mmc: mmc: Fix partition switch timeout for some eMMCs
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 42 *
5a505085 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 44 * ->tasklist_lock
6a46079c 45 * pte map lock
1da177e4
LT
46 */
47
48#include <linux/mm.h>
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/swapops.h>
52#include <linux/slab.h>
53#include <linux/init.h>
5ad64688 54#include <linux/ksm.h>
1da177e4
LT
55#include <linux/rmap.h>
56#include <linux/rcupdate.h>
b95f1b31 57#include <linux/export.h>
8a9f3ccd 58#include <linux/memcontrol.h>
cddb8a5c 59#include <linux/mmu_notifier.h>
64cdd548 60#include <linux/migrate.h>
0fe6e20b 61#include <linux/hugetlb.h>
ef5d437f 62#include <linux/backing-dev.h>
33c3fc71 63#include <linux/page_idle.h>
1da177e4
LT
64
65#include <asm/tlbflush.h>
66
72b252ae
MG
67#include <trace/events/tlb.h>
68
b291f000
NP
69#include "internal.h"
70
fdd2e5f8 71static struct kmem_cache *anon_vma_cachep;
5beb4930 72static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
73
74static inline struct anon_vma *anon_vma_alloc(void)
75{
01d8b20d
PZ
76 struct anon_vma *anon_vma;
77
78 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 if (anon_vma) {
80 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
81 anon_vma->degree = 1; /* Reference for first vma */
82 anon_vma->parent = anon_vma;
01d8b20d
PZ
83 /*
84 * Initialise the anon_vma root to point to itself. If called
85 * from fork, the root will be reset to the parents anon_vma.
86 */
87 anon_vma->root = anon_vma;
88 }
89
90 return anon_vma;
fdd2e5f8
AB
91}
92
01d8b20d 93static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 94{
01d8b20d 95 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
96
97 /*
4fc3f1d6 98 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
99 * we can safely hold the lock without the anon_vma getting
100 * freed.
101 *
102 * Relies on the full mb implied by the atomic_dec_and_test() from
103 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 104 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 105 *
4fc3f1d6
IM
106 * page_lock_anon_vma_read() VS put_anon_vma()
107 * down_read_trylock() atomic_dec_and_test()
88c22088 108 * LOCK MB
4fc3f1d6 109 * atomic_read() rwsem_is_locked()
88c22088
PZ
110 *
111 * LOCK should suffice since the actual taking of the lock must
112 * happen _before_ what follows.
113 */
7f39dda9 114 might_sleep();
5a505085 115 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 116 anon_vma_lock_write(anon_vma);
08b52706 117 anon_vma_unlock_write(anon_vma);
88c22088
PZ
118 }
119
fdd2e5f8
AB
120 kmem_cache_free(anon_vma_cachep, anon_vma);
121}
1da177e4 122
dd34739c 123static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 124{
dd34739c 125 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
126}
127
e574b5fd 128static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
129{
130 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131}
132
6583a843
KC
133static void anon_vma_chain_link(struct vm_area_struct *vma,
134 struct anon_vma_chain *avc,
135 struct anon_vma *anon_vma)
136{
137 avc->vma = vma;
138 avc->anon_vma = anon_vma;
139 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 140 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
141}
142
d9d332e0
LT
143/**
144 * anon_vma_prepare - attach an anon_vma to a memory region
145 * @vma: the memory region in question
146 *
147 * This makes sure the memory mapping described by 'vma' has
148 * an 'anon_vma' attached to it, so that we can associate the
149 * anonymous pages mapped into it with that anon_vma.
150 *
151 * The common case will be that we already have one, but if
23a0790a 152 * not we either need to find an adjacent mapping that we
d9d332e0
LT
153 * can re-use the anon_vma from (very common when the only
154 * reason for splitting a vma has been mprotect()), or we
155 * allocate a new one.
156 *
157 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 158 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
159 * and that may actually touch the spinlock even in the newly
160 * allocated vma (it depends on RCU to make sure that the
161 * anon_vma isn't actually destroyed).
162 *
163 * As a result, we need to do proper anon_vma locking even
164 * for the new allocation. At the same time, we do not want
165 * to do any locking for the common case of already having
166 * an anon_vma.
167 *
168 * This must be called with the mmap_sem held for reading.
169 */
1da177e4
LT
170int anon_vma_prepare(struct vm_area_struct *vma)
171{
172 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 173 struct anon_vma_chain *avc;
1da177e4
LT
174
175 might_sleep();
176 if (unlikely(!anon_vma)) {
177 struct mm_struct *mm = vma->vm_mm;
d9d332e0 178 struct anon_vma *allocated;
1da177e4 179
dd34739c 180 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
181 if (!avc)
182 goto out_enomem;
183
1da177e4 184 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
185 allocated = NULL;
186 if (!anon_vma) {
1da177e4
LT
187 anon_vma = anon_vma_alloc();
188 if (unlikely(!anon_vma))
5beb4930 189 goto out_enomem_free_avc;
1da177e4 190 allocated = anon_vma;
1da177e4
LT
191 }
192
4fc3f1d6 193 anon_vma_lock_write(anon_vma);
1da177e4
LT
194 /* page_table_lock to protect against threads */
195 spin_lock(&mm->page_table_lock);
196 if (likely(!vma->anon_vma)) {
197 vma->anon_vma = anon_vma;
6583a843 198 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
199 /* vma reference or self-parent link for new root */
200 anon_vma->degree++;
1da177e4 201 allocated = NULL;
31f2b0eb 202 avc = NULL;
1da177e4
LT
203 }
204 spin_unlock(&mm->page_table_lock);
08b52706 205 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
206
207 if (unlikely(allocated))
01d8b20d 208 put_anon_vma(allocated);
31f2b0eb 209 if (unlikely(avc))
5beb4930 210 anon_vma_chain_free(avc);
1da177e4
LT
211 }
212 return 0;
5beb4930
RR
213
214 out_enomem_free_avc:
215 anon_vma_chain_free(avc);
216 out_enomem:
217 return -ENOMEM;
1da177e4
LT
218}
219
bb4aa396
LT
220/*
221 * This is a useful helper function for locking the anon_vma root as
222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223 * have the same vma.
224 *
225 * Such anon_vma's should have the same root, so you'd expect to see
226 * just a single mutex_lock for the whole traversal.
227 */
228static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229{
230 struct anon_vma *new_root = anon_vma->root;
231 if (new_root != root) {
232 if (WARN_ON_ONCE(root))
5a505085 233 up_write(&root->rwsem);
bb4aa396 234 root = new_root;
5a505085 235 down_write(&root->rwsem);
bb4aa396
LT
236 }
237 return root;
238}
239
240static inline void unlock_anon_vma_root(struct anon_vma *root)
241{
242 if (root)
5a505085 243 up_write(&root->rwsem);
bb4aa396
LT
244}
245
5beb4930
RR
246/*
247 * Attach the anon_vmas from src to dst.
248 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
249 *
250 * If dst->anon_vma is NULL this function tries to find and reuse existing
251 * anon_vma which has no vmas and only one child anon_vma. This prevents
252 * degradation of anon_vma hierarchy to endless linear chain in case of
253 * constantly forking task. On the other hand, an anon_vma with more than one
254 * child isn't reused even if there was no alive vma, thus rmap walker has a
255 * good chance of avoiding scanning the whole hierarchy when it searches where
256 * page is mapped.
