64
NP
1480 if (current->reclaim_state)
1481 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1482 __free_pages(page, order);
1483 memcg_uncharge_slab(s, order);
81819f0f
CL
1484}
1485
da9a638c
LJ
1486#define need_reserve_slab_rcu \
1487 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1488
81819f0f
CL
1489static void rcu_free_slab(struct rcu_head *h)
1490{
1491 struct page *page;
1492
da9a638c
LJ
1493 if (need_reserve_slab_rcu)
1494 page = virt_to_head_page(h);
1495 else
1496 page = container_of((struct list_head *)h, struct page, lru);
1497
1b4f59e3 1498 __free_slab(page->slab_cache, page);
81819f0f
CL
1499}
1500
1501static void free_slab(struct kmem_cache *s, struct page *page)
1502{
1503 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1504 struct rcu_head *head;
1505
1506 if (need_reserve_slab_rcu) {
1507 int order = compound_order(page);
1508 int offset = (PAGE_SIZE << order) - s->reserved;
1509
1510 VM_BUG_ON(s->reserved != sizeof(*head));
1511 head = page_address(page) + offset;
1512 } else {
1513 /*
1514 * RCU free overloads the RCU head over the LRU
1515 */
1516 head = (void *)&page->lru;
1517 }
81819f0f
CL
1518
1519 call_rcu(head, rcu_free_slab);
1520 } else
1521 __free_slab(s, page);
1522}
1523
1524static void discard_slab(struct kmem_cache *s, struct page *page)
1525{
205ab99d 1526 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1527 free_slab(s, page);
1528}
1529
1530/*
5cc6eee8 1531 * Management of partially allocated slabs.
81819f0f 1532 */
1e4dd946
SR
1533static inline void
1534__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1535{
e95eed57 1536 n->nr_partial++;
136333d1 1537 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
81819f0f
CL
1541}
1542
1e4dd946
SR
1543static inline void add_partial(struct kmem_cache_node *n,
1544 struct page *page, int tail)
62e346a8 1545{
c65c1877 1546 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1547 __add_partial(n, page, tail);
1548}
c65c1877 1549
1e4dd946
SR
1550static inline void
1551__remove_partial(struct kmem_cache_node *n, struct page *page)
1552{
62e346a8
CL
1553 list_del(&page->lru);
1554 n->nr_partial--;
1555}
1556
1e4dd946
SR
1557static inline void remove_partial(struct kmem_cache_node *n,
1558 struct page *page)
1559{
1560 lockdep_assert_held(&n->list_lock);
1561 __remove_partial(n, page);
1562}
1563
81819f0f 1564/*
7ced3719
CL
1565 * Remove slab from the partial list, freeze it and
1566 * return the pointer to the freelist.
81819f0f 1567 *
497b66f2 1568 * Returns a list of objects or NULL if it fails.
81819f0f 1569 */
497b66f2 1570static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1571 struct kmem_cache_node *n, struct page *page,
633b0764 1572 int mode, int *objects)
81819f0f 1573{
2cfb7455
CL
1574 void *freelist;
1575 unsigned long counters;
1576 struct page new;
1577
c65c1877
PZ
1578 lockdep_assert_held(&n->list_lock);
1579
2cfb7455
CL
1580 /*
1581 * Zap the freelist and set the frozen bit.
1582 * The old freelist is the list of objects for the
1583 * per cpu allocation list.
1584 */
7ced3719
CL
1585 freelist = page->freelist;
1586 counters = page->counters;
1587 new.counters = counters;
633b0764 1588 *objects = new.objects - new.inuse;
23910c50 1589 if (mode) {
7ced3719 1590 new.inuse = page->objects;
23910c50
PE
1591 new.freelist = NULL;
1592 } else {
1593 new.freelist = freelist;
1594 }
2cfb7455 1595
a0132ac0 1596 VM_BUG_ON(new.frozen);
7ced3719 1597 new.frozen = 1;
2cfb7455 1598
7ced3719 1599 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1600 freelist, counters,
02d7633f 1601 new.freelist, new.counters,
7ced3719 1602 "acquire_slab"))
7ced3719 1603 return NULL;
2cfb7455
CL
1604
1605 remove_partial(n, page);
7ced3719 1606 WARN_ON(!freelist);
49e22585 1607 return freelist;
81819f0f
CL
1608}
1609
633b0764 1610static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1611static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1612
81819f0f 1613/*
672bba3a 1614 * Try to allocate a partial slab from a specific node.
81819f0f 1615 */
8ba00bb6
JK
1616static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1617 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1618{
49e22585
CL
1619 struct page *page, *page2;
1620 void *object = NULL;
633b0764
JK
1621 int available = 0;
1622 int objects;
81819f0f
CL
1623
1624 /*
1625 * Racy check. If we mistakenly see no partial slabs then we
1626 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1627 * partial slab and there is none available then get_partials()
1628 * will return NULL.
81819f0f
CL
1629 */
1630 if (!n || !n->nr_partial)
1631 return NULL;
1632
1633 spin_lock(&n->list_lock);
49e22585 1634 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1635 void *t;
49e22585 1636
8ba00bb6
JK
1637 if (!pfmemalloc_match(page, flags))
1638 continue;
1639
633b0764 1640 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1641 if (!t)
1642 break;
1643
633b0764 1644 available += objects;
12d79634 1645 if (!object) {
49e22585 1646 c->page = page;
49e22585 1647 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1648 object = t;
49e22585 1649 } else {
633b0764 1650 put_cpu_partial(s, page, 0);
8028dcea 1651 stat(s, CPU_PARTIAL_NODE);
49e22585 1652 }
345c905d
JK
1653 if (!kmem_cache_has_cpu_partial(s)
1654 || available > s->cpu_partial / 2)
49e22585
CL
1655 break;
1656
497b66f2 1657 }
81819f0f 1658 spin_unlock(&n->list_lock);
497b66f2 1659 return object;
81819f0f
CL
1660}
1661
1662/*
672bba3a 1663 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1664 */
de3ec035 1665static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1666 struct kmem_cache_cpu *c)
81819f0f
CL
1667{
1668#ifdef CONFIG_NUMA
1669 struct zonelist *zonelist;
dd1a239f 1670 struct zoneref *z;
54a6eb5c
MG
1671 struct zone *zone;
1672 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1673 void *object;
cc9a6c87 1674 unsigned int cpuset_mems_cookie;
81819f0f
CL
1675
1676 /*
672bba3a
CL
1677 * The defrag ratio allows a configuration of the tradeoffs between
1678 * inter node defragmentation and node local allocations. A lower
1679 * defrag_ratio increases the tendency to do local allocations
1680 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1681 *
672bba3a
CL
1682 * If the defrag_ratio is set to 0 then kmalloc() always
1683 * returns node local objects. If the ratio is higher then kmalloc()
1684 * may return off node objects because partial slabs are obtained
1685 * from other nodes and filled up.
81819f0f 1686 *
6446faa2 1687 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1688 * defrag_ratio = 1000) then every (well almost) allocation will
1689 * first attempt to defrag slab caches on other nodes. This means
1690 * scanning over all nodes to look for partial slabs which may be
1691 * expensive if we do it every time we are trying to find a slab
1692 * with available objects.
81819f0f 1693 */
9824601e
CL
1694 if (!s->remote_node_defrag_ratio ||
1695 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1696 return NULL;
1697
cc9a6c87 1698 do {
d26914d1 1699 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1700 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1701 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1702 struct kmem_cache_node *n;
1703
1704 n = get_node(s, zone_to_nid(zone));
1705
dee2f8aa 1706 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1707 n->nr_partial > s->min_partial) {
8ba00bb6 1708 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1709 if (object) {
1710 /*
d26914d1
MG
1711 * Don't check read_mems_allowed_retry()
1712 * here - if mems_allowed was updated in
1713 * parallel, that was a harmless race
1714 * between allocation and the cpuset
1715 * update
cc9a6c87 1716 */
cc9a6c87
MG
1717 return object;
1718 }
c0ff7453 1719 }
81819f0f 1720 }
d26914d1 1721 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1722#endif
1723 return NULL;
1724}
1725
1726/*
1727 * Get a partial page, lock it and return it.
1728 */
497b66f2 1729static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1730 struct kmem_cache_cpu *c)
81819f0f 1731{
497b66f2 1732 void *object;
a561ce00
JK
1733 int searchnode = node;
1734
1735 if (node == NUMA_NO_NODE)
1736 searchnode = numa_mem_id();
1737 else if (!node_present_pages(node))
1738 searchnode = node_to_mem_node(node);
81819f0f 1739
8ba00bb6 1740 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1741 if (object || node != NUMA_NO_NODE)
1742 return object;
81819f0f 1743
acd19fd1 1744 return get_any_partial(s, flags, c);
81819f0f
CL
1745}
1746
8a5ec0ba
CL
1747#ifdef CONFIG_PREEMPT
1748/*
1749 * Calculate the next globally unique transaction for disambiguiation
1750 * during cmpxchg. The transactions start with the cpu number and are then
1751 * incremented by CONFIG_NR_CPUS.
1752 */
1753#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1754#else
1755/*
1756 * No preemption supported therefore also no need to check for
1757 * different cpus.
1758 */
1759#define TID_STEP 1
1760#endif
1761
1762static inline unsigned long next_tid(unsigned long tid)
1763{
1764 return tid + TID_STEP;
1765}
1766
1767static inline unsigned int tid_to_cpu(unsigned long tid)
1768{
1769 return tid % TID_STEP;
1770}
1771
1772static inline unsigned long tid_to_event(unsigned long tid)
1773{
1774 return tid / TID_STEP;
1775}
1776
1777static inline unsigned int init_tid(int cpu)
1778{
1779 return cpu;
1780}
1781
1782static inline void note_cmpxchg_failure(const char *n,
1783 const struct kmem_cache *s, unsigned long tid)
1784{
1785#ifdef SLUB_DEBUG_CMPXCHG
1786 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1787
f9f58285 1788 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1789
1790#ifdef CONFIG_PREEMPT
1791 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1792 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1793 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1794 else
1795#endif
1796 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1797 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1798 tid_to_event(tid), tid_to_event(actual_tid));
1799 else
f9f58285 1800 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1801 actual_tid, tid, next_tid(tid));
1802#endif
4fdccdfb 1803 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1804}
1805
788e1aad 1806static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1807{
8a5ec0ba
CL
1808 int cpu;
1809
1810 for_each_possible_cpu(cpu)
1811 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1812}
2cfb7455 1813
81819f0f
CL
1814/*
1815 * Remove the cpu slab
1816 */
d0e0ac97
CG
1817static void deactivate_slab(struct kmem_cache *s, struct page *page,
1818 void *freelist)
81819f0f 1819{
2cfb7455 1820 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1821 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1822 int lock = 0;
1823 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1824 void *nextfree;
136333d1 1825 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1826 struct page new;
1827 struct page old;
1828
1829 if (page->freelist) {
84e554e6 1830 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1831 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1832 }
1833
894b8788 1834 /*
2cfb7455
CL
1835 * Stage one: Free all available per cpu objects back
1836 * to the page freelist while it is still frozen. Leave the
1837 * last one.
1838 *
1839 * There is no need to take the list->lock because the page
1840 * is still frozen.
1841 */
1842 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1843 void *prior;
1844 unsigned long counters;
1845
1846 do {
1847 prior = page->freelist;
1848 counters = page->counters;
1849 set_freepointer(s, freelist, prior);
1850 new.counters = counters;
1851 new.inuse--;
a0132ac0 1852 VM_BUG_ON(!new.frozen);
2cfb7455 1853
1d07171c 1854 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1855 prior, counters,
1856 freelist, new.counters,
1857 "drain percpu freelist"));
1858
1859 freelist = nextfree;
1860 }
1861
894b8788 1862 /*
2cfb7455
CL
1863 * Stage two: Ensure that the page is unfrozen while the
1864 * list presence reflects the actual number of objects
1865 * during unfreeze.
1866 *
1867 * We setup the list membership and then perform a cmpxchg
1868 * with the count. If there is a mismatch then the page
1869 * is not unfrozen but the page is on the wrong list.
1870 *
1871 * Then we restart the process which may have to remove
1872 * the page from the list that we just put it on again
1873 * because the number of objects in the slab may have
1874 * changed.
894b8788 1875 */
2cfb7455 1876redo:
894b8788 1877
2cfb7455
CL
1878 old.freelist = page->freelist;
1879 old.counters = page->counters;
a0132ac0 1880 VM_BUG_ON(!old.frozen);
7c2e132c 1881
2cfb7455
CL
1882 /* Determine target state of the slab */
1883 new.counters = old.counters;
1884 if (freelist) {
1885 new.inuse--;
1886 set_freepointer(s, freelist, old.freelist);
1887 new.freelist = freelist;
1888 } else
1889 new.freelist = old.freelist;
1890
1891 new.frozen = 0;
1892
8a5b20ae 1893 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1894 m = M_FREE;
1895 else if (new.freelist) {
1896 m = M_PARTIAL;
1897 if (!lock) {
1898 lock = 1;
1899 /*
1900 * Taking the spinlock removes the possiblity
1901 * that acquire_slab() will see a slab page that
1902 * is frozen
1903 */
1904 spin_lock(&n->list_lock);
1905 }
1906 } else {
1907 m = M_FULL;
1908 if (kmem_cache_debug(s) && !lock) {
1909 lock = 1;
1910 /*
1911 * This also ensures that the scanning of full
1912 * slabs from diagnostic functions will not see
1913 * any frozen slabs.
1914 */
1915 spin_lock(&n->list_lock);
1916 }
1917 }
1918
1919 if (l != m) {
1920
1921 if (l == M_PARTIAL)
1922
1923 remove_partial(n, page);
1924
1925 else if (l == M_FULL)
894b8788 1926
c65c1877 1927 remove_full(s, n, page);
2cfb7455
CL
1928
1929 if (m == M_PARTIAL) {
1930
1931 add_partial(n, page, tail);
136333d1 1932 stat(s, tail);
2cfb7455
CL
1933
1934 } else if (m == M_FULL) {
894b8788 1935
2cfb7455
CL
1936 stat(s, DEACTIVATE_FULL);
1937 add_full(s, n, page);
1938
1939 }
1940 }
1941
1942 l = m;
1d07171c 1943 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1944 old.freelist, old.counters,
1945 new.freelist, new.counters,
1946 "unfreezing slab"))
1947 goto redo;
1948
2cfb7455
CL
1949 if (lock)
1950 spin_unlock(&n->list_lock);
1951
1952 if (m == M_FREE) {
1953 stat(s, DEACTIVATE_EMPTY);
1954 discard_slab(s, page);
1955 stat(s, FREE_SLAB);
894b8788 1956 }
81819f0f
CL
1957}
1958
d24ac77f
JK
1959/*
1960 * Unfreeze all the cpu partial slabs.
