fsstack/ecryptfs: remove unused get_nlinks param to fsstack_copy_attr_all
[linux-2.6-block.git] / mm / slob.c
CommitLineData
10cef602
MM
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6193a2ff
PM
6 * NUMA support by Paul Mundt, 2007.
7 *
10cef602
MM
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
55394849
NP
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
95b35127 14 *
20cecbae
MM
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
10cef602
MM
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
55394849 28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
10cef602 29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
6193a2ff 30 * alloc_pages() directly, allocating compound pages so the page order
d87a133f
NP
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
10cef602
MM
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
95b35127
NP
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
6193a2ff 41 * calling alloc_pages(). As SLAB objects know their size, no separate
95b35127 42 * size bookkeeping is necessary and there is essentially no allocation
d87a133f
NP
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
6193a2ff
PM
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
6484eb3e 49 * provided, alloc_pages_exact_node() with the specified node id is used
6193a2ff
PM
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
10cef602
MM
58 */
59
95b35127 60#include <linux/kernel.h>
10cef602
MM
61#include <linux/slab.h>
62#include <linux/mm.h>
1f0532eb 63#include <linux/swap.h> /* struct reclaim_state */
10cef602
MM
64#include <linux/cache.h>
65#include <linux/init.h>
66#include <linux/module.h>
afc0cedb 67#include <linux/rcupdate.h>
95b35127 68#include <linux/list.h>
02af61bb 69#include <linux/kmemtrace.h>
4374e616 70#include <linux/kmemleak.h>
95b35127
NP
71#include <asm/atomic.h>
72
95b35127
NP
73/*
74 * slob_block has a field 'units', which indicates size of block if +ve,
75 * or offset of next block if -ve (in SLOB_UNITs).
76 *
77 * Free blocks of size 1 unit simply contain the offset of the next block.
78 * Those with larger size contain their size in the first SLOB_UNIT of
79 * memory, and the offset of the next free block in the second SLOB_UNIT.
80 */
55394849 81#if PAGE_SIZE <= (32767 * 2)
95b35127
NP
82typedef s16 slobidx_t;
83#else
84typedef s32 slobidx_t;
85#endif
86
10cef602 87struct slob_block {
95b35127 88 slobidx_t units;
55394849 89};
10cef602
MM
90typedef struct slob_block slob_t;
91
95b35127
NP
92/*
93 * We use struct page fields to manage some slob allocation aspects,
94 * however to avoid the horrible mess in include/linux/mm_types.h, we'll
95 * just define our own struct page type variant here.
96 */
97struct slob_page {
98 union {
99 struct {
100 unsigned long flags; /* mandatory */
101 atomic_t _count; /* mandatory */
102 slobidx_t units; /* free units left in page */
103 unsigned long pad[2];
104 slob_t *free; /* first free slob_t in page */
105 struct list_head list; /* linked list of free pages */
106 };
107 struct page page;
108 };
109};
110static inline void struct_slob_page_wrong_size(void)
111{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
112
113/*
114 * free_slob_page: call before a slob_page is returned to the page allocator.
115 */
116static inline void free_slob_page(struct slob_page *sp)
117{
118 reset_page_mapcount(&sp->page);
119 sp->page.mapping = NULL;
120}
121
122/*
20cecbae 123 * All partially free slob pages go on these lists.
95b35127 124 */
20cecbae
MM
125#define SLOB_BREAK1 256
126#define SLOB_BREAK2 1024
127static LIST_HEAD(free_slob_small);
128static LIST_HEAD(free_slob_medium);
129static LIST_HEAD(free_slob_large);
95b35127
NP
130
131/*
6e9ed0cc 132 * is_slob_page: True for all slob pages (false for bigblock pages)
95b35127 133 */
6e9ed0cc 134static inline int is_slob_page(struct slob_page *sp)
95b35127 135{
7303f240 136 return PageSlab((struct page *)sp);
95b35127
NP
137}
138
139static inline void set_slob_page(struct slob_page *sp)
140{
7303f240 141 __SetPageSlab((struct page *)sp);
95b35127
NP
142}
143
144static inline void clear_slob_page(struct slob_page *sp)
145{
7303f240 146 __ClearPageSlab((struct page *)sp);
95b35127
NP
147}
148
6e9ed0cc
AW
149static inline struct slob_page *slob_page(const void *addr)
150{
151 return (struct slob_page *)virt_to_page(addr);
152}
153
95b35127
NP
154/*
155 * slob_page_free: true for pages on free_slob_pages list.