5beb4930
RR
257 */
258int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 259{
5beb4930 260 struct anon_vma_chain *avc, *pavc;
bb4aa396 261 struct anon_vma *root = NULL;
5beb4930 262
646d87b4 263 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
264 struct anon_vma *anon_vma;
265
dd34739c
LT
266 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 if (unlikely(!avc)) {
268 unlock_anon_vma_root(root);
269 root = NULL;
270 avc = anon_vma_chain_alloc(GFP_KERNEL);
271 if (!avc)
272 goto enomem_failure;
273 }
bb4aa396
LT
274 anon_vma = pavc->anon_vma;
275 root = lock_anon_vma_root(root, anon_vma);
276 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
277
278 /*
279 * Reuse existing anon_vma if its degree lower than two,
280 * that means it has no vma and only one anon_vma child.
281 *
282 * Do not chose parent anon_vma, otherwise first child
283 * will always reuse it. Root anon_vma is never reused:
284 * it has self-parent reference and at least one child.
285 */
286 if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 anon_vma->degree < 2)
288 dst->anon_vma = anon_vma;
5beb4930 289 }
7a3ef208
KK
290 if (dst->anon_vma)
291 dst->anon_vma->degree++;
bb4aa396 292 unlock_anon_vma_root(root);
5beb4930 293 return 0;
1da177e4 294
5beb4930 295 enomem_failure:
3fe89b3e
LY
296 /*
297 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 * decremented in unlink_anon_vmas().
299 * We can safely do this because callers of anon_vma_clone() don't care
300 * about dst->anon_vma if anon_vma_clone() failed.
301 */
302 dst->anon_vma = NULL;
5beb4930
RR
303 unlink_anon_vmas(dst);
304 return -ENOMEM;
1da177e4
LT
305}
306
5beb4930
RR
307/*
308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
309 * the corresponding VMA in the parent process is attached to.
310 * Returns 0 on success, non-zero on failure.
311 */
312int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 313{
5beb4930
RR
314 struct anon_vma_chain *avc;
315 struct anon_vma *anon_vma;
c4ea95d7 316 int error;
1da177e4 317
5beb4930
RR
318 /* Don't bother if the parent process has no anon_vma here. */
319 if (!pvma->anon_vma)
320 return 0;
321
7a3ef208
KK
322 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 vma->anon_vma = NULL;
324
5beb4930
RR
325 /*
326 * First, attach the new VMA to the parent VMA's anon_vmas,
327 * so rmap can find non-COWed pages in child processes.
328 */
c4ea95d7
DF
329 error = anon_vma_clone(vma, pvma);
330 if (error)
331 return error;
5beb4930 332
7a3ef208
KK
333 /* An existing anon_vma has been reused, all done then. */
334 if (vma->anon_vma)
335 return 0;
336
5beb4930
RR
337 /* Then add our own anon_vma. */
338 anon_vma = anon_vma_alloc();
339 if (!anon_vma)
340 goto out_error;
dd34739c 341 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
342 if (!avc)
343 goto out_error_free_anon_vma;
5c341ee1
RR
344
345 /*
346 * The root anon_vma's spinlock is the lock actually used when we
347 * lock any of the anon_vmas in this anon_vma tree.
348 */
349 anon_vma->root = pvma->anon_vma->root;
7a3ef208 350 anon_vma->parent = pvma->anon_vma;
76545066 351 /*
01d8b20d
PZ
352 * With refcounts, an anon_vma can stay around longer than the
353 * process it belongs to. The root anon_vma needs to be pinned until
354 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
355 */
356 get_anon_vma(anon_vma->root);
5beb4930
RR
357 /* Mark this anon_vma as the one where our new (COWed) pages go. */
358 vma->anon_vma = anon_vma;
4fc3f1d6 359 anon_vma_lock_write(anon_vma);
5c341ee1 360 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 361 anon_vma->parent->degree++;
08b52706 362 anon_vma_unlock_write(anon_vma);
5beb4930
RR
363
364 return 0;
365
366 out_error_free_anon_vma:
01d8b20d 367 put_anon_vma(anon_vma);
5beb4930 368 out_error:
4946d54c 369 unlink_anon_vmas(vma);
5beb4930 370 return -ENOMEM;
1da177e4
LT
371}
372
5beb4930
RR
373void unlink_anon_vmas(struct vm_area_struct *vma)
374{
375 struct anon_vma_chain *avc, *next;
eee2acba 376 struct anon_vma *root = NULL;
5beb4930 377
5c341ee1
RR
378 /*
379 * Unlink each anon_vma chained to the VMA. This list is ordered
380 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 */
5beb4930 382 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
383 struct anon_vma *anon_vma = avc->anon_vma;
384
385 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 386 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
387
388 /*
389 * Leave empty anon_vmas on the list - we'll need
390 * to free them outside the lock.
391 */
7a3ef208
KK
392 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 anon_vma->parent->degree--;
eee2acba 394 continue;
7a3ef208 395 }
eee2acba
PZ
396
397 list_del(&avc->same_vma);
398 anon_vma_chain_free(avc);
399 }
7a3ef208
KK
400 if (vma->anon_vma)
401 vma->anon_vma->degree--;
eee2acba
PZ
402 unlock_anon_vma_root(root);
403
404 /*
405 * Iterate the list once more, it now only contains empty and unlinked
406 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 407 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
408 */
409 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 struct anon_vma *anon_vma = avc->anon_vma;
411
7a3ef208 412 BUG_ON(anon_vma->degree);
eee2acba
PZ
413 put_anon_vma(anon_vma);
414
5beb4930
RR
415 list_del(&avc->same_vma);
416 anon_vma_chain_free(avc);
417 }
418}
419
51cc5068 420static void anon_vma_ctor(void *data)
1da177e4 421{
a35afb83 422 struct anon_vma *anon_vma = data;
1da177e4 423
5a505085 424 init_rwsem(&anon_vma->rwsem);
83813267 425 atomic_set(&anon_vma->refcount, 0);
bf181b9f 426 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
427}
428
429void __init anon_vma_init(void)
430{
431 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5d097056
VD
432 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 anon_vma_ctor);
434 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
436}
437
438/*
6111e4ca
PZ
439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440 *
441 * Since there is no serialization what so ever against page_remove_rmap()
442 * the best this function can do is return a locked anon_vma that might
443 * have been relevant to this page.
444 *
445 * The page might have been remapped to a different anon_vma or the anon_vma
446 * returned may already be freed (and even reused).
447 *
bc658c96
PZ
448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450 * ensure that any anon_vma obtained from the page will still be valid for as
451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452 *
6111e4ca
PZ
453 * All users of this function must be very careful when walking the anon_vma
454 * chain and verify that the page in question is indeed mapped in it
455 * [ something equivalent to page_mapped_in_vma() ].
456 *
457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458 * that the anon_vma pointer from page->mapping is valid if there is a
459 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 460 */
746b18d4 461struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 462{
746b18d4 463 struct anon_vma *anon_vma = NULL;
1da177e4
LT
464 unsigned long anon_mapping;
465
466 rcu_read_lock();
4db0c3c2 467 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 468 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
469 goto out;
470 if (!page_mapped(page))
471 goto out;
472
473 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
477 }
f1819427
HD
478
479 /*
480 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
481 * freed. But if it has been unmapped, we have no security against the
482 * anon_vma structure being freed and reused (for another anon_vma:
483 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 * above cannot corrupt).
f1819427 485 */
746b18d4 486 if (!page_mapped(page)) {
7f39dda9 487 rcu_read_unlock();
746b18d4 488 put_anon_vma(anon_vma);
7f39dda9 489 return NULL;
746b18d4 490 }
1da177e4
LT
491out:
492 rcu_read_unlock();
746b18d4
PZ
493
494 return anon_vma;
495}
496
88c22088
PZ
497/*
498 * Similar to page_get_anon_vma() except it locks the anon_vma.
499 *
500 * Its a little more complex as it tries to keep the fast path to a single
501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502 * reference like with page_get_anon_vma() and then block on the mutex.