1961 *
59a09917
CL
1962 * This function must be called with interrupts disabled
1963 * for the cpu using c (or some other guarantee must be there
1964 * to guarantee no concurrent accesses).
d24ac77f 1965 */
59a09917
CL
1966static void unfreeze_partials(struct kmem_cache *s,
1967 struct kmem_cache_cpu *c)
49e22585 1968{
345c905d 1969#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1970 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1971 struct page *page, *discard_page = NULL;
49e22585
CL
1972
1973 while ((page = c->partial)) {
49e22585
CL
1974 struct page new;
1975 struct page old;
1976
1977 c->partial = page->next;
43d77867
JK
1978
1979 n2 = get_node(s, page_to_nid(page));
1980 if (n != n2) {
1981 if (n)
1982 spin_unlock(&n->list_lock);
1983
1984 n = n2;
1985 spin_lock(&n->list_lock);
1986 }
49e22585
CL
1987
1988 do {
1989
1990 old.freelist = page->freelist;
1991 old.counters = page->counters;
a0132ac0 1992 VM_BUG_ON(!old.frozen);
49e22585
CL
1993
1994 new.counters = old.counters;
1995 new.freelist = old.freelist;
1996
1997 new.frozen = 0;
1998
d24ac77f 1999 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2000 old.freelist, old.counters,
2001 new.freelist, new.counters,
2002 "unfreezing slab"));
2003
8a5b20ae 2004 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2005 page->next = discard_page;
2006 discard_page = page;
43d77867
JK
2007 } else {
2008 add_partial(n, page, DEACTIVATE_TO_TAIL);
2009 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2010 }
2011 }
2012
2013 if (n)
2014 spin_unlock(&n->list_lock);
9ada1934
SL
2015
2016 while (discard_page) {
2017 page = discard_page;
2018 discard_page = discard_page->next;
2019
2020 stat(s, DEACTIVATE_EMPTY);
2021 discard_slab(s, page);
2022 stat(s, FREE_SLAB);
2023 }
345c905d 2024#endif
49e22585
CL
2025}
2026
2027/*
2028 * Put a page that was just frozen (in __slab_free) into a partial page
2029 * slot if available. This is done without interrupts disabled and without
2030 * preemption disabled. The cmpxchg is racy and may put the partial page
2031 * onto a random cpus partial slot.
2032 *
2033 * If we did not find a slot then simply move all the partials to the
2034 * per node partial list.
2035 */
633b0764 2036static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2037{
345c905d 2038#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2039 struct page *oldpage;
2040 int pages;
2041 int pobjects;
2042
d6e0b7fa 2043 preempt_disable();
49e22585
CL
2044 do {
2045 pages = 0;
2046 pobjects = 0;
2047 oldpage = this_cpu_read(s->cpu_slab->partial);
2048
2049 if (oldpage) {
2050 pobjects = oldpage->pobjects;
2051 pages = oldpage->pages;
2052 if (drain && pobjects > s->cpu_partial) {
2053 unsigned long flags;
2054 /*
2055 * partial array is full. Move the existing
2056 * set to the per node partial list.
2057 */
2058 local_irq_save(flags);
59a09917 2059 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2060 local_irq_restore(flags);
e24fc410 2061 oldpage = NULL;
49e22585
CL
2062 pobjects = 0;
2063 pages = 0;
8028dcea 2064 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2065 }
2066 }
2067
2068 pages++;
2069 pobjects += page->objects - page->inuse;
2070
2071 page->pages = pages;
2072 page->pobjects = pobjects;
2073 page->next = oldpage;
2074
d0e0ac97
CG
2075 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2076 != oldpage);
d6e0b7fa
VD
2077 if (unlikely(!s->cpu_partial)) {
2078 unsigned long flags;
2079
2080 local_irq_save(flags);
2081 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2082 local_irq_restore(flags);
2083 }
2084 preempt_enable();
345c905d 2085#endif
49e22585
CL
2086}
2087
dfb4f096 2088static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2089{
84e554e6 2090 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2091 deactivate_slab(s, c->page, c->freelist);
2092
2093 c->tid = next_tid(c->tid);
2094 c->page = NULL;
2095 c->freelist = NULL;
81819f0f
CL
2096}
2097
2098/*
2099 * Flush cpu slab.
6446faa2 2100 *
81819f0f
CL
2101 * Called from IPI handler with interrupts disabled.
2102 */
0c710013 2103static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2104{
9dfc6e68 2105 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2106
49e22585
CL
2107 if (likely(c)) {
2108 if (c->page)
2109 flush_slab(s, c);
2110
59a09917 2111 unfreeze_partials(s, c);
49e22585 2112 }
81819f0f
CL
2113}
2114
2115static void flush_cpu_slab(void *d)
2116{
2117 struct kmem_cache *s = d;
81819f0f 2118
dfb4f096 2119 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2120}
2121
a8364d55
GBY
2122static bool has_cpu_slab(int cpu, void *info)
2123{
2124 struct kmem_cache *s = info;
2125 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2126
02e1a9cd 2127 return c->page || c->partial;
a8364d55
GBY
2128}
2129
81819f0f
CL
2130static void flush_all(struct kmem_cache *s)
2131{
a8364d55 2132 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2133}
2134
dfb4f096
CL
2135/*
2136 * Check if the objects in a per cpu structure fit numa
2137 * locality expectations.
2138 */
57d437d2 2139static inline int node_match(struct page *page, int node)
dfb4f096
CL
2140{
2141#ifdef CONFIG_NUMA
4d7868e6 2142 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2143 return 0;
2144#endif
2145 return 1;
2146}
2147
9a02d699 2148#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2149static int count_free(struct page *page)
2150{
2151 return page->objects - page->inuse;
2152}
2153
9a02d699
DR
2154static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2155{
2156 return atomic_long_read(&n->total_objects);
2157}
2158#endif /* CONFIG_SLUB_DEBUG */
2159
2160#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2161static unsigned long count_partial(struct kmem_cache_node *n,
2162 int (*get_count)(struct page *))
2163{
2164 unsigned long flags;
2165 unsigned long x = 0;
2166 struct page *page;
2167
2168 spin_lock_irqsave(&n->list_lock, flags);
2169 list_for_each_entry(page, &n->partial, lru)
2170 x += get_count(page);
2171 spin_unlock_irqrestore(&n->list_lock, flags);
2172 return x;
2173}
9a02d699 2174#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2175
781b2ba6
PE
2176static noinline void
2177slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2178{
9a02d699
DR
2179#ifdef CONFIG_SLUB_DEBUG
2180 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2181 DEFAULT_RATELIMIT_BURST);
781b2ba6 2182 int node;
fa45dc25 2183 struct kmem_cache_node *n;
781b2ba6 2184
9a02d699
DR
2185 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2186 return;
2187
f9f58285 2188 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2189 nid, gfpflags);
f9f58285
FF
2190 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2191 s->name, s->object_size, s->size, oo_order(s->oo),
2192 oo_order(s->min));
781b2ba6 2193
3b0efdfa 2194 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2195 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2196 s->name);
fa5ec8a1 2197
fa45dc25 2198 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2199 unsigned long nr_slabs;
2200 unsigned long nr_objs;
2201 unsigned long nr_free;
2202
26c02cf0
AB
2203 nr_free = count_partial(n, count_free);
2204 nr_slabs = node_nr_slabs(n);
2205 nr_objs = node_nr_objs(n);
781b2ba6 2206
f9f58285 2207 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2208 node, nr_slabs, nr_objs, nr_free);
2209 }
9a02d699 2210#endif
781b2ba6
PE
2211}
2212
497b66f2
CL
2213static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2214 int node, struct kmem_cache_cpu **pc)
2215{
6faa6833 2216 void *freelist;
188fd063
CL
2217 struct kmem_cache_cpu *c = *pc;
2218 struct page *page;
497b66f2 2219
188fd063 2220 freelist = get_partial(s, flags, node, c);
497b66f2 2221
188fd063
CL
2222 if (freelist)
2223 return freelist;
2224
2225 page = new_slab(s, flags, node);
497b66f2 2226 if (page) {
7c8e0181 2227 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2228 if (c->page)
2229 flush_slab(s, c);
2230
2231 /*
2232 * No other reference to the page yet so we can
2233 * muck around with it freely without cmpxchg
2234 */
6faa6833 2235 freelist = page->freelist;
497b66f2
CL
2236 page->freelist = NULL;
2237
2238 stat(s, ALLOC_SLAB);
497b66f2
CL
2239 c->page = page;
2240 *pc = c;
2241 } else
6faa6833 2242 freelist = NULL;
497b66f2 2243
6faa6833 2244 return freelist;
497b66f2
CL
2245}
2246
072bb0aa
MG
2247static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2248{
2249 if (unlikely(PageSlabPfmemalloc(page)))
2250 return gfp_pfmemalloc_allowed(gfpflags);
2251
2252 return true;
2253}
2254
213eeb9f 2255/*
d0e0ac97
CG
2256 * Check the page->freelist of a page and either transfer the freelist to the
2257 * per cpu freelist or deactivate the page.
213eeb9f
CL
2258 *
2259 * The page is still frozen if the return value is not NULL.
2260 *
2261 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2262 *
2263 * This function must be called with interrupt disabled.
213eeb9f
CL
2264 */
2265static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2266{
2267 struct page new;
2268 unsigned long counters;
2269 void *freelist;
2270
2271 do {
2272 freelist = page->freelist;
2273 counters = page->counters;
6faa6833 2274
213eeb9f 2275 new.counters = counters;
a0132ac0 2276 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2277
2278 new.inuse = page->objects;
2279 new.frozen = freelist != NULL;
2280
d24ac77f 2281 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2282 freelist, counters,
2283 NULL, new.counters,
2284 "get_freelist"));
2285
2286 return freelist;
2287}
2288
81819f0f 2289/*
894b8788
CL
2290 * Slow path. The lockless freelist is empty or we need to perform
2291 * debugging duties.
2292 *
894b8788
CL
2293 * Processing is still very fast if new objects have been freed to the
2294 * regular freelist. In that case we simply take over the regular freelist
2295 * as the lockless freelist and zap the regular freelist.
81819f0f 2296 *
894b8788
CL
2297 * If that is not working then we fall back to the partial lists. We take the
2298 * first element of the freelist as the object to allocate now and move the
2299 * rest of the freelist to the lockless freelist.
81819f0f 2300 *
894b8788 2301 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2302 * we need to allocate a new slab. This is the slowest path since it involves
2303 * a call to the page allocator and the setup of a new slab.
81819f0f 2304 */
ce71e27c
EGM
2305static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2306 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2307{
6faa6833 2308 void *freelist;
f6e7def7 2309 struct page *page;
8a5ec0ba
CL
2310 unsigned long flags;
2311
2312 local_irq_save(flags);
2313#ifdef CONFIG_PREEMPT
2314 /*
2315 * We may have been preempted and rescheduled on a different
2316 * cpu before disabling interrupts. Need to reload cpu area
2317 * pointer.
2318 */
2319 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2320#endif
81819f0f 2321
f6e7def7
CL
2322 page = c->page;
2323 if (!page)
81819f0f 2324 goto new_slab;
49e22585 2325redo:
6faa6833 2326
57d437d2 2327 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2328 int searchnode = node;
2329
2330 if (node != NUMA_NO_NODE && !node_present_pages(node))
2331 searchnode = node_to_mem_node(node);
2332
2333 if (unlikely(!node_match(page, searchnode))) {
2334 stat(s, ALLOC_NODE_MISMATCH);
2335 deactivate_slab(s, page, c->freelist);
2336 c->page = NULL;
2337 c->freelist = NULL;
2338 goto new_slab;
2339 }
fc59c053 2340 }
6446faa2 2341
072bb0aa
MG
2342 /*
2343 * By rights, we should be searching for a slab page that was
2344 * PFMEMALLOC but right now, we are losing the pfmemalloc
2345 * information when the page leaves the per-cpu allocator
2346 */
2347 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2348 deactivate_slab(s, page, c->freelist);
2349 c->page = NULL;
2350 c->freelist = NULL;
2351 goto new_slab;
2352 }
2353
73736e03 2354 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2355 freelist = c->freelist;
2356 if (freelist)
73736e03 2357 goto load_freelist;
03e404af 2358
f6e7def7 2359 freelist = get_freelist(s, page);
6446faa2 2360
6faa6833 2361 if (!freelist) {
03e404af
CL
2362 c->page = NULL;
2363 stat(s, DEACTIVATE_BYPASS);
fc59c053 2364 goto new_slab;
03e404af 2365 }
6446faa2 2366
84e554e6 2367 stat(s, ALLOC_REFILL);
6446faa2 2368
894b8788 2369load_freelist:
507effea
CL
2370 /*
2371 * freelist is pointing to the list of objects to be used.
2372 * page is pointing to the page from which the objects are obtained.
2373 * That page must be frozen for per cpu allocations to work.
2374 */
a0132ac0 2375 VM_BUG_ON(!c->page->frozen);
6faa6833 2376 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2377 c->tid = next_tid(c->tid);
2378 local_irq_restore(flags);
6faa6833 2379 return freelist;
81819f0f 2380
81819f0f 2381new_slab:
2cfb7455 2382
49e22585 2383 if (c->partial) {
f6e7def7
CL
2384 page = c->page = c->partial;
2385 c->partial = page->next;
49e22585
CL
2386 stat(s, CPU_PARTIAL_ALLOC);
2387 c->freelist = NULL;
2388 goto redo;
81819f0f
CL
2389 }
2390
188fd063 2391 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2392
f4697436 2393 if (unlikely(!freelist)) {
9a02d699 2394 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2395 local_irq_restore(flags);
2396 return NULL;
81819f0f 2397 }
2cfb7455 2398
f6e7def7 2399 page = c->page;
5091b74a 2400 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2401 goto load_freelist;
2cfb7455 2402
497b66f2 2403 /* Only entered in the debug case */
d0e0ac97
CG
2404 if (kmem_cache_debug(s) &&
2405 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2406 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2407
f6e7def7 2408 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2409 c->page = NULL;
2410 c->freelist = NULL;
a71ae47a 2411 local_irq_restore(flags);
6faa6833 2412 return freelist;
894b8788
CL
2413}
2414
2415/*
2416 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2417 * have the fastpath folded into their functions. So no function call
2418 * overhead for requests that can be satisfied on the fastpath.
2419 *
2420 * The fastpath works by first checking if the lockless freelist can be used.
2421 * If not then __slab_alloc is called for slow processing.
2422 *
2423 * Otherwise we can simply pick the next object from the lockless free list.
2424 */
2b847c3c 2425static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2426 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2427{
894b8788 2428 void **object;
dfb4f096 2429 struct kmem_cache_cpu *c;
57d437d2 2430 struct page *page;
8a5ec0ba 2431 unsigned long tid;
1f84260c 2432
8135be5a
VD
2433 s = slab_pre_alloc_hook(s, gfpflags);
2434 if (!s)
773ff60e 2435 return NULL;
8a5ec0ba 2436redo:
8a5ec0ba
CL
2437 /*
2438 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2439 * enabled. We may switch back and forth between cpus while
2440 * reading from one cpu area. That does not matter as long
2441 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2442 *
9aabf810
JK
2443 * We should guarantee that tid and kmem_cache are retrieved on
2444 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2445 * to check if it is matched or not.