156 */
157static inline int slob_page_free(struct slob_page *sp)
158{
9023cb7e 159 return PageSlobFree((struct page *)sp);
95b35127
NP
160}
161
20cecbae 162static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
95b35127 163{
20cecbae 164 list_add(&sp->list, list);
9023cb7e 165 __SetPageSlobFree((struct page *)sp);
95b35127
NP
166}
167
168static inline void clear_slob_page_free(struct slob_page *sp)
169{
170 list_del(&sp->list);
9023cb7e 171 __ClearPageSlobFree((struct page *)sp);
95b35127
NP
172}
173
10cef602
MM
174#define SLOB_UNIT sizeof(slob_t)
175#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
176#define SLOB_ALIGN L1_CACHE_BYTES
177
afc0cedb
NP
178/*
179 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
180 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
181 * the block using call_rcu.
182 */
183struct slob_rcu {
184 struct rcu_head head;
185 int size;
186};
187
95b35127
NP
188/*
189 * slob_lock protects all slob allocator structures.
190 */
10cef602 191static DEFINE_SPINLOCK(slob_lock);
10cef602 192
95b35127
NP
193/*
194 * Encode the given size and next info into a free slob block s.
195 */
196static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
197{
198 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
199 slobidx_t offset = next - base;
bcb4ddb4 200
95b35127
NP
201 if (size > 1) {
202 s[0].units = size;
203 s[1].units = offset;
204 } else
205 s[0].units = -offset;
206}
10cef602 207
95b35127
NP
208/*
209 * Return the size of a slob block.
210 */
211static slobidx_t slob_units(slob_t *s)
212{
213 if (s->units > 0)
214 return s->units;
215 return 1;
216}
217
218/*
219 * Return the next free slob block pointer after this one.
220 */
221static slob_t *slob_next(slob_t *s)
222{
223 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
224 slobidx_t next;
225
226 if (s[0].units < 0)
227 next = -s[0].units;
228 else
229 next = s[1].units;
230 return base+next;
231}
232
233/*
234 * Returns true if s is the last free block in its page.
235 */
236static int slob_last(slob_t *s)
237{
238 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
239}
240
6e9ed0cc 241static void *slob_new_pages(gfp_t gfp, int order, int node)
6193a2ff
PM
242{
243 void *page;
244
245#ifdef CONFIG_NUMA
246 if (node != -1)
6484eb3e 247 page = alloc_pages_exact_node(node, gfp, order);
6193a2ff
PM
248 else
249#endif
250 page = alloc_pages(gfp, order);
251
252 if (!page)
253 return NULL;
254
255 return page_address(page);
256}
257
6e9ed0cc
AW
258static void slob_free_pages(void *b, int order)
259{
1f0532eb
NP
260 if (current->reclaim_state)
261 current->reclaim_state->reclaimed_slab += 1 << order;
6e9ed0cc
AW
262 free_pages((unsigned long)b, order);
263}
264
95b35127
NP
265/*
266 * Allocate a slob block within a given slob_page sp.
267 */
268static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
10cef602 269{
6e9ed0cc 270 slob_t *prev, *cur, *aligned = NULL;
10cef602 271 int delta = 0, units = SLOB_UNITS(size);
10cef602 272
95b35127
NP
273 for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
274 slobidx_t avail = slob_units(cur);
275
10cef602
MM
276 if (align) {
277 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
278 delta = aligned - cur;
279 }
95b35127
NP
280 if (avail >= units + delta) { /* room enough? */
281 slob_t *next;
282
10cef602 283 if (delta) { /* need to fragment head to align? */
95b35127
NP
284 next = slob_next(cur);
285 set_slob(aligned, avail - delta, next);
286 set_slob(cur, delta, aligned);
10cef602
MM
287 prev = cur;
288 cur = aligned;
95b35127 289 avail = slob_units(cur);
10cef602
MM
290 }
291
95b35127
NP
292 next = slob_next(cur);
293 if (avail == units) { /* exact fit? unlink. */
294 if (prev)
295 set_slob(prev, slob_units(prev), next);
296 else
297 sp->free = next;
298 } else { /* fragment */
299 if (prev)
300 set_slob(prev, slob_units(prev), cur + units);
301 else
302 sp->free = cur + units;
303 set_slob(cur + units, avail - units, next);
10cef602
MM
304 }
305
95b35127
NP
306 sp->units -= units;
307 if (!sp->units)
308 clear_slob_page_free(sp);
10cef602
MM
309 return cur;
310 }
95b35127
NP
311 if (slob_last(cur))
312 return NULL;
313 }
314}
10cef602 315
95b35127
NP
316/*
317 * slob_alloc: entry point into the slob allocator.