503 */
4fc3f1d6 504struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 505{
88c22088 506 struct anon_vma *anon_vma = NULL;
eee0f252 507 struct anon_vma *root_anon_vma;
88c22088 508 unsigned long anon_mapping;
746b18d4 509
88c22088 510 rcu_read_lock();
4db0c3c2 511 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
512 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 goto out;
514 if (!page_mapped(page))
515 goto out;
516
517 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 518 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 519 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 520 /*
eee0f252
HD
521 * If the page is still mapped, then this anon_vma is still
522 * its anon_vma, and holding the mutex ensures that it will
bc658c96 523 * not go away, see anon_vma_free().
88c22088 524 */
eee0f252 525 if (!page_mapped(page)) {
4fc3f1d6 526 up_read(&root_anon_vma->rwsem);
88c22088
PZ
527 anon_vma = NULL;
528 }
529 goto out;
530 }
746b18d4 531
88c22088
PZ
532 /* trylock failed, we got to sleep */
533 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 anon_vma = NULL;
535 goto out;
536 }
537
538 if (!page_mapped(page)) {
7f39dda9 539 rcu_read_unlock();
88c22088 540 put_anon_vma(anon_vma);
7f39dda9 541 return NULL;
88c22088
PZ
542 }
543
544 /* we pinned the anon_vma, its safe to sleep */
545 rcu_read_unlock();
4fc3f1d6 546 anon_vma_lock_read(anon_vma);
88c22088
PZ
547
548 if (atomic_dec_and_test(&anon_vma->refcount)) {
549 /*
550 * Oops, we held the last refcount, release the lock
551 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 552 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 553 */
4fc3f1d6 554 anon_vma_unlock_read(anon_vma);
88c22088
PZ
555 __put_anon_vma(anon_vma);
556 anon_vma = NULL;
557 }
558
559 return anon_vma;
560
561out:
562 rcu_read_unlock();
746b18d4 563 return anon_vma;
34bbd704
ON
564}
565
4fc3f1d6 566void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 567{
4fc3f1d6 568 anon_vma_unlock_read(anon_vma);
1da177e4
LT
569}
570
72b252ae 571#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
572/*
573 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
574 * important if a PTE was dirty when it was unmapped that it's flushed
575 * before any IO is initiated on the page to prevent lost writes. Similarly,
576 * it must be flushed before freeing to prevent data leakage.
577 */
578void try_to_unmap_flush(void)
579{
580 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
581 int cpu;
582
583 if (!tlb_ubc->flush_required)
584 return;
585
586 cpu = get_cpu();
587
858eaaa7
NA
588 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
589 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
590 local_flush_tlb();
591 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
72b252ae 592 }
858eaaa7
NA
593
594 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
595 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
72b252ae
MG
596 cpumask_clear(&tlb_ubc->cpumask);
597 tlb_ubc->flush_required = false;
d950c947 598 tlb_ubc->writable = false;
72b252ae
MG
599 put_cpu();
600}
601
d950c947
MG
602/* Flush iff there are potentially writable TLB entries that can race with IO */
603void try_to_unmap_flush_dirty(void)
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606
607 if (tlb_ubc->writable)
608 try_to_unmap_flush();
609}
610
72b252ae 611static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 612 struct page *page, bool writable)
72b252ae
MG
613{
614 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615
616 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
617 tlb_ubc->flush_required = true;
d950c947
MG
618
619 /*
620 * If the PTE was dirty then it's best to assume it's writable. The
621 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
622 * before the page is queued for IO.
623 */
624 if (writable)
625 tlb_ubc->writable = true;
72b252ae
MG
626}
627
628/*
629 * Returns true if the TLB flush should be deferred to the end of a batch of
630 * unmap operations to reduce IPIs.
631 */
632static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
633{
634 bool should_defer = false;
635
636 if (!(flags & TTU_BATCH_FLUSH))
637 return false;
638
639 /* If remote CPUs need to be flushed then defer batch the flush */
640 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
641 should_defer = true;
642 put_cpu();
643
644 return should_defer;
645}
646#else
647static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 648 struct page *page, bool writable)
72b252ae
MG
649{
650}
651
652static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
653{
654 return false;
655}
656#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
657
1da177e4 658/*
bf89c8c8 659 * At what user virtual address is page expected in vma?
ab941e0f 660 * Caller should check the page is actually part of the vma.
1da177e4
LT
661 */
662unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
663{
86c2ad19 664 unsigned long address;
21d0d443 665 if (PageAnon(page)) {
4829b906
HD
666 struct anon_vma *page__anon_vma = page_anon_vma(page);
667 /*
668 * Note: swapoff's unuse_vma() is more efficient with this
669 * check, and needs it to match anon_vma when KSM is active.
670 */
671 if (!vma->anon_vma || !page__anon_vma ||
672 vma->anon_vma->root != page__anon_vma->root)
21d0d443 673 return -EFAULT;
27ba0644
KS
674 } else if (page->mapping) {
675 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
676 return -EFAULT;
677 } else
678 return -EFAULT;
86c2ad19
ML
679 address = __vma_address(page, vma);
680 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
681 return -EFAULT;
682 return address;
1da177e4
LT
683}
684
6219049a
BL
685pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
686{
687 pgd_t *pgd;
688 pud_t *pud;
689 pmd_t *pmd = NULL;
f72e7dcd 690 pmd_t pmde;
6219049a
BL
691
692 pgd = pgd_offset(mm, address);
693 if (!pgd_present(*pgd))
694 goto out;
695
696 pud = pud_offset(pgd, address);
697 if (!pud_present(*pud))
698 goto out;
699
700 pmd = pmd_offset(pud, address);
f72e7dcd 701 /*
8809aa2d 702 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
703 * without holding anon_vma lock for write. So when looking for a
704 * genuine pmde (in which to find pte), test present and !THP together.
705 */
e37c6982
CB
706 pmde = *pmd;
707 barrier();
f72e7dcd 708 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
709 pmd = NULL;
710out:
711 return pmd;
712}
713
81b4082d
ND
714/*
715 * Check that @page is mapped at @address into @mm.
716 *
479db0bf
NP
717 * If @sync is false, page_check_address may perform a racy check to avoid
718 * the page table lock when the pte is not present (helpful when reclaiming
719 * highly shared pages).
720 *
b8072f09 721 * On success returns with pte mapped and locked.
81b4082d 722 */
e9a81a82 723pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 724 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 725{
81b4082d
ND
726 pmd_t *pmd;
727 pte_t *pte;
c0718806 728 spinlock_t *ptl;
81b4082d 729
0fe6e20b 730 if (unlikely(PageHuge(page))) {
98398c32 731 /* when pud is not present, pte will be NULL */
0fe6e20b 732 pte = huge_pte_offset(mm, address);
98398c32
JW
733 if (!pte)
734 return NULL;
735
cb900f41 736 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
737 goto check;
738 }
739
6219049a
BL
740 pmd = mm_find_pmd(mm, address);
741 if (!pmd)
c0718806
HD
742 return NULL;
743
c0718806
HD
744 pte = pte_offset_map(pmd, address);
745 /* Make a quick check before getting the lock */
479db0bf 746 if (!sync && !pte_present(*pte)) {
c0718806
HD
747 pte_unmap(pte);
748 return NULL;
749 }
750
4c21e2f2 751 ptl = pte_lockptr(mm, pmd);
0fe6e20b 752check:
c0718806
HD
753 spin_lock(ptl);
754 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
755 *ptlp = ptl;
756 return pte;
81b4082d 757 }
c0718806
HD
758 pte_unmap_unlock(pte, ptl);
759 return NULL;
81b4082d
ND
760}
761
b291f000
NP
762/**
763 * page_mapped_in_vma - check whether a page is really mapped in a VMA
764 * @page: the page to test
765 * @vma: the VMA to test
766 *
767 * Returns 1 if the page is mapped into the page tables of the VMA, 0
768 * if the page is not mapped into the page tables of this VMA. Only
769 * valid for normal file or anonymous VMAs.