8a5ec0ba 2446 */
9aabf810
JK
2447 do {
2448 tid = this_cpu_read(s->cpu_slab->tid);
2449 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2450 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2451 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2452
2453 /*
2454 * Irqless object alloc/free algorithm used here depends on sequence
2455 * of fetching cpu_slab's data. tid should be fetched before anything
2456 * on c to guarantee that object and page associated with previous tid
2457 * won't be used with current tid. If we fetch tid first, object and
2458 * page could be one associated with next tid and our alloc/free
2459 * request will be failed. In this case, we will retry. So, no problem.
2460 */
2461 barrier();
8a5ec0ba 2462
8a5ec0ba
CL
2463 /*
2464 * The transaction ids are globally unique per cpu and per operation on
2465 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2466 * occurs on the right processor and that there was no operation on the
2467 * linked list in between.
2468 */
8a5ec0ba 2469
9dfc6e68 2470 object = c->freelist;
57d437d2 2471 page = c->page;
8eae1492 2472 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2473 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2474 stat(s, ALLOC_SLOWPATH);
2475 } else {
0ad9500e
ED
2476 void *next_object = get_freepointer_safe(s, object);
2477
8a5ec0ba 2478 /*
25985edc 2479 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2480 * operation and if we are on the right processor.
2481 *
d0e0ac97
CG
2482 * The cmpxchg does the following atomically (without lock
2483 * semantics!)
8a5ec0ba
CL
2484 * 1. Relocate first pointer to the current per cpu area.
2485 * 2. Verify that tid and freelist have not been changed
2486 * 3. If they were not changed replace tid and freelist
2487 *
d0e0ac97
CG
2488 * Since this is without lock semantics the protection is only
2489 * against code executing on this cpu *not* from access by
2490 * other cpus.
8a5ec0ba 2491 */
933393f5 2492 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2493 s->cpu_slab->freelist, s->cpu_slab->tid,
2494 object, tid,
0ad9500e 2495 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2496
2497 note_cmpxchg_failure("slab_alloc", s, tid);
2498 goto redo;
2499 }
0ad9500e 2500 prefetch_freepointer(s, next_object);
84e554e6 2501 stat(s, ALLOC_FASTPATH);
894b8788 2502 }
8a5ec0ba 2503
74e2134f 2504 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2505 memset(object, 0, s->object_size);
d07dbea4 2506
c016b0bd 2507 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2508
894b8788 2509 return object;
81819f0f
CL
2510}
2511
2b847c3c
EG
2512static __always_inline void *slab_alloc(struct kmem_cache *s,
2513 gfp_t gfpflags, unsigned long addr)
2514{
2515 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2516}
2517
81819f0f
CL
2518void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2519{
2b847c3c 2520 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2521
d0e0ac97
CG
2522 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2523 s->size, gfpflags);
5b882be4
EGM
2524
2525 return ret;
81819f0f
CL
2526}
2527EXPORT_SYMBOL(kmem_cache_alloc);
2528
0f24f128 2529#ifdef CONFIG_TRACING
4a92379b
RK
2530void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2531{
2b847c3c 2532 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2533 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2534 kasan_kmalloc(s, ret, size);
4a92379b
RK
2535 return ret;
2536}
2537EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2538#endif
2539
81819f0f
CL
2540#ifdef CONFIG_NUMA
2541void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2542{
2b847c3c 2543 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2544
ca2b84cb 2545 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2546 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2547
2548 return ret;
81819f0f
CL
2549}
2550EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2551
0f24f128 2552#ifdef CONFIG_TRACING
4a92379b 2553void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2554 gfp_t gfpflags,
4a92379b 2555 int node, size_t size)
5b882be4 2556{
2b847c3c 2557 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2558
2559 trace_kmalloc_node(_RET_IP_, ret,
2560 size, s->size, gfpflags, node);
0316bec2
AR
2561
2562 kasan_kmalloc(s, ret, size);
4a92379b 2563 return ret;
5b882be4 2564}
4a92379b 2565EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2566#endif
5d1f57e4 2567#endif
5b882be4 2568
81819f0f 2569/*
94e4d712 2570 * Slow path handling. This may still be called frequently since objects
894b8788 2571 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2572 *
894b8788
CL
2573 * So we still attempt to reduce cache line usage. Just take the slab
2574 * lock and free the item. If there is no additional partial page
2575 * handling required then we can return immediately.
81819f0f 2576 */
894b8788 2577static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2578 void *x, unsigned long addr)
81819f0f
CL
2579{
2580 void *prior;
2581 void **object = (void *)x;
2cfb7455 2582 int was_frozen;
2cfb7455
CL
2583 struct page new;
2584 unsigned long counters;
2585 struct kmem_cache_node *n = NULL;
61728d1e 2586 unsigned long uninitialized_var(flags);
81819f0f 2587
8a5ec0ba 2588 stat(s, FREE_SLOWPATH);
81819f0f 2589
19c7ff9e
CL
2590 if (kmem_cache_debug(s) &&
2591 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2592 return;
6446faa2 2593
2cfb7455 2594 do {
837d678d
JK
2595 if (unlikely(n)) {
2596 spin_unlock_irqrestore(&n->list_lock, flags);
2597 n = NULL;
2598 }
2cfb7455
CL
2599 prior = page->freelist;
2600 counters = page->counters;
2601 set_freepointer(s, object, prior);
2602 new.counters = counters;
2603 was_frozen = new.frozen;
2604 new.inuse--;
837d678d 2605 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2606
c65c1877 2607 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2608
2609 /*
d0e0ac97
CG
2610 * Slab was on no list before and will be
2611 * partially empty
2612 * We can defer the list move and instead
2613 * freeze it.
49e22585
CL
2614 */
2615 new.frozen = 1;
2616
c65c1877 2617 } else { /* Needs to be taken off a list */
49e22585 2618
b455def2 2619 n = get_node(s, page_to_nid(page));
49e22585
CL
2620 /*
2621 * Speculatively acquire the list_lock.
2622 * If the cmpxchg does not succeed then we may
2623 * drop the list_lock without any processing.
2624 *
2625 * Otherwise the list_lock will synchronize with
2626 * other processors updating the list of slabs.
2627 */
2628 spin_lock_irqsave(&n->list_lock, flags);
2629
2630 }
2cfb7455 2631 }
81819f0f 2632
2cfb7455
CL
2633 } while (!cmpxchg_double_slab(s, page,
2634 prior, counters,
2635 object, new.counters,
2636 "__slab_free"));
81819f0f 2637
2cfb7455 2638 if (likely(!n)) {
49e22585
CL
2639
2640 /*
2641 * If we just froze the page then put it onto the
2642 * per cpu partial list.
2643 */
8028dcea 2644 if (new.frozen && !was_frozen) {
49e22585 2645 put_cpu_partial(s, page, 1);
8028dcea
AS
2646 stat(s, CPU_PARTIAL_FREE);
2647 }
49e22585 2648 /*
2cfb7455
CL
2649 * The list lock was not taken therefore no list
2650 * activity can be necessary.
2651 */
b455def2
L
2652 if (was_frozen)
2653 stat(s, FREE_FROZEN);
2654 return;
2655 }
81819f0f 2656
8a5b20ae 2657 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2658 goto slab_empty;
2659
81819f0f 2660 /*
837d678d
JK
2661 * Objects left in the slab. If it was not on the partial list before
2662 * then add it.
81819f0f 2663 */
345c905d
JK
2664 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2665 if (kmem_cache_debug(s))
c65c1877 2666 remove_full(s, n, page);
837d678d
JK
2667 add_partial(n, page, DEACTIVATE_TO_TAIL);
2668 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2669 }
80f08c19 2670 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2671 return;
2672
2673slab_empty:
a973e9dd 2674 if (prior) {
81819f0f 2675 /*
6fbabb20 2676 * Slab on the partial list.
81819f0f 2677 */
5cc6eee8 2678 remove_partial(n, page);
84e554e6 2679 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2680 } else {
6fbabb20 2681 /* Slab must be on the full list */
c65c1877
PZ
2682 remove_full(s, n, page);
2683 }
2cfb7455 2684
80f08c19 2685 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2686 stat(s, FREE_SLAB);
81819f0f 2687 discard_slab(s, page);
81819f0f
CL
2688}
2689
894b8788
CL
2690/*
2691 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2692 * can perform fastpath freeing without additional function calls.
2693 *
2694 * The fastpath is only possible if we are freeing to the current cpu slab
2695 * of this processor. This typically the case if we have just allocated
2696 * the item before.
2697 *
2698 * If fastpath is not possible then fall back to __slab_free where we deal
2699 * with all sorts of special processing.
2700 */
06428780 2701static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2702 struct page *page, void *x, unsigned long addr)
894b8788
CL
2703{
2704 void **object = (void *)x;
dfb4f096 2705 struct kmem_cache_cpu *c;
8a5ec0ba 2706 unsigned long tid;
1f84260c 2707
c016b0bd
CL
2708 slab_free_hook(s, x);
2709
8a5ec0ba
CL
2710redo:
2711 /*
2712 * Determine the currently cpus per cpu slab.
2713 * The cpu may change afterward. However that does not matter since
2714 * data is retrieved via this pointer. If we are on the same cpu
2715 * during the cmpxchg then the free will succedd.
2716 */
9aabf810
JK
2717 do {
2718 tid = this_cpu_read(s->cpu_slab->tid);
2719 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2720 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2721 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2722
9aabf810
JK
2723 /* Same with comment on barrier() in slab_alloc_node() */
2724 barrier();
c016b0bd 2725
442b06bc 2726 if (likely(page == c->page)) {
ff12059e 2727 set_freepointer(s, object, c->freelist);
8a5ec0ba 2728
933393f5 2729 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2730 s->cpu_slab->freelist, s->cpu_slab->tid,
2731 c->freelist, tid,
2732 object, next_tid(tid)))) {
2733
2734 note_cmpxchg_failure("slab_free", s, tid);
2735 goto redo;
2736 }
84e554e6 2737 stat(s, FREE_FASTPATH);
894b8788 2738 } else
ff12059e 2739 __slab_free(s, page, x, addr);
894b8788 2740
894b8788
CL
2741}
2742
81819f0f
CL
2743void kmem_cache_free(struct kmem_cache *s, void *x)
2744{
b9ce5ef4
GC
2745 s = cache_from_obj(s, x);
2746 if (!s)
79576102 2747 return;
b9ce5ef4 2748 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2749 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2750}
2751EXPORT_SYMBOL(kmem_cache_free);
2752
81819f0f 2753/*
672bba3a
CL
2754 * Object placement in a slab is made very easy because we always start at
2755 * offset 0. If we tune the size of the object to the alignment then we can
2756 * get the required alignment by putting one properly sized object after
2757 * another.
81819f0f
CL
2758 *
2759 * Notice that the allocation order determines the sizes of the per cpu
2760 * caches. Each processor has always one slab available for allocations.
2761 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2762 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2763 * locking overhead.
81819f0f
CL
2764 */
2765
2766/*
2767 * Mininum / Maximum order of slab pages. This influences locking overhead
2768 * and slab fragmentation. A higher order reduces the number of partial slabs
2769 * and increases the number of allocations possible without having to
2770 * take the list_lock.
2771 */
2772static int slub_min_order;
114e9e89 2773static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2774static int slub_min_objects;
81819f0f 2775
81819f0f
CL
2776/*
2777 * Calculate the order of allocation given an slab object size.
2778 *
672bba3a
CL
2779 * The order of allocation has significant impact on performance and other
2780 * system components. Generally order 0 allocations should be preferred since
2781 * order 0 does not cause fragmentation in the page allocator. Larger objects
2782 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2783 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2784 * would be wasted.
2785 *
2786 * In order to reach satisfactory performance we must ensure that a minimum
2787 * number of objects is in one slab. Otherwise we may generate too much
2788 * activity on the partial lists which requires taking the list_lock. This is
2789 * less a concern for large slabs though which are rarely used.
81819f0f 2790 *
672bba3a
CL
2791 * slub_max_order specifies the order where we begin to stop considering the
2792 * number of objects in a slab as critical. If we reach slub_max_order then
2793 * we try to keep the page order as low as possible. So we accept more waste
2794 * of space in favor of a small page order.
81819f0f 2795 *
672bba3a
CL
2796 * Higher order allocations also allow the placement of more objects in a
2797 * slab and thereby reduce object handling overhead. If the user has
2798 * requested a higher mininum order then we start with that one instead of
2799 * the smallest order which will fit the object.
81819f0f 2800 */
5e6d444e 2801static inline int slab_order(int size, int min_objects,
ab9a0f19 2802 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2803{
2804 int order;
2805 int rem;
6300ea75 2806 int min_order = slub_min_order;
81819f0f 2807
ab9a0f19 2808 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2809 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2810
6300ea75 2811 for (order = max(min_order,
5e6d444e
CL
2812 fls(min_objects * size - 1) - PAGE_SHIFT);
2813 order <= max_order; order++) {
81819f0f 2814
5e6d444e 2815 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2816
ab9a0f19 2817 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2818 continue;
2819
ab9a0f19 2820 rem = (slab_size - reserved) % size;
81819f0f 2821
5e6d444e 2822 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2823 break;
2824
2825 }
672bba3a 2826
81819f0f
CL
2827 return order;
2828}
2829
ab9a0f19 2830static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2831{
2832 int order;
2833 int min_objects;
2834 int fraction;
e8120ff1 2835 int max_objects;
5e6d444e
CL
2836
2837 /*
2838 * Attempt to find best configuration for a slab. This
2839 * works by first attempting to generate a layout with
2840 * the best configuration and backing off gradually.
2841 *
2842 * First we reduce the acceptable waste in a slab. Then
2843 * we reduce the minimum objects required in a slab.
2844 */
2845 min_objects = slub_min_objects;
9b2cd506
CL
2846 if (!min_objects)
2847 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2848 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2849 min_objects = min(min_objects, max_objects);
2850
5e6d444e 2851 while (min_objects > 1) {
c124f5b5 2852 fraction = 16;
5e6d444e
CL
2853 while (fraction >= 4) {
2854 order = slab_order(size, min_objects,
ab9a0f19 2855 slub_max_order, fraction, reserved);
5e6d444e
CL
2856 if (order <= slub_max_order)
2857 return order;
2858 fraction /= 2;
2859 }
5086c389 2860 min_objects--;
5e6d444e
CL
2861 }
2862
2863 /*
2864 * We were unable to place multiple objects in a slab. Now
2865 * lets see if we can place a single object there.
2866 */
ab9a0f19 2867 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2868 if (order <= slub_max_order)
2869 return order;
2870
2871 /*
2872 * Doh this slab cannot be placed using slub_max_order.