318 */
6193a2ff 319static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
95b35127
NP
320{
321 struct slob_page *sp;
d6269543 322 struct list_head *prev;
20cecbae 323 struct list_head *slob_list;
95b35127
NP
324 slob_t *b = NULL;
325 unsigned long flags;
10cef602 326
20cecbae
MM
327 if (size < SLOB_BREAK1)
328 slob_list = &free_slob_small;
329 else if (size < SLOB_BREAK2)
330 slob_list = &free_slob_medium;
331 else
332 slob_list = &free_slob_large;
333
95b35127
NP
334 spin_lock_irqsave(&slob_lock, flags);
335 /* Iterate through each partially free page, try to find room */
20cecbae 336 list_for_each_entry(sp, slob_list, list) {
6193a2ff
PM
337#ifdef CONFIG_NUMA
338 /*
339 * If there's a node specification, search for a partial
340 * page with a matching node id in the freelist.
341 */
342 if (node != -1 && page_to_nid(&sp->page) != node)
343 continue;
344#endif
d6269543
MM
345 /* Enough room on this page? */
346 if (sp->units < SLOB_UNITS(size))
347 continue;
6193a2ff 348
d6269543
MM
349 /* Attempt to alloc */
350 prev = sp->list.prev;
351 b = slob_page_alloc(sp, size, align);
352 if (!b)
353 continue;
354
355 /* Improve fragment distribution and reduce our average
356 * search time by starting our next search here. (see
357 * Knuth vol 1, sec 2.5, pg 449) */
20cecbae
MM
358 if (prev != slob_list->prev &&
359 slob_list->next != prev->next)
360 list_move_tail(slob_list, prev->next);
d6269543 361 break;
10cef602 362 }
95b35127
NP
363 spin_unlock_irqrestore(&slob_lock, flags);
364
365 /* Not enough space: must allocate a new page */
366 if (!b) {
6e9ed0cc 367 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
95b35127 368 if (!b)
6e9ed0cc
AW
369 return NULL;
370 sp = slob_page(b);
95b35127
NP
371 set_slob_page(sp);
372
373 spin_lock_irqsave(&slob_lock, flags);
374 sp->units = SLOB_UNITS(PAGE_SIZE);
375 sp->free = b;
376 INIT_LIST_HEAD(&sp->list);
377 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
20cecbae 378 set_slob_page_free(sp, slob_list);
95b35127
NP
379 b = slob_page_alloc(sp, size, align);
380 BUG_ON(!b);
381 spin_unlock_irqrestore(&slob_lock, flags);
382 }
d07dbea4
CL
383 if (unlikely((gfp & __GFP_ZERO) && b))
384 memset(b, 0, size);
95b35127 385 return b;
10cef602
MM
386}
387
95b35127
NP
388/*
389 * slob_free: entry point into the slob allocator.
390 */
10cef602
MM
391static void slob_free(void *block, int size)
392{
95b35127
NP
393 struct slob_page *sp;
394 slob_t *prev, *next, *b = (slob_t *)block;
395 slobidx_t units;
10cef602
MM
396 unsigned long flags;
397
2408c550 398 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 399 return;
95b35127 400 BUG_ON(!size);
10cef602 401
6e9ed0cc 402 sp = slob_page(block);
95b35127 403 units = SLOB_UNITS(size);
10cef602 404
10cef602 405 spin_lock_irqsave(&slob_lock, flags);
10cef602 406
95b35127
NP
407 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
408 /* Go directly to page allocator. Do not pass slob allocator */
409 if (slob_page_free(sp))
410 clear_slob_page_free(sp);
6fb8f424 411 spin_unlock_irqrestore(&slob_lock, flags);
95b35127
NP
412 clear_slob_page(sp);
413 free_slob_page(sp);
1f0532eb 414 slob_free_pages(b, 0);
6fb8f424 415 return;
95b35127 416 }
10cef602 417
95b35127
NP
418 if (!slob_page_free(sp)) {
419 /* This slob page is about to become partially free. Easy! */
420 sp->units = units;
421 sp->free = b;
422 set_slob(b, units,
423 (void *)((unsigned long)(b +
424 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
20cecbae 425 set_slob_page_free(sp, &free_slob_small);
95b35127
NP
426 goto out;
427 }
428
429 /*
430 * Otherwise the page is already partially free, so find reinsertion
431 * point.