770 */
6a46079c 771int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
772{
773 unsigned long address;
774 pte_t *pte;
775 spinlock_t *ptl;
776
86c2ad19
ML
777 address = __vma_address(page, vma);
778 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
779 return 0;
780 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
781 if (!pte) /* the page is not in this mm */
782 return 0;
783 pte_unmap_unlock(pte, ptl);
784
785 return 1;
786}
787
8749cfea 788#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 789/*
8749cfea
VD
790 * Check that @page is mapped at @address into @mm. In contrast to
791 * page_check_address(), this function can handle transparent huge pages.
792 *
793 * On success returns true with pte mapped and locked. For PMD-mapped
794 * transparent huge pages *@ptep is set to NULL.
1da177e4 795 */
8749cfea
VD
796bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
797 unsigned long address, pmd_t **pmdp,
798 pte_t **ptep, spinlock_t **ptlp)
1da177e4 799{
b20ce5e0
KS
800 pgd_t *pgd;
801 pud_t *pud;
802 pmd_t *pmd;
803 pte_t *pte;
8749cfea 804 spinlock_t *ptl;
1da177e4 805
b20ce5e0
KS
806 if (unlikely(PageHuge(page))) {
807 /* when pud is not present, pte will be NULL */
808 pte = huge_pte_offset(mm, address);
809 if (!pte)
8749cfea 810 return false;
2da28bfd 811
b20ce5e0 812 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
8749cfea 813 pmd = NULL;
b20ce5e0
KS
814 goto check_pte;
815 }
816
817 pgd = pgd_offset(mm, address);
818 if (!pgd_present(*pgd))
8749cfea 819 return false;
b20ce5e0
KS
820 pud = pud_offset(pgd, address);
821 if (!pud_present(*pud))
8749cfea 822 return false;
b20ce5e0
KS
823 pmd = pmd_offset(pud, address);
824
825 if (pmd_trans_huge(*pmd)) {
b20ce5e0
KS
826 ptl = pmd_lock(mm, pmd);
827 if (!pmd_present(*pmd))
828 goto unlock_pmd;
829 if (unlikely(!pmd_trans_huge(*pmd))) {
117b0791 830 spin_unlock(ptl);
b20ce5e0
KS
831 goto map_pte;
832 }
833
834 if (pmd_page(*pmd) != page)
835 goto unlock_pmd;
836
8749cfea 837 pte = NULL;
b20ce5e0
KS
838 goto found;
839unlock_pmd:
840 spin_unlock(ptl);
8749cfea 841 return false;
71e3aac0 842 } else {
b20ce5e0 843 pmd_t pmde = *pmd;
71e3aac0 844
b20ce5e0
KS
845 barrier();
846 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
8749cfea 847 return false;
b20ce5e0
KS
848 }
849map_pte:
850 pte = pte_offset_map(pmd, address);
851 if (!pte_present(*pte)) {
852 pte_unmap(pte);
8749cfea 853 return false;
b20ce5e0 854 }
71e3aac0 855
b20ce5e0
KS
856 ptl = pte_lockptr(mm, pmd);
857check_pte:
858 spin_lock(ptl);
2da28bfd 859
b20ce5e0
KS
860 if (!pte_present(*pte)) {
861 pte_unmap_unlock(pte, ptl);
8749cfea 862 return false;
b20ce5e0
KS
863 }
864
865 /* THP can be referenced by any subpage */
866 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
867 pte_unmap_unlock(pte, ptl);
8749cfea 868 return false;
b20ce5e0 869 }
8749cfea
VD
870found:
871 *ptep = pte;
872 *pmdp = pmd;
873 *ptlp = ptl;
874 return true;
875}
876#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
877
878struct page_referenced_arg {
879 int mapcount;
880 int referenced;
881 unsigned long vm_flags;
882 struct mem_cgroup *memcg;
883};
884/*
885 * arg: page_referenced_arg will be passed
886 */
887static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
888 unsigned long address, void *arg)
889{
890 struct mm_struct *mm = vma->vm_mm;
891 struct page_referenced_arg *pra = arg;
892 pmd_t *pmd;
893 pte_t *pte;
894 spinlock_t *ptl;
895 int referenced = 0;
896
897 if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
898 return SWAP_AGAIN;
b20ce5e0
KS
899
900 if (vma->vm_flags & VM_LOCKED) {
8749cfea
VD
901 if (pte)
902 pte_unmap(pte);
903 spin_unlock(ptl);
b20ce5e0
KS
904 pra->vm_flags |= VM_LOCKED;
905 return SWAP_FAIL; /* To break the loop */
71e3aac0
AA
906 }
907
8749cfea
VD
908 if (pte) {
909 if (ptep_clear_flush_young_notify(vma, address, pte)) {
910 /*
911 * Don't treat a reference through a sequentially read
912 * mapping as such. If the page has been used in
913 * another mapping, we will catch it; if this other
914 * mapping is already gone, the unmap path will have
915 * set PG_referenced or activated the page.
916 */
917 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
918 referenced++;
919 }
920 pte_unmap(pte);
921 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
922 if (pmdp_clear_flush_young_notify(vma, address, pmd))
b20ce5e0 923 referenced++;
8749cfea
VD
924 } else {
925 /* unexpected pmd-mapped page? */
926 WARN_ON_ONCE(1);
b20ce5e0 927 }
8749cfea 928 spin_unlock(ptl);
b20ce5e0 929
33c3fc71
VD
930 if (referenced)
931 clear_page_idle(page);
932 if (test_and_clear_page_young(page))
933 referenced++;
934
9f32624b
JK
935 if (referenced) {
936 pra->referenced++;
937 pra->vm_flags |= vma->vm_flags;
1da177e4 938 }
34bbd704 939
9f32624b
JK
940 pra->mapcount--;
941 if (!pra->mapcount)
942 return SWAP_SUCCESS; /* To break the loop */
943
944 return SWAP_AGAIN;
1da177e4
LT
945}
946
9f32624b 947static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 948{
9f32624b
JK
949 struct page_referenced_arg *pra = arg;
950 struct mem_cgroup *memcg = pra->memcg;
1da177e4 951
9f32624b
JK
952 if (!mm_match_cgroup(vma->vm_mm, memcg))
953 return true;
1da177e4 954
9f32624b 955 return false;
1da177e4
LT
956}
957
958/**
959 * page_referenced - test if the page was referenced
960 * @page: the page to test
961 * @is_locked: caller holds lock on the page
72835c86 962 * @memcg: target memory cgroup
6fe6b7e3 963 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
964 *
965 * Quick test_and_clear_referenced for all mappings to a page,
966 * returns the number of ptes which referenced the page.