2873 */
ab9a0f19 2874 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2875 if (order < MAX_ORDER)
5e6d444e
CL
2876 return order;
2877 return -ENOSYS;
2878}
2879
5595cffc 2880static void
4053497d 2881init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2882{
2883 n->nr_partial = 0;
81819f0f
CL
2884 spin_lock_init(&n->list_lock);
2885 INIT_LIST_HEAD(&n->partial);
8ab1372f 2886#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2887 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2888 atomic_long_set(&n->total_objects, 0);
643b1138 2889 INIT_LIST_HEAD(&n->full);
8ab1372f 2890#endif
81819f0f
CL
2891}
2892
55136592 2893static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2894{
6c182dc0 2895 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2896 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2897
8a5ec0ba 2898 /*
d4d84fef
CM
2899 * Must align to double word boundary for the double cmpxchg
2900 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2901 */
d4d84fef
CM
2902 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2903 2 * sizeof(void *));
8a5ec0ba
CL
2904
2905 if (!s->cpu_slab)
2906 return 0;
2907
2908 init_kmem_cache_cpus(s);
4c93c355 2909
8a5ec0ba 2910 return 1;
4c93c355 2911}
4c93c355 2912
51df1142
CL
2913static struct kmem_cache *kmem_cache_node;
2914
81819f0f
CL
2915/*
2916 * No kmalloc_node yet so do it by hand. We know that this is the first
2917 * slab on the node for this slabcache. There are no concurrent accesses
2918 * possible.
2919 *
721ae22a
ZYW
2920 * Note that this function only works on the kmem_cache_node
2921 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2922 * memory on a fresh node that has no slab structures yet.
81819f0f 2923 */
55136592 2924static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2925{
2926 struct page *page;
2927 struct kmem_cache_node *n;
2928
51df1142 2929 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2930
51df1142 2931 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2932
2933 BUG_ON(!page);
a2f92ee7 2934 if (page_to_nid(page) != node) {
f9f58285
FF
2935 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2936 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2937 }
2938
81819f0f
CL
2939 n = page->freelist;
2940 BUG_ON(!n);
51df1142 2941 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2942 page->inuse = 1;
8cb0a506 2943 page->frozen = 0;
51df1142 2944 kmem_cache_node->node[node] = n;
8ab1372f 2945#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2946 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2947 init_tracking(kmem_cache_node, n);
8ab1372f 2948#endif
0316bec2 2949 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 2950 init_kmem_cache_node(n);
51df1142 2951 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2952
67b6c900 2953 /*
1e4dd946
SR
2954 * No locks need to be taken here as it has just been
2955 * initialized and there is no concurrent access.
67b6c900 2956 */
1e4dd946 2957 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2958}
2959
2960static void free_kmem_cache_nodes(struct kmem_cache *s)
2961{
2962 int node;
fa45dc25 2963 struct kmem_cache_node *n;
81819f0f 2964
fa45dc25
CL
2965 for_each_kmem_cache_node(s, node, n) {
2966 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2967 s->node[node] = NULL;
2968 }
2969}
2970
55136592 2971static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2972{
2973 int node;
81819f0f 2974
f64dc58c 2975 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2976 struct kmem_cache_node *n;
2977
73367bd8 2978 if (slab_state == DOWN) {
55136592 2979 early_kmem_cache_node_alloc(node);
73367bd8
AD
2980 continue;
2981 }
51df1142 2982 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2983 GFP_KERNEL, node);
81819f0f 2984
73367bd8
AD
2985 if (!n) {
2986 free_kmem_cache_nodes(s);
2987 return 0;
81819f0f 2988 }
73367bd8 2989
81819f0f 2990 s->node[node] = n;
4053497d 2991 init_kmem_cache_node(n);
81819f0f
CL
2992 }
2993 return 1;
2994}
81819f0f 2995
c0bdb232 2996static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2997{
2998 if (min < MIN_PARTIAL)
2999 min = MIN_PARTIAL;
3000 else if (min > MAX_PARTIAL)
3001 min = MAX_PARTIAL;
3002 s->min_partial = min;
3003}
3004
81819f0f
CL
3005/*
3006 * calculate_sizes() determines the order and the distribution of data within
3007 * a slab object.
3008 */
06b285dc 3009static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3010{
3011 unsigned long flags = s->flags;
3b0efdfa 3012 unsigned long size = s->object_size;
834f3d11 3013 int order;
81819f0f 3014
d8b42bf5
CL
3015 /*
3016 * Round up object size to the next word boundary. We can only
3017 * place the free pointer at word boundaries and this determines
3018 * the possible location of the free pointer.
3019 */
3020 size = ALIGN(size, sizeof(void *));
3021
3022#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3023 /*
3024 * Determine if we can poison the object itself. If the user of
3025 * the slab may touch the object after free or before allocation
3026 * then we should never poison the object itself.
3027 */
3028 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3029 !s->ctor)
81819f0f
CL
3030 s->flags |= __OBJECT_POISON;
3031 else
3032 s->flags &= ~__OBJECT_POISON;
3033
81819f0f
CL
3034
3035 /*
672bba3a 3036 * If we are Redzoning then check if there is some space between the
81819f0f 3037 * end of the object and the free pointer. If not then add an
672bba3a 3038 * additional word to have some bytes to store Redzone information.
81819f0f 3039 */
3b0efdfa 3040 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3041 size += sizeof(void *);
41ecc55b 3042#endif
81819f0f
CL
3043
3044 /*
672bba3a
CL
3045 * With that we have determined the number of bytes in actual use
3046 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3047 */
3048 s->inuse = size;
3049
3050 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3051 s->ctor)) {
81819f0f
CL
3052 /*
3053 * Relocate free pointer after the object if it is not
3054 * permitted to overwrite the first word of the object on
3055 * kmem_cache_free.
3056 *
3057 * This is the case if we do RCU, have a constructor or
3058 * destructor or are poisoning the objects.
3059 */
3060 s->offset = size;
3061 size += sizeof(void *);
3062 }
3063
c12b3c62 3064#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3065 if (flags & SLAB_STORE_USER)
3066 /*
3067 * Need to store information about allocs and frees after
3068 * the object.
3069 */
3070 size += 2 * sizeof(struct track);
3071
be7b3fbc 3072 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3073 /*
3074 * Add some empty padding so that we can catch
3075 * overwrites from earlier objects rather than let
3076 * tracking information or the free pointer be
0211a9c8 3077 * corrupted if a user writes before the start
81819f0f
CL
3078 * of the object.
3079 */
3080 size += sizeof(void *);
41ecc55b 3081#endif
672bba3a 3082
81819f0f
CL
3083 /*
3084 * SLUB stores one object immediately after another beginning from
3085 * offset 0. In order to align the objects we have to simply size
3086 * each object to conform to the alignment.
3087 */
45906855 3088 size = ALIGN(size, s->align);
81819f0f 3089 s->size = size;
06b285dc
CL
3090 if (forced_order >= 0)
3091 order = forced_order;
3092 else
ab9a0f19 3093 order = calculate_order(size, s->reserved);
81819f0f 3094
834f3d11 3095 if (order < 0)
81819f0f
CL
3096 return 0;
3097
b7a49f0d 3098 s->allocflags = 0;
834f3d11 3099 if (order)
b7a49f0d
CL
3100 s->allocflags |= __GFP_COMP;
3101
3102 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3103 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3104
3105 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3106 s->allocflags |= __GFP_RECLAIMABLE;
3107
81819f0f
CL
3108 /*
3109 * Determine the number of objects per slab
3110 */
ab9a0f19
LJ
3111 s->oo = oo_make(order, size, s->reserved);
3112 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3113 if (oo_objects(s->oo) > oo_objects(s->max))
3114 s->max = s->oo;
81819f0f 3115
834f3d11 3116 return !!oo_objects(s->oo);
81819f0f
CL
3117}
3118
8a13a4cc 3119static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3120{
8a13a4cc 3121 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3122 s->reserved = 0;
81819f0f 3123
da9a638c
LJ
3124 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3125 s->reserved = sizeof(struct rcu_head);
81819f0f 3126
06b285dc 3127 if (!calculate_sizes(s, -1))
81819f0f 3128 goto error;
3de47213
DR
3129 if (disable_higher_order_debug) {
3130 /*
3131 * Disable debugging flags that store metadata if the min slab
3132 * order increased.
3133 */
3b0efdfa 3134 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3135 s->flags &= ~DEBUG_METADATA_FLAGS;
3136 s->offset = 0;
3137 if (!calculate_sizes(s, -1))
3138 goto error;
3139 }
3140 }
81819f0f 3141
2565409f
HC
3142#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3143 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3144 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3145 /* Enable fast mode */
3146 s->flags |= __CMPXCHG_DOUBLE;
3147#endif
3148
3b89d7d8
DR
3149 /*
3150 * The larger the object size is, the more pages we want on the partial
3151 * list to avoid pounding the page allocator excessively.
3152 */
49e22585
CL
3153 set_min_partial(s, ilog2(s->size) / 2);
3154
3155 /*
3156 * cpu_partial determined the maximum number of objects kept in the
3157 * per cpu partial lists of a processor.
3158 *
3159 * Per cpu partial lists mainly contain slabs that just have one
3160 * object freed. If they are used for allocation then they can be
3161 * filled up again with minimal effort. The slab will never hit the
3162 * per node partial lists and therefore no locking will be required.
3163 *
3164 * This setting also determines
3165 *
3166 * A) The number of objects from per cpu partial slabs dumped to the
3167 * per node list when we reach the limit.
9f264904 3168 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3169 * per node list when we run out of per cpu objects. We only fetch
3170 * 50% to keep some capacity around for frees.
49e22585 3171 */
345c905d 3172 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3173 s->cpu_partial = 0;
3174 else if (s->size >= PAGE_SIZE)
49e22585
CL
3175 s->cpu_partial = 2;
3176 else if (s->size >= 1024)
3177 s->cpu_partial = 6;
3178 else if (s->size >= 256)
3179 s->cpu_partial = 13;
3180 else
3181 s->cpu_partial = 30;
3182
81819f0f 3183#ifdef CONFIG_NUMA
e2cb96b7 3184 s->remote_node_defrag_ratio = 1000;
81819f0f 3185#endif
55136592 3186 if (!init_kmem_cache_nodes(s))
dfb4f096 3187 goto error;
81819f0f 3188
55136592 3189 if (alloc_kmem_cache_cpus(s))
278b1bb1 3190 return 0;
ff12059e 3191
4c93c355 3192 free_kmem_cache_nodes(s);
81819f0f
CL
3193error:
3194 if (flags & SLAB_PANIC)
3195 panic("Cannot create slab %s size=%lu realsize=%u "
3196 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3197 s->name, (unsigned long)s->size, s->size,
3198 oo_order(s->oo), s->offset, flags);
278b1bb1 3199 return -EINVAL;
81819f0f 3200}
81819f0f 3201
33b12c38
CL
3202static void list_slab_objects(struct kmem_cache *s, struct page *page,
3203 const char *text)
3204{
3205#ifdef CONFIG_SLUB_DEBUG
3206 void *addr = page_address(page);
3207 void *p;
a5dd5c11
NK
3208 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3209 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3210 if (!map)
3211 return;
945cf2b6 3212 slab_err(s, page, text, s->name);
33b12c38 3213 slab_lock(page);
33b12c38 3214
5f80b13a 3215 get_map(s, page, map);
33b12c38
CL
3216 for_each_object(p, s, addr, page->objects) {
3217
3218 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3219 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3220 print_tracking(s, p);
3221 }
3222 }
3223 slab_unlock(page);
bbd7d57b 3224 kfree(map);
33b12c38
CL
3225#endif
3226}
3227
81819f0f 3228/*
599870b1 3229 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3230 * This is called from kmem_cache_close(). We must be the last thread
3231 * using the cache and therefore we do not need to lock anymore.
81819f0f 3232 */
599870b1 3233static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3234{
81819f0f
CL
3235 struct page *page, *h;
3236
33b12c38 3237 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3238 if (!page->inuse) {
1e4dd946 3239 __remove_partial(n, page);
81819f0f 3240 discard_slab(s, page);
33b12c38
CL
3241 } else {
3242 list_slab_objects(s, page,
945cf2b6 3243 "Objects remaining in %s on kmem_cache_close()");
599870b1 3244 }
33b12c38 3245 }
81819f0f
CL
3246}
3247
3248/*
672bba3a 3249 * Release all resources used by a slab cache.
81819f0f 3250 */
0c710013 3251static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3252{
3253 int node;
fa45dc25 3254 struct kmem_cache_node *n;
81819f0f
CL
3255
3256 flush_all(s);
81819f0f 3257 /* Attempt to free all objects */
fa45dc25 3258 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3259 free_partial(s, n);
3260 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3261 return 1;
3262 }
945cf2b6 3263 free_percpu(s->cpu_slab);
81819f0f
CL
3264 free_kmem_cache_nodes(s);
3265 return 0;
3266}
3267
945cf2b6 3268int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3269{
41a21285 3270 return kmem_cache_close(s);
81819f0f 3271}
81819f0f
CL
3272
3273/********************************************************************
3274 * Kmalloc subsystem
3275 *******************************************************************/
3276
81819f0f
CL
3277static int __init setup_slub_min_order(char *str)
3278{
06428780 3279 get_option(&str, &slub_min_order);
81819f0f
CL
3280
3281 return 1;
3282}
3283
3284__setup("slub_min_order=", setup_slub_min_order);
3285
3286static int __init setup_slub_max_order(char *str)
3287{
06428780 3288 get_option(&str, &slub_max_order);
818cf590 3289 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3290
3291 return 1;
3292}
3293
3294__setup("slub_max_order=", setup_slub_max_order);
3295
3296static int __init setup_slub_min_objects(char *str)
3297{
06428780 3298 get_option(&str, &slub_min_objects);
81819f0f
CL
3299
3300 return 1;
3301}
3302
3303__setup("slub_min_objects=", setup_slub_min_objects);
3304
81819f0f
CL
3305void *__kmalloc(size_t size, gfp_t flags)
3306{
aadb4bc4 3307 struct kmem_cache *s;
5b882be4 3308 void *ret;
81819f0f 3309
95a05b42 3310 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3311 return kmalloc_large(size, flags);
aadb4bc4 3312
2c59dd65 3313 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3314
3315 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3316 return s;
3317
2b847c3c 3318 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3319
ca2b84cb 3320 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3321
0316bec2
AR
3322 kasan_kmalloc(s, ret, size);
3323
5b882be4 3324 return ret;
81819f0f
CL
3325}
3326EXPORT_SYMBOL(__kmalloc);
3327
5d1f57e4 3328#ifdef CONFIG_NUMA
f619cfe1
CL
3329static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3330{
b1eeab67 3331 struct page *page;
e4f7c0b4 3332 void *ptr = NULL;
f619cfe1 3333
52383431
VD
3334 flags |= __GFP_COMP | __GFP_NOTRACK;
3335 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3336 if (page)
e4f7c0b4
CM
3337 ptr = page_address(page);
3338
d56791b3 3339 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3340 return ptr;
f619cfe1
CL
3341}
3342
81819f0f
CL
3343void *__kmalloc_node(size_t size, gfp_t flags, int node)
3344{
aadb4bc4 3345 struct kmem_cache *s;
5b882be4 3346 void *ret;
81819f0f 3347
95a05b42 3348 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3349 ret = kmalloc_large_node(size, flags, node);
3350
ca2b84cb
EGM
3351 trace_kmalloc_node(_RET_IP_, ret,
3352 size, PAGE_SIZE << get_order(size),
3353 flags, node);
5b882be4
EGM
3354
3355 return ret;
3356 }
aadb4bc4 3357
2c59dd65 3358 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3359
3360 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3361 return s;
3362
2b847c3c 3363 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3364
ca2b84cb 3365 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3366
0316bec2
AR
3367 kasan_kmalloc(s, ret, size);
3368
5b882be4 3369 return ret;
81819f0f
CL
3370}
3371EXPORT_SYMBOL(__kmalloc_node);
3372#endif
3373
0316bec2 3374static size_t __ksize(const void *object)
81819f0f 3375{
272c1d21 3376 struct page *page;
81819f0f 3377
ef8b4520 3378 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3379 return 0;
3380
294a80a8 3381 page = virt_to_head_page(object);
294a80a8 3382
76994412
PE
3383 if (unlikely(!PageSlab(page))) {
3384 WARN_ON(!PageCompound(page));
294a80a8 3385 return PAGE_SIZE << compound_order(page);
76994412 3386 }
81819f0f 3387
1b4f59e3 3388 return slab_ksize(page->slab_cache);
81819f0f 3389}
0316bec2
AR
3390
3391size_t ksize(const void *object)
3392{
3393 size_t size = __ksize(object);
3394 /* We assume that ksize callers could use whole allocated area,
3395 so we need unpoison this area. */
3396 kasan_krealloc(object, size);
3397 return size;
3398}
b1aabecd 3399EXPORT_SYMBOL(ksize);
81819f0f
CL
3400
3401void kfree(const void *x)
3402{
81819f0f 3403 struct page *page;
5bb983b0 3404 void *object = (void *)x;
81819f0f 3405
2121db74
PE
3406 trace_kfree(_RET_IP_, x);
3407
2408c550 3408 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3409 return;
3410
b49af68f 3411 page = virt_to_head_page(x);
aadb4bc4 3412 if (unlikely(!PageSlab(page))) {
0937502a 3413 BUG_ON(!PageCompound(page));
d56791b3 3414 kfree_hook(x);
52383431 3415 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3416 return;
3417 }
1b4f59e3 3418 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3419}
3420EXPORT_SYMBOL(kfree);
3421
832f37f5
VD
3422#define SHRINK_PROMOTE_MAX 32
3423
2086d26a 3424/*
832f37f5
VD
3425 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3426 * up most to the head of the partial lists. New allocations will then
3427 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3428 *
3429 * The slabs with the least items are placed last. This results in them
3430 * being allocated from last increasing the chance that the last objects
3431 * are freed in them.