432 */
433 sp->units += units;
10cef602 434
95b35127 435 if (b < sp->free) {
679299b3
MM
436 if (b + units == sp->free) {
437 units += slob_units(sp->free);
438 sp->free = slob_next(sp->free);
439 }
95b35127
NP
440 set_slob(b, units, sp->free);
441 sp->free = b;
442 } else {
443 prev = sp->free;
444 next = slob_next(prev);
445 while (b > next) {
446 prev = next;
447 next = slob_next(prev);
448 }
10cef602 449
95b35127
NP
450 if (!slob_last(prev) && b + units == next) {
451 units += slob_units(next);
452 set_slob(b, units, slob_next(next));
453 } else
454 set_slob(b, units, next);
455
456 if (prev + slob_units(prev) == b) {
457 units = slob_units(b) + slob_units(prev);
458 set_slob(prev, units, slob_next(b));
459 } else
460 set_slob(prev, slob_units(prev), b);
461 }
462out:
10cef602
MM
463 spin_unlock_irqrestore(&slob_lock, flags);
464}
465
95b35127
NP
466/*
467 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
468 */
469
55394849
NP
470#ifndef ARCH_KMALLOC_MINALIGN
471#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
472#endif
473
474#ifndef ARCH_SLAB_MINALIGN
475#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
476#endif
477
6193a2ff 478void *__kmalloc_node(size_t size, gfp_t gfp, int node)
10cef602 479{
6cb8f913 480 unsigned int *m;
55394849 481 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
3eae2cb2 482 void *ret;
55394849 483
19cefdff 484 lockdep_trace_alloc(gfp);
cf40bd16 485
55394849 486 if (size < PAGE_SIZE - align) {
6cb8f913
CL
487 if (!size)
488 return ZERO_SIZE_PTR;
489
6193a2ff 490 m = slob_alloc(size + align, gfp, align, node);
3eae2cb2 491
239f49c0
MK
492 if (!m)
493 return NULL;
494 *m = size;
3eae2cb2
EGM
495 ret = (void *)m + align;
496
ca2b84cb
EGM
497 trace_kmalloc_node(_RET_IP_, ret,
498 size, size + align, gfp, node);
d87a133f 499 } else {
3eae2cb2 500 unsigned int order = get_order(size);
d87a133f 501
6e9ed0cc 502 ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
d87a133f
NP
503 if (ret) {
504 struct page *page;
505 page = virt_to_page(ret);
506 page->private = size;
507 }
3eae2cb2 508
ca2b84cb
EGM
509 trace_kmalloc_node(_RET_IP_, ret,
510 size, PAGE_SIZE << order, gfp, node);
10cef602 511 }
3eae2cb2 512
4374e616 513 kmemleak_alloc(ret, size, 1, gfp);
3eae2cb2 514 return ret;
10cef602 515}
6193a2ff 516EXPORT_SYMBOL(__kmalloc_node);
10cef602
MM
517
518void kfree(const void *block)
519{
95b35127 520 struct slob_page *sp;
10cef602 521
2121db74
PE
522 trace_kfree(_RET_IP_, block);
523
2408c550 524 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 525 return;
4374e616 526 kmemleak_free(block);
10cef602 527
6e9ed0cc
AW
528 sp = slob_page(block);
529 if (is_slob_page(sp)) {
55394849
NP
530 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
531 unsigned int *m = (unsigned int *)(block - align);
532 slob_free(m, *m + align);
d87a133f
NP
533 } else
534 put_page(&sp->page);
10cef602 535}
10cef602
MM
536EXPORT_SYMBOL(kfree);
537
d87a133f 538/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
fd76bab2 539size_t ksize(const void *block)
10cef602 540{
95b35127 541 struct slob_page *sp;
10cef602 542
ef8b4520
CL
543 BUG_ON(!block);
544 if (unlikely(block == ZERO_SIZE_PTR))
10cef602
MM
545 return 0;
546
6e9ed0cc
AW
547 sp = slob_page(block);
548 if (is_slob_page(sp)) {
70096a56
MM
549 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
550 unsigned int *m = (unsigned int *)(block - align);
551 return SLOB_UNITS(*m) * SLOB_UNIT;
552 } else
d87a133f 553 return sp->page.private;
10cef602 554}
b1aabecd 555EXPORT_SYMBOL(ksize);
10cef602
MM
556
557struct kmem_cache {
558 unsigned int size, align;
afc0cedb 559 unsigned long flags;
10cef602 560 const char *name;
51cc5068 561 void (*ctor)(void *);
10cef602
MM
562};
563
564struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 565 size_t align, unsigned long flags, void (*ctor)(void *))
10cef602
MM
566{