967 */
6fe6b7e3
WF
968int page_referenced(struct page *page,
969 int is_locked,
72835c86 970 struct mem_cgroup *memcg,
6fe6b7e3 971 unsigned long *vm_flags)
1da177e4 972{
9f32624b 973 int ret;
5ad64688 974 int we_locked = 0;
9f32624b 975 struct page_referenced_arg pra = {
b20ce5e0 976 .mapcount = total_mapcount(page),
9f32624b
JK
977 .memcg = memcg,
978 };
979 struct rmap_walk_control rwc = {
980 .rmap_one = page_referenced_one,
981 .arg = (void *)&pra,
982 .anon_lock = page_lock_anon_vma_read,
983 };
1da177e4 984
6fe6b7e3 985 *vm_flags = 0;
9f32624b
JK
986 if (!page_mapped(page))
987 return 0;
988
989 if (!page_rmapping(page))
990 return 0;
991
992 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
993 we_locked = trylock_page(page);
994 if (!we_locked)
995 return 1;
1da177e4 996 }
9f32624b
JK
997
998 /*
999 * If we are reclaiming on behalf of a cgroup, skip
1000 * counting on behalf of references from different
1001 * cgroups
1002 */
1003 if (memcg) {
1004 rwc.invalid_vma = invalid_page_referenced_vma;
1005 }
1006
1007 ret = rmap_walk(page, &rwc);
1008 *vm_flags = pra.vm_flags;
1009
1010 if (we_locked)
1011 unlock_page(page);
1012
1013 return pra.referenced;
1da177e4
LT
1014}
1015
1cb1729b 1016static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 1017 unsigned long address, void *arg)
d08b3851
PZ
1018{
1019 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 1020 pte_t *pte;
d08b3851
PZ
1021 spinlock_t *ptl;
1022 int ret = 0;
9853a407 1023 int *cleaned = arg;
d08b3851 1024
479db0bf 1025 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
1026 if (!pte)
1027 goto out;
1028
c2fda5fe
PZ
1029 if (pte_dirty(*pte) || pte_write(*pte)) {
1030 pte_t entry;
d08b3851 1031
c2fda5fe 1032 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1033 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
1034 entry = pte_wrprotect(entry);
1035 entry = pte_mkclean(entry);
d6e88e67 1036 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
1037 ret = 1;
1038 }
d08b3851 1039
d08b3851 1040 pte_unmap_unlock(pte, ptl);
2ec74c3e 1041
9853a407 1042 if (ret) {
2ec74c3e 1043 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
1044 (*cleaned)++;
1045 }
d08b3851 1046out:
9853a407 1047 return SWAP_AGAIN;
d08b3851
PZ
1048}
1049
9853a407 1050static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1051{
9853a407 1052 if (vma->vm_flags & VM_SHARED)
871beb8c 1053 return false;
d08b3851 1054
871beb8c 1055 return true;
d08b3851
PZ
1056}
1057
1058int page_mkclean(struct page *page)
1059{
9853a407
JK
1060 int cleaned = 0;
1061 struct address_space *mapping;
1062 struct rmap_walk_control rwc = {
1063 .arg = (void *)&cleaned,
1064 .rmap_one = page_mkclean_one,
1065 .invalid_vma = invalid_mkclean_vma,
1066 };
d08b3851
PZ
1067
1068 BUG_ON(!PageLocked(page));
1069
9853a407
JK
1070 if (!page_mapped(page))
1071 return 0;
1072
1073 mapping = page_mapping(page);
1074 if (!mapping)
1075 return 0;
1076
1077 rmap_walk(page, &rwc);
d08b3851 1078
9853a407 1079 return cleaned;
d08b3851 1080}
60b59bea 1081EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1082
c44b6743
RR
1083/**
1084 * page_move_anon_rmap - move a page to our anon_vma
1085 * @page: the page to move to our anon_vma
1086 * @vma: the vma the page belongs to
1087 * @address: the user virtual address mapped
1088 *
1089 * When a page belongs exclusively to one process after a COW event,
1090 * that page can be moved into the anon_vma that belongs to just that
1091 * process, so the rmap code will not search the parent or sibling
1092 * processes.
1093 */
1094void page_move_anon_rmap(struct page *page,
1095 struct vm_area_struct *vma, unsigned long address)
1096{
1097 struct anon_vma *anon_vma = vma->anon_vma;
1098
309381fe 1099 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1100 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 1101 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
1102
1103 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1104 /*
1105 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1106 * simultaneously, so a concurrent reader (eg page_referenced()'s
1107 * PageAnon()) will not see one without the other.
1108 */
1109 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1110}
1111
9617d95e 1112/**
4e1c1975
AK
1113 * __page_set_anon_rmap - set up new anonymous rmap
1114 * @page: Page to add to rmap
1115 * @vma: VM area to add page to.
1116 * @address: User virtual address of the mapping
e8a03feb 1117 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1118 */
1119static void __page_set_anon_rmap(struct page *page,
e8a03feb 1120 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1121{
e8a03feb 1122 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1123
e8a03feb 1124 BUG_ON(!anon_vma);
ea90002b 1125
4e1c1975
AK
1126 if (PageAnon(page))
1127 return;
1128
ea90002b 1129 /*
e8a03feb
RR
1130 * If the page isn't exclusively mapped into this vma,
1131 * we must use the _oldest_ possible anon_vma for the
1132 * page mapping!
ea90002b 1133 */
4e1c1975 1134 if (!exclusive)
288468c3 1135 anon_vma = anon_vma->root;
9617d95e 1136
9617d95e
NP
1137 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1138 page->mapping = (struct address_space *) anon_vma;
9617d95e 1139 page->index = linear_page_index(vma, address);
9617d95e
NP
1140}
1141
c97a9e10 1142/**
43d8eac4 1143 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1144 * @page: the page to add the mapping to
1145 * @vma: the vm area in which the mapping is added
1146 * @address: the user virtual address mapped
1147 */
1148static void __page_check_anon_rmap(struct page *page,
1149 struct vm_area_struct *vma, unsigned long address)
1150{
1151#ifdef CONFIG_DEBUG_VM
1152 /*
1153 * The page's anon-rmap details (mapping and index) are guaranteed to
1154 * be set up correctly at this point.
1155 *
1156 * We have exclusion against page_add_anon_rmap because the caller
1157 * always holds the page locked, except if called from page_dup_rmap,
1158 * in which case the page is already known to be setup.
1159 *
1160 * We have exclusion against page_add_new_anon_rmap because those pages
1161 * are initially only visible via the pagetables, and the pte is locked
1162 * over the call to page_add_new_anon_rmap.
1163 */
44ab57a0 1164 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1165 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1166#endif
1167}
1168
1da177e4
LT
1169/**
1170 * page_add_anon_rmap - add pte mapping to an anonymous page
1171 * @page: the page to add the mapping to
1172 * @vma: the vm area in which the mapping is added
1173 * @address: the user virtual address mapped
d281ee61 1174 * @compound: charge the page as compound or small page
1da177e4 1175 *
5ad64688 1176 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1177 * the anon_vma case: to serialize mapping,index checking after setting,
1178 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1179 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1180 */
1181void page_add_anon_rmap(struct page *page,
d281ee61 1182 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1183{
d281ee61 1184 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1185}
1186
1187/*
1188 * Special version of the above for do_swap_page, which often runs
1189 * into pages that are exclusively owned by the current process.
1190 * Everybody else should continue to use page_add_anon_rmap above.
1191 */
1192void do_page_add_anon_rmap(struct page *page,
d281ee61 1193 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1194{
53f9263b
KS
1195 bool compound = flags & RMAP_COMPOUND;
1196 bool first;
1197
e9b61f19
KS
1198 if (compound) {
1199 atomic_t *mapcount;
53f9263b 1200 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1201 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1202 mapcount = compound_mapcount_ptr(page);
1203 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1204 } else {
1205 first = atomic_inc_and_test(&page->_mapcount);
1206 }
1207
79134171 1208 if (first) {
d281ee61 1209 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1210 /*
1211 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1212 * these counters are not modified in interrupt context, and
1213 * pte lock(a spinlock) is held, which implies preemption
1214 * disabled.
1215 */
d281ee61 1216 if (compound) {
79134171
AA
1217 __inc_zone_page_state(page,
1218 NR_ANON_TRANSPARENT_HUGEPAGES);
d281ee61
KS
1219 }
1220 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
79134171 1221 }
5ad64688
HD
1222 if (unlikely(PageKsm(page)))
1223 return;
1224
309381fe 1225 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1226
5dbe0af4 1227 /* address might be in next vma when migration races vma_adjust */
5ad64688 1228 if (first)
d281ee61
KS
1229 __page_set_anon_rmap(page, vma, address,
1230 flags & RMAP_EXCLUSIVE);
69029cd5 1231 else
c97a9e10 1232 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1233}
1234
43d8eac4 1235/**
9617d95e
NP
1236 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1237 * @page: the page to add the mapping to
1238 * @vma: the vm area in which the mapping is added
1239 * @address: the user virtual address mapped
d281ee61 1240 * @compound: charge the page as compound or small page
9617d95e
NP
1241 *
1242 * Same as page_add_anon_rmap but must only be called on *new* pages.