2086d26a 3432 */
d6e0b7fa 3433int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3434{
3435 int node;
3436 int i;
3437 struct kmem_cache_node *n;
3438 struct page *page;
3439 struct page *t;
832f37f5
VD
3440 struct list_head discard;
3441 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3442 unsigned long flags;
ce3712d7 3443 int ret = 0;
2086d26a 3444
d6e0b7fa
VD
3445 if (deactivate) {
3446 /*
3447 * Disable empty slabs caching. Used to avoid pinning offline
3448 * memory cgroups by kmem pages that can be freed.
3449 */
3450 s->cpu_partial = 0;
3451 s->min_partial = 0;
3452
3453 /*
3454 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3455 * so we have to make sure the change is visible.
3456 */
3457 kick_all_cpus_sync();
3458 }
3459
2086d26a 3460 flush_all(s);
fa45dc25 3461 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3462 INIT_LIST_HEAD(&discard);
3463 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3464 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3465
3466 spin_lock_irqsave(&n->list_lock, flags);
3467
3468 /*
832f37f5 3469 * Build lists of slabs to discard or promote.
2086d26a 3470 *
672bba3a
CL
3471 * Note that concurrent frees may occur while we hold the
3472 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3473 */
3474 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3475 int free = page->objects - page->inuse;
3476
3477 /* Do not reread page->inuse */
3478 barrier();
3479
3480 /* We do not keep full slabs on the list */
3481 BUG_ON(free <= 0);
3482
3483 if (free == page->objects) {
3484 list_move(&page->lru, &discard);
69cb8e6b 3485 n->nr_partial--;
832f37f5
VD
3486 } else if (free <= SHRINK_PROMOTE_MAX)
3487 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3488 }
3489
2086d26a 3490 /*
832f37f5
VD
3491 * Promote the slabs filled up most to the head of the
3492 * partial list.
2086d26a 3493 */
832f37f5
VD
3494 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3495 list_splice(promote + i, &n->partial);
2086d26a 3496
2086d26a 3497 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3498
3499 /* Release empty slabs */
832f37f5 3500 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3501 discard_slab(s, page);
ce3712d7
VD
3502
3503 if (slabs_node(s, node))
3504 ret = 1;
2086d26a
CL
3505 }
3506
ce3712d7 3507 return ret;
2086d26a 3508}
2086d26a 3509
b9049e23
YG
3510static int slab_mem_going_offline_callback(void *arg)
3511{
3512 struct kmem_cache *s;
3513
18004c5d 3514 mutex_lock(&slab_mutex);
b9049e23 3515 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3516 __kmem_cache_shrink(s, false);
18004c5d 3517 mutex_unlock(&slab_mutex);
b9049e23
YG
3518
3519 return 0;
3520}
3521
3522static void slab_mem_offline_callback(void *arg)
3523{
3524 struct kmem_cache_node *n;
3525 struct kmem_cache *s;
3526 struct memory_notify *marg = arg;
3527 int offline_node;
3528
b9d5ab25 3529 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3530
3531 /*
3532 * If the node still has available memory. we need kmem_cache_node
3533 * for it yet.
3534 */
3535 if (offline_node < 0)
3536 return;
3537
18004c5d 3538 mutex_lock(&slab_mutex);
b9049e23
YG
3539 list_for_each_entry(s, &slab_caches, list) {
3540 n = get_node(s, offline_node);
3541 if (n) {
3542 /*
3543 * if n->nr_slabs > 0, slabs still exist on the node
3544 * that is going down. We were unable to free them,
c9404c9c 3545 * and offline_pages() function shouldn't call this
b9049e23
YG
3546 * callback. So, we must fail.
3547 */
0f389ec6 3548 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3549
3550 s->node[offline_node] = NULL;
8de66a0c 3551 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3552 }
3553 }
18004c5d 3554 mutex_unlock(&slab_mutex);
b9049e23
YG
3555}
3556
3557static int slab_mem_going_online_callback(void *arg)
3558{
3559 struct kmem_cache_node *n;
3560 struct kmem_cache *s;
3561 struct memory_notify *marg = arg;
b9d5ab25 3562 int nid = marg->status_change_nid_normal;
b9049e23
YG
3563 int ret = 0;
3564
3565 /*
3566 * If the node's memory is already available, then kmem_cache_node is
3567 * already created. Nothing to do.
3568 */
3569 if (nid < 0)
3570 return 0;
3571
3572 /*
0121c619 3573 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3574 * allocate a kmem_cache_node structure in order to bring the node
3575 * online.
3576 */
18004c5d 3577 mutex_lock(&slab_mutex);
b9049e23
YG
3578 list_for_each_entry(s, &slab_caches, list) {
3579 /*
3580 * XXX: kmem_cache_alloc_node will fallback to other nodes
3581 * since memory is not yet available from the node that
3582 * is brought up.
3583 */
8de66a0c 3584 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3585 if (!n) {
3586 ret = -ENOMEM;
3587 goto out;
3588 }
4053497d 3589 init_kmem_cache_node(n);
b9049e23
YG
3590 s->node[nid] = n;
3591 }
3592out:
18004c5d 3593 mutex_unlock(&slab_mutex);
b9049e23
YG
3594 return ret;
3595}
3596
3597static int slab_memory_callback(struct notifier_block *self,
3598 unsigned long action, void *arg)
3599{
3600 int ret = 0;
3601
3602 switch (action) {
3603 case MEM_GOING_ONLINE:
3604 ret = slab_mem_going_online_callback(arg);
3605 break;
3606 case MEM_GOING_OFFLINE:
3607 ret = slab_mem_going_offline_callback(arg);
3608 break;
3609 case MEM_OFFLINE:
3610 case MEM_CANCEL_ONLINE:
3611 slab_mem_offline_callback(arg);
3612 break;
3613 case MEM_ONLINE:
3614 case MEM_CANCEL_OFFLINE:
3615 break;
3616 }
dc19f9db
KH
3617 if (ret)
3618 ret = notifier_from_errno(ret);
3619 else
3620 ret = NOTIFY_OK;
b9049e23
YG
3621 return ret;
3622}
3623
3ac38faa
AM
3624static struct notifier_block slab_memory_callback_nb = {
3625 .notifier_call = slab_memory_callback,
3626 .priority = SLAB_CALLBACK_PRI,
3627};
b9049e23 3628
81819f0f
CL
3629/********************************************************************
3630 * Basic setup of slabs
3631 *******************************************************************/
3632
51df1142
CL
3633/*
3634 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3635 * the page allocator. Allocate them properly then fix up the pointers
3636 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3637 */
3638
dffb4d60 3639static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3640{
3641 int node;
dffb4d60 3642 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3643 struct kmem_cache_node *n;
51df1142 3644
dffb4d60 3645 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3646
7d557b3c
GC
3647 /*
3648 * This runs very early, and only the boot processor is supposed to be
3649 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3650 * IPIs around.
3651 */
3652 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3653 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3654 struct page *p;
3655
fa45dc25
CL
3656 list_for_each_entry(p, &n->partial, lru)
3657 p->slab_cache = s;
51df1142 3658
607bf324 3659#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3660 list_for_each_entry(p, &n->full, lru)
3661 p->slab_cache = s;
51df1142 3662#endif
51df1142 3663 }
f7ce3190 3664 slab_init_memcg_params(s);
dffb4d60
CL
3665 list_add(&s->list, &slab_caches);
3666 return s;
51df1142
CL
3667}
3668
81819f0f
CL
3669void __init kmem_cache_init(void)
3670{
dffb4d60
CL
3671 static __initdata struct kmem_cache boot_kmem_cache,
3672 boot_kmem_cache_node;
51df1142 3673
fc8d8620
SG
3674 if (debug_guardpage_minorder())
3675 slub_max_order = 0;
3676
dffb4d60
CL
3677 kmem_cache_node = &boot_kmem_cache_node;
3678 kmem_cache = &boot_kmem_cache;
51df1142 3679
dffb4d60
CL
3680 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3681 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3682
3ac38faa 3683 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3684
3685 /* Able to allocate the per node structures */
3686 slab_state = PARTIAL;
3687
dffb4d60
CL
3688 create_boot_cache(kmem_cache, "kmem_cache",
3689 offsetof(struct kmem_cache, node) +
3690 nr_node_ids * sizeof(struct kmem_cache_node *),
3691 SLAB_HWCACHE_ALIGN);
8a13a4cc 3692
dffb4d60 3693 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3694
51df1142
CL
3695 /*
3696 * Allocate kmem_cache_node properly from the kmem_cache slab.
3697 * kmem_cache_node is separately allocated so no need to
3698 * update any list pointers.
3699 */
dffb4d60 3700 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3701
3702 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3703 create_kmalloc_caches(0);
81819f0f
CL
3704
3705#ifdef CONFIG_SMP
3706 register_cpu_notifier(&slab_notifier);
9dfc6e68 3707#endif
81819f0f 3708
f9f58285 3709 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3710 cache_line_size(),
81819f0f
CL
3711 slub_min_order, slub_max_order, slub_min_objects,
3712 nr_cpu_ids, nr_node_ids);
3713}
3714
7e85ee0c
PE
3715void __init kmem_cache_init_late(void)
3716{
7e85ee0c
PE
3717}
3718
2633d7a0 3719struct kmem_cache *
a44cb944
VD
3720__kmem_cache_alias(const char *name, size_t size, size_t align,
3721 unsigned long flags, void (*ctor)(void *))
81819f0f 3722{
426589f5 3723 struct kmem_cache *s, *c;
81819f0f 3724
a44cb944 3725 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3726 if (s) {
3727 s->refcount++;
84d0ddd6 3728
81819f0f
CL
3729 /*
3730 * Adjust the object sizes so that we clear
3731 * the complete object on kzalloc.
3732 */
3b0efdfa 3733 s->object_size = max(s->object_size, (int)size);
81819f0f 3734 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3735
426589f5 3736 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3737 c->object_size = s->object_size;
3738 c->inuse = max_t(int, c->inuse,
3739 ALIGN(size, sizeof(void *)));
3740 }
3741
7b8f3b66 3742 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3743 s->refcount--;
cbb79694 3744 s = NULL;
7b8f3b66 3745 }
a0e1d1be 3746 }
6446faa2 3747
cbb79694
CL
3748 return s;
3749}
84c1cf62 3750
8a13a4cc 3751int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3752{
aac3a166
PE
3753 int err;
3754
3755 err = kmem_cache_open(s, flags);
3756 if (err)
3757 return err;
20cea968 3758
45530c44
CL
3759 /* Mutex is not taken during early boot */
3760 if (slab_state <= UP)
3761 return 0;
3762
107dab5c 3763 memcg_propagate_slab_attrs(s);
aac3a166 3764 err = sysfs_slab_add(s);
aac3a166
PE
3765 if (err)
3766 kmem_cache_close(s);
20cea968 3767
aac3a166 3768 return err;
81819f0f 3769}
81819f0f 3770
81819f0f 3771#ifdef CONFIG_SMP
81819f0f 3772/*
672bba3a
CL
3773 * Use the cpu notifier to insure that the cpu slabs are flushed when
3774 * necessary.