567 struct kmem_cache *c;
568
0701a9e6 569 c = slob_alloc(sizeof(struct kmem_cache),
5e18e2b8 570 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
10cef602
MM
571
572 if (c) {
573 c->name = name;
574 c->size = size;
afc0cedb 575 if (flags & SLAB_DESTROY_BY_RCU) {
afc0cedb
NP
576 /* leave room for rcu footer at the end of object */
577 c->size += sizeof(struct slob_rcu);
578 }
579 c->flags = flags;
10cef602 580 c->ctor = ctor;
10cef602 581 /* ignore alignment unless it's forced */
5af60839 582 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
55394849
NP
583 if (c->align < ARCH_SLAB_MINALIGN)
584 c->align = ARCH_SLAB_MINALIGN;
10cef602
MM
585 if (c->align < align)
586 c->align = align;
bc0055ae
AM
587 } else if (flags & SLAB_PANIC)
588 panic("Cannot create slab cache %s\n", name);
10cef602 589
4374e616 590 kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
10cef602
MM
591 return c;
592}
593EXPORT_SYMBOL(kmem_cache_create);
594
133d205a 595void kmem_cache_destroy(struct kmem_cache *c)
10cef602 596{
4374e616 597 kmemleak_free(c);
7ed9f7e5
PM
598 if (c->flags & SLAB_DESTROY_BY_RCU)
599 rcu_barrier();
10cef602 600 slob_free(c, sizeof(struct kmem_cache));
10cef602
MM
601}
602EXPORT_SYMBOL(kmem_cache_destroy);
603
6193a2ff 604void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
10cef602
MM
605{
606 void *b;
607
3eae2cb2 608 if (c->size < PAGE_SIZE) {
6193a2ff 609 b = slob_alloc(c->size, flags, c->align, node);
ca2b84cb
EGM
610 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
611 SLOB_UNITS(c->size) * SLOB_UNIT,
612 flags, node);
3eae2cb2 613 } else {
6e9ed0cc 614 b = slob_new_pages(flags, get_order(c->size), node);
ca2b84cb
EGM
615 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
616 PAGE_SIZE << get_order(c->size),
617 flags, node);
3eae2cb2 618 }
10cef602
MM
619
620 if (c->ctor)
51cc5068 621 c->ctor(b);
10cef602 622
4374e616 623 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
10cef602
MM
624 return b;
625}
6193a2ff 626EXPORT_SYMBOL(kmem_cache_alloc_node);
10cef602 627
afc0cedb 628static void __kmem_cache_free(void *b, int size)
10cef602 629{
afc0cedb
NP
630 if (size < PAGE_SIZE)
631 slob_free(b, size);
10cef602 632 else
6e9ed0cc 633 slob_free_pages(b, get_order(size));
afc0cedb
NP
634}
635
636static void kmem_rcu_free(struct rcu_head *head)
637{
638 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
639 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
640
641 __kmem_cache_free(b, slob_rcu->size);
642}
643
644void kmem_cache_free(struct kmem_cache *c, void *b)
645{
4374e616 646 kmemleak_free_recursive(b, c->flags);
afc0cedb
NP
647 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
648 struct slob_rcu *slob_rcu;
649 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
650 INIT_RCU_HEAD(&slob_rcu->head);
651 slob_rcu->size = c->size;
652 call_rcu(&slob_rcu->head, kmem_rcu_free);
653 } else {
afc0cedb
NP
654 __kmem_cache_free(b, c->size);
655 }
3eae2cb2 656
ca2b84cb 657 trace_kmem_cache_free(_RET_IP_, b);
10cef602
MM
658}
659EXPORT_SYMBOL(kmem_cache_free);
660
661unsigned int kmem_cache_size(struct kmem_cache *c)
662{
663 return c->size;
664}
665EXPORT_SYMBOL(kmem_cache_size);
666
667const char *kmem_cache_name(struct kmem_cache *c)
668{
669 return c->name;
670}
671EXPORT_SYMBOL(kmem_cache_name);
672
2e892f43
CL
673int kmem_cache_shrink(struct kmem_cache *d)
674{
675 return 0;
676}
677EXPORT_SYMBOL(kmem_cache_shrink);
678
55935a34 679int kmem_ptr_validate(struct kmem_cache *a, const void *b)
2e892f43
CL
680{
681 return 0;
682}
683
84a01c2f
PM
684static unsigned int slob_ready __read_mostly;
685
686int slab_is_available(void)
687{
688 return slob_ready;
689}
690
bcb4ddb4
DG
691void __init kmem_cache_init(void)
692{
84a01c2f 693 slob_ready = 1;
10cef602 694}
bbff2e43
WF
695
696void __init kmem_cache_init_late(void)
697{
698 /* Nothing to do */
699}