1243 * This means the inc-and-test can be bypassed.
c97a9e10 1244 * Page does not have to be locked.
9617d95e
NP
1245 */
1246void page_add_new_anon_rmap(struct page *page,
d281ee61 1247 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1248{
d281ee61
KS
1249 int nr = compound ? hpage_nr_pages(page) : 1;
1250
81d1b09c 1251 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a 1252 SetPageSwapBacked(page);
d281ee61
KS
1253 if (compound) {
1254 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1255 /* increment count (starts at -1) */
1256 atomic_set(compound_mapcount_ptr(page), 0);
79134171 1257 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
53f9263b
KS
1258 } else {
1259 /* Anon THP always mapped first with PMD */
1260 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1261 /* increment count (starts at -1) */
1262 atomic_set(&page->_mapcount, 0);
d281ee61
KS
1263 }
1264 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
e8a03feb 1265 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1266}
1267
1da177e4
LT
1268/**
1269 * page_add_file_rmap - add pte mapping to a file page
1270 * @page: the page to add the mapping to
1271 *
b8072f09 1272 * The caller needs to hold the pte lock.
1da177e4
LT
1273 */
1274void page_add_file_rmap(struct page *page)
1275{
62cccb8c 1276 lock_page_memcg(page);
d69b042f 1277 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1278 __inc_zone_page_state(page, NR_FILE_MAPPED);
62cccb8c 1279 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1280 }
62cccb8c 1281 unlock_page_memcg(page);
1da177e4
LT
1282}
1283
8186eb6a
JW
1284static void page_remove_file_rmap(struct page *page)
1285{
62cccb8c 1286 lock_page_memcg(page);
8186eb6a 1287
53f9263b
KS
1288 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1289 if (unlikely(PageHuge(page))) {
1290 /* hugetlb pages are always mapped with pmds */
1291 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1292 goto out;
53f9263b 1293 }
8186eb6a 1294
53f9263b
KS
1295 /* page still mapped by someone else? */
1296 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1297 goto out;
1298
1299 /*
1300 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1301 * these counters are not modified in interrupt context, and
1302 * pte lock(a spinlock) is held, which implies preemption disabled.
1303 */
1304 __dec_zone_page_state(page, NR_FILE_MAPPED);
62cccb8c 1305 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
8186eb6a
JW
1306
1307 if (unlikely(PageMlocked(page)))
1308 clear_page_mlock(page);
1309out:
62cccb8c 1310 unlock_page_memcg(page);
8186eb6a
JW
1311}
1312
53f9263b
KS
1313static void page_remove_anon_compound_rmap(struct page *page)
1314{
1315 int i, nr;
1316
1317 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1318 return;
1319
1320 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1321 if (unlikely(PageHuge(page)))
1322 return;
1323
1324 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1325 return;
1326
1327 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1328
1329 if (TestClearPageDoubleMap(page)) {
1330 /*
1331 * Subpages can be mapped with PTEs too. Check how many of
1332 * themi are still mapped.
1333 */
1334 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1335 if (atomic_add_negative(-1, &page[i]._mapcount))
1336 nr++;
1337 }
1338 } else {
1339 nr = HPAGE_PMD_NR;
1340 }
1341
e90309c9
KS
1342 if (unlikely(PageMlocked(page)))
1343 clear_page_mlock(page);
1344
9a982250 1345 if (nr) {
53f9263b 1346 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
9a982250
KS
1347 deferred_split_huge_page(page);
1348 }
53f9263b
KS
1349}
1350
1da177e4
LT
1351/**
1352 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1353 * @page: page to remove mapping from
1354 * @compound: uncharge the page as compound or small page
1da177e4 1355 *
b8072f09 1356 * The caller needs to hold the pte lock.
1da177e4 1357 */
d281ee61 1358void page_remove_rmap(struct page *page, bool compound)
1da177e4 1359{
8186eb6a 1360 if (!PageAnon(page)) {
d281ee61 1361 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
8186eb6a
JW
1362 page_remove_file_rmap(page);
1363 return;
1364 }
89c06bd5 1365
53f9263b
KS
1366 if (compound)
1367 return page_remove_anon_compound_rmap(page);
1368
b904dcfe
KM
1369 /* page still mapped by someone else? */
1370 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1371 return;
1372
0fe6e20b 1373 /*
bea04b07
JZ
1374 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1375 * these counters are not modified in interrupt context, and
bea04b07 1376 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1377 */
53f9263b 1378 __dec_zone_page_state(page, NR_ANON_PAGES);
8186eb6a 1379
e6c509f8
HD
1380 if (unlikely(PageMlocked(page)))
1381 clear_page_mlock(page);
8186eb6a 1382
9a982250
KS
1383 if (PageTransCompound(page))
1384 deferred_split_huge_page(compound_head(page));
1385
b904dcfe
KM
1386 /*
1387 * It would be tidy to reset the PageAnon mapping here,
1388 * but that might overwrite a racing page_add_anon_rmap
1389 * which increments mapcount after us but sets mapping
1390 * before us: so leave the reset to free_hot_cold_page,
1391 * and remember that it's only reliable while mapped.
1392 * Leaving it set also helps swapoff to reinstate ptes
1393 * faster for those pages still in swapcache.
1394 */
1da177e4
LT
1395}
1396
854e9ed0
MK
1397struct rmap_private {
1398 enum ttu_flags flags;
1399 int lazyfreed;
1400};
1401
1da177e4 1402/*
52629506 1403 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1404 */
ac769501 1405static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1406 unsigned long address, void *arg)
1da177e4
LT
1407{
1408 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1409 pte_t *pte;
1410 pte_t pteval;
c0718806 1411 spinlock_t *ptl;
1da177e4 1412 int ret = SWAP_AGAIN;
854e9ed0
MK
1413 struct rmap_private *rp = arg;
1414 enum ttu_flags flags = rp->flags;
1da177e4 1415
b87537d9
HD
1416 /* munlock has nothing to gain from examining un-locked vmas */
1417 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1418 goto out;
1419
fec89c10
KS
1420 if (flags & TTU_SPLIT_HUGE_PMD) {
1421 split_huge_pmd_address(vma, address,
1422 flags & TTU_MIGRATION, page);
1423 /* check if we have anything to do after split */
1424 if (page_mapcount(page) == 0)
1425 goto out;
1426 }
1427
479db0bf 1428 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1429 if (!pte)
81b4082d 1430 goto out;
1da177e4
LT
1431
1432 /*
1433 * If the page is mlock()d, we cannot swap it out.
1434 * If it's recently referenced (perhaps page_referenced
1435 * skipped over this mm) then we should reactivate it.
1436 */
14fa31b8 1437 if (!(flags & TTU_IGNORE_MLOCK)) {
b87537d9
HD
1438 if (vma->vm_flags & VM_LOCKED) {
1439 /* Holding pte lock, we do *not* need mmap_sem here */
1440 mlock_vma_page(page);
1441 ret = SWAP_MLOCK;
1442 goto out_unmap;
1443 }
daa5ba76 1444 if (flags & TTU_MUNLOCK)
53f79acb 1445 goto out_unmap;
14fa31b8
AK
1446 }
1447 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1448 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1449 ret = SWAP_FAIL;
1450 goto out_unmap;
1451 }
1452 }
1da177e4 1453
1da177e4
LT
1454 /* Nuke the page table entry. */
1455 flush_cache_page(vma, address, page_to_pfn(page));
72b252ae
MG
1456 if (should_defer_flush(mm, flags)) {
1457 /*
1458 * We clear the PTE but do not flush so potentially a remote
1459 * CPU could still be writing to the page. If the entry was
1460 * previously clean then the architecture must guarantee that
1461 * a clear->dirty transition on a cached TLB entry is written
1462 * through and traps if the PTE is unmapped.