81819f0f 3775 */
0db0628d 3776static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3777 unsigned long action, void *hcpu)
3778{
3779 long cpu = (long)hcpu;
5b95a4ac
CL
3780 struct kmem_cache *s;
3781 unsigned long flags;
81819f0f
CL
3782
3783 switch (action) {
3784 case CPU_UP_CANCELED:
8bb78442 3785 case CPU_UP_CANCELED_FROZEN:
81819f0f 3786 case CPU_DEAD:
8bb78442 3787 case CPU_DEAD_FROZEN:
18004c5d 3788 mutex_lock(&slab_mutex);
5b95a4ac
CL
3789 list_for_each_entry(s, &slab_caches, list) {
3790 local_irq_save(flags);
3791 __flush_cpu_slab(s, cpu);
3792 local_irq_restore(flags);
3793 }
18004c5d 3794 mutex_unlock(&slab_mutex);
81819f0f
CL
3795 break;
3796 default:
3797 break;
3798 }
3799 return NOTIFY_OK;
3800}
3801
0db0628d 3802static struct notifier_block slab_notifier = {
3adbefee 3803 .notifier_call = slab_cpuup_callback
06428780 3804};
81819f0f
CL
3805
3806#endif
3807
ce71e27c 3808void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3809{
aadb4bc4 3810 struct kmem_cache *s;
94b528d0 3811 void *ret;
aadb4bc4 3812
95a05b42 3813 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3814 return kmalloc_large(size, gfpflags);
3815
2c59dd65 3816 s = kmalloc_slab(size, gfpflags);
81819f0f 3817
2408c550 3818 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3819 return s;
81819f0f 3820
2b847c3c 3821 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3822
25985edc 3823 /* Honor the call site pointer we received. */
ca2b84cb 3824 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3825
3826 return ret;
81819f0f
CL
3827}
3828
5d1f57e4 3829#ifdef CONFIG_NUMA
81819f0f 3830void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3831 int node, unsigned long caller)
81819f0f 3832{
aadb4bc4 3833 struct kmem_cache *s;
94b528d0 3834 void *ret;
aadb4bc4 3835
95a05b42 3836 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3837 ret = kmalloc_large_node(size, gfpflags, node);
3838
3839 trace_kmalloc_node(caller, ret,
3840 size, PAGE_SIZE << get_order(size),
3841 gfpflags, node);
3842
3843 return ret;
3844 }
eada35ef 3845
2c59dd65 3846 s = kmalloc_slab(size, gfpflags);
81819f0f 3847
2408c550 3848 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3849 return s;
81819f0f 3850
2b847c3c 3851 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3852
25985edc 3853 /* Honor the call site pointer we received. */
ca2b84cb 3854 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3855
3856 return ret;
81819f0f 3857}
5d1f57e4 3858#endif
81819f0f 3859
ab4d5ed5 3860#ifdef CONFIG_SYSFS
205ab99d
CL
3861static int count_inuse(struct page *page)
3862{
3863 return page->inuse;
3864}
3865
3866static int count_total(struct page *page)
3867{
3868 return page->objects;
3869}
ab4d5ed5 3870#endif
205ab99d 3871
ab4d5ed5 3872#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3873static int validate_slab(struct kmem_cache *s, struct page *page,
3874 unsigned long *map)
53e15af0
CL
3875{
3876 void *p;
a973e9dd 3877 void *addr = page_address(page);
53e15af0
CL
3878
3879 if (!check_slab(s, page) ||
3880 !on_freelist(s, page, NULL))
3881 return 0;
3882
3883 /* Now we know that a valid freelist exists */
39b26464 3884 bitmap_zero(map, page->objects);
53e15af0 3885
5f80b13a
CL
3886 get_map(s, page, map);
3887 for_each_object(p, s, addr, page->objects) {
3888 if (test_bit(slab_index(p, s, addr), map))
3889 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3890 return 0;
53e15af0
CL
3891 }
3892
224a88be 3893 for_each_object(p, s, addr, page->objects)
7656c72b 3894 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3895 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3896 return 0;
3897 return 1;
3898}
3899
434e245d
CL
3900static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3901 unsigned long *map)
53e15af0 3902{
881db7fb
CL
3903 slab_lock(page);
3904 validate_slab(s, page, map);
3905 slab_unlock(page);
53e15af0
CL
3906}
3907
434e245d
CL
3908static int validate_slab_node(struct kmem_cache *s,
3909 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3910{
3911 unsigned long count = 0;
3912 struct page *page;
3913 unsigned long flags;
3914
3915 spin_lock_irqsave(&n->list_lock, flags);
3916
3917 list_for_each_entry(page, &n->partial, lru) {
434e245d 3918 validate_slab_slab(s, page, map);
53e15af0
CL
3919 count++;
3920 }
3921 if (count != n->nr_partial)
f9f58285
FF
3922 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3923 s->name, count, n->nr_partial);
53e15af0
CL
3924
3925 if (!(s->flags & SLAB_STORE_USER))
3926 goto out;
3927
3928 list_for_each_entry(page, &n->full, lru) {
434e245d 3929 validate_slab_slab(s, page, map);
53e15af0
CL
3930 count++;
3931 }
3932 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3933 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3934 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3935
3936out:
3937 spin_unlock_irqrestore(&n->list_lock, flags);
3938 return count;
3939}
3940
434e245d 3941static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3942{
3943 int node;
3944 unsigned long count = 0;
205ab99d 3945 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3946 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3947 struct kmem_cache_node *n;
434e245d
CL
3948
3949 if (!map)
3950 return -ENOMEM;
53e15af0
CL
3951
3952 flush_all(s);
fa45dc25 3953 for_each_kmem_cache_node(s, node, n)
434e245d 3954 count += validate_slab_node(s, n, map);
434e245d 3955 kfree(map);
53e15af0
CL
3956 return count;
3957}
88a420e4 3958/*
672bba3a 3959 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3960 * and freed.
3961 */
3962
3963struct location {
3964 unsigned long count;
ce71e27c 3965 unsigned long addr;
45edfa58
CL
3966 long long sum_time;
3967 long min_time;
3968 long max_time;
3969 long min_pid;
3970 long max_pid;
174596a0 3971 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3972 nodemask_t nodes;
88a420e4
CL
3973};
3974
3975struct loc_track {
3976 unsigned long max;
3977 unsigned long count;
3978 struct location *loc;
3979};
3980
3981static void free_loc_track(struct loc_track *t)
3982{
3983 if (t->max)
3984 free_pages((unsigned long)t->loc,
3985 get_order(sizeof(struct location) * t->max));
3986}
3987
68dff6a9 3988static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3989{
3990 struct location *l;
3991 int order;
3992
88a420e4
CL
3993 order = get_order(sizeof(struct location) * max);
3994
68dff6a9 3995 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3996 if (!l)
3997 return 0;
3998
3999 if (t->count) {
4000 memcpy(l, t->loc, sizeof(struct location) * t->count);
4001 free_loc_track(t);
4002 }
4003 t->max = max;
4004 t->loc = l;
4005 return 1;
4006}
4007
4008static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4009 const struct track *track)
88a420e4
CL
4010{
4011 long start, end, pos;
4012 struct location *l;
ce71e27c 4013 unsigned long caddr;
45edfa58 4014 unsigned long age = jiffies - track->when;
88a420e4
CL
4015
4016 start = -1;
4017 end = t->count;
4018
4019 for ( ; ; ) {
4020 pos = start + (end - start + 1) / 2;
4021
4022 /*
4023 * There is nothing at "end". If we end up there
4024 * we need to add something to before end.
4025 */
4026 if (pos == end)
4027 break;
4028
4029 caddr = t->loc[pos].addr;
45edfa58
CL
4030 if (track->addr == caddr) {
4031
4032 l = &t->loc[pos];
4033 l->count++;
4034 if (track->when) {
4035 l->sum_time += age;
4036 if (age < l->min_time)
4037 l->min_time = age;
4038 if (age > l->max_time)
4039 l->max_time = age;
4040
4041 if (track->pid < l->min_pid)
4042 l->min_pid = track->pid;
4043 if (track->pid > l->max_pid)
4044 l->max_pid = track->pid;
4045
174596a0
RR
4046 cpumask_set_cpu(track->cpu,
4047 to_cpumask(l->cpus));
45edfa58
CL
4048 }
4049 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4050 return 1;
4051 }
4052
45edfa58 4053 if (track->addr < caddr)
88a420e4
CL
4054 end = pos;
4055 else
4056 start = pos;
4057 }
4058
4059 /*
672bba3a 4060 * Not found. Insert new tracking element.
88a420e4 4061 */
68dff6a9 4062 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4063 return 0;
4064
4065 l = t->loc + pos;
4066 if (pos < t->count)
4067 memmove(l + 1, l,
4068 (t->count - pos) * sizeof(struct location));
4069 t->count++;
4070 l->count = 1;
45edfa58
CL
4071 l->addr = track->addr;
4072 l->sum_time = age;
4073 l->min_time = age;
4074 l->max_time = age;
4075 l->min_pid = track->pid;
4076 l->max_pid = track->pid;
174596a0
RR
4077 cpumask_clear(to_cpumask(l->cpus));
4078 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4079 nodes_clear(l->nodes);
4080 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4081 return 1;
4082}
4083
4084static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4085 struct page *page, enum track_item alloc,
a5dd5c11 4086 unsigned long *map)
88a420e4 4087{
a973e9dd 4088 void *addr = page_address(page);
88a420e4
CL
4089 void *p;
4090
39b26464 4091 bitmap_zero(map, page->objects);
5f80b13a 4092 get_map(s, page, map);
88a420e4 4093
224a88be 4094 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4095 if (!test_bit(slab_index(p, s, addr), map))
4096 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4097}
4098
4099static int list_locations(struct kmem_cache *s, char *buf,
4100 enum track_item alloc)
4101{
e374d483 4102 int len = 0;
88a420e4 4103 unsigned long i;
68dff6a9 4104 struct loc_track t = { 0, 0, NULL };
88a420e4 4105 int node;
bbd7d57b
ED
4106 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4107 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4108 struct kmem_cache_node *n;
88a420e4 4109
bbd7d57b
ED
4110 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4111 GFP_TEMPORARY)) {
4112 kfree(map);
68dff6a9 4113 return sprintf(buf, "Out of memory\n");
bbd7d57b 4114 }
88a420e4
CL
4115 /* Push back cpu slabs */
4116 flush_all(s);
4117
fa45dc25 4118 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4119 unsigned long flags;
4120 struct page *page;
4121
9e86943b 4122 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4123 continue;
4124
4125 spin_lock_irqsave(&n->list_lock, flags);
4126 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4127 process_slab(&t, s, page, alloc, map);
88a420e4 4128 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4129 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4130 spin_unlock_irqrestore(&n->list_lock, flags);
4131 }
4132
4133 for (i = 0; i < t.count; i++) {
45edfa58 4134 struct location *l = &t.loc[i];
88a420e4 4135
9c246247 4136 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4137 break;
e374d483 4138 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4139
4140 if (l->addr)
62c70bce 4141 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4142 else
e374d483 4143 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4144
4145 if (l->sum_time != l->min_time) {
e374d483 4146 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4147 l->min_time,
4148 (long)div_u64(l->sum_time, l->count),
4149 l->max_time);
45edfa58 4150 } else
e374d483 4151 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4152 l->min_time);
4153
4154 if (l->min_pid != l->max_pid)
e374d483 4155 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4156 l->min_pid, l->max_pid);
4157 else
e374d483 4158 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4159 l->min_pid);
4160
174596a0
RR
4161 if (num_online_cpus() > 1 &&
4162 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4163 len < PAGE_SIZE - 60)
4164 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4165 " cpus=%*pbl",
4166 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4167
62bc62a8 4168 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4169 len < PAGE_SIZE - 60)
4170 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4171 " nodes=%*pbl",
4172 nodemask_pr_args(&l->nodes));
45edfa58 4173
e374d483 4174 len += sprintf(buf + len, "\n");
88a420e4
CL
4175 }
4176
4177 free_loc_track(&t);
bbd7d57b 4178 kfree(map);
88a420e4 4179 if (!t.count)
e374d483
HH
4180 len += sprintf(buf, "No data\n");
4181 return len;
88a420e4 4182}
ab4d5ed5 4183#endif
88a420e4 4184
a5a84755 4185#ifdef SLUB_RESILIENCY_TEST
c07b8183 4186static void __init resiliency_test(void)
a5a84755
CL
4187{
4188 u8 *p;
4189
95a05b42 4190 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4191
f9f58285
FF
4192 pr_err("SLUB resiliency testing\n");
4193 pr_err("-----------------------\n");
4194 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4195
4196 p = kzalloc(16, GFP_KERNEL);
4197 p[16] = 0x12;
f9f58285
FF
4198 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4199 p + 16);
a5a84755
CL
4200
4201 validate_slab_cache(kmalloc_caches[4]);
4202
4203 /* Hmmm... The next two are dangerous */
4204 p = kzalloc(32, GFP_KERNEL);
4205 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4206 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4207 p);
4208 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4209
4210 validate_slab_cache(kmalloc_caches[5]);
4211 p = kzalloc(64, GFP_KERNEL);
4212 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4213 *p = 0x56;
f9f58285
FF
4214 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4215 p);
4216 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4217 validate_slab_cache(kmalloc_caches[6]);
4218
f9f58285 4219 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4220 p = kzalloc(128, GFP_KERNEL);
4221 kfree(p);
4222 *p = 0x78;
f9f58285 4223 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4224 validate_slab_cache(kmalloc_caches[7]);
4225
4226 p = kzalloc(256, GFP_KERNEL);
4227 kfree(p);
4228 p[50] = 0x9a;
f9f58285 4229 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4230 validate_slab_cache(kmalloc_caches[8]);
4231
4232 p = kzalloc(512, GFP_KERNEL);
4233 kfree(p);
4234 p[512] = 0xab;
f9f58285 4235 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4236 validate_slab_cache(kmalloc_caches[9]);
4237}
4238#else
4239#ifdef CONFIG_SYSFS
4240static void resiliency_test(void) {};
4241#endif
4242#endif
4243
ab4d5ed5 4244#ifdef CONFIG_SYSFS
81819f0f 4245enum slab_stat_type {
205ab99d
CL
4246 SL_ALL, /* All slabs */
4247 SL_PARTIAL, /* Only partially allocated slabs */
4248 SL_CPU, /* Only slabs used for cpu caches */
4249 SL_OBJECTS, /* Determine allocated objects not slabs */
4250 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4251};
4252
205ab99d 4253#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4254#define SO_PARTIAL (1 << SL_PARTIAL)
4255#define SO_CPU (1 << SL_CPU)
4256#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4257#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4258
62e5c4b4
CG
4259static ssize_t show_slab_objects(struct kmem_cache *s,
4260 char *buf, unsigned long flags)
81819f0f
CL
4261{
4262 unsigned long total = 0;
81819f0f
CL
4263 int node;
4264 int x;
4265 unsigned long *nodes;
81819f0f 4266
e35e1a97 4267 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4268 if (!nodes)
4269 return -ENOMEM;
81819f0f 4270
205ab99d
CL
4271 if (flags & SO_CPU) {
4272 int cpu;
81819f0f 4273
205ab99d 4274 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4275 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4276 cpu);
ec3ab083 4277 int node;
49e22585 4278 struct page *page;
dfb4f096 4279
4db0c3c2 4280 page = READ_ONCE(c->page);
ec3ab083
CL
4281 if (!page)
4282 continue;
205ab99d 4283
ec3ab083
CL
4284 node = page_to_nid(page);
4285 if (flags & SO_TOTAL)
4286 x = page->objects;
4287 else if (flags & SO_OBJECTS)
4288 x = page->inuse;
4289 else
4290 x = 1;
49e22585 4291
ec3ab083
CL
4292 total += x;
4293 nodes[node] += x;
4294
4db0c3c2 4295 page = READ_ONCE(c->partial);
49e22585 4296 if (page) {
8afb1474
LZ
4297 node = page_to_nid(page);
4298 if (flags & SO_TOTAL)
4299 WARN_ON_ONCE(1);
4300 else if (flags & SO_OBJECTS)
4301 WARN_ON_ONCE(1);
4302 else
4303 x = page->pages;
bc6697d8
ED
4304 total += x;
4305 nodes[node] += x;
49e22585 4306 }
81819f0f
CL
4307 }
4308 }
4309
bfc8c901 4310 get_online_mems();
ab4d5ed5 4311#ifdef CONFIG_SLUB_DEBUG
205ab99d 4312 if (flags & SO_ALL) {
fa45dc25
CL
4313 struct kmem_cache_node *n;
4314
4315 for_each_kmem_cache_node(s, node, n) {
205ab99d 4316
d0e0ac97
CG
4317 if (flags & SO_TOTAL)
4318 x = atomic_long_read(&n->total_objects);
4319 else if (flags & SO_OBJECTS)
4320 x = atomic_long_read(&n->total_objects) -
4321 count_partial(n, count_free);
81819f0f 4322 else
205ab99d 4323 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4324 total += x;
4325 nodes[node] += x;
4326 }
4327
ab4d5ed5
CL
4328 } else
4329#endif
4330 if (flags & SO_PARTIAL) {
fa45dc25 4331 struct kmem_cache_node *n;
81819f0f 4332
fa45dc25 4333 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4334 if (flags & SO_TOTAL)
4335 x = count_partial(n, count_total);
4336 else if (flags & SO_OBJECTS)
4337 x = count_partial(n, count_inuse);
81819f0f 4338 else
205ab99d 4339 x = n->nr_partial;
81819f0f
CL
4340 total += x;
4341 nodes[node] += x;
4342 }
4343 }
81819f0f
CL
4344 x = sprintf(buf, "%lu", total);
4345#ifdef CONFIG_NUMA
fa45dc25 4346 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4347 if (nodes[node])
4348 x += sprintf(buf + x, " N%d=%lu",
4349 node, nodes[node]);
4350#endif
bfc8c901 4351 put_online_mems();
81819f0f
CL
4352 kfree(nodes);
4353 return x + sprintf(buf + x, "\n");
4354}
4355
ab4d5ed5 4356#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4357static int any_slab_objects(struct kmem_cache *s)
4358{
4359 int node;
fa45dc25 4360 struct kmem_cache_node *n;
81819f0f 4361
fa45dc25 4362 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4363 if (atomic_long_read(&n->total_objects))
81819f0f 4364 return 1;
fa45dc25 4365
81819f0f
CL
4366 return 0;
4367}
ab4d5ed5 4368#endif
81819f0f
CL
4369
4370#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4371#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4372
4373struct slab_attribute {
4374 struct attribute attr;
4375 ssize_t (*show)(struct kmem_cache *s, char *buf);
4376 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4377};
4378
4379#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4380 static struct slab_attribute _name##_attr = \
4381 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4382
4383#define SLAB_ATTR(_name) \
4384 static struct slab_attribute _name##_attr = \
ab067e99 4385 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4386
81819f0f
CL
4387static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4388{
4389 return sprintf(buf, "%d\n", s->size);
4390}
4391SLAB_ATTR_RO(slab_size);
4392
4393static ssize_t align_show(struct kmem_cache *s, char *buf)
4394{
4395 return sprintf(buf, "%d\n", s->align);
4396}
4397SLAB_ATTR_RO(align);
4398
4399static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4400{
3b0efdfa 4401 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4402}
4403SLAB_ATTR_RO(object_size);
4404
4405static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4406{
834f3d11 4407 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4408}
4409SLAB_ATTR_RO(objs_per_slab);
4410
06b285dc
CL
4411static ssize_t order_store(struct kmem_cache *s,
4412 const char *buf, size_t length)
4413{
0121c619
CL
4414 unsigned long order;
4415 int err;
4416
3dbb95f7 4417 err = kstrtoul(buf, 10, &order);
0121c619
CL
4418 if (err)
4419 return err;
06b285dc
CL
4420
4421 if (order > slub_max_order || order < slub_min_order)
4422 return -EINVAL;
4423
4424 calculate_sizes(s, order);
4425 return length;
4426}
4427
81819f0f
CL
4428static ssize_t order_show(struct kmem_cache *s, char *buf)
4429{
834f3d11 4430 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4431}
06b285dc 4432SLAB_ATTR(order);
81819f0f 4433
73d342b1
DR
4434static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4435{
4436 return sprintf(buf, "%lu\n", s->min_partial);
4437}
4438
4439static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4440 size_t length)
4441{
4442 unsigned long min;
4443 int err;
4444
3dbb95f7 4445 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4446 if (err)
4447 return err;
4448
c0bdb232 4449 set_min_partial(s, min);
73d342b1
DR
4450 return length;
4451}
4452SLAB_ATTR(min_partial);
4453
49e22585
CL
4454static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4455{
4456 return sprintf(buf, "%u\n", s->cpu_partial);
4457}
4458
4459static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4460 size_t length)
4461{
4462 unsigned long objects;
4463 int err;
4464
3dbb95f7 4465 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4466 if (err)
4467 return err;
345c905d 4468 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4469 return -EINVAL;
49e22585
CL
4470
4471 s->cpu_partial = objects;
4472 flush_all(s);
4473 return length;
4474}
4475SLAB_ATTR(cpu_partial);
4476
81819f0f
CL
4477static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4478{
62c70bce
JP
4479 if (!s->ctor)
4480 return 0;
4481 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4482}
4483SLAB_ATTR_RO(ctor);
4484
81819f0f
CL
4485static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4486{
4307c14f 4487 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4488}
4489SLAB_ATTR_RO(aliases);
4490
81819f0f
CL
4491static ssize_t partial_show(struct kmem_cache *s, char *buf)
4492{
d9acf4b7 4493 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4494}
4495SLAB_ATTR_RO(partial);
4496
4497static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4498{
d9acf4b7 4499 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4500}
4501SLAB_ATTR_RO(cpu_slabs);
4502
4503static ssize_t objects_show(struct kmem_cache *s, char *buf)
4504{
205ab99d 4505 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4506}
4507SLAB_ATTR_RO(objects);
4508
205ab99d
CL
4509static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4510{
4511 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4512}
4513SLAB_ATTR_RO(objects_partial);
4514
49e22585
CL
4515static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4516{
4517 int objects = 0;
4518 int pages = 0;
4519 int cpu;
4520 int len;
4521
4522 for_each_online_cpu(cpu) {
4523 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4524
4525 if (page) {
4526 pages += page->pages;
4527 objects += page->pobjects;
4528 }
4529 }
4530
4531 len = sprintf(buf, "%d(%d)", objects, pages);
4532
4533#ifdef CONFIG_SMP
4534 for_each_online_cpu(cpu) {
4535 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4536
4537 if (page && len < PAGE_SIZE - 20)
4538 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4539 page->pobjects, page->pages);
4540 }
4541#endif
4542 return len + sprintf(buf + len, "\n");
4543}
4544SLAB_ATTR_RO(slabs_cpu_partial);
4545
a5a84755
CL
4546static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4547{
4548 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4549}
4550
4551static ssize_t reclaim_account_store(struct kmem_cache *s,
4552 const char *buf, size_t length)
4553{
4554 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4555 if (buf[0] == '1')
4556 s->flags |= SLAB_RECLAIM_ACCOUNT;
4557 return length;
4558}
4559SLAB_ATTR(reclaim_account);
4560
4561static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4562{
4563 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4564}
4565SLAB_ATTR_RO(hwcache_align);
4566
4567#ifdef CONFIG_ZONE_DMA
4568static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4569{
4570 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4571}
4572SLAB_ATTR_RO(cache_dma);
4573#endif
4574
4575static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4576{
4577 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4578}
4579SLAB_ATTR_RO(destroy_by_rcu);
4580
ab9a0f19
LJ
4581static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4582{
4583 return sprintf(buf, "%d\n", s->reserved);
4584}
4585SLAB_ATTR_RO(reserved);
4586
ab4d5ed5 4587#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4588static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4589{
4590 return show_slab_objects(s, buf, SO_ALL);
4591}
4592SLAB_ATTR_RO(slabs);
4593
205ab99d
CL
4594static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4595{
4596 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4597}
4598SLAB_ATTR_RO(total_objects);
4599
81819f0f
CL
4600static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4601{
4602 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4603}
4604
4605static ssize_t sanity_checks_store(struct kmem_cache *s,
4606 const char *buf, size_t length)
4607{
4608 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4609 if (buf[0] == '1') {
4610 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4611 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4612 }
81819f0f
CL
4613 return length;
4614}
4615SLAB_ATTR(sanity_checks);
4616
4617static ssize_t trace_show(struct kmem_cache *s, char *buf)
4618{
4619 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4620}
4621
4622static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4623 size_t length)
4624{
c9e16131
CL
4625 /*
4626 * Tracing a merged cache is going to give confusing results
4627 * as well as cause other issues like converting a mergeable
4628 * cache into an umergeable one.
4629 */
4630 if (s->refcount > 1)
4631 return -EINVAL;
4632
81819f0f 4633 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4634 if (buf[0] == '1') {
4635 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4636 s->flags |= SLAB_TRACE;
b789ef51 4637 }
81819f0f
CL
4638 return length;
4639}
4640SLAB_ATTR(trace);
4641
81819f0f
CL
4642static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4643{
4644 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4645}
4646
4647static ssize_t red_zone_store(struct kmem_cache *s,
4648 const char *buf, size_t length)
4649{
4650 if (any_slab_objects(s))
4651 return -EBUSY;
4652
4653 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4654 if (buf[0] == '1') {
4655 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4656 s->flags |= SLAB_RED_ZONE;
b789ef51 4657 }
06b285dc 4658 calculate_sizes(s, -1);
81819f0f
CL
4659 return length;
4660}
4661SLAB_ATTR(red_zone);
4662
4663static ssize_t poison_show(struct kmem_cache *s, char *buf)
4664{
4665 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4666}
4667
4668static ssize_t poison_store(struct kmem_cache *s,
4669 const char *buf, size_t length)
4670{
4671 if (any_slab_objects(s))
4672 return -EBUSY;
4673
4674 s->flags &= ~SLAB_POISON;
b789ef51
CL
4675 if (buf[0] == '1') {
4676 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4677 s->flags |= SLAB_POISON;
b789ef51 4678 }
06b285dc 4679 calculate_sizes(s, -1);
81819f0f
CL
4680 return length;
4681}
4682SLAB_ATTR(poison);
4683
4684static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4685{
4686 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4687}
4688
4689static ssize_t store_user_store(struct kmem_cache *s,
4690 const char *buf, size_t length)
4691{
4692 if (any_slab_objects(s))
4693 return -EBUSY;
4694
4695 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4696 if (buf[0] == '1') {
4697 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4698 s->flags |= SLAB_STORE_USER;
b789ef51 4699 }
06b285dc 4700 calculate_sizes(s, -1);
81819f0f
CL
4701 return length;
4702}
4703SLAB_ATTR(store_user);
4704
53e15af0
CL
4705static ssize_t validate_show(struct kmem_cache *s, char *buf)
4706{
4707 return 0;
4708}
4709
4710static ssize_t validate_store(struct kmem_cache *s,
4711 const char *buf, size_t length)
4712{
434e245d
CL
4713 int ret = -EINVAL;
4714
4715 if (buf[0] == '1') {
4716 ret = validate_slab_cache(s);
4717 if (ret >= 0)
4718 ret = length;
4719 }
4720 return ret;
53e15af0
CL
4721}
4722SLAB_ATTR(validate);
a5a84755
CL
4723
4724static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4725{
4726 if (!(s->flags & SLAB_STORE_USER))
4727 return -ENOSYS;
4728 return list_locations(s, buf, TRACK_ALLOC);
4729}
4730SLAB_ATTR_RO(alloc_calls);
4731
4732static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4733{
4734 if (!(s->flags & SLAB_STORE_USER))
4735 return -ENOSYS;
4736 return list_locations(s, buf, TRACK_FREE);
4737}
4738SLAB_ATTR_RO(free_calls);
4739#endif /* CONFIG_SLUB_DEBUG */
4740
4741#ifdef CONFIG_FAILSLAB
4742static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4743{
4744 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4745}
4746
4747static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4748 size_t length)
4749{
c9e16131
CL
4750 if (s->refcount > 1)
4751 return -EINVAL;
4752
a5a84755
CL
4753 s->flags &= ~SLAB_FAILSLAB;
4754 if (buf[0] == '1')
4755 s->flags |= SLAB_FAILSLAB;
4756 return length;
4757}
4758SLAB_ATTR(failslab);
ab4d5ed5 4759#endif
53e15af0 4760
2086d26a
CL
4761static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4762{
4763 return 0;
4764}
4765
4766static ssize_t shrink_store(struct kmem_cache *s,
4767 const char *buf, size_t length)
4768{
832f37f5
VD
4769 if (buf[0] == '1')
4770 kmem_cache_shrink(s);
4771 else
2086d26a
CL
4772 return -EINVAL;
4773 return length;
4774}
4775SLAB_ATTR(shrink);
4776
81819f0f 4777#ifdef CONFIG_NUMA
9824601e 4778static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4779{
9824601e 4780 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4781}
4782
9824601e 4783static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4784 const char *buf, size_t length)
4785{
0121c619
CL
4786 unsigned long ratio;
4787 int err;
4788
3dbb95f7 4789 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4790 if (err)
4791 return err;
4792
e2cb96b7 4793 if (ratio <= 100)
0121c619 4794 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4795
81819f0f
CL
4796 return length;
4797}
9824601e 4798SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4799#endif
4800
8ff12cfc 4801#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4802static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4803{
4804 unsigned long sum = 0;
4805 int cpu;
4806 int len;
4807 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4808
4809 if (!data)
4810 return -ENOMEM;
4811
4812 for_each_online_cpu(cpu) {
9dfc6e68 4813 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4814
4815 data[cpu] = x;
4816 sum += x;
4817 }
4818
4819 len = sprintf(buf, "%lu", sum);
4820
50ef37b9 4821#ifdef CONFIG_SMP
8ff12cfc
CL
4822 for_each_online_cpu(cpu) {
4823 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4824 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4825 }
50ef37b9 4826#endif
8ff12cfc
CL
4827 kfree(data);
4828 return len + sprintf(buf + len, "\n");
4829}
4830
78eb00cc
DR
4831static void clear_stat(struct kmem_cache *s, enum stat_item si)
4832{
4833 int cpu;
4834
4835 for_each_online_cpu(cpu)
9dfc6e68 4836 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4837}
4838
8ff12cfc
CL
4839#define STAT_ATTR(si, text) \
4840static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4841{ \
4842 return show_stat(s, buf, si); \
4843} \
78eb00cc
DR
4844static ssize_t text##_store(struct kmem_cache *s, \
4845 const char *buf, size_t length) \
4846{ \
4847 if (buf[0] != '0') \
4848 return -EINVAL; \
4849 clear_stat(s, si); \
4850 return length; \
4851} \
4852SLAB_ATTR(text); \
8ff12cfc
CL
4853
4854STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4855STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4856STAT_ATTR(FREE_FASTPATH, free_fastpath);
4857STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4858STAT_ATTR(FREE_FROZEN, free_frozen);
4859STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4860STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4861STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4862STAT_ATTR(ALLOC_SLAB, alloc_slab);
4863STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4864STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4865STAT_ATTR(FREE_SLAB, free_slab);
4866STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4867STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4868STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4869STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4870STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4871STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4872STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4873STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4874STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4875STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4876STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4877STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4878STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4879STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4880#endif
4881
06428780 4882static struct attribute *slab_attrs[] = {
81819f0f
CL
4883 &slab_size_attr.attr,
4884 &object_size_attr.attr,
4885 &objs_per_slab_attr.attr,
4886 &order_attr.attr,
73d342b1 4887 &min_partial_attr.attr,
49e22585 4888 &cpu_partial_attr.attr,
81819f0f 4889 &objects_attr.attr,
205ab99d 4890 &objects_partial_attr.attr,
81819f0f
CL
4891 &partial_attr.attr,
4892 &cpu_slabs_attr.attr,
4893 &ctor_attr.attr,
81819f0f
CL
4894 &aliases_attr.attr,
4895 &align_attr.attr,
81819f0f
CL
4896 &hwcache_align_attr.attr,
4897 &reclaim_account_attr.attr,
4898 &destroy_by_rcu_attr.attr,
a5a84755 4899 &shrink_attr.attr,
ab9a0f19 4900 &reserved_attr.attr,
49e22585 4901 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4902#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4903 &total_objects_attr.attr,
4904 &slabs_attr.attr,
4905 &sanity_checks_attr.attr,
4906 &trace_attr.attr,
81819f0f
CL
4907 &red_zone_attr.attr,
4908 &poison_attr.attr,
4909 &store_user_attr.attr,
53e15af0 4910 &validate_attr.attr,
88a420e4
CL
4911 &alloc_calls_attr.attr,
4912 &free_calls_attr.attr,
ab4d5ed5 4913#endif
81819f0f
CL
4914#ifdef CONFIG_ZONE_DMA
4915 &cache_dma_attr.attr,
4916#endif
4917#ifdef CONFIG_NUMA
9824601e 4918 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4919#endif
4920#ifdef CONFIG_SLUB_STATS
4921 &alloc_fastpath_attr.attr,
4922 &alloc_slowpath_attr.attr,
4923 &free_fastpath_attr.attr,
4924 &free_slowpath_attr.attr,
4925 &free_frozen_attr.attr,
4926 &free_add_partial_attr.attr,
4927 &free_remove_partial_attr.attr,
4928 &alloc_from_partial_attr.attr,
4929 &alloc_slab_attr.attr,
4930 &alloc_refill_attr.attr,
e36a2652 4931 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4932 &free_slab_attr.attr,
4933 &cpuslab_flush_attr.attr,
4934 &deactivate_full_attr.attr,
4935 &deactivate_empty_attr.attr,
4936 &deactivate_to_head_attr.attr,
4937 &deactivate_to_tail_attr.attr,
4938 &deactivate_remote_frees_attr.attr,
03e404af 4939 &deactivate_bypass_attr.attr,
65c3376a 4940 &order_fallback_attr.attr,
b789ef51
CL
4941 &cmpxchg_double_fail_attr.attr,
4942 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4943 &cpu_partial_alloc_attr.attr,
4944 &cpu_partial_free_attr.attr,
8028dcea
AS
4945 &cpu_partial_node_attr.attr,
4946 &cpu_partial_drain_attr.attr,
81819f0f 4947#endif
4c13dd3b
DM
4948#ifdef CONFIG_FAILSLAB
4949 &failslab_attr.attr,
4950#endif
4951
81819f0f
CL
4952 NULL
4953};
4954
4955static struct attribute_group slab_attr_group = {
4956 .attrs = slab_attrs,
4957};
4958
4959static ssize_t slab_attr_show(struct kobject *kobj,
4960 struct attribute *attr,
4961 char *buf)
4962{
4963 struct slab_attribute *attribute;
4964 struct kmem_cache *s;
4965 int err;
4966
4967 attribute = to_slab_attr(attr);
4968 s = to_slab(kobj);
4969
4970 if (!attribute->show)
4971 return -EIO;
4972
4973 err = attribute->show(s, buf);
4974
4975 return err;
4976}
4977
4978static ssize_t slab_attr_store(struct kobject *kobj,
4979 struct attribute *attr,
4980 const char *buf, size_t len)
4981{
4982 struct slab_attribute *attribute;
4983 struct kmem_cache *s;
4984 int err;
4985
4986 attribute = to_slab_attr(attr);
4987 s = to_slab(kobj);
4988
4989 if (!attribute->store)
4990 return -EIO;
4991
4992 err = attribute->store(s, buf, len);
107dab5c
GC
4993#ifdef CONFIG_MEMCG_KMEM
4994 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 4995 struct kmem_cache *c;
81819f0f 4996
107dab5c
GC
4997 mutex_lock(&slab_mutex);
4998 if (s->max_attr_size < len)
4999 s->max_attr_size = len;
5000
ebe945c2
GC
5001 /*
5002 * This is a best effort propagation, so this function's return
5003 * value will be determined by the parent cache only. This is
5004 * basically because not all attributes will have a well
5005 * defined semantics for rollbacks - most of the actions will
5006 * have permanent effects.