1463 */
1464 pteval = ptep_get_and_clear(mm, address, pte);
1465
d950c947 1466 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
72b252ae
MG
1467 } else {
1468 pteval = ptep_clear_flush(vma, address, pte);
1469 }
1da177e4
LT
1470
1471 /* Move the dirty bit to the physical page now the pte is gone. */
1472 if (pte_dirty(pteval))
1473 set_page_dirty(page);
1474
365e9c87
HD
1475 /* Update high watermark before we lower rss */
1476 update_hiwater_rss(mm);
1477
888b9f7c 1478 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5d317b2b
NH
1479 if (PageHuge(page)) {
1480 hugetlb_count_sub(1 << compound_order(page), mm);
1481 } else {
eca56ff9 1482 dec_mm_counter(mm, mm_counter(page));
5f24ae58 1483 }
888b9f7c 1484 set_pte_at(mm, address, pte,
5f24ae58 1485 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1486 } else if (pte_unused(pteval)) {
1487 /*
1488 * The guest indicated that the page content is of no
1489 * interest anymore. Simply discard the pte, vmscan
1490 * will take care of the rest.
1491 */
eca56ff9 1492 dec_mm_counter(mm, mm_counter(page));
470f119f
HD
1493 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1494 swp_entry_t entry;
1495 pte_t swp_pte;
1496 /*
1497 * Store the pfn of the page in a special migration
1498 * pte. do_swap_page() will wait until the migration
1499 * pte is removed and then restart fault handling.
1500 */
1501 entry = make_migration_entry(page, pte_write(pteval));
1502 swp_pte = swp_entry_to_pte(entry);
1503 if (pte_soft_dirty(pteval))
1504 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1505 set_pte_at(mm, address, pte, swp_pte);
888b9f7c 1506 } else if (PageAnon(page)) {
4c21e2f2 1507 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1508 pte_t swp_pte;
470f119f
HD
1509 /*
1510 * Store the swap location in the pte.
1511 * See handle_pte_fault() ...
1512 */
1513 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
854e9ed0
MK
1514
1515 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1516 /* It's a freeable page by MADV_FREE */
1517 dec_mm_counter(mm, MM_ANONPAGES);
1518 rp->lazyfreed++;
1519 goto discard;
1520 }
1521
470f119f
HD
1522 if (swap_duplicate(entry) < 0) {
1523 set_pte_at(mm, address, pte, pteval);
1524 ret = SWAP_FAIL;
1525 goto out_unmap;
1526 }
1527 if (list_empty(&mm->mmlist)) {
1528 spin_lock(&mmlist_lock);
1529 if (list_empty(&mm->mmlist))
1530 list_add(&mm->mmlist, &init_mm.mmlist);
1531 spin_unlock(&mmlist_lock);
1da177e4 1532 }
470f119f
HD
1533 dec_mm_counter(mm, MM_ANONPAGES);
1534 inc_mm_counter(mm, MM_SWAPENTS);
179ef71c
CG
1535 swp_pte = swp_entry_to_pte(entry);
1536 if (pte_soft_dirty(pteval))
1537 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1538 set_pte_at(mm, address, pte, swp_pte);
04e62a29 1539 } else
eca56ff9 1540 dec_mm_counter(mm, mm_counter_file(page));
1da177e4 1541
854e9ed0 1542discard:
d281ee61 1543 page_remove_rmap(page, PageHuge(page));
09cbfeaf 1544 put_page(page);
1da177e4
LT
1545
1546out_unmap:
c0718806 1547 pte_unmap_unlock(pte, ptl);
b87537d9 1548 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
2ec74c3e 1549 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1550out:
1551 return ret;
1da177e4
LT
1552}
1553
71e3aac0 1554bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1555{
1556 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1557
1558 if (!maybe_stack)
1559 return false;
1560
1561 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1562 VM_STACK_INCOMPLETE_SETUP)
1563 return true;
1564
1565 return false;
1566}
1567
52629506
JK
1568static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1569{
1570 return is_vma_temporary_stack(vma);
1571}
1572
2a52bcbc 1573static int page_mapcount_is_zero(struct page *page)
52629506 1574{
2a52bcbc
KS
1575 return !page_mapcount(page);
1576}
52629506 1577
1da177e4
LT
1578/**
1579 * try_to_unmap - try to remove all page table mappings to a page
1580 * @page: the page to get unmapped
14fa31b8 1581 * @flags: action and flags
1da177e4
LT
1582 *
1583 * Tries to remove all the page table entries which are mapping this
1584 * page, used in the pageout path. Caller must hold the page lock.
1585 * Return values are:
1586 *
1587 * SWAP_SUCCESS - we succeeded in removing all mappings
1588 * SWAP_AGAIN - we missed a mapping, try again later
1589 * SWAP_FAIL - the page is unswappable
b291f000 1590 * SWAP_MLOCK - page is mlocked.
1da177e4 1591 */
14fa31b8 1592int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1593{
1594 int ret;
854e9ed0
MK
1595 struct rmap_private rp = {
1596 .flags = flags,
1597 .lazyfreed = 0,
1598 };
1599
52629506
JK
1600 struct rmap_walk_control rwc = {
1601 .rmap_one = try_to_unmap_one,
854e9ed0 1602 .arg = &rp,
2a52bcbc 1603 .done = page_mapcount_is_zero,
52629506
JK
1604 .anon_lock = page_lock_anon_vma_read,
1605 };
1da177e4 1606
52629506
JK
1607 /*
1608 * During exec, a temporary VMA is setup and later moved.
1609 * The VMA is moved under the anon_vma lock but not the
1610 * page tables leading to a race where migration cannot
1611 * find the migration ptes. Rather than increasing the
1612 * locking requirements of exec(), migration skips
1613 * temporary VMAs until after exec() completes.
1614 */
daa5ba76 1615 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1616 rwc.invalid_vma = invalid_migration_vma;
1617
2a52bcbc
KS
1618 if (flags & TTU_RMAP_LOCKED)
1619 ret = rmap_walk_locked(page, &rwc);
1620 else
1621 ret = rmap_walk(page, &rwc);
52629506 1622
2a52bcbc 1623 if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1da177e4 1624 ret = SWAP_SUCCESS;
854e9ed0
MK
1625 if (rp.lazyfreed && !PageDirty(page))
1626 ret = SWAP_LZFREE;
1627 }
1da177e4
LT
1628 return ret;
1629}
81b4082d 1630
2a52bcbc
KS
1631static int page_not_mapped(struct page *page)
1632{
1633 return !page_mapped(page);
1634};
1635
b291f000
NP
1636/**
1637 * try_to_munlock - try to munlock a page
1638 * @page: the page to be munlocked
1639 *
1640 * Called from munlock code. Checks all of the VMAs mapping the page
1641 * to make sure nobody else has this page mlocked. The page will be
1642 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1643 *
1644 * Return values are:
1645 *
53f79acb 1646 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1647 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1648 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1649 * SWAP_MLOCK - page is now mlocked.