5007 *
5008 * Returning the error value of any of the children that fail
5009 * is not 100 % defined, in the sense that users seeing the
5010 * error code won't be able to know anything about the state of
5011 * the cache.
5012 *
5013 * Only returning the error code for the parent cache at least
5014 * has well defined semantics. The cache being written to
5015 * directly either failed or succeeded, in which case we loop
5016 * through the descendants with best-effort propagation.
5017 */
426589f5
VD
5018 for_each_memcg_cache(c, s)
5019 attribute->store(c, buf, len);
107dab5c
GC
5020 mutex_unlock(&slab_mutex);
5021 }
5022#endif
81819f0f
CL
5023 return err;
5024}
5025
107dab5c
GC
5026static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5027{
5028#ifdef CONFIG_MEMCG_KMEM
5029 int i;
5030 char *buffer = NULL;
93030d83 5031 struct kmem_cache *root_cache;
107dab5c 5032
93030d83 5033 if (is_root_cache(s))
107dab5c
GC
5034 return;
5035
f7ce3190 5036 root_cache = s->memcg_params.root_cache;
93030d83 5037
107dab5c
GC
5038 /*
5039 * This mean this cache had no attribute written. Therefore, no point
5040 * in copying default values around
5041 */
93030d83 5042 if (!root_cache->max_attr_size)
107dab5c
GC
5043 return;
5044
5045 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5046 char mbuf[64];
5047 char *buf;
5048 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5049
5050 if (!attr || !attr->store || !attr->show)
5051 continue;
5052
5053 /*
5054 * It is really bad that we have to allocate here, so we will
5055 * do it only as a fallback. If we actually allocate, though,
5056 * we can just use the allocated buffer until the end.
5057 *
5058 * Most of the slub attributes will tend to be very small in
5059 * size, but sysfs allows buffers up to a page, so they can
5060 * theoretically happen.
5061 */
5062 if (buffer)
5063 buf = buffer;
93030d83 5064 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5065 buf = mbuf;
5066 else {
5067 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5068 if (WARN_ON(!buffer))
5069 continue;
5070 buf = buffer;
5071 }
5072
93030d83 5073 attr->show(root_cache, buf);
107dab5c
GC
5074 attr->store(s, buf, strlen(buf));
5075 }
5076
5077 if (buffer)
5078 free_page((unsigned long)buffer);
5079#endif
5080}
5081
41a21285
CL
5082static void kmem_cache_release(struct kobject *k)
5083{
5084 slab_kmem_cache_release(to_slab(k));
5085}
5086
52cf25d0 5087static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5088 .show = slab_attr_show,
5089 .store = slab_attr_store,
5090};
5091
5092static struct kobj_type slab_ktype = {
5093 .sysfs_ops = &slab_sysfs_ops,
41a21285 5094 .release = kmem_cache_release,
81819f0f
CL
5095};
5096
5097static int uevent_filter(struct kset *kset, struct kobject *kobj)
5098{
5099 struct kobj_type *ktype = get_ktype(kobj);
5100
5101 if (ktype == &slab_ktype)
5102 return 1;
5103 return 0;
5104}
5105
9cd43611 5106static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5107 .filter = uevent_filter,
5108};
5109
27c3a314 5110static struct kset *slab_kset;
81819f0f 5111
9a41707b
VD
5112static inline struct kset *cache_kset(struct kmem_cache *s)
5113{
5114#ifdef CONFIG_MEMCG_KMEM
5115 if (!is_root_cache(s))
f7ce3190 5116 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5117#endif
5118 return slab_kset;
5119}
5120
81819f0f
CL
5121#define ID_STR_LENGTH 64
5122
5123/* Create a unique string id for a slab cache:
6446faa2
CL
5124 *
5125 * Format :[flags-]size
81819f0f
CL
5126 */
5127static char *create_unique_id(struct kmem_cache *s)
5128{
5129 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5130 char *p = name;
5131
5132 BUG_ON(!name);
5133
5134 *p++ = ':';
5135 /*
5136 * First flags affecting slabcache operations. We will only
5137 * get here for aliasable slabs so we do not need to support
5138 * too many flags. The flags here must cover all flags that
5139 * are matched during merging to guarantee that the id is
5140 * unique.
5141 */
5142 if (s->flags & SLAB_CACHE_DMA)
5143 *p++ = 'd';
5144 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5145 *p++ = 'a';
5146 if (s->flags & SLAB_DEBUG_FREE)
5147 *p++ = 'F';
5a896d9e
VN
5148 if (!(s->flags & SLAB_NOTRACK))
5149 *p++ = 't';
81819f0f
CL
5150 if (p != name + 1)
5151 *p++ = '-';
5152 p += sprintf(p, "%07d", s->size);
2633d7a0 5153
81819f0f
CL
5154 BUG_ON(p > name + ID_STR_LENGTH - 1);
5155 return name;
5156}
5157
5158static int sysfs_slab_add(struct kmem_cache *s)
5159{
5160 int err;
5161 const char *name;
45530c44 5162 int unmergeable = slab_unmergeable(s);
81819f0f 5163
81819f0f
CL
5164 if (unmergeable) {
5165 /*
5166 * Slabcache can never be merged so we can use the name proper.
5167 * This is typically the case for debug situations. In that
5168 * case we can catch duplicate names easily.
5169 */
27c3a314 5170 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5171 name = s->name;
5172 } else {
5173 /*
5174 * Create a unique name for the slab as a target
5175 * for the symlinks.
5176 */
5177 name = create_unique_id(s);
5178 }
5179
9a41707b 5180 s->kobj.kset = cache_kset(s);
26e4f205 5181 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5182 if (err)
5183 goto out_put_kobj;
81819f0f
CL
5184
5185 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5186 if (err)
5187 goto out_del_kobj;
9a41707b
VD
5188
5189#ifdef CONFIG_MEMCG_KMEM
5190 if (is_root_cache(s)) {
5191 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5192 if (!s->memcg_kset) {
54b6a731
DJ
5193 err = -ENOMEM;
5194 goto out_del_kobj;
9a41707b
VD
5195 }
5196 }
5197#endif
5198
81819f0f
CL
5199 kobject_uevent(&s->kobj, KOBJ_ADD);
5200 if (!unmergeable) {
5201 /* Setup first alias */
5202 sysfs_slab_alias(s, s->name);
81819f0f 5203 }
54b6a731
DJ
5204out:
5205 if (!unmergeable)
5206 kfree(name);
5207 return err;
5208out_del_kobj:
5209 kobject_del(&s->kobj);
5210out_put_kobj:
5211 kobject_put(&s->kobj);
5212 goto out;
81819f0f
CL
5213}
5214
41a21285 5215void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5216{
97d06609 5217 if (slab_state < FULL)
2bce6485
CL
5218 /*
5219 * Sysfs has not been setup yet so no need to remove the
5220 * cache from sysfs.
5221 */
5222 return;
5223
9a41707b
VD
5224#ifdef CONFIG_MEMCG_KMEM
5225 kset_unregister(s->memcg_kset);
5226#endif
81819f0f
CL
5227 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5228 kobject_del(&s->kobj);
151c602f 5229 kobject_put(&s->kobj);
81819f0f
CL
5230}
5231
5232/*
5233 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5234 * available lest we lose that information.
81819f0f
CL
5235 */
5236struct saved_alias {
5237 struct kmem_cache *s;
5238 const char *name;
5239 struct saved_alias *next;
5240};
5241
5af328a5 5242static struct saved_alias *alias_list;
81819f0f
CL
5243
5244static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5245{
5246 struct saved_alias *al;
5247
97d06609 5248 if (slab_state == FULL) {
81819f0f
CL
5249 /*
5250 * If we have a leftover link then remove it.
5251 */
27c3a314
GKH
5252 sysfs_remove_link(&slab_kset->kobj, name);
5253 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5254 }
5255
5256 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5257 if (!al)
5258 return -ENOMEM;
5259
5260 al->s = s;
5261 al->name = name;
5262 al->next = alias_list;
5263 alias_list = al;
5264 return 0;
5265}
5266
5267static int __init slab_sysfs_init(void)
5268{
5b95a4ac 5269 struct kmem_cache *s;
81819f0f
CL
5270 int err;
5271
18004c5d 5272 mutex_lock(&slab_mutex);
2bce6485 5273
0ff21e46 5274 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5275 if (!slab_kset) {
18004c5d 5276 mutex_unlock(&slab_mutex);
f9f58285 5277 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5278 return -ENOSYS;
5279 }
5280
97d06609 5281 slab_state = FULL;
26a7bd03 5282
5b95a4ac 5283 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5284 err = sysfs_slab_add(s);
5d540fb7 5285 if (err)
f9f58285
FF
5286 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5287 s->name);
26a7bd03 5288 }
81819f0f
CL
5289
5290 while (alias_list) {
5291 struct saved_alias *al = alias_list;
5292
5293 alias_list = alias_list->next;
5294 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5295 if (err)
f9f58285
FF
5296 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5297 al->name);
81819f0f
CL
5298 kfree(al);
5299 }
5300
18004c5d 5301 mutex_unlock(&slab_mutex);
81819f0f
CL
5302 resiliency_test();
5303 return 0;
5304}
5305
5306__initcall(slab_sysfs_init);
ab4d5ed5 5307#endif /* CONFIG_SYSFS */
57ed3eda
PE
5308
5309/*
5310 * The /proc/slabinfo ABI
5311 */
158a9624 5312#ifdef CONFIG_SLABINFO
0d7561c6 5313void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5314{
57ed3eda 5315 unsigned long nr_slabs = 0;
205ab99d
CL
5316 unsigned long nr_objs = 0;
5317 unsigned long nr_free = 0;
57ed3eda 5318 int node;
fa45dc25 5319 struct kmem_cache_node *n;
57ed3eda 5320
fa45dc25 5321 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5322 nr_slabs += node_nr_slabs(n);
5323 nr_objs += node_nr_objs(n);
205ab99d 5324 nr_free += count_partial(n, count_free);
57ed3eda
PE
5325 }
5326
0d7561c6
GC
5327 sinfo->active_objs = nr_objs - nr_free;
5328 sinfo->num_objs = nr_objs;
5329 sinfo->active_slabs = nr_slabs;
5330 sinfo->num_slabs = nr_slabs;
5331 sinfo->objects_per_slab = oo_objects(s->oo);
5332 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5333}
5334
0d7561c6 5335void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5336{
7b3c3a50
AD
5337}
5338
b7454ad3
GC
5339ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5340 size_t count, loff_t *ppos)
7b3c3a50 5341{
b7454ad3 5342 return -EIO;
7b3c3a50 5343}
158a9624 5344#endif /* CONFIG_SLABINFO */