1650 */
1651int try_to_munlock(struct page *page)
1652{
e8351ac9 1653 int ret;
854e9ed0
MK
1654 struct rmap_private rp = {
1655 .flags = TTU_MUNLOCK,
1656 .lazyfreed = 0,
1657 };
1658
e8351ac9
JK
1659 struct rmap_walk_control rwc = {
1660 .rmap_one = try_to_unmap_one,
854e9ed0 1661 .arg = &rp,
e8351ac9 1662 .done = page_not_mapped,
e8351ac9
JK
1663 .anon_lock = page_lock_anon_vma_read,
1664
1665 };
1666
309381fe 1667 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1668
e8351ac9
JK
1669 ret = rmap_walk(page, &rwc);
1670 return ret;
b291f000 1671}
e9995ef9 1672
01d8b20d 1673void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1674{
01d8b20d 1675 struct anon_vma *root = anon_vma->root;
76545066 1676
624483f3 1677 anon_vma_free(anon_vma);
01d8b20d
PZ
1678 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1679 anon_vma_free(root);
76545066 1680}
76545066 1681
0dd1c7bb
JK
1682static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1683 struct rmap_walk_control *rwc)
faecd8dd
JK
1684{
1685 struct anon_vma *anon_vma;
1686
0dd1c7bb
JK
1687 if (rwc->anon_lock)
1688 return rwc->anon_lock(page);
1689
faecd8dd
JK
1690 /*
1691 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1692 * because that depends on page_mapped(); but not all its usages
1693 * are holding mmap_sem. Users without mmap_sem are required to
1694 * take a reference count to prevent the anon_vma disappearing
1695 */
1696 anon_vma = page_anon_vma(page);
1697 if (!anon_vma)
1698 return NULL;
1699
1700 anon_vma_lock_read(anon_vma);
1701 return anon_vma;
1702}
1703
e9995ef9 1704/*
e8351ac9
JK
1705 * rmap_walk_anon - do something to anonymous page using the object-based
1706 * rmap method
1707 * @page: the page to be handled
1708 * @rwc: control variable according to each walk type
1709 *
1710 * Find all the mappings of a page using the mapping pointer and the vma chains
1711 * contained in the anon_vma struct it points to.
1712 *
1713 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1714 * where the page was found will be held for write. So, we won't recheck
1715 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1716 * LOCKED.
e9995ef9 1717 */
b9773199
KS
1718static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1719 bool locked)
e9995ef9
HD
1720{
1721 struct anon_vma *anon_vma;
b258d860 1722 pgoff_t pgoff;
5beb4930 1723 struct anon_vma_chain *avc;
e9995ef9
HD
1724 int ret = SWAP_AGAIN;
1725
b9773199
KS
1726 if (locked) {
1727 anon_vma = page_anon_vma(page);
1728 /* anon_vma disappear under us? */
1729 VM_BUG_ON_PAGE(!anon_vma, page);
1730 } else {
1731 anon_vma = rmap_walk_anon_lock(page, rwc);
1732 }
e9995ef9
HD
1733 if (!anon_vma)
1734 return ret;
faecd8dd 1735
b258d860 1736 pgoff = page_to_pgoff(page);
bf181b9f 1737 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1738 struct vm_area_struct *vma = avc->vma;
e9995ef9 1739 unsigned long address = vma_address(page, vma);
0dd1c7bb 1740
ad12695f
AA
1741 cond_resched();
1742
0dd1c7bb
JK
1743 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1744 continue;
1745
051ac83a 1746 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1747 if (ret != SWAP_AGAIN)
1748 break;
0dd1c7bb
JK
1749 if (rwc->done && rwc->done(page))
1750 break;
e9995ef9 1751 }
b9773199
KS
1752
1753 if (!locked)
1754 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1755 return ret;
1756}
1757
e8351ac9
JK
1758/*
1759 * rmap_walk_file - do something to file page using the object-based rmap method
1760 * @page: the page to be handled
1761 * @rwc: control variable according to each walk type
1762 *
1763 * Find all the mappings of a page using the mapping pointer and the vma chains
1764 * contained in the address_space struct it points to.
1765 *
1766 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1767 * where the page was found will be held for write. So, we won't recheck
1768 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1769 * LOCKED.
1770 */
b9773199
KS
1771static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1772 bool locked)
e9995ef9 1773{
b9773199 1774 struct address_space *mapping = page_mapping(page);
b258d860 1775 pgoff_t pgoff;
e9995ef9 1776 struct vm_area_struct *vma;
e9995ef9
HD
1777 int ret = SWAP_AGAIN;
1778
9f32624b
JK
1779 /*
1780 * The page lock not only makes sure that page->mapping cannot
1781 * suddenly be NULLified by truncation, it makes sure that the
1782 * structure at mapping cannot be freed and reused yet,
c8c06efa 1783 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1784 */
81d1b09c 1785 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1786
e9995ef9
HD
1787 if (!mapping)
1788 return ret;
3dec0ba0 1789
b258d860 1790 pgoff = page_to_pgoff(page);
b9773199
KS
1791 if (!locked)
1792 i_mmap_lock_read(mapping);
6b2dbba8 1793 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1794 unsigned long address = vma_address(page, vma);
0dd1c7bb 1795
ad12695f
AA
1796 cond_resched();
1797
0dd1c7bb
JK
1798 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1799 continue;
1800
051ac83a 1801 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1802 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1803 goto done;
1804 if (rwc->done && rwc->done(page))
1805 goto done;
e9995ef9 1806 }
0dd1c7bb 1807
0dd1c7bb 1808done:
b9773199
KS
1809 if (!locked)
1810 i_mmap_unlock_read(mapping);
e9995ef9
HD
1811 return ret;
1812}
1813
051ac83a 1814int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1815{
e9995ef9 1816 if (unlikely(PageKsm(page)))
051ac83a 1817 return rmap_walk_ksm(page, rwc);
e9995ef9 1818 else if (PageAnon(page))
b9773199
KS
1819 return rmap_walk_anon(page, rwc, false);
1820 else
1821 return rmap_walk_file(page, rwc, false);
1822}
1823
1824/* Like rmap_walk, but caller holds relevant rmap lock */
1825int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1826{
1827 /* no ksm support for now */
1828 VM_BUG_ON_PAGE(PageKsm(page), page);
1829 if (PageAnon(page))
1830 return rmap_walk_anon(page, rwc, true);
e9995ef9 1831 else
b9773199 1832 return rmap_walk_file(page, rwc, true);
e9995ef9 1833}
0fe6e20b 1834
e3390f67 1835#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1836/*
1837 * The following three functions are for anonymous (private mapped) hugepages.
1838 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1839 * and no lru code, because we handle hugepages differently from common pages.
1840 */
1841static void __hugepage_set_anon_rmap(struct page *page,
1842 struct vm_area_struct *vma, unsigned long address, int exclusive)
1843{
1844 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1845
0fe6e20b 1846 BUG_ON(!anon_vma);
433abed6
NH
1847
1848 if (PageAnon(page))
1849 return;
1850 if (!exclusive)
1851 anon_vma = anon_vma->root;
1852
0fe6e20b
NH
1853 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1854 page->mapping = (struct address_space *) anon_vma;
1855 page->index = linear_page_index(vma, address);
1856}
1857
1858void hugepage_add_anon_rmap(struct page *page,
1859 struct vm_area_struct *vma, unsigned long address)
1860{
1861 struct anon_vma *anon_vma = vma->anon_vma;
1862 int first;
a850ea30
NH
1863
1864 BUG_ON(!PageLocked(page));
0fe6e20b 1865 BUG_ON(!anon_vma);
5dbe0af4 1866 /* address might be in next vma when migration races vma_adjust */
53f9263b 1867 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b
NH
1868 if (first)
1869 __hugepage_set_anon_rmap(page, vma, address, 0);
1870}
1871
1872void hugepage_add_new_anon_rmap(struct page *page,
1873 struct vm_area_struct *vma, unsigned long address)
1874{
1875 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1876 atomic_set(compound_mapcount_ptr(page), 0);
0fe6e20b
NH
1877 __hugepage_set_anon_rmap(page, vma, address, 1);
1878}
e3390f67 1879#endif /* CONFIG_HUGETLB_PAGE */